Scott McClelland
r-mcclelland
Assignment 1
Problem 1.3.3
Restatement:
r1 = 2i + j - 3k r2 = i + j + k
Redefine coordinates in R3 by:
x' = x -1 y' = y + 2 z' = z
Calculate the primed coordinates of the vectors r1 and r2, and
verify that r2 - r1 = r2' - r1' and ||r2 - r1|| = ||r2' - r1'||.
Solution:
First, we will find the primed coordinates of the vectors by taking the old xi value and
subtracting 1 from it. Similarly, we would add 2 to the old yj coordinate and then leave
the zk coordinate the same. This will give us the new vectors:
r1' = i + 3j - 3k r2' = 3j + k
Then, we will verify:
r2-r1 = <1,1,1> - <2,1,-3> = <-1,0,4>
r2'-r1' = <0,3,1> - <1,3,-3> = <-1,0,4>
||r2-r1|| = √(xi2 + yj2 + zk2) = √((-1)2 + 02 + (4)2) = √(17)
||r2'-r1'|| = √(xi2 + yj2 + zk2) = √((-1)2 + 02 + (4)2) = √(17)