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Oscillations in eigenvalue density are associated with closed orbits of the corresponding classical (or geometrical
optics) system. Although invisible in the heat-kernel expansion, these features determine the nonlocal parts of
propagators, including the Casimir energy. I review some classic work, discuss the connection with vacuum energy,
and show that when the coupling constant is varied with the energy, the periodic-orbit theory for generic quantum
systems regains the clarity and simplicity that it always had for the wave equation in a cavity.

While quantum gravity people were learning
about the heat kernel, atomic physicists were pro-
gressing beyond it.

The key property of the heat kernel expan-
sion is its locality: the coefficients an(x) are com-
pletely determined by the metric and potentials
in a small neighborhood of x. This makes it
easy to compute and universal in its applications
to renormalization of ultraviolet divergences. Its
formal inverse Laplace transform is an “averaged”
spectral density [1–3] that is equally local and
universal, insensitive to the detailed spacings of
the eigenvalues (if the spectrum is discrete at all).

The interesting part of renormalization is what
is left behind when the counterterms are sub-
tracted. For example, vacuum (Casimir) energy
can be calculated from a two-point function (a
kernel for the wave equation) by subtracting uni-
versal singular terms. The wave kernel and the
vacuum energy are nonlocal ; they reflect bound-
ary conditions, global topology, presence of pe-
riodic or closed classical orbits, and whether the
dynamics is chaotic or integrable. This global ge-
ometrical information is encoded in the fine struc-
ture of the spectrum.

More precisely, let T (t, x, y) be the integral
kernel of e−t

√
H , where H is some positive self-

adjoint second-order differential operator. (This
“cylinder kernel” is analytically more tractable
than kernels of wave (e.g., e−it

√
H) or Schrödinger

(e−itH) operators, but retains at least some of
their nonlocal information [4].) Assume for now

a discrete spectrum, with Hφj = ω2
j φj , ‖φj‖ = 1.

Then

T (t, x, y) =
∞∑

j=1

e−tωj φj(x)φj(y)∗,

∫
T (t, x, x) dx =

∞∑
j=1

e−tωj . (1)

On the other hand, for a scalar field theory with
field equation ∂2φ

∂t2 = −Hφ the vacuum energy
density is formally

T00 =
〈

1
2

[(
∂φ
∂t

)2

+ · · ·
]〉

,

where the omitted terms involve spatial deriva-
tives and are equivalent modulo integration by
parts to φHφ. It follows that

T00(x) =
1
4

∞∑
j=1

[
ωj|φj(x)|2 + ω−1

j · · ·] ,

∫
T00 dx =

1
2

∞∑
j=1

ωj . (2)

Comparing (1) and (2), we see that

− 1
2

∂
∂tT (t, x, x)

is a regularization of the time-derivative terms of
2T00(x) by an exponential cutoff, and its integral
performs the same service for the total vacuum
energy. (The space-derivative terms of T00 are
related to the kernel of H−1/2e−t

√
H . These two
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cylinder kernels can be regarded as Green func-
tions for elliptic boundary value problems with
Dirichlet and Neumann data, respectively, on the
surface t = 0.)

Since T is not local, it cannot be computed
(even expanded at small t) by local methods. Oc-
casionally physicists have adapted the construc-
tion of the heat kernel (for e−tH) by the pseudod-
ifferential symbolic calculus to e−t

√
H . This yields

a correct parametrix, but generally the smooth
remainder in T is not transcendentally small. In
particular, such a calculation falsely predicts that
there is no Casimir effect.

The remainder of this article summarizes [5].
We all know that in the simplest (Fourier se-

ries) models three things are intimately related:
the Casimir energy, the finite spacing of the eigen-
values, and the solution by the method of im-
ages (alias Poisson summation formula) — which
can be paraphrased by the observation that x can
be connected to y not only directly, but also by
paths that wind around the universe (or bounce
off walls) many times. The connection between
spectrum and classical paths has an extension to
more general systems that is well known in atomic
physics [6]: “The average density of states as a
function of energy [is] equal to a smooth mono-
tonic function, related to the volume occupied by
the energy-shell in phase-space, plus a sum of si-
nusoidal oscillations. The wavelength and ampli-
tude of each oscillation are respectively correlated
with the period and the stability of a periodic or-
bit of the system. For given energy resolution
∆E, only those periodic orbits are significant for
which the period is less than 2πh̄/∆E.”

