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Abstract
With a view toward application of the Pauli–Villars regularization method to
the Casimir energy of boundaries, we calculate the expectation values of the
components of the stress tensor of a confined massive field in +1 1 space-time
dimensions. Previous papers by Hays and Fulling are bridged and generalized.
The Green function for the time-independent Schrödinger equation is con-
structed from the Green function for the whole line by the method of
images; equivalently, the one-dimensional system is solved exactly in terms of
closed classical paths and periodic orbits. Terms in the energy density and in
the eigenvalue density attributable to the two boundaries individually and
those attributable to the confinement of the field to a finite interval are dis-
tinguished so that their physical origins are clear. Then the pressure is found
similarly from the cylinder kernel, the Green function associated most directly
with an exponential frequency cutoff of the Fourier mode expansion. Finally,
we discuss how the theory could be rendered finite by the Pauli–Villars
method.

Keywords: Vacuum energy, Casimir effect, Pauli–Villars regularization,
Macdonald function

1. Introduction

The Casimir energy [1–3] of a massive scalar field in two space-time dimensions, despite the
seeming simplicity of the model, has not been completely studied. The 1979 paper by Hays
[4] calculated the energy and the force but did not look at the local energy density, a subject
of much interest today. The more recent paper by Fulling [5] treated the energy density for a
massless scalar field from a viewpoint of spectral theory and asymptotics, but did not consider
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the massive field. Neither paper calculated pressure directly. The present article generalizes
the works [4] and [5] and uses methods from each.

The primary reason for studying massive fields in this context is to be able to conduct a
Pauli–Villars regularization [6–10] (see appendix A). It has become clear [11] that the
traditional ultraviolet cutoff produces unphysical results, dependent on the direction of
‘point-splitting’, for the counterterms in energy density and pressure near perfectly
reflecting boundaries; this development casts some doubt on the claim that such approaches
to divergences are more ‘physical’ than the analytic ones (dimensional or zeta). The
Pauli–Villars method (which occupies a place somewhere between the analytic and
the cutoff methods) preserves the Lorentz invariance, and hence one hopes that it will
avoid this problem. A serious implementation of this strategy requires calculations in
four space-time dimensions, which are deferred to future work, but here we give it a
test drive. The previous applications of the method that are most pertinent to our
problem are those to gravitational backgrounds, and we review the relevant literature in
appendix A.

In section 2 the local energy densities E t( )Weyl , E t( )per , and E x t( , )bdry , related
respectively to zero-length, periodic, and closed reflected classical paths, are expressed in
terms of Macdonald functions. (Here t is a temporary regularization parameter.) These are
expanded in various limits in section 3. As expected, the →m 0 limit reproduces the
known theory of the massless field; the →t 0 and → ∞m limits provide needed input into
the Pauli–Villars construction. Section 4 deals with the (regularized) total energy and its
nontrivial relation to the nonconstant density term, E x t( , )bdry . Section 5 deals with the
eigenvalue density and counting function. Sections 6 and 8 use the cylinder-kernel
method pioneered by Hays [4, 12] to find the various contributions to the expectation
value of the pressure; section 7 presents the dependence on the parameter ξ that labels
different possible gravitational couplings. Finally, section 9 applies the Pauli–Villars
procedure.

The key results of the paper are the formulas (12), (16), and (17) for energy density;
equations (44), (47), and (49) for pressure; and (51) for the conformal correction to the energy
density (the correction to the pressure being zero).

2. Vacuum energy density from closed and periodic orbits

We consider a finite interval with either a Dirichlet or a Neumann boundary condition at each
end, following the notation of [5], which allows the two boundary conditions to be treated

simultaneously. Thus = − +H m
x

d

d
2

2

2 acts in L L(0, )2 on the domain defined by

= = ∈− −u u L l r(0) 0, ( ) 0, , {0, 1}. (1)l r(1 ) (1 )

The superscript is the number of derivatives in the boundary condition. Thus l = 0 means that
the left endpoint is Neumann, etc. In nonrelativistic terms we are solving a Schrödinger
equation with potential =V m2. The Green function can be constructed from ∞G , the Green
function on the whole real line, by the method of images:
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(Here and occasionally elsewhere we suppress some function arguments to avoid clutter.) The
only difference from [5] is that in ∞G the energy parameter λ must be replaced by λ − m2.
Thus, many formulas in [5] remain valid if we replace ω ( λ≡ ) by

κ ω ω ω κ κ≡ − =m (hence d d ), (3)2 2

and the basic Green function is

ω
κ

= κ
∞

−( )G x y, ,
i

2
e . (4)x y2 i

It is easy to check from first principles that this new ∞G , and hence G, satisfy the right
equation,

