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Abstra
tWe 
onsider a spe
ial 
ase of multistate maps, maps with hysteresis. The mapunder 
onsideration is a 
olle
tion of two 
ontinuous, monotone real-valuedfun
tions with overlapping domains of de�nition. At ea
h step we determinethe fun
tion to apply using the following rule: if the 
urrent iterate of theinitial point is in the domain of de�nition of the fun
tion we applied last thenwe apply this fun
tion again, otherwise the se
ond fun
tion is applied.We study two di�erent aspe
ts of su
h maps: topologi
al and 
ombinato-rial. The topologi
al obje
t of study is the global attra
tor (the limit imageof the whole spa
e under the map). We review general properties of theglobal attra
tor of a 
ontinuous map. However, maps with hysteresis are not
ontinuous. To �x this, we 
onsider two approa
hes to the 
onstru
tion of a
ontinuous map with hysteresis. The �rst approa
h extends the map itself,
onverting it to an upper semi
ontinuous set-valued map, while the se
ondone rede�nes the spa
e, on whi
h the map a
ts.We 
onsider a parameterized family of maps with hysteresis. After es-tablishing some results on 
ontinuity of the global attra
tor as a fun
tionof the parameter, a more detailed analysis of a spe
ial 
ase of general mapswith hysteresis, a pie
ewise linear map with hysteresis, is presented. In twodi�erent 
ases, when there are periodi
 points and when there are none,we des
ribe the global attra
tor, its 
ontinuity properties and points wheredis
ontinuities o

ur.Combinatorial aspe
ts of the maps are explored by means of kneadingsequen
es and kneading invariants. We prove one-to-one 
orresponden
e be-tween possible kneading invariants and equivalen
e 
lasses of maps with hys-teresis, where by equivalen
e we understand topologi
al 
onjuga
y.
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Chapter 1Introdu
tionGiven a metri
 spa
e Y and an index set S, whi
h may be dis
rete or 
ontin-uous, de�ne for ea
h s 2 S a subset of Y , Us. By a multistate map we meana dis
rete time dynami
al system de�ned onX = [s2S Us � fsg � Y � S: (1.1)We 
all the elements of Y observables, while elements of S are states. Givenan observable xn and state sn, we generate a new observable xn+1 by thetransformation xn+1 = F (xn; sn):In turn, having determined the new observable xn+1 we generate a new statesn+1 by sn+1 = G(xn+1; sn):In this work we study a spe
ial 
ase of multistate maps, interval mapswith hysteresis. Here the index set S = f0; 1g and the metri
 spa
e Y =R1 . Fun
tions F (�; 0) = f0 and F (�; 1) = f1 are 
ontinuous nonde
reasingfun
tions de�ned on intervals [a; �℄ and [�; b℄ respe
tively, where � � �,f0(x) � x; f1(x) � xand f0(�) = b and f1(�) = a:1



Thus, the spa
e of Eq. (1.1) redu
es toXh = �[a; �℄� f0g� [ �[�; b℄� f1g� (1.2)Throughout the work, a point x 2 Xh will mean the whole pair (x; s). Some-times we use fun
tions Obs(x) and St(x) to refer to observable x and states, respe
tively.The topology on the spa
e Xh is indu
ed by the standard R topology, i.e.U � Xh is open if and only ifU = �(U0 \ [a; �℄)� f0g� [ �(U1 \ [�; b℄)� f1g�;where U0 and U1 are open subsets of real line. In the similar way we de�nethe measure on Xh, indu
ed by Lebesgue measure on R,�(U) = � (U0 \ [a; �℄) + � (U1 \ [�; b℄) ;the partial ordering of Xh (we 
ompare only points of the same state) and thedistan
e � between two points of the same state. We extend the de�nitionof the metri
 � on Xh to points of any state by setting �(x;y) = P , St(x) 6=St(y), where 
onstant P is suÆ
iently large to ensure triangle inequality.With this metri
 Xh be
omes a 
ompa
t metri
 spa
e.The mapping itself is de�ned on Xh as follows: f (xi; si) = (xi+1; si+1),where xi+1 = fsi(xi) and si+1 = ( 0 if xi+1 2 [a; �)1 if xi+1 2 (�; b℄si otherwisewith an initial point (x0; s0) 2 XhAs one 
an see, the periods of a
tion of the two fun
tions alternate andea
h fun
tion, f0 and f1, is applied as long as possible. The state swit
heswhen the observable leaves the domain of de�nition of the 
orrespondingfun
tion. An example of a map with hysteresis and a typi
al traje
tory areshown on Fig. B.1.When � = � the map f redu
es to a single-valued fun
tion with onedis
ontinuity, a Lorenz-type map. This type of map is thoroughly studied inthe literature [1, 2℄. 2



In our work we develop a theory for general maps with hysteresis andexamine a spe
ial 
ase, pie
ewise linear map with hysteresis (PLMH), indetail. The PLMH is given byf0(x) = 
0x; f1(x) = 
1x;where 
0 > 1 > 
1, � > � and a = 
1�, b = 
0�. An example of the PLMHis shown on Fig. B.2.The dynami
s of a pie
ewise linear map strongly depends on whether ornot there are integers k and l su
h that 
k0
l1 = 1. In the former 
ase allpoints are eventually periodi
 and in the latter there are no periodi
 pointsat all (the proof will be given in Lemma 11).The global attra
tor (a de�nition will be given below) of the PLMH, ob-tained with the aid of 
omputer simulation, has a very interesting stru
ture.A typi
al example is given in Fig. B.3. The C programme whi
h produ
edthis pi
ture is in
luded in Appendix A, but we des
ribe its stru
ture here.One of the parameters of PLMH is being varied, e.g. Fig. B.3 is produ
ed byvarying the se
ond threshold value, �, and keeping 
0, 
1 and � �xed. Forevery value of the parameter the programme takes a large number of pointsfrom Xh (points are distributed uniformly in a subinterval of Xh), performsa number of preliminary iterates to stabilize the pro
ess and then gives thenext iterates of these points as an output. Thus for ea
h value of the param-eter, the output is a set of iterates of some points, whi
h roughly 
orrespondsto the !-limit set of these points (all de�nitions are given in later Chapters).The set shown in Fig. B.3 is an approximation to the global attra
tor[3℄,de�ned by L = 1\i=0 f i(Xh): (1.3)Although the set de�ned by Eq. (1.3) frequently 
ontains no informationabout 
lassi
al (
ontinuous) dis
rete dynami
al systems it plays a very im-portant role in the 
ase of maps with hysteresis. After presenting variousde�nitions and re
ounting some useful fa
ts in Chapter 2 we thoroughlystudy the set L in Chapter 3. The set L is an attra
tor a

ording to variousde�nitions and, when 
onsidering a parametri
 family of maps, its graph vsthe parameter is upper semi
ontinuous.However these useful properties are established assuming the 
ontinuityof the map f . The la
k of 
ontinuity in the general map with hysteresis may3