The development of this subject continues ac-
tively in both mathematics and physics (e.g.,
[7,8]), but the period of greatest activity was
around 1970 and can be represented by three
classic papers, treating distinct problems: (1)
Balian and Bloch [9], Laplacian in a bounded
region; (2) Duistermaat and Guillemin [10],
Laplace–Beltrami operator on a compact man-
ifold (and generalizations); (3) Gutzwiller [11],
H = − h̄2

2m∇2 + λV (x) in Rn. In [11] the po-
tential V is responsible for confining the particle
and hence making the spectrum discrete. Thus

the classical paths are solutions of the full dy-
namics,

dx
dt

=
p
m

,
dp
dt

= −λ∇V (x). (3)

(In [10] the paths are geodesics, even when
a lower-order perturbation is added to H .)
Gutzwiller studies the Schrödinger equation while
the other two deal with the wave equation, but
that is unimportant: A given elliptic operator H
can be studied in either setting, and the two sets
of orbits are in trivial one-to-one correspondence.

Any solution curve of (3) lies on an energy sur-
face

p2

2m
+ λV (x) = E. (4)

Assume that the spectrum of H is discrete, at
least below some threshold. The essence of the
Gutzwiller trace theory is that the eigenvalue den-
sity, ρ(E), contains a term

ργ(E) = aγ sin
[
Sγ

h̄
+ ηγ

]
(5)

for each isolated classical periodic orbit γ of en-
ergy E, where Sγ(E) is the action

∮
γ p · dx. For

the (possibly broken) geodesics studied in [9,10],
one has exactly

Sγ(E) = 2ETγ(E) =
√

2mE Lγ , (6)

where the orbit’s length Lγ is independent of E.
So, to the extent that aγ and ηγ are constant, and
with h̄2

2m = 1, ργ oscillates exactly with frequency
Lγ as a function of ω =

√
E; also, as function of

E it oscillates locally with approximate frequency
Tγ (the classical period).

In the case (3) the situation is more subtle, be-
cause the orbits change with E. Of course, it is
reasonable to expect that, apart from occasional
bifurcations, the isolated orbits will form families
indexed by E; for the resulting locally defined
functions ργ(E), approximate local frequencies of
oscillation can be defined. But the crisp picture
associated with energy-independent geodesics is
theatening to fade out. Fortunately, fixed orbits
can be recovered by two strategies, or a combina-
tion of them.
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Proposition 1 (Cf. [12].) Let
(
x0(t),p0(t)

)
be a

solution of (3) and (4) with λ = λ0 and E = E0 .
For any α > 0 let

x(t) = x0(αt), p(t) = αp0(αt). (7)

Then
(
x(t),p(t)

)
satisfies (3) and (4) with

λ = α2λ0 , E = α2E0 ,

T = α−1T0 , S = αS0 . (8)

Thus (5) becomes

ργ = aγ sin

[
S0

h̄

√
E

E0
+ ηγ

]

= aγ sin(lγω + ηγ) in natural units, (9)

where lγ = S0/
√

2m|E0| = S/
√

2m|E| (indepen-
dent of α and of E) is a characteristic length
of the orbit (not necessarily equal to the actual
length, Lγ).

In words, the same closed orbit exists for all val-
ues of the energy, and ργ is a globally sinusoidal
function of

√
E as in the geodesic case; but this

has been attained at the cost of varying the cou-
pling constant — i.e., considering different phys-
ical systems at different energies. An alternative
approach is possible when the potential has a scal-
ing symmetry:

Proposition 2 Suppose that

V (βx) = βνV (x) (10)

for all β > 0 and some ν 6= 0 or −2. In place of
(7) consider

x(t) = α2x0(αν−2t), p(t) = ανp0(αν−2t). (11)

This is a solution of (3) and (4) with

λ = λ0 , E = α2νE0 ,

T = α2−νT0 , S = αν+2S0 , (12)

ργ(E) = aγ sin

[
S0

h̄

(
E

E0

) ν+2
2ν

+ ηγ

]
. (13)

In this construction (known for a long time)
the orbits for different values of α are not the
same, but they are geometrically similar. The

variable with respect to which the spectral oscil-
lations take place is a peculiar power of E, and
the analogue of the characteristic length lγ is a
similarly complicated (but α-invariant) function
of S0 and E0 .

