Howard S. Hamilton ........................................................................................hsh2760
Week 11 ...........................................................................................................7-2-6
http://www.cs.tamu.edu/people/hamilton/math-311/week11/7-2-6.html


Show that the determinate of a shear transformation is always 1.


Solution:

Given a 2x2 shear transformation:

image1-1.gif (1013 bytes)

The determinate of this matrix is easy to calculate as one:

(1*1) - (a*0) = 1

This also expands out to the 3x3 matrix:

image1-2.gif (1161 bytes)

1*(1-0) - a*(0) + b*(0) = 1

So in the general case of the NxN triangular matrix, the determinate is the product of
the elements along the diagonal.  In the case if the shear transformation, this is N*(1).
So the determinate of a shear transformation is always 1.