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Abstract

We prove quantum ergodicity for a family of graphs that are ob-
tained from ergodic one-dimensional maps of an interval using a proce-
dure introduced by Pakónski et al (J. Phys. A, 34, 9303-9317 (2001)).
As observables we take the L

2 functions on the interval. The proof is
based on the periodic orbit expansion of a majorant of the quantum
variance. Specifically, given a one-dimensional, Lebesgue-measure-
preserving map of an interval, we consider an increasingly refined se-
quence of partitions of the interval. To this sequence we associate a
sequence of graphs, whose directed edges correspond to elements of
the partitions and on which the classical dynamics approximates the
Perron-Frobenius operator corresponding to the map. We show that,
except possibly for subsequences of density 0, the eigenstates of the
quantum graphs equidistribute in the limit of large graphs.

For a smaller class of observables we also show that the Egorov
property, a correspondence between classical and quantum evolution
in the semiclassical limit, holds for the quantum graphs in question.
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1 Introduction

The quantum ergodicity theorem is one of the central results in quantum
chaos. Essentially, it asserts that in systems in which the classical dynamics is
ergodic the probability measures associated with the squares of the moduli of
the quantum eigenfunctions converge to the classical invariant measure as one
approaches the semiclassical limit through almost all sequences of eigenstates
(any exceptional subsequences have density zero). This was originally proved
for flows [1, 2, 3, 4, 5], but it has since been extended to discrete dynamical
systems (chaotic maps); see, for example [6, 7, 8, 9, 10] (for a very readable
introduction to the subject, the reader should consult [11]). The methods of
proof typically involve applying Egorov-type theorems, which relate the time
evolution of quantum and classical observables in the semiclassical limit.

Quantum graphs correspond to associating an operator with a graph. For
example, this might be the discrete Laplacian acting at the vertices, or the
one-dimensional Laplacian acting on functions defined on the edges of a (met-
ric) graph, with matching conditions applied at the vertices. Such systems
have recently been the subject of considerable interest [12]. In particular,
quantum graphs have emerged as important toy models of quantum chaotic
behaviour [13, 14]: if one considers sequences of graphs with increasing num-
bers of edges then, under certain conditions, the quantum eigenvalue statis-
tics converge to those of random matrix theory [13, 14, 15, 16, 17, 18, 19, 20].
However, relatively little attention has been paid to their eigenfunction statis-
tics. For example, quantum ergodicity has not been proved in this context.
Even though the classical (Markovian) dynamics on a fixed graph is mixing,
the difficulty lies in dealing with sequences of graphs with increasing numbers
of bonds. To date, the only examples that have been studied in this limit
are the star graphs (in which the bonds are connected at a single central
vertex). However, even though any given star graph is classically ergodic,
the limit as the number of bonds tends to infinity is not quantum ergodic
[21, 22, 23]. This is not altogether surprising because the star graphs do not
satisfy the condition under which one expects the spectral statistics to co-
incide with those of random matrix theory (instead, their spectral statistics
coincide with those of integrable systems perturbed by a singular scatterer
[24, 25]). It turns out that the star graph eigenfunctions are strongly scarred
by short periodic orbits (see also [26]).

The problem of finding examples of sequences of quantum graphs that
are quantum ergodic thus remains open. It is this problem that we address
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here. We start by discussing how the question of quantum ergodicity on
general graphs can be related to the ergodic properties of the eigenvectors of
an ensemble of unitary matrices. Each ensemble consists of matrices DS0,
where S0 is a fixed unitary matrix, determined by the corresponding graph,
and D is a random diagonal unitary matrix.

We then identify a particular sequence of graphs (or matrices S0) for
which quantum ergodicity can be established. These are graphs obtained
from a construction proposed by Pakónski et al [27] involving ergodic one-
dimensional maps on an interval. We also prove the analogue of Egorov’s
theorem for these graphs.

To be explicit, given a one-dimensional, Lebesgue-measure-preserving
map S : [0, 1] → [0, 1], we consider an increasingly refined sequence of parti-
tions Mn of the interval [0, 1]. To this sequence we associate a sequence of
graphs Gn whose directed edges (bonds) correspond to elements of the par-
titions. The quantum evolution on Gn is described by a unitary matrix Un

such that the corresponding classical (Markov) dynamics of Gn approximates
the Perron-Frobenius operator associated with S.

To a classical observable φ ∈ L2[0, 1] we associate a sequence of quantum
observables On(φ) which are defined as operators corresponding to multipli-
cation by the average value of φ on an element of the partition. We prove
that there is a sequence of sets Jn ⊂ {1, . . . , |Mn|} such that

lim
n→∞

|Jn|
|Mn|

= 1

and for all sequences {jn}∞n=1, jn ∈ Jn,

lim
n→∞

(
ψ

(n)
jn

,On(φ)ψ
(n)
jn

)
=

∫ 1

0

φ(x)dx, (1)

where ψ
(n)
jn

is the jn-th eigenvector of the graph Gn (compare to the corre-
sponding statement for cat maps, [7, 11]). This is the analogue of “quantum
ergodicity” for the graphs in question. It is equivalent to the decay of the
quantum variance,

1

|Mn|

|Mn|∑

j=1

∣∣∣∣
(
ψ

(n)
j ,On(φ)ψ

(n)
j

)
−
∫ 1

0

φ(x)dx

∣∣∣∣
2

→ 0

in the limit n → ∞. This equivalence follows from a Chebyshev-type inequal-
ity and parallels the textbook proof of the statement “for uniformly bounded
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random variables, convergence in mean square is equivalent to convergence
in probability”.

If φ is Lipschitz continuous, we also prove the Egorov property,

‖UnOn(φ)U−1
n − On(φ ◦ S)‖ = O

(
|Mn|−1

)
,

where Un is the quantum transfer operator corresponding to the graph Gn.
The existence of the Egorov property provides further justification for the
use of the term “quantization” when referring to the sequence Un obtained
from a map S.

It should be noted that we do not explicitly use the Egorov property (EP)
in the proof of quantum ergodicity (QE). Even though the more traditional
route of deriving QE from EP is available to us, we feel that the proof in
the present form is likely to be more adaptable to other families of quantum
graphs.

This paper is organized as follows. In Section 2 we review some of the
main issues relating to the construction of quantum graphs. In Section 3 we
introduce the construction of Pakónski et al [27] and proceed to discuss some
of its properties. In particular, we prove a sufficient condition for a map to
be quantizable in the fashion described by [27]. This sufficient condition,
although rather restrictive, demonstrates that the class of quantizable maps
is sufficiently rich to be interesting.

In Section 4 we introduce the observables on the quantum graphs obtained
from maps. Their quantum variance is analyzed in Section 5. In Sections 6
and 7 we prove quantum ergodicity for these observables by estimating two
different contributions to the variance, and in Section 8 we prove the Egorov
property in this context. Finally, in Section 9 we discuss some of the issues
arising in the proof of these theorems and the possibility of extending the
proofs to larger classes of graphs.

