Paul
McWhorter pgm7865
Math
311 Problem: 2.2.5
http://208.166.239.244/2_2_5.htm
Verify
the associative law of matrix multiplication by calculating the
products
of these matrices in two ways.
(a) (7 2) (-1 3 1) (4 7)
(3 1) ( 3 -1 0) (3 5)
(0 0)
(b) (2 3 1) ( 15 20
8) (-6 4 1)
(3 4 1) (-11 -15 -7) ( 5 -3
-1)
(1 2 2) ( 5
8 6) (-2 1
1)
Solution: Parts (a) and (b) may be solved in the same
way.
The associative law of matrix multiplication states:
(AB)C = A(BC) = ABC
A set of
matrices to be multiplied may be associated with each other in
any order,
so long as the original order of the matrices to be multiplied
does not
change.
To verify this, we simply assign each matrix a letter name
A, B, or C with
respect to the order ib wicth they appear and show
that:
(AB)C = A(BC)
(a)
A
= (7 2) B = (-1 3 1)
C = (4 7)
(3 1) ( 3 -1 0) (3 5)
(0 0)
AB = (-7+6 21-2
7+0) = (-1 19 7)
( 3+3 9-1 3+0)
( 0 8 3)
(AB)C = (-4+57+0 -7+95+0) = (53 88) =
A(BC)
( 0+24+0 0+40+0)
(24 40)
BC = (-4+9+0 -7+15+0) = (5 8)
(12-3+0 21-5+0)
(9 16)
A(BC) = (35+18 56+32) = (53 88) = A(BC)
( 15+9 24+16) (24 40)
(b)
A = (2 3
1) B = ( 15 20 8) C = (-6
4 1)
(3 4 1) (-11 -15 -7) (
5 -3 -1)
(1 2 2) ( 5 8
6) (-2 1
1)
AB = ( 30-33+5
40-45+8 16-21+6) = (2 3 1)
( 45-44+5 60-60+8 24-28+6) (6 8 2)
(15-22+10 20-30+16 8-14+12)
(3 6 6)
(AB)C = ( -12+15-2
8-9+1 2-3+1) = (1 0 0) = A(BC)
( -36+40-4 24-24+2 6-8-2)
(0 2 0)
(-18+30-12
12-18+6 3-6+6) (0 0 3)
BC =
(-90+100-16 60-60+8 15-20+8) = (-6 8 3)
(
66-75+14 -44+45-7 -11+15-7) ( 5
-6 -3)
( -30+40-12 20-24+6
5-8+6) (-2 2
3)
A(BC) = (-12+15-2 16-18+2
6-9+3) = (1 0 0) = (AB)C
(-18+20-2 24-24+2 9-12+3) (0 2
0)
( -6+10-4 8-12+4
3-6+6) (0 0 3)