REAL ANALYSIS MATH 607 HOMEWORK \#9

Problem 1 (25 points). Let (X, \mathcal{M}, μ) be a measure space. Let $\mathcal{N}_{\mu} \stackrel{\text { def }}{=}\{N \subset X: \exists A \in \mathcal{M}, N \subset A, \mu(A)=0\}$ be the null set of μ. Recall that the completion of \mathcal{M} is $\overline{\mathcal{M}}^{\mu}=\mathcal{\mathcal { M }} \cup \mathcal{N}_{\mu}$, and the completion of μ is $\bar{\mu}$ defined on $\overline{\mathcal{M}}^{\mu}$ by $\bar{\mu}(A \cup N)=\mu(A)$. The complete measure space $\left(X, \overline{\mathcal{M}}^{\mu}, \bar{\mu}\right)$ is called the completion of (X, \mathcal{M}, μ).
(1) (5 points) Let (X, \mathcal{A}, μ) and (Y, \mathcal{B}, v) be two σ-finite measure spaces. Show that

$$
\left(\mathscr{P}(X) \times \mathcal{N}_{v}\right) \cup\left(\mathcal{N}_{\mu} \times \mathscr{P}(Y)\right) \subset \mathcal{N}_{\mu \otimes v} .
$$

(2) (5 points) Let (X, \mathcal{A}, μ) and (Y, \mathcal{B}, v) be two σ-finite measure spaces. Show that if $\mathcal{A} \neq \mathscr{P}(X)$ and $\mathcal{N}_{v} \neq\{\emptyset\}$, or $\mathcal{B} \neq \mathscr{P}(Y)$ and $\mathcal{N}_{\mu} \neq\{\emptyset\}$ then $(X \times Y, \mathcal{A} \otimes \mathcal{B}, \mu \otimes v)$ is not complete. What can you deduce for the measure space $\left(\mathbb{R}^{2}, \mathscr{L}(\mathbb{R}) \otimes \mathscr{L}(\mathbb{R}), \bar{\lambda} \otimes \bar{\lambda}\right)$ where $\bar{\lambda}$ is the completion of the Lebesgue measure on the Lebesgue σ-algebra $\mathscr{L}(\mathbb{R}) \stackrel{\text { def }}{=} \bar{B}(\mathbb{R})^{\lambda}$?
(3) (10 points) Let (X, \mathcal{A}, μ) and (Y, \mathcal{B}, v) be two σ-finite measure spaces. Show that
(4) (5 points) Show that $\overline{\lambda_{2}}=\overline{\bar{\lambda} \otimes \bar{\lambda}}$, and $\overline{\mathscr{L}(\mathbb{R}) \otimes \mathscr{L}(\mathbb{R})}{ }^{\bar{\lambda}} \bar{\lambda}=\mathscr{L}\left(\mathbb{R}^{2}\right)$, where λ_{2} is the 2-dimensional Lebesgue measure.

Problem 2 (15 points). (Old qualifier exam problem) Suppose that for $n \in \mathbb{N}, E_{n} \in \mathscr{B}(\mathbb{R})$ is a Borel set. Assume that $f(x)=\lim _{n \rightarrow \infty} \mathbf{1}_{E_{n}}(x)$ exists for λ-almost all $x \in \mathbb{R}$.
(1) (5 points) Show that f is λ-a.e. equal to a characteristic function of a Borel set $E \subset \mathbb{R}$.
(2) Show that for any $g \in \mathscr{L}^{1}$:

$$
\int_{E} g d \lambda=\lim _{n \rightarrow \infty} \int_{E_{n}} g d \lambda .
$$

(3) Let $E_{n}, n \geqslant 1$, and E be Borel sets. Establish a necessary and sufficient condition for $\mathbf{1}_{E_{n}} \rightarrow \mathbf{1}_{E}$ in \mathscr{L}^{1}, i.e. $\int_{\mathbb{R}}\left|\mathbf{1}_{E_{n}}-\mathbf{1}_{E}\right| d \lambda \rightarrow 0$.

Problem 3 (20 points). (Old qualifier exam problem) Let $f:[0,1] \rightarrow \mathbb{R}$ be integrable (with respect to Lebesgue measure λ) and nonnegative. Define

$$
G_{f} \stackrel{\text { def }}{=}\{(x, y): 0 \leqslant x \leqslant 1,0 \leqslant y \leqslant f(x)\} .
$$

Show that G_{f} is measurable in $[0,1] \times \mathbb{R}$ and that

$$
\lambda_{2}\left(G_{f}\right)=\int_{[0,1]} f d \lambda .
$$

Problem 4 (15 points). (Old qualifier exam problem) Let $f:(0,1) \rightarrow \mathbb{R}$ be integrable with respect to the Lebesgue measure (denoted dx) on $(0,1)$. For $0<x<1$ define

$$
g(x)=\int_{x}^{1} t^{-1} f(t) d t .
$$

Prove that g is Lebesgue integrable on $(0,1)$ and that

$$
\int_{0}^{1} g(x) d x=\int_{0}^{1} f(x) d x .
$$

Problem 5 (25 points). Let $\mu:(X, \mathcal{M}) \rightarrow \overline{\mathbb{R}}$ be a signed measure.
(1) (3 points) Let $A, B \in \mathcal{M}$. Show that if $A \subset B$ and $\mu(B) \in \mathbb{R}$ then $\mu(A) \in \mathbb{R}$ and $\mu(B \backslash A)=\mu(B)-\mu(A)$.
(2) (5 points) Show that if $\mu\left(\cup_{n=1}^{\infty} A_{n}\right) \in \mathbb{R}$ with $\left(A_{n}\right)_{n}$ a disjoint sequence in \mathcal{M} then $\sum_{n=1}^{\infty}\left|\mu\left(A_{n}\right)\right|<\infty$
(3) (5 points) Let $f:(X, \mathcal{M}) \rightarrow \overline{\mathbb{R}}$ be measurable and μ a positive measure on (X, \mathcal{M}) such that $\int_{X} f^{+} d \mu<$ ∞. Show that $\mu_{f}(A) \stackrel{\text { def }}{=} \int_{A} f d \mu$ defines a signed measure on (X, \mathcal{M}).
(4) (2 points) Give a simple example of a finite signed measure such that monotonicity and subadditivity fail.
(5) For concreteness, assume that μ does not take the value $-\infty$. For this question you are not allowed to use the existence of a Hahn decomposition as we will give an alternate proof of the Hahn decomposition theorem.
(a) (5 points) Let $A \in \mathcal{M}$ such that $\mu(A) \leqslant 0$. Show that there exists a measurable subset $N \subset A$ that is negative for μ and such that $\mu(N) \leqslant \mu(A)$.
(b) (5 points) Show the existence of a Hahn decomposition for μ.

Hint: For (5a) Try to build recursively a disjoint sequence $\left(B_{n}\right)_{n}$ of subsets of A of "largest possible measure" and consider the set $A \backslash \cup_{n} B_{n}$.

For (5b) Consider the number $s_{0} \stackrel{\text { def }}{=} \inf \{\mu(A): A \subset X, A \in \mathcal{M}\}$ and construct, using (5a), a negative set A_{1} such that $\mu\left(A_{1}\right) \leqslant \max \left\{s_{0} / 2,-1\right\}$. Continue recursively to construct disjoint negative sets $\left(A_{n}\right)_{n}$ and show that $\cup_{n} A_{n}$ is negative and its complement is positive.