2 Quantum graphs

A quantum graph can be defined in two different, but related, ways. In both
constructions we start with a graph G = (V ,B) where V is a finite set of
vertices (or nodes), and B is the set of bonds (or edges). Each bond b has
a non-zero length, denoted Lb. The lengths Lb are assumed to be rationally
independent.
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The first way to define a quantum graph [14] is to identify each bond
b with the interval [0, Lb] of the real line and thus define the L2-space of
functions on the graph. Then one can consider the eigenproblem

− d2

dx2
ub(x) = λ2ub(x). (2)

This setup has been studied by mathematicians since the 1980s [28, 29, 30,
31, 32] and was used in physical models prior to that [33, 34, 35].

To make the operator in (2) self-adjoint we need to impose matching
conditions on the behavior of u at the vertices of the graph. One possibility
is to impose Kirchhoff conditions:1 we require that u is continuous on the
vertices, and that the probability current is conserved, i.e.

∑

v∈b

d

dx
ub(v) = 0 for all v ∈ V , (3)

where the sum is over all bonds that originate from the vertex v (the bonds
are now taken to be undirected) and the derivatives are taken at the vertex
v in the outer direction. The admissible boundary conditions were classified
in, among other sources, [36, 37].

The second construction considers wave propagation on the graph where
each vertex is treated as a scatterer and the propagation along the bonds is
free. This construction was first considered in [14] and generalized in [38] to
directed graphs.

In both constructions one ends up with a unitary matrix S(λ) = eiλLS(0),
where L is the diagonal matrix of the bond lengths. This matrix gives the
eigenvalues {λn} of (2) via the equation

det(I − S(λn)) = 0. (4)

The dimension of the above matrices is equal to the number B of directed
bonds of the graph G. If the bonds were initially undirected, each bond is
split into two directed bonds of the same length.

In various sources the notion of the “spectrum σ(G) of the graph G”
can refer either to the eigenproblem (2) (and thus solutions of (4)) or to the
eigenphases of the matrix S(λ) for an arbitrary λ. This is not as confusing as
it might seem, since the statistical properties of both versions of the spectrum
are conjectured to coincide when averaged over a large interval of λ.

Similarly, the “eigenvector” of G can refer to one of three objects:

1sometimes called “Neumann” conditions
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1. the function u(x) that solves (2), subject to boundary conditions, for
some λ ∈ σ(G),

2. the eigenvector of S(λn) corresponding to the eigenvalue 1, denoted by
φn,

3. any eigenvector of S(λ) for arbitrary λ, denoted by ψ(λ).

There is a simple correspondence between the first two notions of the eigen-
vector: the solution u(x) is a superposition of plane waves with coefficients
given by the elements of φn. Below we discuss a heuristic formula which
connects the ergodic properties of the second and the third types of eigen-
vectors. This formula provides an additional motivation for the results in the
main body of our paper, where we study the eigenvectors ψ(λ). It should
be mentioned that these results are fully rigorous and do not rely on the
heuristic connection.

To proceed, we need to introduce more notation. By ψk(λ) we will denote
the k-th eigenvector of S(λ). Our observables are diagonal matrices O acting
in the space of directed bonds. The matrix L, as before, is the diagonal ma-
trix of the bond lengths. The average bond length, B−1 Tr L, is denoted by
L̄. Quantum ergodicity is the property of almost all eigenvectors to equidis-
tribute. This is equivalent to the vanishing of the variance in some limit. For
example, we would like to prove that the variance of 〈φn|O|φn〉 − B−1 Tr O
(and, correspondingly, 〈ψk(λ)|O|ψk(λ)〉−B−1 Tr O) vanishes. At this point
two obvious questions arise: (a) with respect to which ensemble is the vari-
ance taken, and (b) in which limit is it expected to vanish?

Taking, without loss of generality, Tr O to be zero, we define two variances

V S(Λ, B) =
1

N(Λ)

∑

λn≤Λ

〈φn|O|φn〉2,

V U(S(λ), B) =
1

B

B∑

k=1

〈ψk(λ)|O|ψk(λ)〉2,

where N(Λ) = Λ Tr L/2π is the mean number of the eigenvalues in the in-
terval [0, Λ].

A heuristic calculation presented in Appendix A suggests that, if the bond
lengths are rationally independent,

lim
Λ→∞

1

N(Λ)

∑

λn≤Λ

〈φn|O|φn〉2
〈φn|L|φn〉/L̄

= lim
Λ→∞

1

Λ

∫ Λ

0

V U(S(λ), B)dλ. (5)
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Thus, if the lengths of the bonds are taken from a narrow distribution, the
two variances are intimately connected. Moreover, following [39] one can
show that the limit on the right-hand side coincides with the average of
V U(DS(0), B), where D are uniformly distributed random unitary diagonal
matrices. Thus equation (5) relates the quantum ergodic properties of a
graph to the like properties of an ensemble of random matrices.

Equation (5) suggests that one cannot in general expect the variance to
vanish in the limit λ → ∞. It is natural, however, to expect ergodicity in the
limit B → ∞ (cf. [7]). A serious associated problem here is the choice of an
appropriate sequence of graphs and observables. One sequence of graphs, the
quantum star graphs, has been investigated in [21, 22], and it was found, in
particular, that the variance V S(Λ, B) does not vanish even when B → ∞.
This is not altogether surprising because the star graphs are known to exhibit
non-standard spectral statistics [14, 24], corresponding to integrable systems
perturbed by a point-scatterer, rather than to chaotic systems [25] (for a
review of the quantum fluctuation statistics of star graphs see [23]). This is
due to the fact that the spectral gap in their Markov transition matrix closes
more quickly as B → ∞ (like 1/B) than is the case for graphs exhibiting
truly quantum chaotic behaviour. The lack of quantum ergodicity for the
star graphs is related to the existence of strong scarring of the eigenfunctions
by short periodic orbits. In the present article we study sequences of graphs
generated from 1-dimensional maps of an interval in a fashion suggested
in [27]. We prove that for a suitable choice of observables, the variance
V U(S(λ), B) converges to 0 for any λ, given that the original 1-dimensional
map was ergodic. This is a stronger statement than the convergence when
averaged with respect to λ, as suggested by relation (5).

3 Quantum graphs obtained from 1d maps

Pakónski et al [27] proposed a procedure to associate a sequence of quantum
graphs to a one-dimensional map of an interval. In this section we review
their construction and proceed to investigate some of its properties.

We consider maps of an interval, which we take to be [0, 1]. A partition M
of the interval [0, 1] will be taken to mean a finite collection of open disjoint
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intervals Ej (henceforth called atoms) such that

[0, 1] =
M⋃

j=1

Ej,

where M = |M| denotes the number of intervals in the partition. We will
denote by E(M) the set of endpoints of the partition M. In a slight abuse of
the notation we will also denote by M the σ-algebra generated by the atoms
of the partition M. When considering sequences {Mn} of partitions, each
partition will be a refinement of the previous one, E(Mn) ⊂ E(Mn+1). We
will write Mn ⊆ Mn+1 to describe this statement.

