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We show that atoms falling into a black hole (BH) emit acceler-
ation radiation which, under appropriate initial conditions, looks
to a distant observer much like (but is different from) Hawking
BH radiation. In particular, we find the entropy of the accelera-
tion radiation via a simple laser-like analysis. We call this entropy
horizon brightened acceleration radiation (HBAR) entropy to dis-
tinguish it from the BH entropy of Bekenstein and Hawking.
This analysis also provides insight into the Einstein principle of
equivalence between acceleration and gravity.

acceleration radiation | black hole entropy | equivalence principle |
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General relativity as originally developed by Einstein (1) is
based on the union of geometry and gravity (2). Half a cen-

tury later the union of general relativity and thermodynamics was
found to yield surprising results such as Bekenstein–Hawking
black hole entropy (3–6), particle emission from a black hole
(5–9), and acceleration radiation (10–17). More recently the
connection between black hole (BH) physics and optics, e.g.,
ultraslow light (18), fiber-optical analog of the event horizon
(19), and quantum entanglement (20), has led to fascinating
physics.

In their seminal works, Hawking, Unruh, and others (3–14)
showed how quantum effects in curved space yield a blend of
thermodynamics, quantum field theory, and gravity which con-
tinues to intrigue and stimulate. For problems as important and
startling as Hawking and Unruh radiation, new and alternative
approaches are of interest. In that regard it was shown (21, 22)
that virtual processes in which atoms jump to an excited state
while emitting a photon are an alternative way to view Unruh
acceleration radiation. Namely, by breaking and interrupting the
virtual processes which take place all around us, we can render
the virtual photons real.

The present paper is an extension of that logic by con-
sidering what happens when atoms fall through a Boulware
vacuum (23) into a BH as shown in Fig. 1. A mirror held
at the event horizon shields infalling atoms from the Hawk-
ing radiation. The equivalence principle tells us that an atom
falling in a gravitational field does not “feel” the effect of
gravity; namely its 4 acceleration is equal to zero. However,
as we discuss in Appendix A, there is relative acceleration
between the atoms and the field modes. This leads to the gen-
eration of acceleration radiation. In Appendix B we provide a
detailed calculation of the photon emission by atoms falling
into a BH.

In the classic works (10–17) the atom (or other Unruh–DeWitt
detector) was accelerated through flat space-time. The present
work differs in that the atom is in free fall and the field is
accelerated (or supported in a gravitational field) and contains a
Boulware-like ground state of the quantized field. Qualitatively,
the principle of equivalence suggests that the results should
be analogous to those in refs. 10–17, but the notion that an
atom in free fall should emit radiation is surprising to many

people (despite the results in refs. 24 and 25). For this and other
reasons, the detailed calculation presented here, taking into
account the quantitative differences between the two situations,
has been necessary. (An example of another reason for includ-
ing the detailed calculations of Appendix B is in the words of
one of the reviewers: “How can the atom falling into a BH emit
Unruh-like radiation which comes from a constant acceleration
since the falling atom acceleration depends on the distance from
the BH?” The answer to this and other such questions is given in
Appendix B.)

Specifically we consider an atomic cloud consisting of two-level
atoms emitting acceleration radiation (Fig. 1) (21, 22). We find
that the quantum master equation technique, as developed in
the quantum theory of the laser, provides a useful tool for the
analysis of BH acceleration radiation and the associated entropy.
(For the density matrix formulation of the quantum theory of the
laser, see ref. 26. For pedagogical treatment and references, see
refs. 27 and 28.) In particular, we derive a coarse-grained equa-
tion of motion for the density matrix of the emitted radiation of
the form

ρ̇nn = (Mρ)nn , [1]

where the time evolution of the diagonal elements of the den-
sity matrix ρnn is governed by the superoperator M as given
by Eq. 7.

