REAL ANALYSIS MATH 607 HOMEWORK #8

Problem 1 (30 points). Recall that (X, d_X) is a semi-metric space if $d_X : X \times X \to [0, \infty)$ satisfies for all $x, y, z \in X$:

- (1) $d_X(x, x) = 0$,
- (2) $d_X(x, y) = d_X(y, x)$,
- (3) $d_{\mathsf{X}}(x,y) \leq d_{\mathsf{X}}(x,z) + d_{\mathsf{X}}(z,y)$,

and d_X is a metric if moreover $d_X(x, y) = 0 \implies x = y$. Let $\mathscr{L}_1(X, \mathcal{M}, \mu)$ be the set of all integrable functions $f: (X, \mathcal{M}, \mu) \to \mathbb{R}$.

- (1) (3 points) Show that $d_1(f,g) \stackrel{\text{def}}{=} \int_X |f-g| d\mu$ is a semi-metric on $\mathscr{L}_1(X, \mathcal{M}, \mu)$. (2) (3 points) Show that the relation $f \sim g \iff f = g \mu$ -a.e. is an equivalence relation on $\mathscr{L}_1(X, \mathcal{M}, \mu)$.
- (3) (2 points) Show that if $L_1(X, \mathcal{M}, \mu) \stackrel{\text{def}}{=} \mathscr{L}_1(X, \mathcal{M}, \mu)_{/\sim} = \{\overline{f} \colon f \in \mathscr{L}_1(X, \mathcal{M}, \mu)\}$ is the set of equivalence classes of integrable functions for the relation ~, then $\bar{d}_1(\bar{f},\bar{g}) \stackrel{\text{def}}{=} \int_{V} |f-g| d\mu$ is a metric on $L_1(X, \mathcal{M}, \mu).$
- (4) (5 points) Assume that $\mu(X) < \infty$ and consider the function $d_m(f,g) \stackrel{\text{def}}{=} \int_Y \min\{1, |f-g|\} d\mu$. Show that d_m is a metric on $L_0(X, \mathcal{M}, \mu)$ the set of equivalence classes of measurable functions (for the μ -a.e. equivalence relation ~).
- (5) (10 points) Let $f, f_n, n \ge 1$ be real-valued measurable functions. Show that $\lim_{n\to\infty} d_m(f, f_n) = 0 \iff 0$ $(f_n)_n$ converges to f in μ -measure.
- (6) (4 points) Show that d_m is a complete metric.
- (7) (3 points) Let $f, f_n, n \ge 1$ be real-valued measurable functions. Is there a metric d on $L_0(X, \mathcal{M}, \mu)$ such that $\lim_{n\to\infty} d(f, f_n) = 0 \iff (f_n)_n$ converges to $f \mu$ -a.e.?

Hint: For (7) you can use the fact (and prove it if you feel like) that in any metric space (X,d_X) , a sequence $(x_n)_n \subset X$ converges to x if and only if every subsequence of $(x_n)_n$ has a further subsequence that converges to *x*.

Problem 2 (25 points). *(Existence and uniqueness of the product measure) Let* (X, \mathcal{M}, μ) *and* (Y, \mathcal{N}, ν) *be* two σ -finite measure spaces.

- (1) (5 points) Show that if two measures m_1 and m_2 on the product σ -algebra $\mathcal{M} \otimes \mathcal{N}$ satisfy for all $A \in \mathcal{M}$, and all $B \in \mathcal{N}$, $m_1(A \times B) = \mu(A)\nu(B) = m_2(A \times B)$, then necessarily $m_1 = m_2$ on $\mathcal{M} \otimes \mathcal{N}$.
- (2) (10 points) Show that for all $C \in \mathcal{M} \otimes \mathcal{N}$, the maps $x \in X \mapsto v(C_x)$ and $y \in Y \mapsto \mu(C^y)$ are well-defined and measurable.
- (3) (5 points) Show that the maps $m_1, m_2: \mathcal{M} \otimes \mathcal{N} \to [0, \infty]$ defined by

$$m_1(C) \stackrel{\text{def}}{=} \int_X v(C_x) d\mu(x) \quad and \quad m_2(C) \stackrel{\text{def}}{=} \int_Y \mu(C^y) d\nu(y).$$

are well-defined and are measures on $\mathcal{M} \otimes \mathcal{N}$.

(4) (5 points) Show that if $C = A \times B$ with $A \in \mathcal{M}$ and $B \in \mathcal{N}$ then $m_1(A \times B) = m_2(A \times B) = \mu(A)v(B)$ and conclude.

Problem 3 (25 points). For all $n \ge 1$, let $(X_n, \mathcal{M}_n, \mu_n)$ be a probability space, i.e. a measure space such that $\mu_n(X_n) = 1$.

- (1) (5 points) Show that $\mathcal{A} \stackrel{\text{def}}{=} \left\{ A \times \prod_{k=n+1}^{\infty} X_k \colon A \in \mathcal{M}_1 \otimes \cdots \otimes \mathcal{M}_n, n \in \mathbb{N} \right\}$ is an algebra on $\prod_{n=1}^{\infty} X_n$.
- (2) (10 points) Show that the map $v: \mathcal{A} \to [0,1]$ given by

$$\nu(A \times \prod_{k=n+1}^{\infty} X_k) \stackrel{\text{def}}{=} (\mu_1 \otimes \cdots \otimes \mu_n)(A)$$

is well-defined and a premeasure on \mathcal{A} of total measure 1.

(3) (10 points) The product σ -algebra on $\prod_{n=1}^{\infty} X_n$ is denoted by $\bigotimes_{n=1}^{\infty} \mathcal{M}_n$, and is defined as the σ algebra generated by \mathcal{A} . Show that there exists a unique probability measure m on $\bigotimes_{n=1}^{\infty} \mathcal{M}_n$ such that $m(A_1 \times \cdots \times A_n \times \prod_{k=n+1}^{\infty} X_k) = \mu_1(A_1) \cdots \mu_n(A_n)$ for all $n \ge 1$ and $A_n \in \mathcal{M}_n$.

Problem 4 (20 points). (Layer-cake/Distribution formula) Let μ be a σ -finite measure on (X, \mathcal{M}) and $f: (X, \mathcal{M}) \rightarrow [0, \infty)$ be measurable. Show that

$$\int_X f d\mu = \int_0^\infty \mu(\{f > t\}) dt$$