Condition 1. We consider maps S : [0, 1] → [0, 1] that satisfy the following
conditions:

(a) the Lebesgue (uniform) measure µ is preserved by the map S: µ(A) =
µ (S−1(A)) for any measurable set A;

(b) there exists a partition M0 of the interval [0, 1] into M0 equal atoms,
with S linear on each atom;

(c) the set of endpoints E(M) is forward-invariant under the action of S:
S(E) ⊂ E .

An example of a map S satisfying Condition 1 is shown on Figure 1. The
tent map with slope 2 is another such example.

Remark 1. The conditions on the map S imply, in particular, that for any
two atoms E and E ′, either S(E) is disjoint with E ′ or S(E) ⊃ E ′.

Remark 2. It is possible to generalize the construction to maps that pre-
serve a measure different from Lebesgue, but such a map would have to be
topologically conjugate to a piecewise linear map satisfying the above prop-
erties. To maintain a degree of generality we strive to make explicit the
conditions that are imposed on the map S and the measure µ.

The Frobenius-Perron operator, reduced to measures constant on each
atom of a partition M, can be described by a matrix B of size M = |M|.
The entries of the matrix are given by

Bjk =
µ (Ej ∩ S−1(Ek))

µ(Ej)
, (6)
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Figure 1: An example of a quantizable map and the corresponding matrices
B: (a) |M| = 4, the atoms of the partition are represented by the vertices
of the graph; (b) |M| = 8, the atoms of the partition are represented by the
edges of the graph.

and can be described as the answer to the question “what proportion of the
set Ej gets mapped into Ek”. An example of a map S and the corresponding
matrices B for two different partitions are shown on Figure 1.

If we view the interval [0, 1] with the uniform measure as a probability
space, we can write Bjk = P (S(x) ∈ Ek|x ∈ Ej).

Lemma 1. Let the set of endpoints of the partition M be invariant under
S. Then the matrix B defined by (6) satisfies the following properties:

1. B is stochastic,
M∑

k=1

Bjk = 1.

2. If the atoms Ej of the partition M have equal measure and the map S
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preserves this measure then B is doubly stochastic

M∑

j=1

Bjk = 1.

3. If the atoms Ej of the partition M have equal measure and if the map
S is linear with respect to µ on each atom Ej (i.e. µ(S(A)) = Cµ(A)
for some C and all A ∈ Ej) then

Bj0j1Bj1j2 · · ·Bjk−1jk
=

µ
(⋂k

r=0 S−r (Ejr
)
)

µ (Ej0)
. (7)

Proof. Part 1 follows directly from (6),

M∑

k=1

Bjk =
1

µ(Ej)
µ

(
Ej ∩

(
M⋃

k=1

S−1(Ek)

))
=

µ (Ej ∩ [0, 1])

µ(Ej)
= 1.

Part 2 is similar: if µ(Ej) = m for all j then

M∑

j=1

Bjk =
1

m
µ

((
M⋃

j=1

Ej

)
∩ S−1(Ek)

)
=

µ (S−1(Ek))

m
=

µ(Ek)

m
= 1.

Part 3 is a consequence of the fact that, if µ(S(A)) = Cjµ(A) for all
A ⊂ Ej, then Bjk is either 0 or 1/Cj. Consider first the case Bjrjr+1

= 0
for some r. By definition of B, this means that µ

(
Ejr

∩ S−1(Ejr+1
)
)

= 0.
Therefore,

µ
(
S−r(Ejr

) ∩ S−r−1(Ejr+1
)
)

= 0,

and the expression on the right hand side of (7) evaluates to zero.
Now consider the case n = 2 (the case of general n being analogous) with

both Bj0j1 and Bj1j2 being different from zero. Let, to simplify the notation,
jr = r. Then

B0,1 =
µ (E0 ∩ S−1(E1))

µ(E0)
=

µ (E0 ∩ S−1(E1))

µ(E1)

=
µ (E0 ∩ S−1 (E1 ∩ S−1(E2)))

µ (E1 ∩ S−1(E2))
,
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where the last equality is true by virtue of linearity of S. Using the definition
of B1,2 and the identity S−1 (A ∩ B) = S−1 (A) ∩ S−1 (B), we arrive to

B0,1B1,2 =
µ (E0 ∩ S−1(E1) ∩ S−2(E2))

µ(E1)
,

which is the sought result, given that µ(E1) = µ(E0).

As mentioned earlier, we are interested in sequences of partitions.

Condition 2. We consider sequences of partitions Mn that satisfy

(a) the atoms within each of the partition have equal measure;

(b) the sets of endpoints E(Mn) are forward-invariant under the action of
S;

(c) the set of the endpoints of Mn contains the j-th pre-image of the
endpoints of M0 for all j = 1, . . . n.

Remark 3. Given a map S satisfying Condition 1 one can always construct
a sequence of partitions satisfying Condition 2.

Remark 4. Conditions 1(b) and 1(c) imply that the map S is non-contracting,
µ(S(A)) ≥ µ(A). If the map is ergodic (see definition 1 in section 4), Con-
dition 1(a) implies that the preimages of E(M0) with respect to S are dense
in [0, 1]. This, in turn, implies that the size of the atoms of the partitions
Mn tends to zero (or, equivalently, Mn → ∞).

The following lemma explains the way in which such sequences of parti-
tions ‘resolve’ the dynamics.

Lemma 2. Given a partition Mn satisfying Condition 2, let k0 and kn be
such that Sn(Ek0

) ⊃ Ekn
(cf. Remark 1). Then there exists a unique sequence

k1, . . . , kn−1 such that

x ∈ Ek0
and Sn(x) ∈ Ekn

⇒ Sj(x) ∈ Ekj
∀0 ≤ j ≤ n.

Proof. Consider an atom E of the partition Mn. Condition 2(c) means that
for every j = 0, . . . k, the image Sj(E) lies in a single atom of the “primary”
partition M0. Since the map S is one-to-one on each atom of M0, we
conclude, by induction, that Sj is one-to-one on E for every j = 1, . . . n + 1.
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Assume that the statement of the lemma is incorrect: there are two points,
x and y, that satisfy, without loss of generality, x, y ∈ E1, Sr(x) ∈ E2,
Sr(y) ∈ E3 and Sn(x), Sn(y) ∈ E4. Remark 1 implies the following inclusions:

Sr(E1) ⊃ E2, S2(E1) ⊃ E3, Sn−r(E2) ⊃ E4, Sn−r(E3) ⊃ E4.

Thus each z ∈ E4 has n− r-preimages in both sets E2 and E3 and, therefore,
two distinct n-preimages in E1. This contradicts the earlier conclusion that
Sn is one-to-one on E1.