be removed by extending the de�nition of the map. Two possible extensionsare presented in Chapter 4. The �rst variant extends the map itself while these
ond one rede�nes the spa
eXh. Ea
h de�nition has its own advantages, forexample, the �rst is 
onvenient in 
onsiderations of the bifur
ation diagram(the graph of the set L vs some parameter) and the se
ond one is used in thetheory of kneading invariants.In Chapter 5, while studying PLMH, we prove theorems about the twoimportant threshold points (�; 1) and (�; 0) and their images and preimages.If the map f has no periodi
 points, the preimages of � and � turn tobe everywhere dense. This property is very useful in kneading theory and
orresponds to topologi
al expansiveness in the theory of Lorenz maps. Thenwe prove that the set L is the union of omega-limit sets of (�=
1; 1) and(�=
0; 0) if these points are not mapped on to one-another. Now one of themain results of the 
hapter, that L is a non-wandering set of the map f , is aneasy 
orollary of the above. Furthermore, we are able to prove that in this
ase the set L is the omega-limit set of any point x 2 Xh. These results allowus to reveal additional properties of the set L, as fun
tion of a parameter.The graph of L turns out to be lower semi
ontinuous at 
ertain points, inaddition to the upper semi
ontinuity proved in Chapter 4. We also study thegraph of L when 
k0
l1 = 1 (1.4)for some integers k and l. The boundary of the graph is shown to be 
on-tained in a simple set and this allows us to prove some additional results on
ontinuity.In Chapter 6 we return to the general 
ase of a map with a hysteresis.Under assumption that the map is topologi
ally expansive we develop a the-ory of kneading sequen
es. Then we de�ne the kneading invariant to be theset of kneading sequen
es of the points a, b, � and � and state the maintheorem of that 
hapter: there is a set of inequalities su
h that a set of foursequen
es is the kneading invariant of a map with hysteresis if and only ifthe inequalities are satis�ed.Finally, we give an overview of the work and proje
ted resear
h in theSummary.
4



Chapter 2Basi
 de�nitions and notation
2.1 Basi
 de�nitionsNotation and de�nitions, used throughout the work, are in
luded here forready referen
e. Less known and more spe
i�
 de�nitions will appear in the
ourse of the report.By X we denote an arbitrary 
ompa
t metri
 spa
e and Xh is the spa
ede�ned by Eq. (1.2). For a set A � X, B�(A) is the open set of points withindistan
e � of A. The boundary of a set A is the set�(A) = fx: 8� B�(x) \ A 6= ; and B�(x) n A 6= ;g :By Int(A) and A we denote interior and 
losure of set A respe
tively,Int(A) = A n �(A); A = A [ �(A):In order to 
ompensate for the dis
ontinuity of a map with hysteresis wewill be 
onsidering its set-valued extension (see Chapter 4). The following �vede�nitions, although formulated for single-valued maps, remain un
hangedin the set-valued 
ase.Let f be a (single or set-valued) map. The following standard notationwill be used in our study: the image of a set A under f isf(A) = ff(x): x 2 Ag = [x2A f(x):5



Iterations of the map f are de�ned by indu
tionfk+1(A) = [x2fk(A) f(x):Given a set A we de�ne the set of its images byImg(A) = 1[i=0 f i(A):De�nition 1 A set A is 
alled forward invariant if f(A) � A. It is 
alledinvariant if f(A) = A.In other words, a set A is invariant if and only if it is forward invariantand weakly ba
kward invariant (for any x 2 A there is at least one y 2 Asu
h that x 2 f(y), see also [4℄).De�nition 2 A point x is a periodi
 point for f if x 2 fn(x) for somen > 0. A point is 
alled eventually periodi
 if fk(x) 
ontains a periodi
 pointfor some k.De�nition 3 The !-limit set of a set U is the set!(U) = nx 2 X: 9 fnig1i=0 ; 9 fyig1i=0 � U; 9xi 2 fni (yi) �xi ! x�o :De�nition 4 A point x 2 X is 
alled non-wandering if for any open U � X,x 2 U , there is an integer k su
h that fk(U) \ U 6= ;. The set 
 of all non-wandering points is 
alled the non-wandering set.De�nition 5 A point x�k is said to be a k-preimage of x under a map f ifx 2 fk �x�k�.To introdu
e notions of 
ontinuity for set-valued maps we need a metri
on the spa
e of 
losed subsets of X.De�nition 6 The distan
e from a 
losed set A to a 
losed set B is��(A;B) = supa2A �(a; B);where �(a; B) = infb2B �(a; b). The Hausdor� metri
 � is then de�ned by�(A;B) = max f��(A;B); ��(B;A)g :6



Now let X and Y be 
ompa
t metri
 spa
es.De�nition 7 A set-valued fun
tion f : X ! C(Y ), where C(Y ) = fF �Y : F is 
losedg, is upper semi
ontinuous at x0 iflimx!x0 ��(f(x); f (x0)) = 0:De�nition 8 A set-valued fun
tion f : X ! C(Y ) is lower semi
ontinuousat x0 if limx!x0 ��(f (x0) ; f(x)) = 0:There are also alternative (equivalent) de�nitions we will make use of.For upper semi
ontinuity it is formulated in Theorem 1 below. For lowersemi
ontinuity it is the following: a set-valued fun
tion is lower semi
ontinu-ous if for any point y 2 f(x0) and any sequen
e fxig ! x0 there is sequen
efyig, yi 2 f (xi) su
h that yi ! y0.De�nition 9 We say that fun
tion F :X ! C(Y ) is 
ontinuous at x0 if itis upper and lower semi
ontinuous at x0.De�nition 10 Let � be a measyre on the spa
e Y . A set-valued fun
tionf : X ! C(Y ) is measure-
ontinuous at x0 iflimx!x0 � (f (x0)4 f(x)) = 0;where A4B = A nB [ B n A.De�nition 11 The graph of a set valued fun
tion f : X ! C(Y ) is a subsetof X � Y : Graph(f) = f(x; y) 2 X � Y : y 2 f(x)gIn our study of the set L as a fun
tion of a parameter � we will need anotion of 
onvergen
e of set-valued fun
tions.De�nition 12 Let fn be a sequen
e of set-valued maps. We say that it isweakly upper 
onvergent to a map f if for any subsequen
e fn0g8xn0 8yn0 2 fn0 (xn0) �(xn0 ! x) ^ (yn0 ! y)) y 2 f(x)�7



Loosely speaking, if there is a sequen
e f(xn0; yn0)g in the graphs of thefun
tions fn whi
h 
onverges to a point (x; y) then y 2 f(x). Note, that thisnotion di�ers from upper graphi
al 
onvergen
e [5℄: in our 
ase the graphof f may be bigger then the upper limit of graphs of fn. We introdu
ethis di�eren
e in order to ensure that this property is inherited by iteratedfun
tions fkn , see Lemma 1.De�nition 13 Let ff�g�2� be a family of set-valued maps. We say, that itis weakly upper 
ontinuous at a point �0 if for any sequen
e �n ! �0 thesequen
e of fun
tions f�n is weakly upper 
onvergent to the fun
tion f�0 .We will also make use of the lower variant of 
onvergen
e of maps. Again,our de�nition of weak lower 
onvergen
e di�ers from lower graphi
al 
onver-gen
e [5℄.De�nition 14 Let fn be a sequen
e of set-valued maps. We say that it isweakly lower 
onvergent to a fun
tion f if for any point y0 2 f (x0) and anysequen
e fxng ! x0 9yn 2 fn (xn) (yn ! y0) :A family ff�g�2� of set-valued maps is said to be weakly lower 
ontinuousat a point �0 if for any sequen
e �n ! �0, the sequen
e of fun
tions f�n isweakly lower 
onvergent to the fun
tion f�0.De�nition 15 A family ff�g�2� of set-valued maps is weakly 
ontinuous ifit is weakly upper and lower 
ontinuous.2.2 Some useful fa
tsTheorem 1 A set-valued map is upper semi
ontinuous if and only if itsgraph is 
losed.This theorem is well-known and we refer, for example, to [5℄ for the proof.Lemma 1 Let a family ff�g�2� of set-valued maps be weakly upper 
ontin-uous at a point �0. Then for every k the family �fk�	�2� is weakly upper
ontinuous at �0. 8