κ ω ω δ− ∂
∂

− = − = −( ) ( )G

x
G H G x y x y, , ( ). (5)x

2

2
2 2 2

The spectral densities in terms of λ for this problem are the same as in [5] except
for the shift of the argument variable λ by −m2. This is exactly to be expected, because we
know that adding a constant to the potential in the Schrödinger equation merely adds that
constant to all the energies. Note that only values of ω ⩾ m need to be considered, because
we know that H has no spectrum below m. This even comes out automatically in the
formalism, because if κ is imaginary, then the imaginary part of ∞G is zero and doesn’t
contribute to the density of states. When we go to the variable ω the situation is slighly
more complicated: κ is not just ω minus a constant, and that is where some interesting new
behavior arises.

The density of eigenvalues is given in terms of the Green function by

I∫∑δ λ λ
π

λ ϵ− = +
∞

=( ) x G i x y
1

d [ ( , , )] . (6)
j

j

L

x y
0

It is more convenient to work with the density with respect to ω λ= , which carries an
additional factor ω2 . Then

I I∫ ∫ρ ω ω ω
π

ω ω κ
π

κ ω= =( ) ( )x G x x x G x x( ) d
2

d d , ,
2

d d , , . (7)
L L

0

2

0

2

We have by definition

I∫ρ ω σ ω σ ω ω
π

ω= = ( )x x x G x x( ) d ( , ), ( , )
2

, , , (8)
L

0

2
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The paths connecting x to an image charge in equation (2) can be folded back into the
original interval as paths connecting x to y after some number of reflections from the end-
points. In equation (9) these paths connect x to itself. The first term, coming from a path of
zero length, provides the bulk spectral density of Weylʼs famous theorem. Paths with an even
number of reflections are periodic and provide a spatially homogeneous Casimir energy.
Terms with an odd number of reflections ‘bounce’ off one of the boundaries and yield energy
distributions somewhat concentrated there.

The stress tensor of a scalar field contains a free parameter, ξ, reflecting an ambiguity in
its coupling to the gravitational field. The relevant formulas are reviewed in section 6 and
appendix C. Until section 6 we confine attention to the value ξ = 1

4
, for which the energy

expressions are maximally simple. In particular, the contribution of the space derivatives to
the energy density is identical to that of the time derivatives, so we can write (following [5])

∫ σ ω ω≡ = −

≡ + +

ω
∞

−T t x E t x
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E t E t E t x

( , ) ( , )
1

2

d

d
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( ) ( ) ( , ). (10)

t
00

0

Weyl per bdry

Here t is an ultraviolet cutoff parameter, which can be related by a Wick rotation to a
difference of physical time coordinates.

From [[13], equation (3.914.1)],

∫ κ κ =
+

+κ
∞

− + ( )nL
mt

t nL
K m t nLe cos(2 ) d

(2 )
(2 ) , (11)t m

0 2 2
1

2 22 2

where K is a Macdonald function (see appendix B). In particular, if n = 0 (the Weyl term),
equation (11) reduces to K mt( )1 . Thus, doing the change of variables in equation (3), we get

∫

∫
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(see equation (B.3)). Similarly, the periodic term is
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Finally, the boundary term is
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3. Asymptotic behaviors

3.1. Small t

To put the energy expressions in equations (12)–(14) into the usual form for renormalization
calculations, we need to expand them in power (Laurent) series in t. Using equation (B.1) one
gets
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When the derivatives in equations (13) and (14) are calculated, only one term survives in the
limit →t 0. Furthermore, the resulting limits are finite (no negative powers or logarithm of t):

∑
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In the case of equation (14), this argument assumes ≠x 0 and ≠x L, and the limit is not
uniform in distance from the boundary. Therefore, we shall need to revisit this case when
considering the total energy in section 4.
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3.2. Massless limit

The same expansion in equation (15) shows that when m = 0,

π
= =E t

t
m( )

1

2
( 0), (18)Weyl 2

as expected [5]. (The only interesting fact is that equation (15) includes additional, less trivial,
terms when >m 0.) Verifying the massless limits of the infinite sums E (0)per and E x(0, )bdry

is complicated by the conflict between the →m 0 and → ∞n limits in the individual
Macdonald functions. However, equation (16) when +l r is even is a special case of [14,
equation (2.10)], a complicated formula from which only one term survives when m = 0:

π= − =E
L

m(0)
24

( 0), (19)per 2

the well known one-dimensional Casimir energy. In exactly the same way, [14, equation
(2.12)] gives π=+E L(0) 48per

2 when +l r is odd (one Dirichlet and one Neumann end).