Remark 5. Obviously, Lemma 2 is valid if, instead of the “position” of
Sn(x) (i.e. the atom Ej such that Sn(x) ∈ Ej), we know the position of
Sm(x) for some m < n: we can still recover positions of all iterates Sj(x) for
0 < j < m. In fact, a careful inspection of the proof reveals that the Lemma
would still be true for m = n + 1. However, if we know only that x ∈ E1 and
Sn+2(x) ∈ E2, we would not be able to pinpoint Sj(x), 0 < j < n + 2, to any
particular atom of the partition Mn.

The next lemma exhibits the block structure of the matrix B.

Lemma 3. For a partition Mn, n > 0, define an equivalence relation between
atoms by setting Ej ∼ Ek if S(Ej) intersects S(Ek) and then completing by
transitivity. Then the maximum number of elements in an equivalence class
is uniformly bounded with respect to n.

For example, in the partition of Figure 1, part (b), the atoms E1, E2, E3

and E5 form one equivalence class and the other four atoms form another
equivalence class. Note that, if the atoms of a partition are represented by
edges of the graph, the equivalence classes correspond to the groups of edges
ending in the same vertex. For the map in Figure 1 the uniform bound on
the size of an equivalence class is 4, as will be evident from the proof.

Proof. Take an atom A of the primary partition M0 and let (x1, y1), . . . , (xk, yk)
be the disjoint intervals forming the pre-image of A with respect to S. By
Condition 1(c) these intervals contain no endpoints of M0, therefore the map
S is linear on each interval. Condition 1 also implies that all slopes of the
map S are integer. Denote the slope of S on the interval (xj, yj) by sj. To
simplify the notation we assume that all sj are positive. Let p be the least
common multiple of sj.

Condition 2(c) implies that xj and yj are endpoints of the partition Mn.
Choose x′

j ∈ E(Mn) such that the interval (xj, x
′
j) contains exactly p/sj

12



atoms of the partition Mn. Since the atoms of Mn have equal length (which
we denote by µn),

sj1(x
′
j1
− xj1) = sj2(x

′
j2
− xj2) = pµn, for any j1, j2. (8)

Moreover, the selected points x′
j are the closest to the respective xj to satisfy

both condition (8) and x′
j ∈ E(Mn). In particular, this implies that x′

j ≤ yj,
since setting x′

j = yj would also satisfy condition (8).
From the above we can conclude that S maps all intervals (xj, x

′
j) to the

same subinterval of A. The atoms of Mn making up the intervals (xj, x
′
j)

thus form an equivalence class of size p/s1 + · · ·+ p/sk, which is independent
of n.

We can now repeat this procedure with intervals (x′
1, y1), . . . , (x′

k, yk) and,
thereafter, with all atoms A of the partition M0. If some of the slopes sj are
negative, the procedure would still go through with minor variations.

Having obtained a sequence of doubly stochastic matrices Bn we define
their “quantizations” as unitary matrices Un such that

(Bn)jk = |(Un)jk|2 . (9)

The doubly stochastic matrices B for which finding a corresponding U is
possible are called unistochastic.

Condition 3. We assume that the map S is such that all of the correspond-
ing matrices Bn, bar finitely many, are unistochastic.

Not all bistochastic matrices are unistochastic. However, formulating
a general sufficient conditions that ensure unistochasticity is a question of
considerable difficulty. The interested reader is referred to [27, 40] and the
references therein where some necessary conditions are discussed and where
examples of maps satisfying and failing Condition 3 are given. To convince
the reader that the class of maps S satisfying Condition 3 is far from empty
we state the following sufficient condition.

Lemma 4. If the slopes of the map S satisfying Condition 1 are all equal
(modulo sign), Condition 3 is also satisfied.

Proof. This Lemma follows simply from the proof of Lemma 3. Indeed, let
s be the absolute value of the slope of S. Then all matrices Bn, n > 0, have
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a block structure with blocks of the size s × s and elements 1/s. Thus the
question is really about finding an s × s unitary matrix with all elements
satisfying |Ujk|2 = 1/s. One example of such matrix is the Fourier matrix
with elements Ujk = exp{2πijk/s}/√s.

Example 1. An example of a map S which has unequal slopes but is still
unistochastic is provided by the map of Figure 1.

Remark 6. An observant reader would notice that, given one unitary U sat-
isfying (9), one can produce infinitely many such matrices. For example, one
can multiply a given U by an arbitrary diagonal unitary matrix. However,
the results of our paper do not depend on the precise choice of matrices Un,
provided that condition (9) is satisfied.

One can associate a graph to the matrices B and U in the following way:
the indices of the matrices enumerate the directed edges of the graph; the end
of an edge j coincides with the start of the edge k if the matrix element Bjk

is non-zero. The number of distinct vertices in such a construction should
be maximized, then the vertices will correspond to the equivalence classes of
Lemma 3.

The matrix B defines a Markov chain on the edges of the graph with Bjk

representing the transition probability from j to k. The matrix U can be
viewed as a quantum propagator on the graph. This geometrical interpreta-
tion of the two matrices as a graph will be helpful in the later sections when
we use trajectories on the graph to describe properties of the eigenvectors of
U.

It is also possible to associate vertices of a graph to the indices of B, see
Figure 1, part (a). We use directed edges for reasons of tradition, rather than
convenience.

4 Quantization of the observables

Having defined the sequences of unitary matrices Un, ergodic properties of
whose eigenvectors we are going to study, we need a final ingredient, the
observables On. For a general sequence of graphs, it is not obvious how to
define a consistent sequence of observables. In our case, however, there is a
natural answer.

We use the discretizations of functions φ ∈ L2[0, 1] as our observables.
Fix a partition M (the semi-classical limit corresponds to |M| → ∞). If
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the function φ is constant on each atom of the partition M, its quantization
O = O(φ) is a diagonal matrix with entries Ojj = φ(x) where x ∈ Ej. If φ
is not constant on the atoms of M, we replace φ by its local average. More
precisely, we introduce the piecewise constant function φ̂ defined by

φ̂(x) =
1

µ(Ej)

∫

Ej

φ(y)dµ(y), where Ej 3 x.

Then we define O = O(φ) as before, by

Ojj = Ojj(φ) = φ̂(Ej) =
1

µ(Ej)

∫

Ej

φ(y)dµ(y). (10)

It is convenient to describe φ̂ using the notions of probability theory.
In probabilistic language, φ is a random variable defined on the probability
space [0, 1] and φ̂ is its conditional expectation, φ̂ = E [φ|M]. We will also
use the notation of expectation to denote the integral over [0, 1]:

Eφ =

∫ 1

0

φ(x)dµ(x).

In particular, ‖φ‖2 = (Eφ2)
1/2

.
To prove quantum ergodicity, we will rely on the ergodicity of the classical

map S. Since our observables are in L2, the relevant version of the ergodic
theorem is the L2 ergodic theorem (see, e.g., [41]).

