REAL ANALYSIS MATH 607
 HOMEWORK \#8

Problem 1 (30 points). Recall that $\left(\mathrm{X}, \mathrm{d}_{\mathrm{X}}\right)$ is a semi-metric space if $\mathrm{d} \mathrm{X}: \mathrm{X} \times \mathrm{X} \rightarrow[0, \infty)$ satisfies for all $x, y, z \in \mathrm{X}$:
(1) $\mathrm{d}_{\mathrm{X}}(x, x)=0$,
(2) $\mathrm{d}_{\mathrm{X}}(x, y)=\mathrm{d}_{\mathrm{X}}(y, x)$,
(3) $\mathrm{d}_{\mathrm{X}}(x, y) \leqslant \mathrm{d}_{\mathrm{X}}(x, z)+\mathrm{d}_{\mathrm{X}}(z, y)$,
and d_{x} is a metric if moreover $\mathrm{d}_{\mathrm{x}}(x, y)=0 \Longrightarrow x=y$.
Let $\mathscr{L}_{1}(X, \mathcal{M}, \mu)$ be the set of all integrable functions $f:(X, \mathcal{M}, \mu) \rightarrow \mathbb{R}$.
(1) (3 points) Show that $\mathrm{d}_{1}(f, g) \stackrel{\text { def }}{=} \int_{X}|f-g| d \mu$ is a semi-metric on $\mathscr{L}_{1}(X, \mathcal{M}, \mu)$.
(2) (3 points) Show that the relation $f \sim g \Longleftrightarrow f=g \mu$-a.e. is an equivalence relation on $\mathscr{L}_{1}(X, \mathcal{M}, \mu)$.
(3) (2 points) Show that if $L_{1}(X, \mathcal{M}, \mu) \stackrel{\text { def }}{=} \mathscr{L}_{1}(X, \mathcal{M}, \mu)_{/ \sim}=\left\{\bar{f}: f \in \mathscr{L}_{1}(X, \mathcal{M}, \mu)\right\}$ is the set of equivalence classes of integrable functions for the relation \sim, then $\overline{\mathrm{d}}_{1}(\bar{f}, \bar{g}) \stackrel{\operatorname{def}}{=} \int_{X}|f-g| d \mu$ is a metric on $L_{1}(X, \mathcal{M}, \mu)$.
(4) (5 points) Assume that $\mu(X)<\infty$ and consider the function $\mathrm{d}_{m}(f, g) \stackrel{\text { def }}{=} \int_{X} \min \{1,|f-g|\} d \mu$. Show that d_{m} is a metric on $L_{0}(X, \mathcal{M}, \mu)$ the set of equivalence classes of measurable functions (for the μ-a.e. equivalence relation $\sim)$.
(5) (10 points) Let $f, f_{n}, n \geqslant 1$ be real-valued measurable functions. Show that $\lim _{n \rightarrow \infty} \mathrm{~d}_{m}\left(f, f_{n}\right)=0 \Longleftrightarrow$ $\left(f_{n}\right)_{n}$ converges to f in μ-measure.
(6) (4 points) Show that d_{m} is a complete metric.
(7) (3 points) Let $f, f_{n}, n \geqslant 1$ be real-valued measurable functions. Is there a metric d on $L_{0}(X, \mathcal{M}, \mu)$ such that $\lim _{n \rightarrow \infty} \mathrm{~d}\left(f, f_{n}\right)=0 \Longleftrightarrow\left(f_{n}\right)_{n}$ converges to $f \mu$-a.e.?

Hint: For (7) you can use the fact (and prove it if you feel like) that in any metric space ($X, \mathrm{~d}_{\mathrm{X}}$), a sequence $\left(x_{n}\right)_{n} \subset \mathrm{X}$ converges to x if and only if every subsequence of $\left(x_{n}\right)_{n}$ has a further subsequence that converges to x.

Problem 2 (25 points). (Existence and uniqueness of the product measure) Let (X, \mathcal{M}, μ) and (Y, \mathcal{N}, v) be two σ-finite measure spaces.
(1) (5 points) Show that if two measures m_{1} and m_{2} on the product σ-algebra $\mathcal{M} \otimes \mathcal{N}$ satisfy for all $A \in \mathcal{M}$, and all $B \in \mathcal{N}, m_{1}(A \times B)=\mu(A) v(B)=m_{2}(A \times B)$, then necessarily $m_{1}=m_{2}$ on $\mathcal{M} \otimes \mathcal{N}$.
(2) (10 points) Show that for all $C \in \mathcal{M} \otimes \mathcal{N}$, the maps $x \in X \mapsto v\left(C_{x}\right)$ and $y \in Y \mapsto \mu\left(C^{y}\right)$ are well-defined and measurable.
(3) (5 points) Show that the maps $m_{1}, m_{2}: \mathcal{M} \otimes \mathcal{N} \rightarrow[0, \infty]$ defined by

$$
m_{1}(C) \stackrel{\text { def }}{=} \int_{X} v\left(C_{x}\right) d \mu(x) \quad \text { and } \quad m_{2}(C) \stackrel{\text { def }}{=} \int_{Y} \mu\left(C^{y}\right) d v(y)
$$

are well-defined and are measures on $\mathcal{M} \otimes \mathcal{N}$.
(4) (5 points) Show that if $C=A \times B$ with $A \in \mathcal{M}$ and $B \in \mathcal{N}$ then $m_{1}(A \times B)=m_{2}(A \times B)=\mu(A) v(B)$ and conclude.

Problem 3 (25 points). For all $n \geqslant 1$, let $\left(X_{n}, \mathcal{M}_{n}, \mu_{n}\right)$ be a probability space, i.e. a measure space such that $\mu_{n}\left(X_{n}\right)=1$.
(1) (5 points) Show that $\mathcal{A} \stackrel{\text { def }}{=}\left\{A \times \prod_{k=n+1}^{\infty} X_{k}: A \in \mathcal{M}_{1} \otimes \cdots \otimes \mathcal{M}_{n}, n \in \mathbb{N}\right\}$ is an algebra on $\prod_{n=1}^{\infty} X_{n}$.
(2) (10 points) Show that the map $v: \mathcal{A} \rightarrow[0,1]$ given by

$$
v\left(A \times \prod_{k=n+1}^{\infty} X_{k}\right) \stackrel{\text { def }}{=}\left(\mu_{1} \otimes \cdots \otimes \mu_{n}\right)(A)
$$

is well-defined and a premeasure on \mathcal{A} of total measure 1 .
(3) (10 points) The product σ-algebra on $\prod_{n=1}^{\infty} X_{n}$ is denoted by $\otimes_{n=1}^{\infty} \mathcal{M}_{n}$, and is defined as the σ algebra generated by \mathcal{A}. Show that there exists a unique probability measure m on $\otimes_{n=1}^{\infty} \mathcal{M}_{n}$ such that $m\left(A_{1} \times \cdots \times A_{n} \times \prod_{k=n+1}^{\infty} X_{k}\right)=\mu_{1}\left(A_{1}\right) \cdots \mu_{n}\left(A_{n}\right)$ for all $n \geqslant 1$ and $A_{n} \in \mathcal{M}_{n}$.

Problem 4 (20 points). (Layer-cake/Distribution formula) Let μ be a σ-finite measure on (X, \mathcal{M}) and $f:(X, \mathcal{M}) \rightarrow[0, \infty)$ be measurable. Show that

$$
\int_{X} f d \mu=\int_{0}^{\infty} \mu(\{f>t\}) d t
$$

