Scott McClelland

r-mcclelland

Assignment 1

Problem 1.3.3

 

Restatement:

        r1 = 2i + j - 3k    r2 = i + j + k

Redefine coordinates in R3 by:

        x' = x -1    y' = y + 2    z' = z

Calculate the primed coordinates of the vectors r1 and r2, and

 verify that r2 - r1 = r2' - r1' and ||r2 - r1|| = ||r2' - r1'||.

Solution:

First, we will find the primed coordinates of the vectors by taking the old xi value and

subtracting 1 from it.  Similarly, we would add 2 to the old yj coordinate and then leave

the zk coordinate the same.  This will give us the new vectors:

        r1' = i + 3j - 3k    r2' = 3j + k

Then, we will verify:

r2-r1 = <1,1,1> - <2,1,-3> = <-1,0,4>

r2'-r1' = <0,3,1> - <1,3,-3> = <-1,0,4>

||r2-r1|| = √(xi2 + yj2 + zk2) = √((-1)2 + 02 + (4)2) = √(17)

||r2'-r1'|| = √(xi2 + yj2 + zk2) = √((-1)2 + 02 + (4)2) = √(17)