Definition 1. A map S : [0, 1] → [0, 1] is ergodic if any set A ⊂ [0, 1]
satisfying

S−1(A) = A

has either full or zero measure.

Theorem 1. (L2 Ergodic Theorem) If φ ∈ L2[0, 1] and S is ergodic, then

VT (φ)
def
= E

(
1

T

T∑

t=1

φ ◦ St − Eφ

)2

→ 0. (11)

Since the ergodic theorem applies to any function from φ ∈ L2, it also
applies to φ̂, whatever partition M was used to produce it. Unfortunately, a
uniform estimate for the rate of convergence in (11) for different hat-versions
of the same φ is not known [42]. However, it is easy to see that, for fixed T ,

VT (φ̂) → VT (φ) (12)

as the partition in the definition of φ̂ gets finer.
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5 Quantum variance of an observable

Given a map S and a sequence of partitions Mn we have constructed a
sequence of Markov matrices Bn, which, in turn, give rise to unitary matrices
Un. On the other hand we are given an observable φ and we have constructed
a corresponding sequence of diagonal matrices On, which “quantize” φ. We
denote by Mn the number of atoms in the partition Mn. This is also the
size of the matrices Bn, Un and On. The semiclassical limit corresponds to
Mn → ∞.

Let ψ
(n)
j , where j = 1, . . . ,Mn denote the orthonormal eigenvectors of

Un. If an eigenvalue is degenerate, the particular choice of the basis for its
eigenspace is unimportant. As discussed earlier, to show quantum ergodicity
it is sufficient to prove that

1

Mn

Mn∑

j=1

(
ψ

(n)
j ,Onψ

(n)
j

)
→ E(φ) =

∫ 1

0

φ(x)dx (13)

and

Vn =
1

Mn

Mn∑

j=1

∣∣∣
(
ψ

(n)
j ,Onψ

(n)
j

)
− E(φ)

∣∣∣
2

→ 0, (14)

as n → ∞. It is straightforward to verify (13). Indeed, from the unitarity of
Un and the definition of On,

1

Mn

Mn∑

j=1

(
ψ

(n)
j ,Onψ

(n)
j

)
=

1

Mn

Tr On = E

(
φ̂
)

= E(φ).

Thus the main task is to show (14).
Without loss of generality we can assume that E(φ) = 0. In what follows

we will omit the sub- and super-scripts n unless we want to underline the
dependence of a quantity on n and on the partition Mn.

To obtain an estimate of Vn we employ some standard manipulations. If
ψ is an eigenvector of a unitary matrix U, we have, for any matrix O (not
necessarily diagonal) and all t ∈ N

(ψ,Oψ) =
(
Utψ,OUtψ

)
=
(
ψ, (U∗)tOUtψ

)
.

Summing this equality over t = 0, . . . T − 1 we obtain

(ψ,Oψ) =

(
ψ,

1

T

T−1∑

t=0

(U∗)tOUtψ

)
.
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We introduce the shorthand On,T for the time average of On,

On,T =
1

T

T−1∑

t=0

(U∗
n)tOnU

t
n.

Using Cauchy-Schwarz inequality and orthonormality of {ψj} we estimate

|(ψ,Oψ)|2 = |(ψ,OTψ)|2 ≤ (OTψ,OTψ) = (ψ,O∗
TOTψ) ,

and obtain

Vn =
1

Mn

Mn∑

j=1

∣∣(ψj,Oψj

)∣∣2

≤ 1

Mn

Mn∑

j=1

(
ψj,O

∗
TOTψj

)
=

1

Mn

Tr (O∗
TOT )

def
= K(n, T ) (15)

It is important to note that the above inequality is valid for all values
of T . Thus, to show that Vn → 0, we are free to choose an appropriate
T = T (n) for each n as long as we can demonstrate that

K(n, T (n)) =
1

Mn

Tr
(
O∗

n,T (n)On,T (n)

)
→ 0,

as n → ∞. In the following sections we prove that T (n) = n is a suitable
choice for this task.

For our purposes, it is more convenient to work with the matrices Sn,T

defined by

Sn,T = UT
nOn,T =

1

T

T−1∑

t=0

UT−t
n OnU

t
n,

which is equivalent to working with OT since S∗
TST = (UTOT )∗(UTOT ) =

O∗
TOT .

Multiplying S∗
TS out we obtain

1

M
Tr (S∗

TST ) =
1

M

M∑

s,f=1

|(ST )s,f |2.
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We can expand the entries of ST in terms of trajectories on the graph.
Using the definition of ST , we obtain

(ST )sf =
1

T

T−1∑

t=0

∑

b0,...bT

Ub0,b1 · · ·UbT−t−1,bT−t
ObT−t,bT−t

· · ·UbT−1,bT

=
∑

b0,...bT

Ub0,b1 · · ·UbT−1,bT

(
1

T

T−1∑

t=0

ObT−t,bT−t

)
,

where the inner sum in the first line is over all sequences of bonds satisfying
b0 = s and bT = f . Such a sequence of bonds we will call a trajectory.
Only trajectories compatible with the graph’s geometry (i.e. those for which
Ubjbj+1

6= 0) contribute to K(n, T ). A trajectory τ = (b0, . . . , bT ) is said to
have length T and amplitude

Aτ
def
= Ub0b1 · · ·UbT−1bT

.

We will denote by Φτ the average of the observable over the trajectory τ ,

Φτ
def
=

1

T
(Ob1b1 + . . . + ObT bT

) .

To summarize, we have shown that

Vn ≤ K(n, T ) =
1

Mn

Tr (S∗
TST ) =

1

Mn

Mn∑

s,f=1

∣∣∣∣∣
∑

τ :s→f

ΦτAτ

∣∣∣∣∣

2

=
1

Mn

Mn∑

s,f=1

∑

τ1,τ2:s→f

Φ∗
τ1

Φτ2A
∗
τ1

Aτ2 . (16)

where the inner sum is over all possible trajectories of length T starting at s
and finishing at f .

6 Diagonal terms

Equation (16) is reminiscent of a trace formula expansion of the spectral
form factor (i.e. of the Fourier transform of the spectral two-point correla-
tion function)2, in particular of a graph, see e.g. [14]. Such expansions are

2To underline this similarity we have used in (15) the traditional notation for the form
factor, K
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notoriously difficult to analyze rigorously as both T and the size of the graph
increase. The starting point of any such analysis is the evaluation of the
contribution from the diagonal terms , obtained by restricting the last sum
in (16) to identical trajectories, τ1 = τ2. It is usually assumed that the off-
diagonal terms sum up to a subdominant contribution, when T and the size
of the graph scale appropriately. This idea, called the diagonal approxima-
tion was first introduced for a general class of systems in [43]. On graphs it
was explored, in particular, in [14, 44]. It is difficult, however, to give an a
priori estimate on the size of the off-diagonal contributions and the analy-
sis is usually restricted to evaluating the contributions coming from specific
classes of interacting trajectories [15, 16, 17, 18].

