REAL ANALYSIS MATH 607 HOMEWORK #9

Problem 1 (25 points). Let (X, \mathcal{M}, μ) be a measure space. Let $\mathcal{N}_{\mu} \stackrel{\text{def}}{=} \{N \subset X : \exists A \in \mathcal{M}, N \subset A, \mu(A) = 0\}$ be the null set of μ . Recall that the completion of \mathcal{M} is $\overline{\mathcal{M}}^{\mu} = \mathcal{M} \cup \mathcal{N}_{\mu}$, and the completion of μ is $\overline{\mu}$ defined on $\overline{\mathcal{M}}^{\mu}$ by $\overline{\mu}(A \cup N) = \mu(A)$. The complete measure space $(X, \overline{\mathcal{M}}^{\mu}, \overline{\mu})$ is called the completion of (X, \mathcal{M}, μ) .

(1) (5 points) Let (X, \mathcal{A}, μ) and (Y, \mathcal{B}, ν) be two σ -finite measure spaces. Show that

$$(\mathscr{P}(X) \times \mathcal{N}_{\nu}) \cup (\mathcal{N}_{\mu} \times \mathscr{P}(Y)) \subset \mathcal{N}_{\mu \otimes \nu}.$$

- (2) (5 points) Let (X, A, μ) and (Y, B, ν) be two σ-finite measure spaces. Show that if A ≠ P(X) and N_ν ≠ {0}, or B ≠ P(Y) and N_μ ≠ {0} then (X×Y, A⊗B, μ⊗ν) is not complete. What can you deduce for the measure space (R², L(R)⊗L(R), λ̄⊗λ̄) where λ̄ is the completion of the Lebesgue measure on the Lebesgue σ-algebra L(R) ^{def}/_B(R)^λ?
- (3) (10 points) Let (X, \mathcal{A}, μ) and (Y, \mathcal{B}, ν) be two σ -finite measure spaces. Show that

$$\mathcal{N}_{\bar{\mu}\otimes\bar{\nu}}=\mathcal{N}_{\mu\otimes\nu},\qquad\overline{\overline{\mathcal{A}}^{\mu}\otimes\overline{\mathcal{B}}^{\nu}}^{\mu\otimes\nu}=\overline{\mathcal{A}\otimes\mathcal{B}}^{\mu\otimes\nu},\qquad\overline{\bar{\mu}\otimes\bar{\nu}}=\overline{\mu\otimes\nu}.$$

(4) (5 points) Show that $\overline{\lambda_2} = \overline{\overline{\lambda} \otimes \overline{\lambda}}$, and $\overline{\mathscr{L}(\mathbb{R}) \otimes \mathscr{L}(\mathbb{R})}^{\overline{\lambda} \otimes \overline{\lambda}} = \mathscr{L}(\mathbb{R}^2)$, where λ_2 is the 2-dimensional Lebesgue measure.

Problem 2 (15 points). (Old qualifier exam problem) Suppose that for $n \in \mathbb{N}$, $E_n \in \mathscr{B}(\mathbb{R})$ is a Borel set. Assume that $f(x) = \lim_{n \to \infty} \mathbf{1}_{E_n}(x)$ exists for λ -almost all $x \in \mathbb{R}$.

- (1) (5 points) Show that f is λ -a.e. equal to a characteristic function of a Borel set $E \subset \mathbb{R}$.
- (2) Show that for any $g \in \mathcal{L}^1$:

$$\int_E g d\lambda = \lim_{n \to \infty} \int_{E_n} g d\lambda$$

(3) Let $E_n, n \ge 1$, and E be Borel sets. Establish a necessary and sufficient condition for $\mathbf{1}_{E_n} \to \mathbf{1}_E$ in \mathscr{L}^1 , i.e. $\int_{\mathbb{R}} |\mathbf{1}_{E_n} - \mathbf{1}_E| d\lambda \to 0$.

Problem 3 (20 points). (Old qualifier exam problem) Let $f: [0,1] \to \mathbb{R}$ be integrable (with respect to Lebesgue measure λ) and nonnegative. Define

$$G_f \stackrel{\text{def}}{=} \{(x, y) \colon 0 \le x \le 1, 0 \le y \le f(x)\}.$$

Show that G_f is measurable in $[0,1] \times \mathbb{R}$ and that

$$\lambda_2(G_f) = \int_{[0,1]} f d\lambda.$$

Problem 4 (15 points). (Old qualifier exam problem) Let $f: (0,1) \to \mathbb{R}$ be integrable with respect to the Lebesgue measure (denoted dx) on (0,1). For 0 < x < 1 define

$$g(x) = \int_x^1 t^{-1} f(t) dt.$$

Prove that g is Lebesgue integrable on (0, 1) *and that*

$$\int_0^1 g(x)dx = \int_0^1 f(x)dx.$$

Problem 5 (25 points). Let μ : $(X, \mathcal{M}) \to \overline{\mathbb{R}}$ be a signed measure.

- (1) (3 points) Let $A, B \in \mathcal{M}$. Show that if $A \subset B$ and $\mu(B) \in \mathbb{R}$ then $\mu(A) \in \mathbb{R}$ and $\mu(B \setminus A) = \mu(B) \mu(A)$.
- (2) (5 points) Show that if $\mu(\bigcup_{n=1}^{\infty} A_n) \in \mathbb{R}$ with $(A_n)_n$ a disjoint sequence in \mathcal{M} then $\sum_{n=1}^{\infty} |\mu(A_n)| < \infty$
- (3) (5 points) Let $f: (X, \mathcal{M}) \to \overline{\mathbb{R}}$ be measurable and μ a positive measure on (X, \mathcal{M}) such that $\int_X f^+ d\mu < \infty$. Show that $\mu_f(A) \stackrel{\text{def}}{=} \int_A f d\mu$ defines a signed measure on (X, \mathcal{M}) .
- (4) (2 points) Give a simple example of a finite signed measure such that monotonicity and subadditivity fail.
- (5) For concreteness, assume that µ does not take the value −∞. For this question you are not allowed to use the existence of a Hahn decomposition as we will give an alternate proof of the Hahn decomposition theorem.
 - (a) (5 points) Let $A \in \mathcal{M}$ such that $\mu(A) \leq 0$. Show that there exists a measurable subset $N \subset A$ that is negative for μ and such that $\mu(N) \leq \mu(A)$.
 - (b) (5 points) Show the existence of a Hahn decomposition for μ .

Hint: For (5a) Try to build recursively a disjoint sequence $(B_n)_n$ of subsets of A of "largest possible measure" and consider the set $A \setminus \bigcup_n B_n$.

For (5b) Consider the number $s_0 \stackrel{\text{def}}{=} \inf\{\mu(A) : A \subset X, A \in \mathcal{M}\}\$ and construct, using (5a), a negative set A_1 such that $\mu(A_1) \leq \max\{s_0/2, -1\}$. Continue recursively to construct disjoint negative sets $(A_n)_n$ and show that $\bigcup_n A_n$ is negative and its complement is positive.