3.3. Supermassive limit

The behavior when → ∞m is critical for the Pauli–Villars analysis. Using equation (B.2) one
sees that all the limits are zero. From equation (12) we have

π
π= =

→∞ →∞
−E t

m

mt
lim ( ) lim

2 2
e 0 (20)

m m

mt
Weyl

2

when >t 0. Similarly, the terms of equations (16) and (17) (or even equations (13) and (14))
for fixed m vanish sufficiently rapidly with n to make the series converge, and for fixed n
decrease monotonically to 0 as → ∞m ; therefore, by standard arguments [15, pp 3 and 8] the
sum of the series approaches 0 as → ∞m . The only exceptions are the terms in equation (17)
with n = 0, x = 0 and with = −n 1, x = L, where the energy density is singular, as previously
noted.

4. Total energy

The energy equals the integral of the energy density over x from 0 to L, at least formally.
Departing somewhat from the notation of [5], we denote a total energy by the letter E . EWeyl

and Eper are constant in x, so their energies are obtained by multiplying by L and there is
nothing more to be said.

When +l r is even, the boundary formula, equation (14) yields
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Making a change of variables ′ = +x x nL in each term, we have
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After another change of variables, = ′ +u x t42 2 2, we get with equation (B.4)
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One can now take t to 0, obtaining in the Dirichlet case (l = 1)

= −E
m

(0)
4

, (24)bdry

in agreement with Hays [4] and with the conclusion in [5] that the net boundary energy
vanishes in the massless case. It definitely does not agree (for any m) with an attempt to
integrate E x(0, )bdry over the interval (that is, to take the cutoff away before integrating),
which encounters divergences at the endpoints. For later use note also that

= >
→∞

E t tlim ( ) 0 if (and only if) 0. (25)
m

bdry

When +l r is odd, E t( )bdry vanishes for an elementary reason: the middle member of
equation (22) acquires a factor −( 1)n, and hence term n cancels term − +n( 1).

5. Counting eigenvalues

For completeness of the comparison with the massless theory in [5], we look here at the
global eigenvalue density, ρ ω( ), and its integral, the counting function ωN ( ). In section 2 we
started from the local spectral density, σ ωx( , ), and integrated in frequency space to get the
energy density, E t x( , ); then in section 4 we integrated over x to get a total energy. Here we
shall perform the integrations in the opposite order. Looking at the spectral and eigenvalue
densities is interesting because (unlike most problems) the image method determines them
exactly, and the eigenvalues are known, so that one can directly compare the eigenvalue
densities. Knowing the eigenvalues, one can then sum over the frequencies, in oneʼs favorite
regularization scheme, to get the total energy in the traditional Casimir manner, but we shall
not do that explicitly.

The local spectral density (and hence all the other quantities) is divided into three
qualitatively different parts in the defining formula (9). The eigenvalue density is thus
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where κ ω= − m2 2 . The eigenvalue counting function equals zero for ω < m and
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The Fourier series in equation (31) can be evaluated as in [5] to a sawtooth function,
given in equations (35)–(36) below. It is easy to see (as at the end of section 4) that =N 0bdry

if +l r is odd (that is, equals 1). When +l r is even, we manipulate equation (32) to the form
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Adding the three counting functions gives
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2
if is even and 0 , (35)per

ω κ
π

π κ π= − + − < <N
L

l r
L L

( ) if is odd and
2 2

; (36)per

both functions are extended periodically to all other intervals on the positive axis of length π
L

in the variable κ.
We now check that ωN ( ) is indeed the number of eigenvalues less than or equal to ω2.

The true counting function must be 0 for ω < m and constant and integer-valued on the
interval between two eigenvalues. Comparing equation (34) with equations (35)–(36), we see
that N is indeed constant except at the places where Nper has a discontinuity. At each such
point, Nper jumps from − 1

2
to + 1

2
, indicating the addition of one new eigenvalue. In the odd

case, these points occur at

J. Phys. A: Math. Theor. 48 (2015) 245402 F D Mera and S A Fulling

8



κ π ω π= − = − + = …⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠n

L
n

L
m n

1

2
,

1

2
( 1, 2, ), (37)2

2 2
2

and immediately to the right of such a point, ωN ( ) evaluates to

κ
π

+ = − + =⎜ ⎟⎛
⎝

⎞
⎠

L
n n

1

2

1

2

1

2
.

That is, the jumps occur at the correct eigenvalues of the mixed Dirichlet–Neumann problem,
and N counts them correctly. In the even case, the jumps are at numbers of the form

κ π ω π= = +⎜ ⎟
⎛
⎝

⎞
⎠

n

L

n

L
m, , (38)2

2
2

and the limit from the right is

ω κ
π

= + + − = =
+ ={N

L n l
n l

( )
1

2

( 1)

2
if 1,

1 if 0.

l

That is, we get the correct eigenvalues for the Dirichlet and Neumann problems, including the
extra eigenvalue at n = 0, ω = m, in the Neumann case; Nper and Nbdry conspire beautifully to
make things come out right at the bottom of the spectrum.