Furthermore, we find that once we have cast the acceleration
radiation problem in the language of quantum optics and cavity
quantum electrodynamics (QED), the entropy follows directly.
Specifically, once we calculate ρ̇ for the field produced by accel-
erating atoms, we can use the von Neumann entropy relation
to write

Ṡp =−kBTr(ρ̇ ln ρ) [2]
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Fig. 1. A BH is bombarded by a pencil-like cloud of two-level atoms falling
radially from infinity. As discussed in Appendix B, a “mirror” is held at the
event horizon which shields infalling atoms from the Hawking radiation.
One can imagine that there is a second mirror at large r so that atoms are
falling through a cavity. The relative acceleration between the atoms and
the field yields generation of acceleration radiation. The physics of the accel-
eration radiation process correspond to the excitation of the atom together
with the emission of the photon (Appendix B).

to calculate the radiation entropy flux directly. From the present
perspective the acceleration radiation–BH entropy problem is
close in spirit to the quantum theory of the laser.

Hawking’s pioneering proof that BHs are not black (5, 6) is
based on a quantum-field theoretic analysis showing that pho-
ton emission from a BH is characterized by a temperature TBH

and generalized BH entropy. York (29) gives an analogy between
radiation from a BH and total internal reflection in classical
optics. He argues that a light beam in a dense medium can
undergo total internal reflection at a flat optical surface; but if
we sprinkle dust particles on the surface, some light will be trans-
mitted. Now the flat surface can be likened to the BH event
horizon, the dust is replaced by vacuum fluctuations, and light
is transmitted through the horizon.

Hawking showed that the radiation that comes out from the
BH is described by the temperature

TBH =
~c3

8πkBGM
. [3]

Hawking then associates the energy of the emitted radiation δE
with the loss in energy of the BH δ(Mc2) and writes the entropy
loss as δS = δ(Mc2)/TBH. Then using Eq. 3 he obtains

δS = kB
8πG

~c
M δM =

kBc
3

4~G
δA, [4]

where the BH area in terms of the gravitational radius rg =
2GM /c2 is given by A≡ 4πr2

g = 16πG2M 2/c4.
In the present paper we analyze the problem of atoms out-

side the event horizon emitting acceleration radiation as they
fall into the BH. The emitted radiation can be essentially, but
not inevitably, thermal and has an entropy analogous to the BH
result given by Eq. 4. However, the physics is very different. Here

we have radiation coming from the atoms, whereas Hawking
radiation requires no extra matter (e.g., atoms).

Historically, Bekenstein (3, 4) introduced the BH entropy
concept by information theory arguments. Hawking (5, 6) then
introduced the BH temperature to calculate the entropy. In
the present approach we calculate the radiation density matrix
and then calculate the entropy directly. To distinguish this from
the BH entropy we call it the horizon brightened acceleration
radiation (HBAR) entropy.

The HBAR Entropy via Quantum Statistical Mechanics
As noted earlier, we here consider a BH bombarded by a beam
of two-level atoms with transition frequency ω which fall into the
event horizon at a rate κ (Fig. 1). The atoms emit and absorb the
acceleration radiation.

We seek the density matrix of the field. As in the quantum
theory of the laser (26), the (microscopic) change in the den-
sity matrix of the field due to any one atom, δρi , is small. The
(macroscopic) change due to ∆N atoms is then

∆ρ=
∑
i

δρi = ∆N δρ. [5]

Writing ∆N =κ∆t , where κ is the rate of atom injection at
random times, we have the coarse-grained equation of motion

∆ρ

∆t
=κδρ. [6]

We thus obtain an evolution equation for the radiation following
the approach used in the quantum theory of the laser (26). As is
further discussed in Appendices B and C, the coarse-grained time
rate of change of the radiation field density matrix for a particular
field mode is found to be

1

R

dρn,n

dt
=−κg

2

ω2
e−ξ [(n + 1)ρn,n −nρn−1,n−1]

− κg2

ω2
eξ [nρnn − (n + 1)ρn+1,n+1], [7]

where g is the atom–field coupling constant, ξ= 2πνrg/c,

R =
ξ

sinh(ξ)
, [8]

and ν is the photon frequency far from the BH. Using Eqs. 2 and
7, we find that the von Neumann entropy generation rate of the
HBAR is (see Appendix D for details)

Ṡp =
4πkBrg

c

∑
ν

˙̄nνν , [9]

where ˙̄nν is the flux of photons with frequency ν propagating
away from the BH.

