Given the differential equation:
y’’+y=0
the general solution can be written as:
y=c1*cos(t) + c2*sin(t)
With the given boundary conditions, we will find the c1 and c2 that satisfy the equation.
1=c1*1 + c2*0
-1= -c1*0 + c2*1
1=c1
-1=c2
b) y(0)=0, y(p/2)=0
y= c1*cos(t) + c2*sin(t)
0=c1*cos(0) + c2*sin(0)
0= c1*cos(p/2)
+ c2*sin(p/2)
0=c1
0=c2
c) y(0)=0, y(p)=0
y= c1*cos(t) + c2*sin(t)
0=c1*1 + c2*0
0=c1*-1 + c2*0
0=c1
c2 has an infinite number of solutions.
d) y(0)=0, y(p)=1
y= c1*cos(t) + c2*sin(t)
0=c1*1 + c2*0
1=c1*-1 + c2*0
0=c1= -1
c1 has no solution
e) y(p/4)=1, y’(p/4)=
-2
y= c1*cos(t) + c2*sin(t)
y’= -c1*sin(t) + c2*cos(t)
1=c1*Ö(2)/2 + c2*Ö(2)/2
-2=-c1*Ö(2)/2 + c2*Ö(2)/2
Ö(2)= c1 + c2
-2*Ö(2)= -c1 + c2
-Ö(2)= 2*c2
c2= -Ö(2)/2
c1= 3*Ö(2)/2
f) y(p/6)=-2, y(p/3)=2
y= c1*cos(t) + c2*sin(t)
-2=c1*Ö(3)/2 + c2*1/2
2=c1*1/2 + c2*Ö(3)/2
-4= c1*Ö(3) + c2
4= c1 + c2*Ö(3)
-4= c1*Ö(3) + c2
-4*Ö(3) = -c1*Ö(3)
- c2 *3
-4-4*Ö(3)= -2 * c2
c2=2+2*Ö(3)
c1= -2 -2*Ö(3)