Proof. We prove this lemma by indu
tion. We assume that statementis true for k � 1, i.e. �fk�1� 	�2� is weakly upper 
ontinuous at �0. We wantto prove that if xn ! x and there are yn 2 fk�n(xn) su
h that yn ! y theny 2 fk�0(x).Ea
h yn has a preimage zn,zn 2 fk�1�n (xn); yn 2 f�n(zn):We 
hoose a 
onvergent subsequen
e from fzng:9xn0 and 9zn0 2 fk�1�n0 (xn0)�zn0 ! z�:The subsequen
e fxn0g 
onverges to x and the assumption that �fk�1� 	�2�is 
ontinuous implies that z 2 fk�1�0 (x). On the other hand, we havezn0 ! z; yn0 2 f�n0 (zn0) and yn0 ! y:Sin
e f� are 
ontinuous at �0 this means that y 2 f�0(z). Together with theprevious observation we get that y 2 fk�0(x). Q.E.D.Corollary 1 If a set-valued map f is upper semi
ontinuous then its k-thiterate fk is also upper semi
ontinuous for any k.Indeed, if we take the family ff�g�2� with f� � f for every �, the de�ni-tion of weak upper 
ontinuity of the family redu
es to the de�nition of uppersemi
ontinuity of the map f and we 
an apply Lemma 1 to obtain the result.A lemma, similar to Lemma 1, is true about weak lower 
ontinuityLemma 2 Let a family ff�g�2� of set-valued maps be weakly lower 
ontin-uous at a point �0. Then for every k the family �fk�	�2� is weakly lower
ontinuous at �0.Proof. Again we use indu
tion for our proof. Let the statement be truefor k�1. We want to prove that for any point y0 2 fk�0 (x0) and any sequen
esf�ng ! �0 and fxng ! x0 there is a sequen
e fyng ! y0, yn 2 fk�n (xn).Let the point z0 be su
h thatz0 2 fk�1�0 (x0) and y0 2 f�0 (z0) :9



By the de�nition of weak lower 
ontinuity and assumption of indu
tion thereis a sequen
e fzng ! z0, zn 2 fk�1�n (xn). We apply the de�nition of weaklower 
ontinuity on
e more to get a sequen
e fyng, yn 2 f�n (zn) su
h thatyn ! y0. It is 
lear that the sequen
e fyng is the one we need. This obser-vation �nishes the proof.Lemma 3 If a set-valued map f :X ! C(Y ) is measure-
ontinuous at apoint x0 then there is a set N � f(x0), � (N) = 0, su
h that the set-valuedmap ef(x) = f(x) nN is lower semi
ontinuous at x0.Proof. We putN = fy 2 f(x0): 9 open Uy 3 y; � (Uy \ f (x0)) = 0g :The set N has measure zero. Indeed, N admits the representationN = [y2N Uy \ f (x0) ;where Uy \ f (x0) has measure zero and open sets Uy are 
hosen from a
ountable base for the topology. The set of di�erent possible Uy is at most
ountable, therefore the union above 
onsists of at most a 
ountable numberof distin
t sets and we 
an use �-additivity of the measure to 
on
lude that�(N) = 0.We are going to prove that for any point y 2 f (x0)nN and any sequen
efxig ! x0 there is a sequen
e fyig ! y, yi 2 f fxig. Assume the 
ontrary,there is a sequen
e fxig ! x0 and an open neighbourhood U of y 2 f (x0)nNsu
h that U \ f (xi) = ; for any i. ThenU � f (xi) n f (x0)and the measure � (f (x0)4 f(x)) � �(U \ (f (x0) nN)) > 0 for any i. Thisis in 
ontradi
tion to the measure-
ontinuity of the fun
tion f at the pointx0. Q.E.D.
10



Chapter 3Global attra
tor and itspropertiesLet f be an upper semi
ontinuous set-valued map, f :X ! C(X), on a
ompa
t metri
 spa
e X.We de�ne the global attra
tor [3℄ of the spa
e X under the map f byL = limn!1 fn(X) = 1\i=0 fn(X):The set L is non-empty, 
losed and invariant: f(L) = L. Indeed, f(X) � X,therefore fn+1(X) = fn(f(X)) � fn(X):The sets fn(X) are 
losed for every n and the global attra
torL = 1\i=0 fn(X)is also 
losed. This representation also implies that L is non-empty. To proveinvarian
e we need some additional reasoning.The in
lusion f(L) � L is trivial. To prove that L � f(L) we assume the
ontrary: there exists a point x 2 L whi
h does not have a preimage in L.In other words, f�1(x)TL = ;, where f�1(x) is the set of all 1-preimagesof the point x. f�1(x) is a 
losed set, be
ause f is upper semi
ontinuous.Then the open set V = X n f�1(x) � L is su
h that V T f�1(x) = ;. Using11



the de�nition of L we infer that fn(X) � V for some n and, therefore,fn+1(X) 63 x, whi
h 
ontradi
ts the hypothesis x 2 L.De�nition 16 A set A is 
alled an attra
tor if there is an open set U ,U � A, su
h that the !-limit set of U is A.Lemma 4 The global attra
tor L is an attra
tor a

ording to De�nition 16and !(X) = L.Proof. First we note that !(L) = L. Indeed, for any point x 2 L we
an �nd a preimage y1 2 L of x, then preimage y2 2 L of y1 et 
etera whi
heventually forms the sequen
e used in De�nition 3.Then, as !(X) � !(L) = L we have to prove that any x satisfyingx 2 !(X) is in the set L. The de�nition of the !-limit set provides sequen
esof points fyig1i=0 and of iterations fnig1i=0 su
h that9xi 2 fni (yi)�xi ! x�:Sin
e X is 
ompa
t the sequen
e fzig1i=k,zi 2 fni�k (yi) ; xi 2 fk (zi) ;has a 
ondensation point, x�k, for any k. Without loss of generality weassume that fzig itself 
onverges to the point x�k. Finally, we havezi ! x�k; xi 2 fk (zi) ; xi ! x:We use upper 
ontinuity of the fun
tion fk (Corollary 1) to infer that x 2fk �x�k�. Thus, x 2 fk(X) for any k and, therefore, x 2 L.Now we take U = X in De�nition 16 to �nish the proof.Another possible de�nition of an attra
tor involves an open set U whi
his mapped into itself [6℄:De�nition 17 A set A � X is 
alled an attra
tor if for any � > 0 there isan open set U of positive Lebesgue measure in the �-neighbourhood of A su
hthat A � U , f(U) � U and x 2 U implies !(x) 2 A.Lemma 5 The global attra
tor L is an attra
tor a