6. Pressure

Because of the need to deal with spatial derivatives, the spectral density σ ω x( , ) is not
convenient for calculating the expectation value of the pressure, ≡ 〈 〉p T11 . Therefore, we
revert to the formalism of the cylinder kernel,

∑
ω

ϕ ϕ′ = − ′ ω

=

∞
−( ) ( )T t r r r r, ,

1
( ) *e (39)

n n
n n

t

1

n

in terms of the eigenfrequencies and eigenfunctions of the cavity. The cylinder kernel for the
massive field in infinite space is [4, equations (2.2), (3.1)–(3.2)]

∫π
ω

ω

π

= −
+

= − + −

ω
ω

∞
−∞

∞ −
− + −

( )

T t x y
m

K m t x y

( , , )
1

2
d

e
e

1
( ) . (40)

i t
m x y

2 2

0
2 2

2 2

The kernel for the Casimir slab is then formed by the same construction as in equation (2),
which again generates Weyl, periodic, and boundary terms. Here and henceforth we confine
attention to the pure Dirichlet case ( = =l r 0).

The fundamental formulas for the energy density and the pressure in terms of the field are
equations (C.3) and (C.4) in appendix C, from which the formulas for the vacuum expectation
values in terms of T are

β= − ∂
∂

+ ∂
∂

+ ∂
∂

+ ∂
∂ ∂

⎛
⎝⎜

⎞
⎠⎟E t x

T

t

T

x

T

y

T

x y
( , )

1

2 2
2 , (41)

2

2

2

2

2

2

2

= ∂
∂

+ ∂
∂

− ∂
∂ ∂

⎛
⎝⎜

⎞
⎠⎟p t x

T

x

T

y

T

x y
( , )

1

8
2 , (42)

2

2

2

2

2
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where it is understood, formally, that y is set equal to x and t to 0 at the end; β ξ= − 1

4
is the

curvature (or conformal) coupling constant, hitherto assumed to be 0. In arriving at
equations (41)–(42) several routine intermediate steps have been omitted. Passing from the
expectation of the product of two fields to T requires inserting a compensating factor 1

2
; field

products need to be symmetrized; physical time derivatives need to be converted to t
derivatives, and in that process ϕ0

2 can be converted to ϕϕ− 00, so that, in particular, the β term
in p turns out to vanish identically.

The pressure function for the Weyl term, according to equations (42) and (40) and the
discussion at the end of appendix B, is given by

π
=

+ − − + + −

+ −

−
− + −

+ −

⎛

⎝

⎜⎜⎜
⎞

⎠

⎟⎟⎟

( )

( )
( )

p t x y
m

t x y t x y K m t x y

t x y

m x y K m t x y

t x y

( , , )
2

( )( ) ( )

( )

( ) ( )

( )
. (43)

Weyl

1
2 2

2 2 3 2

2
0

2 2

2 2

When y = x it simplifies to

π
=p t

m

t
K mt( )

2
( ). (44)Weyl 1

The periodic terms are calculated similarly:

∑
π

= − − + +
=

∞

( )p t x y
x

K m x y nL t( , , )
1 d

d
( 2 ) . (45)

n
per

2

2
1

0
2 2

After setting y = x and suppressing the redundant argument, we get

∑
π

= −
+

+

−
− + +

+

=

∞
⎛

⎝

⎜⎜⎜
⎞

⎠

⎟⎟⎟

( )

( )
( )

p t x
m

L mn K m L n t

L n t

t Ln Ln t K m L n t

L n t

( , )
4 4

4

( 2 )(2 ) 4

4
(46)

n
per

1

2 2
0

2 2 2

2 2 2

1
2 2 2

2 2 2 3 2

(which actually is independent of x). In fact, here we can immediately set t = 0, because there
is no divergence in that limit:

∑

∑

π

π

= − +

= ′

=

∞

=

∞

⎛
⎝⎜

⎞
⎠⎟p x

m K mLn

Ln
mK mLn

m
K mLn

(0, )
(2 )

2
(2 )

(2 ) (47)

n

n

per
1

1
0

2

1
1

(by equation (B.3)). The negative of the periodic pressure in equation (47) correctly matches
the derivative with respect to L of the total periodic energy, which is L times the quantity in
equation (16):
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∑

∑

π

π

− =

= ′ =

=

∞

=

∞

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟L

E
L

m
K mLn

mn

m
K mLn p p L

d

d
(0)

d

d

1 (2 )

2

(2 ) (0, 0) or (0, ). (48)

n

n

per

1

2 1

2

1
1 per per

The argument at the end of appendix B shows that the boundary terms in the pressure
vanish:

=p t x y( , , ) 0. (49)bdry

This result is analogous to the vanishing of p3 on p 5 of [11]; it reflects the fact that moving
the boundary does not change the boundary energy.