Our strategy now is to calculate the contribution from the diagonal terms
in (16). Then we will show that, in the case of graphs constructed from 1d
maps, we can actually estimate the off-diagonal terms by virtue of being able
to choose an appropriate T = T (n).

To evaluate the diagonal contribution

K(diag)(n, T )
def
=

1

Mn

∑

τ

|Φτ |2 |Aτ |2 ,

we make two observations. First, by the definition of the amplitude Aτ and
the defining property of the matrix U, equation (9), we obtain

|Aτ |2 = |Ub0,b1|2 · · · |UbT−1,bT
|2 = Bb0,b1 · · ·BbT−1,bT

.

Now we recall Lemma 1, part 3, and conclude that

|Aτ |2 =
µ
(⋂T

t=0 S−t(Ebt
)
)

µ (Eb0)
.

On the other hand, by definition of Φτ ,

Φτ =
1

T

T∑

t=1

Obt,bt
=

1

T

T∑

t=1

φ̂(Ebt
) =

1

T

T∑

t=1

φ̂ ◦ St
(
S−t(Ebt

)
)
,

where φ̂(Eb) denotes the (constant) value of the function φ̂ on the atom Eb.
In fact, it is easy to see that Φτ coincides with the value of the function

φ̂T
def
=

1

T

T∑

t=1

φ̂ ◦ St

19



on the set
⋂T

t=0 S−t(Ebt
)

def
= Eb0,...,bT

, if this set is non-empty. If it is empty, the
value of Φτ is of no consequence since the trajectory τ is then incompatible
with the graph’s geometry and Aτ = 0.

The measure of all atoms Eb is assumed to be equal. More precisely, it
is equal to 1/Mn, since Mn is the total number of the atoms. Collecting our
observations together, we can express the diagonal term as

K(diag)(n, T ) =
1

Mn

∑

τ

(
φ̂T (Eb0,...,bT

)
)2 µ(Eb0,...,bT

)

M−1
n

=

∫ 1

0

(
φ̂T (x)

)2

dx = E

(
1

T

T∑

t=1

φ̂ ◦ St

)2

= VT (φ̂).

Thus, by the L2 ergodic theorem (Theorem 1), K (diag)(n, T ) goes to zero as
T → ∞. On the other hand, K(n, T ) is bounded below by a non-negative
Vn which is, generically, non-zero for a fixed n. This shows that the diagonal
term is a poor approximation to K(n, T ) in the limit T → ∞. Luckily, this
is not the limit we have to take.

7 Completion of the proof of quantum ergod-

icity

Lemma 2 has a very important consequence for the inner sum in (16).

Lemma 5. The diagonal term K(diag)(n, T ) gives the exact value of K(n, T )
up to time T = n, i.e.

K(n, T ) = K(diag)(n, T ) = VT (φ̂) if T ≤ n,

where φ̂ = E [φ|Mn].

Proof. By Lemma 2, for every pair of bonds s and f , there is at most one
trajectory going from s to f in T ≤ n steps. Thus, for T ≤ n,

K(n, T ) =
1

Mn

Mn∑

s,f=1

∣∣∣∣∣
∑

τ :s→f

ΦτAτ

∣∣∣∣∣

2

=
1

Mn

Mn∑

s,f=1

∣∣Φτ(s→f)Aτ(s→f)

∣∣2 =
1

Mn

∑

τ

|ΦτAτ |2 = K(diag)(n, T ).
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As a consequence, we have the following result.

Theorem 2. (Quantum Ergodicity) Let the map S and the sequence of
partitions {Mn} satisfy Conditions 1, 2 and 3; let {Un} be the corresponding

sequence of unitary matrices with eigenvectors ψ
(n)
j ; and let {On} be a se-

quence of diagonal matrices corresponding to an observable φ ∈ L2[0, 1] with
Eφ = 0. If S is ergodic, then

Vn =
1

Mn

Mn∑

j=1

∣∣∣
(
ψ

(n)
j ,Onψ

(n)
j

)∣∣∣
2

→ 0 as n → ∞.

Proof. The variance Vn is majorized by K(n, T ) for any T . We combine
Lemma 5 with equation (12) we conclude that, for a fixed T ,

K(n, T ) → VT (φ) as n → ∞.

Now we use the standard ε/2 argument: for any ε > 0, by Theorem 1 we
can find T such that VT (φ) < ε/2. Having fixed this T , we find n(ε, T ) such
that |K(n, T ) − VT (φ)| < ε/2 for all n ≥ n(ε, T ). Combining the above,

Vn ≤ K(n, T ) < ε/2 + ε/2

as long as n ≥ n(ε, T ). Since ε was arbitrary, we conclude that Vn → 0.

Remark 7. One can avoid the ε/2 argument in the following way. Taking
the limit n → ∞ of the inequality Vn ≤ K(n, T ) produces

0 ≤ lim sup
n→∞

Vn ≤ lim sup
n→∞

K(n, T ) = VT (φ).

Now taking the T → ∞ limit, we obtain

0 ≤ lim sup
n→∞

Vn = lim sup
T→∞

lim sup
n→∞

Vn ≤ lim sup
T→∞

VT (φ) = 0.

8 Egorov property

In Section 4 we defined a procedure to obtain a piecewise constant function

φ̂ given a function φ ∈ L2[0, 1]. It is enlightening to see how φ̂ ◦ S is related

to φ̂.
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By definition,

φ̂ ◦ S
∣∣∣
Ej

=
1

µ(Ej)

∫

Ej

φ(S(y))dµ(y) =
1

µ(Ej)

∫

S(Ej)

φ(z)
dµ(z)

|S ′(y)| .

Since S is linear on Ej, its derivative is constant. In fact, it is easy to see
that 1/|S ′(y)| = Bjk, where y ∈ Ej and S(y) ∈ Ek. Thus we have

φ̂ ◦ S
∣∣∣
Ej

=
∑

k:Ek∩S(Ej)6=∅

Bjk
1

µ(Ej)

∫

Ek

φ(z)dµ(z),

where the sum is over the decomposition of the set S(Ej) into atoms Ek.
Since Bjk = 0 whenever Ek ∩S(Ej) is empty and since µ(Ej) is independent
of j, we arrive to the following conclusion

Lemma 6. If, for a given partition M, the matrices B, O(φ) and O(φ ◦ S)
are defined according to (6) and (10) then

Ojj(φ ◦ S) =
M∑

k=1

BjkOkk(φ),

where M is the number of atoms in the partition M.

Lemma 6 is a rather beautiful manifestation of the inter-consistency be-
tween the discretization procedures for maps S and observables φ ∈ L2.
Namely, the discretization commutes with the action of S on L2. In this,
Lemma 6 is a classical analogue of the Egorov property, a result which shows
that the unitary matrices Un faithfully represent the action of the classical
map S.