ording to De�nition 17.12



Proof. In order to show that L satis�es the de�nition we have to �nd aneighbourhood U of L su
h that f(U) � U ; the se
ond 
ondition is satis�edsin
e !(x) � !(X) = L for any x 2 X.Step 1. For any � > 0 and set U satisfyingL � U � B�(L); f(U) � Uthere is a Æ0 > 0 su
h that fk (BÆ(U)) � B�(L)for any k and Æ < Æ0.Assume the 
ontrary: there is a de
reasing sequen
e Æn ! 0 and sequen
esfkng and fxng su
h thatxn 2 X nB�(L) and xn 2 fkn (BÆn(U))Sin
e X nB�(L) is 
ompa
t we 
an assume xn ! x0 =2 B�(L) without lossof generality. There are two 
ases to 
onsider:� fkng is unbounded. Then, a

ording to De�nition 3, x0 belongs to!(X) = L. But L � U � B�(L), whi
h is a 
ontradi
tion.� fkng is bounded. Then there is a number k0 whi
h is repeated in fkngin�nitely many times. We assume that kn � k0 for any n without lossof generality. Then xn 2 fk0 (yn), where yn 2 BÆn(U). As Æn ! 0 thesequen
e fyng 
onverges to the set U and, therefore, has a point y 2 Uamong its limit points. Due to the 
ontinuity of fk0 and the propertyf(U) � U we haveyn ! y; xn 2 fk0 (yn) ; xn ! x0 ) x0 2 fk0(y) � U � B�(L);whi
h is a 
ontradi
tion.Step 2. For any � > 0 there exists an open set U � L su
h thatU � B�(L); f(U) � U
13



We de�ne sets Un = f �eUn�1�, where eUn = B� (Un), with �, dependingon n, being su
h that fk (B� (Un)) � B�(L); (3.1)for any k. The initial set is U0 = L. To prove that 
ondition (3.1) is possibleto satisfy we use indu
tion. For n = 0 it is possible due to Step 1. Assumethe statement is true up to the n � 1-th step. We 
onsider the set Wn =S1i=0 f i �Sn�1j=0 eUj�, whi
h is invariant under f and is 
ontained in B�(L) byour assumption. ThereforeWn satis�es the 
onditions of Step 1 and we 
hoosethe next � to obtain fk (B� (Wn)) � B�(L). Then eUn = B� (Un) � B� (Wn)and 
ondition (3.1) is satis�ed.Finally we put U = S1k=0 eUk whi
h �nishes the proof of Step 2: U isforward invariant, be
ause f �eUk� � eUk+1, is 
ontained in B�(L) and itsmeasure is �(U) � ��eU0� = � (B�(L)) > 0:The lemma is proven.Lemma 6 Let f :X ! C(X) be an upper semi
ontinuous map. Then thenonwandering set 
 is 
ontained in the global attra
tor L.Proof. Let Un = B�n(X) be a sequen
e of open neighbourhoods of apoint x 2 
 with �n ! 0. Let fkng be a positive sequen
e su
h that k = knis the minimal number to satisfy fk (Un) \ Un 6= ;. We 
onsider two 
ases.Sequen
e fkng is bounded. Then there is a subsequen
e of indi
es, fn0gsu
h that kn0 = k. From the 
ontinuity of f we imply that the point x isk-periodi
, x 2 fk(x), and, therefore, x 2 L.Sequen
e fkng is not bounded. Then for any i there is a subsequen
e fn0gsu
h that kn0 > i, therefore any point from fkn0 (Un0) \ Un0 has i-preimages.These preimages have an a

umulation point, xi, and by 
ontinuity x 2f i (xi). Q.E.D.Now let ff�g�2� be a family of set-valued maps weakly upper 
ontinuousat a point �0 (for more general results, see [7℄).Theorem 2 The fun
tion L(�) is upper semi
ontinuous at �0.14



Proof.It is suÆ
ient to prove, that the graph of L(�) is 
losed in the spa
e R�X(see Theorem 1). Let f(�i; xi)g1i=1 be a 
onvergent sequen
e with xi 2 L (�i)and (�i; xi) ! (�0; x0). We want to prove that x0 2 L (�0), thus we have to�nd a k-preimage of x0 under f�0 for any k.Let x�ki be a k-preimage of the point xi under f�i . Sin
e X is 
ompa
t,we assume without loss of generality that sequen
e 
onverges x�ki ! x�k.Then we have x�ki ! x�k; xi 2 fk�i �x�ki � ; xi ! x0:Sin
e ff�g�2� is assumed to be weakly upper 
ontinuous we apply Lemma 1to infer that fk� is also 
ontinuous and, therefore, x0 2 fk �x�k�. Thus x�kis k-preimage of the point x0. Q.E.D.
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Chapter 4Continuous maps withhysteresis and their properties
4.1 De�nition of 
ontinuous map with hys-teresisA map with hysteresis, as de�ned in Chapter 1, is not 
ontinuous.Notation. If the points �f�11 (�); 1� and �f�10 (�); 0� belong to the spa
eXh we 
all them dis
ontinuity points and denote them by ��1 and ��1 re-spe
tively.At the point ��1, the map f is 
ontinuous from the right only:f(Obs(x) ; 1) = � (f1(Obs(x)); 1) if x � ��1(f1(Obs(x)); 0) if x < ��1 ;where St(x) = 1 and therefore 
omparison of x with ��1 is legitimate. Thesituation is the same with the point ��1, but here the map f is 
ontinuousfrom the left. In order to make use of fa
ts derived in the previous 
hapterwe have to rede�ne f in su
h a way that it be
omes 
ontinuous.We present two di�erent ways of rede�nition. The �rst one is to 
onsiderthe map f as a set-valued map, i.e. to setf ���1� = f(�; 1); (�; 0)g and f ���1� = f(�; 1); (�; 0)gWith this de�nition map f be
omes an upper semi
ontinuous set-valued map,it is also lower semi
ontinuous everywhere ex
ept at points ��1 and ��1.16



Another 
on
ept is 
losely related to the previous one, but instead ofhaving two images of a troublesome point it splits the troublesome pointinto two (see also [8℄).We de�ne the spa
e extended fXh as 
onsisting of all points whi
h are notpreimages of ��1 and ��1 plus for ea
h point x su
h that fk(x) = ��1 or��1 we distinguish x� and x+. The �rst sort of points we 
all two-sided andthe se
ond is one-sided (or +- and �-points). Furthermore, we regard thefollowing points as one-sided:(�; 1) = �+ (�; 0) = ��(a; 0) = a+ (b; 1) = b�:An ordering (for points with same state) is indu
ed on fXh by the orderingof Xh with the addition x� < x+.An extended mapping ef is de�ned by� if x is two-sided then ef(x) = f(x)� if x is one-sided then{ ef(��1+ ) = �+, ef(��1� ) = (�; 0)(�) and the same for ��1.{ ef(�+) = a+, ef(��) = b�.{ ef(a+) = f(a)(+), ef(b�) = f(b)(�).{ ef(x�) = f(x)�, ef(x+) = f(x)+ for the other one-sided points.A sign in parentheses is used only when the 
orresponding point is split.The next step is to �x a metri
 on the extended spa
e fXh. The metri
 ofX gives �(x�;x+) = 0 therefore x� = x+;whi
h does not suit us. The new de�nition of the metri
 is 
losely related tothe notion of the kneading sequen
e of a point. If St(x) = St(y) we pute�(x;y) = �(Obs(x) ;Obs(y)) + 1Xi=1 2�ijSt�f i(x)�� St�f i(y)� j; (4.1)
17



