-------------------------------------------------------------------------------
Matthew S. Webster msw9125 Attendance #43
Week 5 Problem 4.1.12
1st Draft
acs.tamu.edu/~msw9125/4_1_12.html
-------------------------------------------------------------------------------
Test these vectors for linear independence.
V1 =(1,2,4,3) or in matrix
form |V1| = | 1 2 4 3 |
V2 =(2,1,3,4)
|V2| | 2 1 3 4 |
V3 =(1,2,3,4)
|V3| | 1 2 3 4 |
V4 =(4,3,2,1)
|V4| | 4 3 2 1 |
Test by row reduction.
->
| 1 2 4 3 | 3*(1)-2*(2)->
| 3 0 2 5 |
2*(1)-(2)-> | 0 3 5
2 | ->
| 0 3 5 2 |
(1)-(3) -> | 0 0
1 -1 |
-> | 0 0 1
-1 |
4*(1)-(4)-> | 0 5 14 11 |
5*(2)-3*(4)-> | 0 0 -17 23 |
(1)-2*(3) -> | 3 0 0
7 | 6*(1)-7*(4)-> | 18 0 0
0 |
(2)-5*(3) -> | 0 3 0
7 | 6*(1)-7*(4 -> | 0 18 0
0 |
->
| 0 0 1 -1 | 6*(3)+(4)
-> | 0 0 6 0 |
(4)+17*(1)-> | 0 0 0
6 |
-> | 0 0 0 6 |
This shows all 4 of the 4 vectors were
independent.
A basis for the span is:
V1 =(1,2,4,3)
V2 =(2,1,3,4)
V3 =(1,2,3,4)
V4 =(4,3,2,1)