7. Conformal correction to the energy

We digress to discuss the ‘β terms’ in equation (41). The same argument from appendix B
shows that the periodic and Weyl β terms add to 0, the sign change on the third term being
compensated by the replacement of +x y by −x y, whereas the boundary β terms are
nonzero, in close analogy with equations (45)–(46):

∑Δ β
π

= −
+ + +

+ +

+
+ − + + + +

+ +

β

=−∞

∞
⎛

⎝

⎜⎜⎜
⎞

⎠

⎟⎟⎟

( )

( )
( )

E t x
m m Ln x K m t Ln x

Ln x t

Ln x t Ln x t K m t Ln x

Ln x t

( , )
2 (2( )) (2( ))

(2( ))

(2( ) )(2( ) ) (2( ))

(2( ))
. (50)

n
bdry

2
0

2 2

2 2

1
2 2

2 2 3 2

Combining equation (50) with equation (17), we get

∑

∑

Δ

π
β

β
π

= +

= − +
+

+

− +

β β

=−∞

∞

=−∞

∞

⎜ ⎟⎛
⎝

⎞
⎠

E x E x E x

m

x nL
K m x nL

m
K m x nL

(0, ) (0, ) (0, )

1 1

2
2

2
(2 )

2
(2 ). (51)

n

n

bdry bdry bdry

1

2

0

If β = − 1

4
(ξ = 0), which counts as both conformal and minimal coupling in space-time

dimension 2, then the first term in equation (51) vanishes. The surviving term is less singular
at the boundary, and it vanishes when m = 0, as expected for a conformally coupled massless
field at a flat (here, 0-dimensional) boundary.
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8. Asymptotics of the pressure

8.1. Small t or small m

From equations (44) and (B.1) we have

π
γ∼ + + −⎜ ⎟

⎡
⎣⎢

⎛
⎝

⎞
⎠

⎤
⎦⎥p t

t

m mt m
( )

1

2

1

2
ln

2 4
(2 1) , (52)Weyl 2

2 2

and thus

π
= =p t

t
m( )

1

2
( 0). (53)Weyl 2

These formulas are to be compared with equations (15) and (18). In fact, we have

π
γ− ∼ +⎜ ⎟

⎡
⎣⎢

⎛
⎝

⎞
⎠

⎤
⎦⎥p t E t

m mt
( ) ( )

2
ln

2
, (54)Weyl Weyl

2

π
+ ∼ −

⎡
⎣⎢

⎤
⎦⎥p t E t

t

m
( ) ( )

1 1

4
. (55)Weyl Weyl 2

2

From equation (54) we see that the zero-point stress tensor of the massless theory, with the t
cutoff, is traceless ( = − + =μ

μT E p 0), as befits a conformally invariant theory. On the other
hand, equation (55) shows that this stress tensor does not satisfy the ‘principle of virtual

work’ (energy–pressure balance) [11, 16], = −p
E

L

d

d
(which is −E in this case). A cutoff

procedure that respects Lorentz invariance [17] must yield a zero-point stress proportional to
the metric tensor (‘dark energy’), replacing equation (55) by 0 but destroying the tracelessness
(unless it makes p and E identically 0).

For the periodic term we have already taken the cutoff away at equation (47), so the only
remaining task is to check the massless limit in analogy with section 3.2. In the middle
member of equation (47), the first term is the same as equation (16) (in the Dirichlet case), and
the second term can be shown to vanish as →m 0 by [14, equation (2.10)]. Again p = E in the
massless limit. But in this case we also have the right pressure balance:

π= + = − = − =( )p E
L L

LE m(0) (0)
24

d

d
( 0). (56)per per 2 per

We have already seen that the boundary pressure vanishes identically (as does the L
derivative of the boundary energy) and that the conformally coupled boundary energy den-
sity, equation (51), vanishes when m = 0, as does the ‘renormalized’ boundary energy,
equation (24).

8.2. Supermassive limit

As → ∞m , the periodic pressure (equation (47)) approaches 0 because each Macdonald
function vanishes exponentially rapidly. The same is true of the Weyl pressure (equation (44))
so long as ≠t 0. The boundary pressure is identically zero.