where �(�; �) is the distan
e in R1 . For x and y su
h, that St(x) 6= St(y) weset e�(x;y) = P + 1; (4.2)where P = supSt(u)=St(v) �(u; v)is the maximal distan
e between points of the same state.Now to 
he
k triangle inequality in the 
ase St(x) = St(y) = St(z) weobserve, that �(St(x) ; St(y)) � �(St(x) ; St(z)) + �(St(z) ; St(y))jSt�f i(x)�� St�f i(y)� j � jSt�f i(x)�� St�f i(z)� j+jSt�f i(z)�� St�f i(y)� j for any i;sin
e � is a metri
 and St(f i(�)) are real numbers. Summing these inequalitiesa

ording to Eq. (4.1) we obtain the result for e�.When states of points x, y and z are di�erent we note, that the distan
ebetween any two points with the same state is not greater than P + 1 andEq. (4.2) ensures that the triangle inequality holds.Lemma 7 In the metri
 e� the spa
e fXh is 
ompa
t and 
omplete.Proof. Any sequen
e in Xh 
orresponds to a sequen
e in fXh, whi
h maybe \larger" in the sense that some points of the �rst sequen
e 
orrespondto two points of the se
ond. We employ this 
orresponden
e to obtain ourresult.First we prove the auxiliary statement: if a sequen
e fxng 2 Xh 
onvergesto a point x in the spa
e Xh then there is a subsequen
e fx0ng 2 fXh whi
h
onverges either to x or to one of x� = fx�;x+g.There are two 
ases to 
onsider, x 2 Xh 
orresponds to one point x 2 fXhand x 
orresponds to two points, x� and x+. In the latter 
ase we 
hoose amonotone subsequen
e fx0ng whi
h 
onverges in Xh to x from one side. Letit be 
onvergent from the left, without loss of generality. Assume, that thissubsequen
e does not 
onverge to x� in fXh. Then there must be a numberi, su
h that St(f i(xn0)) 6= St(f i(x�)) for any n0 > N . Otherwise, sin
e18



St(f i(xN)) = St(f i(x�)) implies St(f i(xn0)) = St(f i(x�)) for any n0 > N(for explanation see Chapter 6) we obtain1Xi=1 2�ijSt�f i(xn0)�� St�f i(x�)� j ! 0;whi
h is a 
ontradi
tion.Thus we have St(f i(xn0)) 6= St(f i(x�)) and it means that there is a i-preimage of a dis
ontinuity point, y�, su
h that xn0 < y� < x�. The pointsy� 
orrespond to a point y 2 Xh and xn0 < y < x, whi
h 
ontradi
ts ourassumption that xn0 ! x.It is interesting to note, that the sequen
e fxngmay 
ontain subsequen
eswhi
h 
onverge to x� and subsequen
es whi
h 
onverge to x+. This is notthe 
ase when x is not a preimage of a dis
ontinuity point. However, thesame argument as above 
an be used to prove the 
onvergen
e xn0 ! x andthus we omit it.Now to prove the 
ompa
tness of the spa
e fXh we take an arbitrarysequen
e fxng 2 fXh and 
onsider the 
orresponding sequen
e in the spa
eXh. The spa
e Xh is 
ompa
t and we �nd a subsequen
e whi
h is 
onvergentin Xh. Then, using the auxiliary statement, we 
hoose a subsubsequen
e
onvergent in fXh.We make use of the same approa
h to prove that the spa
e fXh is 
omplete.From a Cau
hy sequen
e, whi
h 
onverges in Xh, we 
hoose a subsequen
e
onvergent in fXh. But if a Cau
hy sequen
e has a 
onvergent subsequen
eit 
onverges itself and fXh is 
omplete. Q.E.D.Ea
h extension of 
ouple (Xh; f) has its advantages and we make use ofboth of them. First (set-valued) approa
h is used in the rest of the 
urrent
hapter and in Chapter 5 and the se
ond approa
h is very 
onvenient in thedevelopment of kneading theory, Chapter 6.4.2 Maps with hysteresis and dis
ontinuousmapsThere are many di�erent ways to establish 
orresponden
es between the dy-nami
s of a map with hysteresis and the dynami
s of a 
lassi
al dis
ontinuous19



interval map. We present two 
onstru
tions of this type. However, we foundit harder to study these 
lassi
al maps than the original one.4.2.1 Map with \mirrors"A point x with St(x) = 0 is swit
hed to state 1 by the map f if and only ifx 2 ���1; (�; 0)i. Similarly, if St(x) = 1 and x 2 h(�; 1); ��1�, the state ofthe next iterate is St(f(x)) = 0.The idea of the map with mirrors is to put two fun
tions f0 and f1 suf-�
iently far aside su
h that their domains of de�nitions do not interse
t andto pla
e two additional linear fun
tions of the form x+ 
, \mirrors", in orderto transfer points from f0 to f1 and ba
k. Thus, the interval ���1; (�; 0)iis mapped onto the �rst \mirror" and then to the 
orresponding intervalin the domain of the fun
tion f1. This 
onstru
tion adds one step to thetraje
tory ea
h time it swit
hes from one state to the other, but traje
toriesof the original problem are in one-to-one 
orresponden
e with traje
tories ofthe modernized map.An example of a map with hysteresis and of a 
orresponding map withmirrors is presented on Fig. B.4.4.2.2 First return mapAssume that a map with hysteresis has no �xed points. Then the dynami
s issu
h that if we take a suÆ
iently large interval in the domain of de�nition ofa fun
tion fi, i = 1; 2, traje
tories of points from the interval will eventuallyreturn to it. Examples of su
h intervals are ���1; (�; 0)i and h(�; 1); (b; 1)i.The �rst 
hoi
e has an advantage that no points are in the interval after the�rst iteration.We de�ne the map g: J� ! J�, J� = ���1; (�; 0)i by puttingg(x) = fk(x)(x);where k(x) = mini>0 ff i(x) 2 J�g.An example of a �rst return map is given on Fig. B.5. As seen on the pi
-ture it has a regular stru
ture with some dis
ontinuity points. The stru
tureis very similar to one of a NDI map [1℄:20



De�nition 18 NDI (N dis
ontinuities, in
reasing) maps of the interval arethose h: [a; b℄! [a; b℄ satisfying:There exist a < 
1 < 
2 < � � � < 
N < b su
h that1. h is 
ontinuous and stri
tly in
reasing on (a; 
1), (
1; 
2), . . . , (
N ; b).2. limx!
i� h(x) = b and limx!
i+ h(x) = a for all i = 1; : : : ; N .A
tually, the �rst return map of a map with hysteresis is a 
ompositionof two NDI maps:Lemma 8 An interval map g: J ! J , J = (Obs(��1) ; �℄, is the �rst returnmap of a map with hysteresis without �xed points if and only if there are NDImaps h1; h2: J ! J that g(x) = h2 (h1(x)).We 
onsider �rst visit maps (de�ned in analogy to �rst return map) eh1from interval J to J 0 = (Obs(��1) ; �℄ and eh2: J 0 ! J . It is easy to seethat the maps are (after applying an homeomorphism from J 0 to J) NDImaps and, 
onversely, given two NDI maps there is a 
hoi
e of a map withhysteresis, su
h that these maps are �rst visit maps.4.3 Topologi
ally expansive maps and 
onju-gate mapsHere we introdu
e de�nitions spe
i�
 to maps with hysteresis.De�nition 19 A map with hysteresis f is said to be topologi
ally expansiveif for any points x and y, whi
h are not preimages of the dis
ontinuity points,there is an iteration n su
h thatSt(fn(x)) 6= St(fn(y)) :The following lemma gives the relation of this de�nition to the alternativeone [1℄.Lemma 9 The following statements are equivalent:1. Preimages of the points ��1 and ��1 are everywhere dense in Xh.21



