Kyle R. Brady
Mason Drew
Week 2                                 2.1.13
http://www.cs.tamu.edu/people/krb1642/p2_1_13.html

Given the differential equation:
y’’+y=0
the general solution can be written as:
y=c1*cos(t) + c2*sin(t)

With the given boundary conditions, we will find the c1 and c2 that satisfy the equation.

    a) y(0)=1, y’(0)= -1
    y= c1*cos(t) + c2*sin(t)
    y’= -c1*sin(t) + c2*cos(t)
1=c1*cos(0) + c2*sin(0)
-1= -c1*sin(0) + c2*cos(0)

1=c1*1 + c2*0
-1= -c1*0 + c2*1

1=c1
-1=c2
 

b) y(0)=0, y(p/2)=0
y= c1*cos(t) + c2*sin(t)

0=c1*cos(0) + c2*sin(0)
0= c1*cos(p/2) + c2*sin(p/2)

0=c1*1 + c2*0
0=c1*0 + c2*1

0=c1
0=c2
 

c) y(0)=0, y(p)=0
y= c1*cos(t) + c2*sin(t)

0=c1*cos(0) + c2*sin(0)
0= c1*cos(p) + c2*sin(p)

0=c1*1 + c2*0
0=c1*-1 + c2*0

0=c1
c2 has an infinite number of solutions.
 

d) y(0)=0, y(p)=1
y= c1*cos(t) + c2*sin(t)

0=c1*cos(0) + c2*sin(0)
1= c1*cos(p) + c2*sin(p)

0=c1*1 + c2*0
1=c1*-1 + c2*0

0=c1= -1
c1 has no solution
 

e) y(p/4)=1, y’(p/4)= -2
y= c1*cos(t) + c2*sin(t)
y’= -c1*sin(t) + c2*cos(t)

1=c1*cos(p/4) + c2*sin(p/4)
-2= -c1*cos(p/4) + c2*sin(p/4)

1=c1*Ö(2)/2 + c2*Ö(2)/2
-2=-c1*Ö(2)/2 + c2*Ö(2)/2

Ö(2)= c1 + c2
-2*Ö(2)= -c1 + c2

-Ö(2)= 2*c2

c2= (2)/2
c1= 3*Ö(2)/2
 

f) y(p/6)=-2, y(p/3)=2
y= c1*cos(t) + c2*sin(t)

-2=c1*cos(p/6) + c2*sin(p/6)
2= c1*cos(p/3) + c2*sin(p/3)

-2=c1*Ö(3)/2 + c2*1/2
2=c1*1/2 + c2*Ö(3)/2

-4= c1*Ö(3) + c2
4= c1 + c2*Ö(3)

-4= c1*Ö(3) + c2
-4*Ö(3) = -c1*Ö(3) - c2 *3

-4-4*Ö(3)= -2 * c2

c2=2+2*Ö(3)
c1= -2 -2*Ö(3)