9. Applying the Pauli–Villars method

In sections 3.1 and 8.1 we have shown that the stress tensorʼs expectation value has diver-
gences of orders −t 2 and tln . In dimension 2 these arise only from the zero-point (Weyl)
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energy, apart from a caveat about a nonuniform limit at the endpoints in the boundary energy,
to which we shall return. The structure is most clearly shown in equations (54)–(55).

In these sections, the display of formulas with coincident spatial coordinates and small,
imaginary time separation is purely for calculational and expository convenience; in principle,
the coordinates are arbitrary. It may appear that we have done a kind of ‘point-splitting’
regularization at an intermediate step; this perception is wrong. The spirit of Pauli–Villars
regularization is to do the subtractions ‘at the theory level’. In practice, this means that the
subtractions involve Green functions as a whole, regarded as distributions (or, in other words,
they involve the operators that the Green functions represent). Thus the potential divergences
are removed before the issue of evaluating the Green functions at coincident arguments ever
arises.

Following appendix A, consider the effect of superposing the stress tensors for several
(or many) values of m:

∫ ∫= =E E m f m m p p m f m m[ ] ( ) d , [ ] ( ) d , (57)

where the function or distribution f is independent of t. If equations (A.7) and (A.8) are
satisfied, the terms in equation (55) are obliterated; thus the Weyl part of the vacuum stress
satisfies

= −p E (58)Weyl Weyl

(a nontrivial result, in view of [17] and [11]). We have already observed (section 8.1) that the
periodic and boundary parts of the stress are also nonanomalous, though the relations
expressing this health are different from equation (58) because the respective total energies
have different dependences on L.

If, in addition,

∫ =f m m m m( ) ln d 0, (59)2

then the terms equation (54) is also obliterated. If one requires merely that this logarithmic
integral be finite, as in equation (A.10), then the stress tensor is finite for all t but its Weyl part
may be a nontrivial multiple of the metric tensor, a two-dimensional version of the
cosmological constant.

The model as it stands is unlikely to be physically realistic, because it contains the effects
of unphysical fields with negative energies. Therefore, one studies the effect of taking the
unphysical auxiliary masses very large, in hopes that their effects will become unobservable.
We verified in sections 3.3 and 8.2 that the periodic and boundary terms vanish in this limit;
only the vacuum stresses of the original physical field will survive. If one can guarantee that
the integral on the left of equation (59) remains finite in the limit, then the final theory has no
divergences but does have a ‘cosmological’ term with an undetermined coefficient. If the
logarithmic integral is allowed to grow without bound, to get a finite theory an explicit bare
cosmological counterterm must be assumed, but the construction is Lorentz-covariant, unlike
equation (55), which is the result of an ultraviolet cutoff.

The story is different, however, if we look at the total energy. It is tempting to appeal to
equation (25), but to take the m limit before the t limit would be inconsistent with our
treatment of the Weyl term. So, we are stuck with equation (24), a boundary energy linear in
m. Recall that it arose because of the nonuniform limiting behaviors of the boundary stress at
the endpoints of the interval; in some sense it is concentrated on the endpoints and has
become independent of the stress in the interior, which we have succeeded in regularizing.
Obliterating it appears to require yet another constraint on the mass distribution f.
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In conclusion, we have shown that the Pauli–Villars construction is mathematically
feasible and eliminates the only pressure anomaly that arises in dimension 2, the direction
dependence of Christensen [17]. Physically, whether this maneuver is any more convincing
than the ‘analytic’ methods (zeta functions and dimensional regularization) is open to debate.
Further philosophical discussion probably should wait until an implementation in four-
dimensional space-time, where the anomaly of Estrada et al [11] will be encountered in the
ultraviolet-cutoff theory.
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Appendix A. Varieties of Pauli–Villars regularization

Pauli–Villars regularization introduces auxiliary fields whose divergences have on balance the
opposite sign from those of the original, physical fields, so that the total predictions of the
theory are finite. Usually the auxiliary masses are taken very large, so that the new fields have
no noticeable effects on the finite predictions.

The original paper of Pauli and Villars [6] (which remarks, ‘this method has already a
long history’) deals with quantum electrodynamics in Minkowski space-time. Later the
method was applied in cosmological contexts [7–9] and in quantum gravity [10]. There are
major differences in philosophy and procedure among these works.

Pauli and Villars distinguish between ‘realistic’ and ‘formalistic’ regularizations. In
realistic theories the auxiliary masses are assumed to belong to real (physical) fields,
whose vacuum energies for some reason do not all have the same sign; these masses are kept
finite. In formalistic theories the auxiliary fields are fictitious, and their masses are sent to
infinity at the end of the calculations. The realistic approach replaces the original theory
by a new theory; not surprisingly, the results are not unique. In the formalistic approach after
the limit of infinite mass, the only surviving ambiguities are those that arise in all renor-
malization schemes and are proportional to the erstwhile divergences. This is our
understanding, in the present context, of the Pauli–Villars ambiguities recently pointed out in
[18]. These phenomena are visible below in our two treatments of the Zel’dovich regular-
ization of integrals.