Taking into account that the BH mass change due to pho-
ton emission is ṁpc

2 = ~
∑
ν

˙̄nνν, we arrive at the HBAR
entropy/area relation

Ṡp =
kBc

3

4~G
Ȧp . [10]

Here Ȧp = (2ṁp/M )A is the rate of change of the BH area due
to photon emission which we are interested in (Appendix D).

Discussion and Summary
Conversion of virtual photons into directly observable real pho-
tons is a subject not without precedent. Moore’s accelerating
mirrors (30), the rapid change of refractive index considered
by Yablonovitch (31), and the more recent observation of the
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dynamical Casimir effect in a superconducting circuit (32) are a
few examples.

The physics behind acceleration radiation are explained in ref.
21 (also ref. 33) where the following is stated:

In conclusion our simple model demonstrates that the ground-state
atoms accelerated through a field vacuum-state radiate real pho-
tons. . . . The physical origin of the field energy in the cavity and of
the internal energy in the atom is the work done by an external
force driving the center-of-mass motion of the atom against the radi-
ation reaction force. Both the present single mode and the many
mode effect originate from the transition of the ground-state atom
to the excited state with simultaneous emission of photon due to the
counterrotating terms in the Hamiltonian.

In other words the virtual processes in which an atom jumps
from the ground state to an excited state, together with the emis-
sion of a photon, followed by the reabsorption of the photon and
return to the ground state, are altered by the acceleration. The
atom is accelerated away from the original point of virtual emis-
sion, and there is a small probability that the virtual photon will
“get away” before it is reabsorbed as is depicted in Fig. 1.

Acceleration radiation involves a combination of two effects:
acceleration and nonadiabaticity that produce the emitted light.
The energy is supplied by the external force field (e.g., the
gravitational field of the star).

Gravitational acceleration of atoms is also a source of confu-
sion. The equivalence principle tells us that the atom essentially
falls “force-free” into the BH. How can it then be radiating?
Indeed, the atomic evolution in the atom frame is described by
the e iωτ term in the Hamiltonian (Eq. 35). From the Hamil-
tonian we clearly see that it is the photon time (and space)
evolution which contains effective acceleration. The radiation
modes are fixed relative to the distant stars, and the photons (not
the atoms) carry the seed of the acceleration effects in V̂ (τ).

In Fig. 2 we compare the probability of acceleration radiation
Pex for three configurations: (Fig. 2A) the atom is accelerated
in Minkowski space-time relative to a fixed mirror; (Fig. 2B) the
mirror is accelerated in Minkowski space-time relative to a fixed
atom, with the field in a Rindler-like ground state (34); and (Fig.
2C) the atom freely falls in the gravitational field of a BH (assum-
ing that BH Hawking radiation is shielded). In Fig. 2A Pex is
proportional to the Planck factor containing the atom frequency
ω and the Unruh temperature TU = ~a/2πkBc. In contrast, the
Planck factor for Fig. 2B involves the photon frequency ν. For
an atom freely falling in the gravitational field of a BH the
Planck factor also contains the photon frequency (measured by
an observer at infinity). This provides an insight into Einstein’s
equivalence principle. Namely, a fixed atom near an acceler-
ating mirror emits thermal radiation as in Fig. 2B; while an
atom falling into a BH emits exactly the same thermal spectrum
(Fig. 2C).

Please note that this is a very different perspective on the
equivalence principle (35) than the usual elevator picture. There
the elevator observer (the atom) feels the acceleration in his feet
to be the same as a uniform gravitational field. Here the atom
is stationary (Fig. 2B). It is the mirror which is accelerating and
this changes the normal modes of the field. In Fig. 2C the atom
is in free fall and thus it feels no gravity. However, the radiation
normal modes are changed by the gravitational field of the BH.
Moreover, the atom emits the same way in both cases, Fig. 2B
and C. That is, the acceleration in Fig. 2B affects the atom in the
same way as the gravitational field in Fig. 2C.