2. f is topologi
ally expansive.3. There exists � > 0 su
h that for any points x and y, whi
h are notpreimages of the dis
ontinuity points� �f i(x); f i(y)� > �for some i.Proof. 1: ) 2: Let St(x) = St(y). Let k be the minimal number su
hthat there is a k-preimage of a dis
ontinuity point in the interval (x;y). ThenSt(f i(x)) = St(f i(y)), i = 1; : : : k and St�fk+1(x)� 6= St�fk+1(y)�.2: ) 3: By the de�nition of the metri
 on Xh, St(f i(x)) 6= St(f i(y))implies that � ff i(x); f i(y)g > P , where P is a 
onstant.3:) 1: Here we use an argument similar to the one in [1℄. Let A1 and A2be the sets of preimages of the dis
ontinuity points ��1 and ��1 respe
tively.We are going to prove that 
losure A = X, where A = A1SA2.Assume the 
ontrary, B = X n A is nonempty. The set B is open by thede�nition, therefore it is a 
ountable 
olle
tion of intervals. Now we take anarbitrary intervalB0 � B from the 
olle
tion. The set B is invariant thereforeB0 is mapped by f to another interval, whi
h we denote by B1: f (B0) � B1.Pro
eeding by indu
tion we get the sequen
e fBig1i=0, f (Bi) � Bi+1.There are two possibilities to 
onsider: either the sequen
e is periodi
 orthe intervals Bi are all di�erent. In the �rst 
ase, f maps some interval intoitself, whi
h is in
ompatible with 
ondition 3. In the se
ond 
ase, lengths ofintervals will eventually be
ome less than any � whi
h is also a 
ontradi
tion.Q.E.D.De�nition 20 Two maps with hysteresis f and g de�ned on spa
es Xh andX 0h are said to be topologi
ally 
onjugate if there is a state-preserving home-omorphism �:Xh ! X 0h su
h thatObs(� (f(x))) = Obs(g(�(x))) and St(f(x)) = St(g(�(x))) : (4.3)4.4 Continuity of the graph of LAlthough we were able to prove upper semi
ontinuity of the graph of theglobal attra
tor L vs a parameter �, a general map with hysteresis does nothave other types of 
ontinuity (lower semi
ontinuity and measure-
ontinuity).22



Example 1 For the map shown on Fig. B.6 the set L is the whole interval[a; �℄�f0g and three intervals on the bran
h 1. However, any in
rease of theparameter 
 (with the parameter d �xed) will result in disappearan
e of theinterval h �f�10 (d); 0� ; �f�10 (e); 0�℄ from the bran
h 0 after some iterations.Thus, the 
hoi
e � = 
 
auses both lower and measure dis
ontinuity in L(�).However, in some simple 
ases we 
an prove 
ontinuity of the graph. Firstwe prove an auxiliary lemma.Lemma 10 The boundary of the global attra
tor is �(L) � Img(f��1; ��1g).Proof. For the boundary of the global attra
tor one has�(L) � 1[i=0 � (f i(Xh))and, therefore, it is suÆ
ient to prove that the boundary � (f i(Xh)) belongsto the set i[k=0 �fk ���1� [ fk ���1��for any i.We prove it by indu
tion. The boundary of f 0(Xh) 
onsists of the points�, �, (a; 0) 2 f(�) and (b; 1) 2 f(�). Assume that the statement is provenfor f i(Xh).The 
losed set f i+1(Xh) is a �nite 
olle
tion of 
losed intervals. Letx 2 � (f i+1(Xh)). Then x has a preimage y. If y 2 � (f i(Xh)) we are doneby indu
tion. In the other 
ase y is a point of dis
ontinuity of the fun
tionf , y = ��1 or y = ��1. Indeed, assume the 
ontrary: f is 
ontinuous aty and, therefore, monotone. Then there exists an open neighbourhood U ,y 2 U � f i(Xh) su
h that f is 
ontinuous on U . Therefore, f(U) is an openset and x 2 f(U) � f i+1(Xh). Thus we get x =2 � (f i+1(Xh)), whi
h is a
ontradi
tion.Q.E.D.
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Theorem 3 Let ff�g�2� be a family of (set-valued) maps with hysteresisweakly upper 
ontinuous at �0. Let at the point �0 the set L be equal tofn(Xh) for some n and��1 62 f i ���1� ; ��1 62 f i ���1� 1 � i � n+ 1f i ���1� \ f j ���1� = ; 0 � i; j � n + 1:Then graph of L is lower semi
ontinuous and measure-
ontinuous at �0.Proof. To prove the theorem we develop a slightly new approa
h to theset L. For ea
h iteration i we 
onsider the setBi = ���1; ��1; f ���1� ; f ���1� ; : : : ; f i+1 ���1� ; f i+1 ���1�	of the possible boundaries of the set f i(Xh) (points ��1 and ��1 are not thepossible boundaries, but we in
lude them also). The set Bi depends on �,whi
h we indi
ate by writing Bi(�) sometimes. Conditions of the theoremimply that for ea
h 0 � i � n + 1 the set Bi(�0) 
onsists of exa
tly 4i + 6points. Note, that f (��1) and f (��1) are sets of two points ea
h.Now we divide intervals [a; �℄�f0g and [�; b℄�f1g into subintervals withboundaries in Bi. For example, for i = 0 subintervals areh(a; 0); ��1i; h��1; (�; 0)i on 0-bran
hand h(�; 1); ��1i; h��1; (b; 1)i on 1-bran
h:Every time we obtain exa
tly 4i + 4 subintervals. We denote the set ofsubintervals by Si. It is easy to see that the interior of any subinterval fromSi may either be a subset of f i(Xh) or be disjoint with it (otherwise thereare boundary points in the interior whi
h is in 
ontradi
tion to the de�nitionof Si). We say that a subinterval J 2 Si is full if Si � f i(Xh). Otherwise wesay that it is empty. For example, for i = 0 there are no empty intervals.Although we use here the �rst (set-valued) 
on
ept of a 
ontinuous mapwith hysteresis it is helpful to split points ��1 and ��1. In other words, weput, for examplef�[(�; 1); ��1℄� = [a; �℄� f0g and f�[��1; (b; 1)℄� = [�; f1(b)℄� f1g :24