Theorem 3. (Egorov property) Let the map S and the sequence of par-
titions {Mn} satisfy Conditions 1, 2 and 3; let {Un} be the corresponding

sequence of unitary matrices with eigenvectors ψ
(n)
j ; and let {On} be a se-

quence of diagonal matrices corresponding to an observable φ. If φ is Lips-
chitz continuous then

‖UnOn(φ)U−1
n − On(φ ◦ S)‖ = O(Mn

−1),

where the norm is the operator norm on the Euclidean space RMn.
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Proof. We fix the partition Mn, denote the corresponding UOU−1 by Q and
observe that, while O(φ ◦ S) is a diagonal matrix, Q is not necessarily so.

First we treat the diagonal elements of Q. Writing them out explicitly
we get

Qjj =
Mn∑

r=1

UjrOrrU
−1
rj =

Mn∑

r=1

UjrOrrUjr =
Mn∑

r=1

|Ujr|2Orr = Ojj(φ ◦ S),

where we used the unitarity of U and its defining property, |Ujr|2 = Bjr and
Lemma 6.

For the off-diagonal elements of Q we have

Qjk =
Mn∑

r=0

UjrOrrU
−1
rk =

Mn∑

r=0

Ujr(Orr − C)Ukr + C
Mn∑

r=0

UjrUkr

=
Mn∑

r=0

Ujr(Orr − C)Ukr,

where C is any constant and we have used the unitarity of U to conclude
that the second sum is zero. We estimate, using Cauchy-Schwarz,

|Qjk| ≤ max
r

|Orr − C|
Mn∑

r=0

|UjrUkr|

≤ max
r

|Orr − C| = max
x∈S(Ej)∩S(Ek)

|φ̂(x) − C|.

If φ is Lipschitz continuous with

‖φ‖Lip
def
= sup

x6=y

|φ(x) − φ(y)|
µ(x, y)

< ∞,

we can estimate further, by choosing appropriate C,

|Qjk| ≤
1

2

∥∥φ̂
∥∥

Lip
µ
(
S(Ej) ∩ S(Ek)

)
≤ 1

2
‖φ‖Lip max |S ′(x)|µ(Ej) ∝

‖φ‖Lip

Mn

.

Since Ujr is non-zero only if S(Ej) ∩ Er 6= ∅ and Ukr is non-zero only if
S(Ek) ∩ Er 6= ∅, we conclude that Qjk = 0 if S(Ej) and S(Ek) are disjoint.
Thus the matrix Q is of block-diagonal structure, each block corresponding
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to an equivalence class as defined by Lemma 3. The norm of Q − O(φ ◦ S)
is equal to the maximum of the norms of the blocks. A norm of a block,
in turn, is bounded by its dimension times the maximum absolute value of
the element of the block. The dimension of a block is uniformly bounded by
Lemma 3. Thus we get

‖Q − O(φ ◦ S)‖ ≤ D(S)
‖φ‖Lip

Mn

for some constant D(S) which is independent of φ and n.

Remark 8. If the function φ is only assumed to be continuous on [0, 1], one
can prove a weaker property:

‖UnOn(φ)U−1
n − On(φ ◦ S)‖ → 0 as Mn → ∞.

9 Discussion

We have succeeded in proving quantum ergodicity (QE) for a special class of
sequences of quantum graphs. However, we would like to mention that the
result is expected to hold for much broader class of graphs.

It is true that, given a finite quantum graph G, one can associate a 1d
map to it by reversing the process described in the paper. Thereafter, it is
possible to produce a sequence of graphs, one of which will coincide with the
original graph G, and answer the question of QE for this sequence. In this
sense, each graph corresponds to a 1d map. However, this is not true for every
sequence of graphs. In fact, it is not true for most sequences. Examples of
such sequences include star graphs with Kirchhoff conditions at the central
vertex (for which the question of QE has been answered negatively), the
complete (Kirchhoff) graphs, and the star graphs with Fourier central vertex
[44], for both of which the QE is expected (but is not known) to hold in some
form.

It is reassuring that the proof of QE in the present article suggests a
direction for possible generalizations: study the diagonal terms and then
find an estimate for the off-diagonal ones. However, for the sequences of
graphs described above the diagonal approximation ceases to be exact for
T > 1 (cf. Lemma 5). This makes estimation of the off-diagonal terms a
much more difficult task.
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Another interesting question to consider is whether quantum unique er-
godicity (when the convergence in (1) happens along all sequences of eigen-
vectors) is true for any quantum graphs. This has been answered in the
negative [26] for graphs with Kirchhoff vertices but is unclear for other types
if graphs.
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A Connection between variances V S and V U

To demonstrate relation (5) we start with summarizing the notation in-
troduced in Section 2. Let the unitary B × B matrix S be defined by
S = S(λ) = eiλLS(0), where L is the diagonal matrix of the bond lengths
of the graph and S(0) is some fixed unitary matrix. Let {λn} be the (real)
solutions of the equation det(I − S(λ)) = 0. We assume that the spectrum
{λn} is non-degenerate, which is a generic situation [45].

Denote by φn the normalized eigenvector of S(λn) corresponding to the
eigenvalue 1. By ψk(λ) we denote the k-th normalized eigenvector of S(λ).
We further denote by eiθk(λ) the eigenvalues of S(λ), with θk chosen to be
continuous (indeed smooth) functions of λ.

When λ = λn there is an index k for which θk(λ) = 0 mod 2π. For this
index k we also have φn = ψk(λ).

Let A be a self-adjoint matrix (a generalization of the observable O) with
trace 0 (without loss of generality). We are interested in the relationship
between two variances,

V S(Λ, B) =
1

N(Λ)

∑

λn≤Λ

〈φn|A|φn〉2,
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and

V U(S(λ), B) =
1

B

B∑

k=1

〈ψk(λ)|A|ψk(λ)〉2,

where N(Λ) = Λ Tr L/2π is the mean number of the eigenvalues λn in the
interval [0, Λ].

Introducing the notation

Ak = Ak(λ) = (ψk(λ),Aψk(λ))

we observe that

Tr ASm(λ) =
B∑

k=1

Ake
imθk(λ). (17)

In particular, Tr A =
∑B

k=1 Ak = 0. From the theory of distributions we
know that

∆ε(θ)
def
=

1

2π

(
1 +

∞∑

m=1

e−mε
(
eimθ + e−imθ

)
)

converges, in the limit ε → 0, to

∆(θ)
def
=

∞∑

r=−∞

δ(θ − 2πr),

where δ is the Dirac delta function. Substituting in the above identity θ = θk,
multiplying by Ak and performing the summation over k yields

B∑

k=1

∆ε(θk)Ak =
1

2π

(
∞∑

m=1

e−mε
(
Tr ASm + Tr AS−m

)
)

. (18)

As ε → 0 this converges to

B∑

k=1

∆(θk)Ak =
∞∑

n=1

Ak(λn)

|θ′k(λn)|δ(λ − λn),

where, given λn, k is chosen to satisfy θk = 0. It is shown in [14] that

θ′k(λn) = (φn,Lφn) =
(
ψk(λn),Lψk(λn)

) def
= Lk(λn).
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Clearly, θ′k(λn) > 0 and so we can drop the modulus around θ′k(λn) in the
previous equation. Now we need the following properties of the approximants
to the Dirac delta function,

2π lim
ε→0

ε∆2
ε(x) = ∆(x)

and, if x1 6= x2,

2π lim
ε→0

ε (∆ε(x − x1) + ∆ε(x − x2))
2 = ∆(x − x1) + ∆(x − x2).