If atoms are ejected randomly, the photon statistics will be
thermal (21, 22). For Fig. 2A the average photon occupation
number in the mode with frequency ν reads (21, 22)

n̄ν =
1

exp
(

2πcω
a

)
− 1

. [11]

A

B

C

Fig. 2. Three configurations and the corresponding excitation probabilities
wherein (A) the atom is accelerated in Minkowski space-time relative to a
fixed mirror; (B) the mirror is accelerated in Minkowski space-time relative
to a fixed atom, with the field in a Rindler-like ground state (34); and (C) the
atom falls into a BH, and is shielded from Hawking radiation as discussed in
Appendix B.

The photon spectrum is flat; that is, n̄ν is independent of the pho-
ton frequency ν. In contrast, for an accelerated mirror or atoms
freely falling in the gravitational field n̄ν is given by the Planck
distribution.

The present model is simple enough to allow a direct cal-
culation of the HBAR entropy. It is a much more tractable
problem then the daunting BH entropy issue. It is interesting
that the answer for the HBAR entropy we found is essen-
tially the same as the formula for the Bekenstein–Hawking BH
entropy.

Appendix A. Motion of Particle in Rindler and Schwarzschild
Space-Time
When atoms are in free fall, their operator time dependence in
the interaction picture goes as σ̂+(τ) = σ̂+(0)e iωτ , where τ is the
proper time of the atom. The corresponding time evolution of
the radiation-field operator is â+

k (t) = â+
k (0)ψ[t(τ), z (τ)], where

ψ(t , z ) is the mode function and the space and time parameter-
ization of the field t(τ) and z (τ) are to be determined. In what
follows we obtain the results in three steps: (i) special relativity,
(ii) Rindler metric, and (iii) Schwarzschild metric.
Special Relativity. First of all we note that finding t(τ) and z (τ),
i.e., the coordinate time and position of the atom in terms of
the atom’s proper time, is really a problem in special relativity.
Namely, from the 2D Minkowski line element

ds2 = c2dt2− dz 2 [12]
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we can write

τ =

∫ τ

0

dτ =

∫ t

0

√
1− V 2

c2
dt , [13]

where V = dz/dt . One can show that for a particle moving with
constant proper acceleration a

V =
at√

1 + a2t2

c2

[14]

and, therefore,

τ =

∫ t

0

dt√
1 + a2t2

c2

=
c

a
sinh−1

(
at

c

)
, [15]

or
t(τ) =

c

a
sinh

(aτ
c

)
. [16]

Likewise, integration of V (t) yields

z (t)− z (0) =

∫ t

0

V (t)dt =
c2

a

(√
1 +

a2t2

c2
− 1

)
. [17]

Setting z (0) = c2/a and using Eq. 16 we obtain

z (τ) =
c2

a
cosh

(aτ
c

)
. [18]

Rindler. The Rindler metric for a particle undergoing uniformly
accelerated motion is obtained from the Minkowski line element
12 if we make a coordinate transformation

t =
z̄

c
sinh

(
ā t̄

c

)
, [19]

z = z̄ cosh

(
ā t̄

c

)
, [20]

where ā is a constant. This leads to the line element

ds2 =
( ā z̄
c2

)
2c2dt̄2− dz̄ 2, [21]

which is the Rindler line element describing uniformly acceler-
ated motion. Comparison of Eqs. 19 and 20 with Eqs. 16 and 18
shows that a particle moving along a trajectory with constant z̄
in Rindler space has τ = ā t̄/a and is uniformly accelerating in
Minkowski space with acceleration

a =
c2

z̄
. [22]

Schwarzschild. Finally we make an observation that the t − r
part of the Schwarzschild metric,

ds2 =
(

1− rg
r̄

)
c2dt̄2− 1

1− rg
r̄

dr̄2, [23]

where rg = 2GM /c2 is the gravitational radius, can be approxi-
mated around rg by Rindler space by using the coordinate 0<
z̄� rg defined by

r̄ = rg +
z̄ 2

4rg
. [24]