Zel’dovich [7] (whose method is followed by Streeruwitz [8] without much further
discussion of its rationale) starts from divergent integrals such as

∫π +
Λ

Λ

→∞
p m p plim 4 d (A.1)

0

2 2 2

and postulates a mass distribution function f m( ) (possibly a finite sum of delta functions)
such that
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∫ ∫ ∫= = =f m m f m m m f m m m( ) d ( ) d ( ) d 0, (A.2)2 4

so that

∫ ∫ +
Λ

m f m p p p md ( ) d (A.3)
0

2 2 2

has an asymptotic expansion containing no positive powers of Λ. It may contain terms
proportional to

∫ Λ =f m m m m p( ) ln( ) d ( 0, 1, 2), (A.4)p2

but these are actually independent of Λ by virtue of equation (A.2). Thus, given a fixed f for
which the integrals in equation (A.4) with Λ = 1 converge, the ultraviolet divergences have
been eliminated. Because it is not required that the integrals in equation (A.4) equal 0,
arbitrary renormalization constants appear.

The intention of Zel’dovich was that f m( ) represent a spectrum of real particles, with
negative values of f arising from fermions. This theory, therefore, is of the ‘realistic’ type; it is
a forerunner of supersymmetry. Zel’dovichʼs main motivation was to produce a nonzero, but
finite, cosmological constant from the integral

∫ f m m m m( ) ln d . (A.5)4

Note, however, that there is a possibility of creating a ‘formalistic’ theory by moving the
support of the negative part (at least) of f off to infinity at the end of the argument, provided
that any integrals like the one in equation (A.5) that arise still converge in this limit. It is not
immediately obvious that this can be done, and especially whether the finite limiting values of
the renormalization constants can be different from 0. It is rather easy to see that the minimal
finite sum consistent with equation (A.2) will not work: take

δ δ δ δ= − − + − − −f m m m m m m m m( ) ( ) ( ) ( ) ( ), (A.6)1 2 3

where the first term represents the physical field (taken here to be massless for simplicity) and
the other three masses are to be taken to ∞. Consider for simplicity a two-dimensional space-
time, so that the only constraints from equations (A.2) and (A.4) that must be satisfied are

∫ =f m m( ) d 0, (A.7)

∫ =f m m m( ) d 0, (A.8)2

∫ < ∞f m m m( )ln d , (A.9)

∫ < ∞f m m m m( ) ln d . (A.10)2

(In equation (A.9) the term with m = 0 should be omitted. The precise meaning of
equations (A.9) and (A.10) is that the sums remain bounded as the mj go to infinity.) It is clear
that to satisfy equation (A.7) the total number of masses must be even, and then to satisfy
equation (A.8) also, the number must be at least 4. Let us first consider the case =m m1 3; then
by equations (A.6) and (A.8) becomes
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=m m2 . (A.11)2
2

1
2

Then equation (A.10) states that

− =m m m m mln 2 ln 2 ln 2 (A.12)2
2

2 1
2

1 1
2

is bounded as → ∞m1 , which is false. Now try ν=m m3 1, with ν > 1: after some algebra one
gets from equations (A.8) and (A.10) the same sort of contradiction, unless

ν ν ν ν ν≡ + + − =( ) ( )F ( ) 1 ln 1 2 ln 0. (A.13)2 2 2

But = >F (1) 2 ln 2 0 and

ν ν ν ν ν′ = + − >( )F ( ) 2 ln 1 2 ln 0, (A.14)2 2

so splitting the masses can only make the problem worse.
Bernard and Duncan [9] take a formalistic approach from the beginning. They consider a

two-dimensional cosmological space-time. Unlike [7, 8], who impose equation (A.3)
a posteriori, they start with a Lagrangian and explicitly construct a Fock space. Their
negative-energy fields (corresponding to masses m1 and m3 in the foregoing) are not ordinary
fermion fields, but anticommuting scalar fields producing states with negative metric. In the
infinite-mass limit this sector of the state space decouples, leaving a unitary dynamics in a
Hilbert space. This construction apparently requires =m m1 3, so the mass spectrum in [9] is
the same as equation (A.6), except that they allow the physical field to have a mass, μ; then

μ= −m M22
2 2 2 and (in effect) = =m m M1

2
3
2 2. Thus equations (A.7) and (A.8) are satis-

fied. It turns out that equation (A.9) is unnecessary because of the triviality of two-dimen-
sional gravity. But equation (A.10) is not satisfied in the limit; instead, Bernard and Duncan
explicitly introduce a cosmological counterterm to cancel this divergence. They remark that
the analogous construction in dimension 4 would require seven regulator fields (counting the
complex anticommuting ones twice) and (as usual in four-dimensional gravity) four coun-
terterms. (Without the constraint that both masses associated with an anticommuting field be
the same, the three regulator masses in equation (A.6) would be enough to satisfy
equation (A.2).)