Applying these identities gives

2π lim
ε→0

ε

(
B∑

k=1

∆ε(θk)Ak

)2

=
B∑

k=1

∆(θk)A2
k =

∞∑

n=1

A2
k(λn)

Lk(λn)
δ(λ − λn).

Integrating the right-hand side with respect to λ we get

1

N(Λ)

∫ Λ

0

(
∞∑

n=1

A2
k(λn)

Lk(λn)
δ(λ − λn)

)
dλ =

1

N(Λ)

∑

λn<Λ

A2
k(λn)

Lk(λn)
def
= V̂ S(Λ, B)

We will use this quantity to approximate V S(Λ, B). It is a good approxima-
tion if the bond lengths of the graph are approximately 1 (i.e. the matrix L
is approximately unity):

LminV̂
S(Λ, B) ≤ V S(Λ, B) ≤ LmaxV̂

S(Λ, B),

where Lmax and Lmin are the maximal and minimal bond lengths.
Using (18) and expanding the square we obtain

V̂ S(Λ, B) =
1

N(Λ)

∫ Λ

0

2π lim
ε→0

ε

(
B∑

k=1

∆ε(θk)Ak

)2

dλ

=
1

2πN(Λ)

∫ Λ

0

lim
ε→0

ε
∞∑

m1,m2=−∞

e−ε(|m1|+|m2|) Tr ASm1 Tr ASm2dλ.

We now take the Λ → ∞ limit of the above expression and interchange it
with the ε-limit. Due to the rational independence of the bond lengths, the
limit

lim
Λ→∞

1

N(Λ)

∫ Λ

0

Tr ASm1 Tr ASm2dλ
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is zero whenever m1 6= −m2. Indeed, we recall that S = S(λ) = eiλLS(0)
and expand the trace

Tr ASm =
∑

b0,...,bm

Ab0,b1S(0)b1,b2 · · ·S(0)bm,b0 exp(iλLp),

where Lp = Lb1 + · · · + Lbm
. If Lp is a sum of m1 terms and Lq is a sum of

m2 6= m1 terms, they cannot be equal. Thus, the only case when the phase
factors exp(iλLp) in a product of two traces can cancel each other is when
m1 = −m2.

We arrive at

lim
Λ→∞

V̂ S(Λ, B) = lim
Λ→∞

1

πN(Λ)

∫ Λ

0

lim
ε→0

ε

∞∑

m=1

e−2mε Tr ASm Tr AS−m dλ

= lim
Λ→∞

1

2πN(Λ)

∫ Λ

0

B∑

k=1

A2
k(λ) dλ

= lim
Λ→∞

1

2πN(Λ)

∫ Λ

0

V U(S(λ), B) dλ.

Here we used expansion (17) and the fact that

lim
ε→0

ε
∞∑

m=1

e−2mεeim(θk1
−θk2

) = lim
ε→0

ε

e2ε−i(θk1
−θk2

) − 1

is 1/2 when θk1
= θk2

and 0 otherwise.
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[11] S. De Bièvre, “Quantum chaos: a brief first visit,” in Second Sum-
mer School in Analysis and Mathematical Physics (Cuernavaca, 2000),
vol. 289 of Contemp. Math., pp. 161–218, Providence, RI: Amer. Math.
Soc., 2001.

[12] G. Berkolaiko, R. Carlson, S. Fulling, and P. Kuchment, eds., Proceed-
ings of Joint Summer Research Conference on Quantum Graphs and
Their Applications, 2005. Contemporary Mathematics, AMS, 2006.

[13] T. Kottos and U. Smilansky, “Quantum chaos on graphs,”
Phys. Rev. Lett., vol. 79, pp. 4794–4797, 1997.

[14] T. Kottos and U. Smilansky, “Periodic orbit theory and spectral statis-
tics for quantum graphs,” Ann. Phys., vol. 274, pp. 76–124, 1999.

[15] G. Berkolaiko, H. Schanz, and R. S. Whitney, “Leading off-diagonal
correction to the form factor of large graphs,” Phys. Rev. Lett., vol. 88,
no. 10, p. 104101, 2002.

29



[16] G. Berkolaiko, H. Schanz, and R. S. Whitney, “Form factor for a family
of quantum graphs: an expansion to third order,” J. Phys. A, vol. 36,
no. 31, pp. 8373–8392, 2003.

[17] G. Berkolaiko, “Form factor for large quantum graphs: evaluating orbits
with time reversal,” Waves Random Media, vol. 14, no. 1, pp. S7–S27,
2004.

[18] G. Berkolaiko, “Correlations within the spectrum of a large quantum
graph: a diagrammatic approach,” in Proceedings of Joint Summer Re-
search Conference on Quantum Graphs and Their Applications, 2005
(G. Berkolaiko, R. Carlson, S. Fulling, and P. Kuchment, eds.), AMS,
2006.

[19] S. Gnutzmann and A. Altland, “Universal spectral statistics in quantum
graphs,” Phys. Rev. Lett., vol. 93, no. 19, p. 194101, 2004.

[20] S. Gnutzmann and A. Altland, “Spectral correlations of individual quan-
tum graphs,” Phys. Rev. E, vol. 72, no. 5, p. 056215, 2005.

[21] G. Berkolaiko, J. P. Keating, and B. Winn, “Intermediate wave-function
statistics,” Phys. Rev. Lett., vol. 91, 2003.

[22] G. Berkolaiko, J. P. Keating, and B. Winn, “No quantum ergodicity for
star graphs,” Comm. Math. Phys., vol. 250, no. 2, pp. 259–285, 2004.

[23] J. Keating, “Fluctuation statistics for quantum star graphs,” in Proceed-
ings of Joint Summer Research Conference on Quantum Graphs and
Their Applications, 2005 (G. Berkolaiko, R. Carlson, S. Fulling, and
P. Kuchment, eds.), AMS, 2006.

[24] G. Berkolaiko and J. P. Keating, “Two-point spectral correlations for
star graphs,” J. Phys. A, vol. 32, no. 45, pp. 7827–7841, 1999.

[25] G. Berkolaiko, E. B. Bogomolny, and J. P. Keating, “Star graphs and
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