Expanding around rg ,

1− rg
r̄
≈ z̄ 2

4r2
g

, [25]

yields the Rindler metric (36)

ds2 =
z̄ 2

4r2
g

c2dt̄2− dz̄ 2. [26]

According to Eq. 22, curves of constant z̄ (or r̄) correspond to
uniformly accelerated motions with

a =
c2

z̄
=

c2

2rg

1√
1− rg

r̄

. [27]

Appendix B. Acceleration Radiation from Atoms Falling into
a Black Hole
Here we consider a two-level (a is the excited level and b is the
ground state) atom with transition angular frequency ω freely
falling into a nonrotating BH of mass M along a radial trajectory
from infinity with zero initial velocity. We choose the gravita-
tional radius rg = 2GM /c2 as a unit of distance and rg/c as a
unit of time and introduce the dimensionless distance, time, and
frequency as

r→ rgr , t→ (rg/c)t , ω→ (c/rg)ω.

In dimensionless Schwarzschild coordinates the atom trajectory
is described by the equations

dr

dτ
=− 1√

r
,

dt

dτ
=

r

r − 1
, [28]

where t is the dimensionless time in Schwarzschild coordinates
and τ is the dimensionless proper time for the atom. Integration
of Eq. 28 yields

τ =−2

3
r3/2 + const , [29]

t =−2

3
r3/2− 2

√
r − ln

(√
r − 1√
r + 1

)
+ const . [30]

For a scalar photon in the Regge–Wheeler coordinate

r∗= r + ln(r − 1) [31]

the field propagation equation reads[
∂2

∂t2
− ∂2

∂r2
∗

+

(
1− 1

r

)(
1

r3
− ∆

r2

)]
ψ= 0, [32]

where ∆ is the angular part of the Laplacian. We are interested
in solutions of this equation outside of the event horizon, that is,
for r > 1. If the dimensionless photon angular frequency ν� 1
and angular momentum is neglected, then the first two terms in
Eq. 32 dominate and one can approximately write(

∂2

∂t2
− ∂2

∂r2
∗

)
ψ= 0. [33]

We consider a solution of this equation describing an outgoing
wave

ψ= e iν(t−r∗)= e iν[t−r−ln(r−1)], [34]

where ν is the wave frequency measured by a distant observer.
In general we will have many modes of the field (frequencies
ν) which we will sum over as in Eq. 9. However, a proper
cavity arrangement as alluded to in the caption of Fig. 1 could be
envisioned as yielding effectively a single mode behavior. Fur-
thermore, a properly configured dense atomic cloud could in
itself be used to select the desired mode structure. Finally we
note that the “mirror” of Fig. 1 could be thought of as completely
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surrounding the BH. For the purpose of this appendix we assume
that the Boulware vacuum has been arranged.

The interaction Hamiltonian between the atom and the field
mode 34 is

V̂ (τ) = ~g
[
âνe
−iνt(τ)+iνr∗(τ) + H.c.

](
σ̂e−iωτ + H.c.

)
, [35]

where the operator âν is the photon annihilation operator, σ̂ is
the atomic lowering operator, and g is the atom–field coupling
constant. We assume that g ≈ const which is the case for scalar
(spin-0) “photons.” Initially the atom is in the ground state and
there are no photons for the modes with frequency ν, so that the
field is in the Boulware vacuum (23).

The probability of excitation of the atom (frequency ω) with
simultaneous emission of a photon with frequency ν is due to a
counterrotating term â+

ν σ̂
+ in the interaction Hamiltonian. The

probability of this event,

Pexc =
1

~2

∣∣∣∣∫ dτ 〈1ν , a| V̂ (τ) |0, b〉
∣∣∣∣2

=g2

∣∣∣∣∫ dτe iνt(τ)−iνr∗(τ)e iωτ

∣∣∣∣2 ,

can be written as an integral over the atomic trajectory from r =
∞ to the event horizon r = 1 as

Pexc = g2

∣∣∣∣∫ 1

∞
dr

(
dτ

dr

)
e iνt(r)−iνr∗(r)e iωτ(r)

∣∣∣∣2 . [36]