In the Bernard–Duncan approach, then, the Pauli–Villars construction does not, by itself,
remove infinities, but it does achieve covariance: divergences in the limit of large cutoff, Λ,
are replaced by divergences in the limit of large M. The regulated (finite-M) expressions are
free of the direction dependence [17] and resulting pressure anomalies [11] characteristic of
point-splitting calculations of the stress tensor.

Anselmi [10] takes the further step of canceling the large-M divergences by adding still
more regulator fields. He requires that the logarithmic sums of the form of equation (A.4)
vanish. He inserts the regulator fields into a path integral in a nonstandard way, which permits
(in effect) spectra like equation (A.6) with coefficients not necessarily equal to ±1. This
additional freedom allows the conditions to be satisfied by solving a linear system for those
coefficients, instead of the nonlinear system for the masses; this significantly simplifies the
study of the existence question. The result is that, with enough regulator fields, a formalistic
formulation without counterterms is achieved. (Nevertheless, because of the need to modify
equation (A.4) for p = 0 when the physical field is massless, the logarithmic divergences
inevitably result in two arbitrary renormalized coupling constants in the final equation of
motion of the gravitational field. In the present paper this complication does not concern us.)
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Appendix B. Calculus with Macdonald functions

In [13] or any similar reference one finds the approximations

γ= + + − +⎜ ⎟⎛
⎝

⎞
⎠ ( )K z

z

z z z
O z z( )

1

2
ln

2

1

2 2
ln (B.1)1

3

for small z and

π∼ν
−K z

z
( )

2
e (B.2)z

for large z.
Derivatives can be eliminated by [13, equation (8.486.12)]

′ = − ′ = − −K z K z K z
z

K z K z( ) ( ), ( )
1

( ) ( ). (B.3)0 1 1 1 0

The integral

∫ π

−
=

∞ −K mu

u t
u

mt

( )
d

e

2
(B.4)

t

mt
1

2 2

does not appear in [13] but is known toMathematica and can be deduced from [[13], equation
(6.596.3)].

In sections 6 and 7 we repeatedly encounter second derivatives of

± + +( )K m x y nL t( 2 ) . (B.5)0
2 2

The results are simplified by equation (B.3) and further simplified by cancellations and
combinations: looking, for example, at equation (42), one can show that the first two terms are
equal and their sum is equal to the third term up to sign. Thus the whole expression vanishes
if the variable sign in equation (B.5) is + and equals 4 times the first term if that sign is –. For
the β terms in equation (41) the role of the sign is precisely the reverse.

Appendix C. The stress tensor in dimension 2

The general form of the scalar stress tensor, defined by variation of the gravitational
Lagrangian with respect to the metric, is given (in the sign convention where <g 000 ) in
[17, 19, 20]. After specializing to flat space (and glossing over operator symmetrizations), it is

ξ ϕ ϕ ξ ϕ ϕ ξϕϕ ξ ϕϕ ϕ

ϕ ϕ ϕϕ ϕϕ ϕ β ϕ ϕ ϕ ϕ ϕϕ ϕϕ

= − + − − + −

= − + − + − + − +

μν μ ν μν σ
σ

μν μν σ
σ

μν

μ ν μν μν σ
σ

μν μ ν μν σ
σ

μν μν σ
σ

⎜ ⎟⎛
⎝

⎞
⎠

⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦

T g g m g

g m g g g

(1 2 ) 2
1

2
2 2

1

2
1

2
2 ,

(C.1)

2 2

2 2

where ξ β≡ + 1

4
is the curvature coupling constant (and indices on ϕ denote derivatives).

Using the equation of motion, ϕ ϕ=σ
σ m2 , to rewrite the first term (but not the second), one

arrives at
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ϕ ϕ ϕϕ β ϕ ϕ ϕ ϕ ϕϕ ϕϕ= − + − + − +μν μ ν μν μ ν μν σ
σ

μν μν σ
σ⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦T g g

1

2
2 . (C.2)

The advantages of this form are (a) the mass (more generally, a scalar potential [21]) does not
appear at all, (b) the first term of μμT contains only μ derivatives, and (c) the β term is
manifestly a total derivative. Specializing henceforth to dimension +1 1, we have

ϕ ϕϕ β ϕ ϕϕ= − − +⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦T
1

2
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