However, this addition is made to simplify the proof and has no e�e
t on thedynami
s of the map (it is implied of the fa
t that ��1 and ��1 are not inthe set of possible boundaries of f i(Xh) for 0 � i � n+ 1).With this modernization, the properties of the set Si are the following:� For every J 2 Si the fun
tion f jJ is a monotone 
ontinuous fun
tion.� Let J1 2 Si and J2 2 Si+1 be su
h that f (J1) \ J2 6= ;. Then J2 �f (J1).There is a 
ertain partial ordering of the sets Bi(�), i � n + 1 and it iseasy to see, that for small � > 0 the ordering for � 2 (�0 � �; �0 + �) is thesame as for �0. The set Bn+1 
onsists of �nite number of points; we 
an
hoose Æ su
h that Æ-neighbourhoods of these points do not interse
t. Thenfor ea
h point x�0 2 Bn+1 we �nd 
orresponding �x su
h that x�, belongs toa Æ-neighbourhood of x�0 , provided, that � 2 (�0 � �x; �0 + �x). The needed� is minimum of �x over all x 2 Bn+1.If the ordering is preserved then set Si is preserved too. There is a naturalone-to-one 
orresponden
e between Si(�) and Si (�0). We argue that aninterval from Si(�) is full if and only if the 
orresponding interval from Si (�0)is full.We prove it by indu
tion. For i = 0 the statement is true. Assume it istrue for i � 1. If an interval J�0 2 Si (�0) is full then there is a full intervalJ 0�0 2 Si�1 (�0) su
h that f �J 0�0� � J�0. Then the 
orresponding intervalJ 0� 2 Si�1 (�) is also full (by indu
tion assumption) and preserved orderingof Bi(�) implies that interval 
orresponding to J�0 , J�, is J� � f� (J 0�). Thesame argument proves that if an interval J� is full, J�0 is full also.Finally we obtain that the equality fn+1�0 (Xh) = fn�0(Xh) implies thatfn+1� (Xh) = fn� (Xh) and, therefore, fn� (Xh) = L(�) with the intervals ofL(�) in one-to-one 
orresponden
e to the intervals of L (�0). We alreadyknow, that the Hausdor� distan
e between Bn(�) and Bn (�0) 
an be madearbitrarily small and, therefore,� (L (�0) ; L (�))! 0 as �! �0:This observation implies lower semi
ontinuity and, sin
e the number of in-tervals in L(�) is 
onstant, measure-
ontinuity. Q.E.D.25



Chapter 5Pie
ewise linear maps withhysteresis
5.1 Basi
 properties of the the PLMHThe pie
ewise linear map with hysteresis is a map withf0(x) = 
0x and f1(x) = 
1xand the threshold points are� = a
1 and � = b
0Lemma 11 A pie
ewise linear map with hysteresis has periodi
 points if andonly if 
k0
l1 = 1 for some integer k and l. If there are any periodi
 pointsthen ea
h point is eventually periodi
.Proof. It easy to see that existen
e of periodi
 points implies that 
k0
l1 =1. To prove the 
onverse we 
onsider all irredu
ible numbers of the formx
i0
j1, where (x; s) is a point from Xh. We 
all a number irredu
ible if andonly if there are no i0 and j 0 su
h thati0 < i; j 0 < j and 
i00 
j01 = 
i0
j1:In other words, either i must be less than k or j less than l (otherwise takei0 = i � k and j 0 = j � l). This 
ondition and 
ondition 0 < a < x
i0
j1 < b
learly imply that there is only a �nite number of possibilities for i and j.26



For any n we have Obs(fn(x; s)) = x
i0
j1 and, sin
e there is only a�nite number of possibilities, fn(x; s) = fn+k(x; s) for some n and k. Thisobservation �nishes the proof.Note that the period k and the transition n are uniformly bounded. An-other way to formulate this lemma is to say, that a PLMH is periodi
 if andonly if ln 
1= ln 
0 is rational. Observe that in this 
ase x 2 L if and only ifx is periodi
 (and not just eventually periodi
).Lemma 12 If a pie
ewise linear map is obtained from another map by� Multiplying the numbers a, b, � and � by a positive 
oeÆ
ient k.� Raising the numbers a, b, �, �, 
0 and 
1 to a positive power pthen these maps are topologi
ally 
onjugate.To prove this lemma we use homeomorphism �(x; s) = (kx; s) in the �rst
ase and �(x; s) = (xp; s) in the se
ond 
ase.Another useful property of PLMH is existen
e of the non-in
reasing mea-sure.De�nition 21 The measure � is said to be non-in
reasing under a map f iffor any open set U �(f(U)) � �(U):Lemma 13 The measure d� = d lnx is non-in
reasing under a PLMH.Moreover, if St(x) = St(y) for any x;y 2 U then �(f(U)) = �(U)We remind that for any A � XhA = (A0 � f0g) [ (A1 � f1g)and A is measurable if A0 and A1 are measurable,�(A) = �(A0) + �(A1) = Z IA0d lnx + Z IA1d lnx;where IA0 and IA1 are indi
ator fun
tions.Now we 
onsider a family of pie
ewise linear maps with hysteresis whi
hare obtained by varying one of the parameters �, �, 
0 or 
1. This family27



is weakly 
ontinuous at every point and, therefore, the graph of L(�) as afun
tion of the parameter is upper semi
ontinuous at every point. We 
annotsay the same about lower semi
ontinuity. However we observe that in theexample of a non-
ontinuous graph (see Chapter 4) a 
ru
ial role is playedby a traje
tory whi
h 
onne
ts two dis
ontinuity points.Conje
ture 1 The graph L(�) is lower semi
ontinuous if��1 62 Img���1� ��1 62 Img���1� :We will prove the 
onje
ture in the irrational 
ase after learning someproperties of the dis
ontinuity points ��1 and ��1.There exists a possibility to 
lassify the sets L basing on the number ofdis
ontinuities of the �rst return maps used in Lemma 8. The possible pairsof numbers are 0 and 1, 1 and 1, 1 and greater than 1. The simplest 
ase is0 and 1 or, in other words�
�i1 62 [�; b℄ for any i or �
�i0 62 [a; �℄ for any i:Then the �rst return map to the interval [�; b℄�f0g (in the �rst 
ase) is justa 
ir
le homeomorphism [9℄ and the set L has the very simple stru
ture,L = N[i=0 f i([�; b℄; 0)with some �nite N . The example of su
h a map with the set L and the �rstreturn map is shown on Fig. B.7.5.2 Prin
iple of equivalent distan
eOur subsequent analysis will be based mostly on the following Prin
iple:Theorem 4 (Prin
iple of equivalent distan
e). Let an interval (x;y) �Xh 
ontain no k-preimages of the dis
ontinuity points, where k = 1; : : : ; K.Then the set fk((x;y)) is a 
onne
ted open interval for k = 1; : : : ; K andC1r � � �fk (x)+ ; fk (y)�� � C2r;28