Inserting here Eqs. 29–31 we obtain

Pexc = g2

∣∣∣∣∫ ∞
1

dr
√
re−iν[ 2

3
r3/2+r+2

√
r+2 ln(

√
r−1)]e−

2
3
iωr3/2

∣∣∣∣2 .
Making a change of the integration variable into y = r3/2 yields

Pexc =
4g2

9

∣∣∣∣∫ ∞
1

dye−iν[ 2
3
y+y2/3+2y1/3+2 ln(y1/3−1)]e−

2
3
iωy

∣∣∣∣2 .
[37]

Next we make another change of the integration variable x =
2ω
3

(y − 1) and find

Pexc =
g2

ω2

∣∣∣∣∫ ∞
0

dxe−iνφ(x)e−ix

∣∣∣∣2 , [38]

where

φ(x ) =
x

ω
+

(
1 +

3x

2ω

)
2/3 + 2

(
1 +

3x

2ω

)
1/3

+ 2 ln

[(
1 +

3x

2ω

)
1/3− 1

]
.

The asymptotic behavior of Eq. 38 at ω� 1 can be obtained by
expanding the function under the exponential in 1/ω. Keeping
the leading terms we have

φ(x )≈ 3 + 2 ln
( x

2ω

)
+

2x

ω
.

In the limit ω� 1 Eq. 38 becomes

Pexc =
g2

ω2

∣∣∣∣∫ ∞
0

dxe−2iν ln xe−ix(1+ 2ν
ω )
∣∣∣∣2

=
g2

ω2
(
1 + 2ν

ω

)
2

∣∣∣∣∫ ∞
0

dxx2iνe ix

∣∣∣∣2 . [39]

Using ∫ ∞
0

dxx2iνe ix =− πe−πν

sinh (2πν)Γ (−2iν)
,

where Γ(z ) is the gamma function, and the property |Γ(−ix )|2 =
π/[x sinh(πx )] we find

Pexc =
4πg2ν

ω2
(
1 + 2ν

ω

)
2

1

e4πν − 1
. [40]

Pexc becomes exponentially small for ν� 1. Thus, acceleration
radiation will not be emitted with very large ν. On the other
hand, typical atomic frequencies ω� 1 and, therefore, in the
following one can assume that ω� ν. Then, in the dimensional
units Eq. 40 reads

Pexc =
4πg2rgν

cω2

1

e
4πrgν

c − 1
. [41]

The probability of photon absorption is obtained by changing
ν→−ν, which for ω� ν yields

Pabs = e
4πrgν

c Pexc . [42]

We note that the Planck factor in Eq. 40 comes from the detailed
calculation, i.e., is not put in by hand. The result is equivalent
to that for a constant acceleration because the main contribu-
tion comes from the event horizon. We note also that the mirror
“edge effects” are not a problem.

Appendix C. Density Matrix for the Field Mode
The (microscopic) change in the density matrix of a field mode
δρi due to an atom injected at time τi is

δρi =− 1

~2

∫ τi+Tint

τi

∫ τi+τ
′

τi

dτ ′dτ ′′

Tratom
[
V̂ (τ ′),

[
V̂ (τ ′′), ρatom(τi)⊗ ρ(t(τi))

]]
, [43]

where Tint is the proper atom–field interaction time, Tratom
denotes the trace over atom states, and V̂ (τ) is the interaction
Hamiltonian between the atom and the field mode given by Eq.
35. The time τ is the atomic proper time, i.e., the time measured
by an observer riding along with the atom.