Proposition 3 (Cf. [13].) Suppose that

V1(βx) = βν1V1(x), V2(βx) = βν2V2(x). (14)

Perform the scaling (11) appropriate to V1 . Then(
x(t),p(t)

)
solves (3) and (4) with

λ1 = λ10 , λ2 = α2(ν1−ν2)λ20 ,

E = α2ν1E0 , (15)

and (12) and (13) hold with ν = ν1 .

The point of this transformation is to associate
a fixed orbit with a one-parameter family of clas-
sical situations in which one coupling constant is
held fixed but the other varies with energy. The
prototype [8] is the Hamiltonian of a hydrogen
atom in a constant magnetic field,

H(x,p) =
p2

2m
− e2

r
+

e2

8mc2
B2(x2 + y2). (16)

The magnetic field is a continuous variable that
is under the experimenter’s control; the charge
of the proton is not! Therefore, to get a family
of experimentally realizable systems one applies
Proposition 3 with ν1 = −1, ν2 = 2.

In principle Proposition 3 can be extended to
an arbitrary potential in the role of V2 . Instead
of a scaling of λ2 as in (15), one obtains a one-
parameter family of potentials

V2[α](x) ≡ α2ν1V2(α−2x), (17)

not related among themselves by a simple homo-
geneity. (Of course, experimental realization of
such a family would be more difficult than just
adjusting the strength of an applied magnetic or
electric field.)

A great advantage of identifying closed orbits
that remain fixed over the entire range of E is
a clarification of the discussion of “semiclassical
limit”. Each orbit identifies a family of situa-
tions that are equivalent classically but distinct
quantum-mechanically. A semiclassical regime is



4

reached by moving along a family in the direction
of increasing S. In units with h̄ = 1 = 2m, the
dimension of ω ≡ √

E is inverse length, and the
quantum parameter (tantamount to S/h̄) is the
product of ω with some length characteristic of
the system. The latter makes sense also in clas-
sical wave theories (the geometrical optics limit),
as in [1,9].

The regime of large action is usually also that
of high energy, but when homogeneity scaling
(Proposition 2 or 3) has been applied with 0 >
ν > −2, the semiclassical limit is that of decreas-
ing |E|, because of the negative exponent in (13).
This includes in particular the Coulomb poten-
tial, where (for λ fixed) the regime of “large quan-
tum numbers” is reached as E approaches 0 from
below.

To conclude, let us place these scaling consider-
ations into the context of the overall enterprise of
relating spectral properties to geometrical ones,
using as intermediaries the various integral ker-
nels associated with H . Here H is a differential
operator (say second-order, self-adjoint, positive),
and “geometrical” is meant in the broadest sense,
to include the potential functions in H and even
the spectrum of orbits of the corresponding clas-
sical system. Classic inverse theory, particularly
that based on the heat kernel, deduces geomet-
rical information from spectral data at the semi-
classical end of the spectrum; the main point of
the heat kernel expansion is that the fine struc-
ture of the eigenvalue distribution washes out and
the gross high-energy asymptotics by itself retro-
dicts the basic geometry. But when periodic-orbit
theory is used to predict spectra, only the low-
est eigenvalues are easily obtained; as energy in-
creases, an exponentially growing number of in-
creasingly long orbits must be included to get
good resolution of the spectrum. In the physics
literature this has often been considered surpris-
ing or paradoxical, since semiclassical methods
were expected to be most accurate at large en-
ergies (or actions).

I propose that this phenomenon is merely an
instance of the familiar principle that when a cal-
culation is very stable and involves some kind of
smoothing or averaging, the inverse calculation
is likely to be unstable (highly dependent on the

details of the input) and hence difficult. (Solv-
ing a Fredholm integral equation of the first kind
— or inverting any compact operator — is a pre-
cise mathematical example.) In the semiclassical
regime the stable direction of prediction is from
the spectrum to the geometry; in the opposite
regime the stable direction is from the geometry
to the spectrum. Rather than call that the “deep
quantum regime”, as if the duality between the
quantum eigenvalues and the classical orbits were
irrelevant there, we might better say “resonant
regime”. There, resonant behavior emerges on
the spectral side, out of the geometry and classi-
cal mechanics, much as, in the opposite “classical
regime”, classical-mechanical behavior emerges on
the geometrical side, out of the quantum sub-
strate.
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