In the case of random injection times, the equation of motion
for the density matrix of the field is

dρn,n

dt
=−Γe [(n + 1)ρn,n −nρn−1,n−1]−

−Γa [nρn,n − (n + 1)ρn+1,n+1], [44]
where Γe and Γa are emission and absorption rates due to cou-
pling to a photon of frequency ν, Γe,a =κ|gIe,a |2, and Ie,a are
given by the integrals

ge−iξ/πIe,a =− i

~

∫ τi+Tint

τi

Ve,adτ ,

where ξ= 2πνrg/c and ν is the mode frequency far from the BH.
We note that the absorption and emission matrix elements of the
interaction Hamiltonian are as in Appendix B,

Va = 〈0, a| V̂ (τ) |1, b〉 , Ve = 〈1, a| V̂ (τ) |0, b〉 ,

and obtain Eq. 44. Steady-state solution of Eq. 44 is given by the
thermal distribution (26):
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ρS.S.n,n = exp (−2ξn)[1− exp (−2ξ)]. [45]

To approach this steady-state solution, we need a cavity to
restrict the modes to a finite range of the Regge–Wheeler coor-
dinate r∗, so the bottom mirror must be at rb > rg , and the top
must be at rt <∞. This will modify the analysis of Appendix B,
but we can then take the limit as rb→ rg and rt→∞.

Appendix D. Entropy Flux
The time rate of change of entropy due to photon generation,

Ṡp =−kB
∑
n,ν

ρ̇n,n ln ρn,n , [46]

to a good approximation can be written as

Ṡp ≈−kB
∑
n,ν

ρ̇n,n ln ρS.S.n,n [47]

once one has approached the steady-state solution. The steady-
state density matrix ρS.S.n,n is given by Eq. 45. Inserting it into
[47] gives

Ṡp ≈
4πkBrg

c

∑
ν

˙̄nνν, [48]

where ˙̄nν is the photon flux from the infalling atoms.
Recalling the BH area A≡ 4πr2

g , where the gravitational
radius rg = 2MG/c2 and ṁpc

2 = ~
∑
ν

˙̄nνν is the power car-
ried away by the emitted photons, we arrive at the HBAR
entropy/area relation

Ṡp =
kBc

3

4~G
Ȧp . [49]

Here Ȧp = 32πG2Mṁp/c
4 is the rate of change of the BH area

due to photon emission. The BH rest mass changes as Ṁ =
ṁatom + ṁp due to the atomic cloud adding to and the emit-
ted photons taking from the mass of the BH. The BH area A is
proportional to M 2 and, hence, Ȧ= (2Ṁ /M )A= Ȧatom + Ȧp .

ACKNOWLEDGMENTS. We thank M. Becker, S. Braunstein, C. Caves,
G. Cleaver, S. Deser, E. Martin-Martinez, G. Moore, W. Unruh, R. Wald, and
A. Wang for helpful discussions. We note that both referees, quantum
optics–Casimir effect expert Federico Capasso (NAS member) and general
relativity expert Michael Duff (FRS), have provided insightful criticism which
have improved the presentation and physics of the paper. This work was
supported by the Air Force Office of Scientific Research (Award FA9550-
18-1-0141), the Office of Naval Research (Awards N00014-16-1-3054 and
N00014-16-1-2578), the National Science Foundation (Award DMR 1707565),
the Robert A. Welch Foundation (Award A-1261), and the Natural Sciences
and Engineering Research Council of Canada.

1. Einstein A (1915) Die Feldgleichungen der gravitation [The field equations of
gravitation]. Sitzungsber Preuss Akad Wiss 1915:844.

2. Misner CW, Thorne KS, Wheeler JA (1973) Gravitation (Freeman, San Francisco).
3. Bekenstein JD (1972) Black holes and the second law. Lett Nuovo Cimento 4:737–740.
4. Bekenstein JD (1973) Black holes and entropy. Phys Rev D 7:2333–2346.
5. Hawking SW (1974) Black hole explosions? Nature 248:30–31.
6. Hawking SW (1975) Particle creation by black holes. Commun Math Phys 43:199–220.
7. Page DN (1976) Particle emission rates from a black hole: Massless particles from an

uncharged, nonrotating hole. Phys Rev D 13:198–206.
8. Page DN (1976) Particle emission rates from a black hole. II. Massless particles from a

rotating hole. Phys Rev D 14:3260–3273.
9. Page DN (1977) Particle emission rates from a black hole. III. Charged leptons from a

nonrotating hole. Phys Rev D 16:2402–2411.
10. Fulling SA (1973) Nonuniqueness of canonical field quantization in Riemannian space-

time. Phys Rev D 7:2850–2862.
11. Unruh WG (1976) Notes on black hole evaporation. Phys Rev D 14:870–892.
12. Davies P (1975) Scalar production in Schwarzschild and Rindler metrics. J Phys A 8:609–

616.
13. DeWitt BS (1979) General Relativity: An Einstein Centenary Survey, eds Hawking SW,

Israel W (Cambridge Univ Press, Cambridge, UK).
14. Unruh WG, Wald RM (1984) What happens when an accelerating observer detects a

Rindler particle. Phys Rev D 29:1047–1056.
15. Müller R (1997) Decay of accelerated particles. Phys Rev D 56:953–960.
16. Vanzella DAT, Matsas GEA (2001) Decay of accelerated protons and the existence of

the Fulling-Davies-Unruh effect. Phys Rev Lett 87:151301.
17. Crispino LCB, Higuchi A, Matsas GEA (2008) The Unruh effect and its applications. Rev

Mod Phys 80:787–838.
18. Weiss P (2000) Black hole recipe: Slow light, swirl atoms. Sci News 157:86–87.
19. Philbin TG, et al. (2008) Fiber-optical analog of the event horizon. Science 319:1367–

1370.
20. Das S, Shankaranarayanan S (2006) How robust is the entanglement entropy-area

relation?. Phys Rev D 73:121701(R).

21. Scully MO, Kocharovsky VV, Belyanin A, Fry E, Capasso F (2003) Enhancing acceler-
ation radiation from ground-state atoms via cavity quantum electrodynamics. Phys
Rev Lett 91:243004.

22. Belyanin A, et al. (2006) Quantum electrodynamics of accelerated atoms in free space
and in cavities. Phys Rev A 74:023807.

23. Boulware DG (1975) Quantum field theory in Schwarzschild and Rindler spaces. Phys
Rev D 11:1404–1423.

24. Ginzburg VL, Frolov VP (1987) Vacuum in a homogeneous gravitational field and
excitation of a uniformly accelerated detector. Usp Fiz Nauk 153:633.

25. Ahmadzadegan A, Martı́n-Martı́nez E, Mann RB (2014) Cavities in curved spacetimes:
The response of particle detectors. Phys Rev D 89:024013.

26. Scully M, Lamb W, Jr (1966) Quantum theory of an optical maser. Phys Rev Lett
16:853–855.

27. Pike ER, Sarkar S (1996) The Quantum Theory of Radiation (Oxford Univ Press, New
York).

28. Scully M, Zubairy S (1997) Quantum Optics (Cambridge Univ Press, Cambridge, UK).
29. York JW, Jr (1983) Dynamical origin of black hole radiance. Phys Rev D 28:2929–

2945.
30. Moore G (1970) Quantum theory of the electromagnetic field in a variable-length

one-dimensional cavity. J Math Phys 11:2679–2691.
31. Yablonovitch E (1989) Accelerating reference frame for electromagnetic waves in a

rapidly growing plasma: Unruh-Davies-Fulling-DeWitt radiation and the nonadiabatic
Casimir effect. Phys Rev Lett 62:1742–1745.

32. Wilson CM, et al. (2011) Observation of the dynamical Casimir effect in a
superconducting circuit. Nature 479:376–379.

33. Marzlin KP, Audretsch J (1998) States insensitive to the Unruh effect in multilevel
detectors. Phys Rev D 57:1045–1051.

34. Svidzinsky AA, Ben-Benjamin J, Fulling SA, Page DN (2018) Excitation of an atom by a
uniformly accelerated mirror through virtual transitions, in press.

35. Fulling SA, Wilson JH (2018) The equivalence principle at work in radiation from
unaccelerated atoms and mirrors. arXiv:1805.01013 [quant-ph].

36. Rindler W (1960) Hyperbolic motion in curved space time. Phys Rev 119:2082–2089.

8136 | www.pnas.org/cgi/doi/10.1073/pnas.1807703115 Scully et al.

http://www.pnas.org/cgi/doi/10.1073/pnas.1807703115