where r = �(x;y), k = 1; : : : ; K,fk(z0)� = limz!z0� fk(z)and C1, C2 are 
onstants depending on f only.Proof. Sin
e there are no preimages of the dis
ontinuity points, fk is
ontinuous on (x;y). Moreover, fk a
ts on observables as a linear fun
tion,fk(z) = 
k0
l1z, for some k and l. These observations settle the �rst part ofthe Prin
iple.The 
hoi
e of the possible k and l is restri
ted sin
e fk(z) does not leavethe interval [a; b℄. In other words, there is a number z 2 [a; b℄ su
h that
k0
l1z 2 [a; b℄. This implies that the inequalities
k0
l1a � b and 
k0
l1b � amust be satis�ed. We summarize the inequalities inab � 
k0
l1 � baand put C1 = a=b, C2 = b=a to �nish the proof.5.3 Preimages of the dis
ontinuity pointsTheorem 5 Let the slopes 
0 and 
1 be su
h that fun
tion f has no periodi
points. Then the set of preimages of the dis
ontinuity points ��1 and ��1 iseverywhere dense in Xh.Proof. We assume the 
ontrary and repeat the third part of the proof ofLemma 9 to get the sequen
e fBig.Interval Bi is new for ea
h i, i.e. Bi 6= Bj when i 6= j. Otherwise,there exist i and j su
h, that f j (Bi) � Bi. Bi does not 
ontain preimagesof threshold points, therefore f j is 
ontinuous on Bi and has a �xed point.However f does not have periodi
 points and we get 
ontradi
tion.Now by the Prin
iple of equivalent distan
e we have� (Bj) � � �f j (B0)� � C1� (B0)29



for any j, where � is (Lebesgue) measure. Therefore1 > �(Xh) � 1Xi=0 � (Bi) � C1 1Xi=0 � (B0) =1and we get a 
ontradi
tion. Q.E.D.5.4 Omega-limit sets of the dis
ontinuitypointsIn this Se
tion we study images of dis
ontinuity points ��1 and ��1.De�nition 22 A �nite set F is said to be an �-net of a set A ifA � [x2F B�(x):If A is 
ompa
t and G is dense in A than one 
an 
hoose an �-net F , F � G.The following lemmas are proven under assumption that ln 
1= ln
0 isirrational and the 
ondition��1 62 Img���1� ; ��1 62 Img���1� : (5.1)is satis�ed.Lemma 14 Let the set of preimages of the point ��1 be everywhere dense.Then L = ! (��1).Proof. The 
onditions of the lemma imply that for any point x theset fk(x) 
onsists of two points at most. Indeed, map f is single-valuedeverywhere, ex
ept the points ��1 and ��1. If a point x is a preimage of��1 then the set fk(x) will 
onsist of two values after some iterations. Butfurther division is impossible, be
ause fk(x) 
annot be equal to ��1 again (fhas no periodi
 points) and 
annot be equal to ��1 due to 
ondition (5.1).The stru
ture of the map f suggests that for any x0 two possible valuesof fk(x0) are limx!x0� fk(x) and limx!x0+ fk(x):30



Now every point y 2 L has a k-preimage yk su
h thatlimx!yk� fk(x) = y or limx!yk+ fk(x) = y:It is easy to see that for any � > 0 there is N su
h that n-preimages ofthe point ��1, n = 1; : : : ; N form a �=2-net of the spa
e Xh. Let yk be ak-preimage of a point y, k > N and y is the limit of fk(x) as x ! yk fromthe left, without loss of generality. The open interval (yk � �;yk) 
ontainsat least one of the n-preimages of the point ��1, n = 1; : : : ; k. Let ��jbe the nearest of these preimages. Then the interval (��j;yk) satis�es the
onditions of Prin
iple of equivalent distan
e and applying fk we obtainlimx!��j+ fk(x) = z 2 Img���1� ; limx!yk� fk(x) = y; and �(z;y) < C2�:Sin
e � was arbitrary and C2 is �xed we 
an �nd an image of ��1 in anyneighbourhood of y. Therefore, y 2 ! (��1).The 
onverse, ! (��1) � L, is always true. Q.E.D.Lemma 15 Let the sets X� and X� of limit points of preimages of ��1 and��1 be non-empty. Then L = ! (��1) = ! (��1).Proof. First of all, Theorem 5 implies thatXh = X� [X�:It is easy to see that there are points p1 and p2 su
h that for any � there arepreimages of ��1 in the intervals (p1 � �; p1) and (p2; p2 + �) and preimagesof ��1 in the intervals (p1; p1+ �) and (p2� �; p2). Next we �nd the intervals���j1; ��k1� � (p1 � �; p1 + �) j1 � k1���j2; ��k2� � (p1 � �; p1 + �) j2 � k2���j3; ��k3� � (p2 � �; p2 + �) j3 � k3���j4; ��k4� � (p2 � �; p2 + �) j4 � k4to satisfy Prin
iple of equivalent distan
e.31



Applying the fun
tion fn�1, n = max fj; kg, to ea
h interval we get that��1 is a limit point of images of ��1 with limiting sequen
es approa
hingform both left and right. The same is true about ��1. Thus we haveImg(��1) � ! ���1� ;Img(��1) � ! ���1� :However, observe, that !(x) � Img(x) for any x and, therefore, ! (��1) =! (��1). Now we repeat the proof of Lemma 14 to 
on
lude that any y 2 Lis 
ontained either in ! (��1) or in ! (��1), but sin
e they 
oin
ide we obtainL = ! ���1� = ! ���1� :The lemma is proven.In the following theorem 
ondition (5.1) is not 
ompulsory.Theorem 6 Let ln 
1= ln
0 be irrational. The set Img(f��1; ��1g) is every-where dense in L: L � Img(f��1; ��1g):Proof. Proofs of the en
losure y 2 ! (��1)[(��1), as given in Lemmas 14and 15, are still valid for any y 2 L whi
h is not an image of a dis
ontinuitypoint even if 
ondition (5.1) is violated. Therefore,L = ! ���1� [ ! ���1� [ Img����1; ��1	� � Img(f��1; ��1g):Q.E.D.5.5 Main theoremsNow we 
an summarize the 
onsequen
es of the previous se
tions.Theorem 7 If ln 
1= ln
0 is irrational and 
ondition (5.1) is satis�ed thenL = !(x) for any x.Proof. Union of sets X� and X�, de�ned in the Lemma 15, is the wholespa
e Xh, therefore, for any x (for x equal a, b, � or � 
onsider f 2(x) instead)we 
an �nd intervals(y1;x) and (x;y2) ; �(y1;x) < � �(x;y2) < �32



where y1 and y2 are some preimages of the dis
ontinuity points. ApplyingPrin
iple of equivalent distan
e to the intervals we obtain that (at least oneof) the dis
ontinuity points are (is) 
ontained in !(x). Lemmas 14 and 15now imply that L � !(x). Conversely !(x) � L is always true and thetheorem is proven.Theorem 8 A pie
ewise linear map is topologi
ally expansive if and only ifln 
1= ln
0 is irrational.Indeed, if ln 
1= ln
0 is irrational then preimages of points ��1 and ��1are everywhere dense. Conversely, if preimages are everywhere dense thenthe set of preimages must be in�nite. When ln 
1= ln 
0 is rational all pointsare eventually periodi
 with uniformly bounded periods and transitions, seeLemma 11. Let p be the longest period and t be the longest transition. Thenthe set of preimages of point � and � isp+t[i=0 f�i(f�; �g);whi
h is 
learly �nite and nowhere dense.Theorem 9 Let f be a pie
ewise linear map with hysteresis. We impose
ondition (5.1) in the 
ase when ln 
1= ln
0 is irrational. Then the globalattra
tor L is equal to the non-wandering set 
.Lemma 6 implies that 
 � L. To prove in
lusion L � 
 we 
onsider two
ases: ln
1= ln 
0 is rational and it is not. In the former 
ase x 2 L if andonly if x is periodi
, therefore L � 
.If ln 
1= ln
0 is irrational we employ Theorem 7 to 
on
lude that L =!(x) � 
.5.6 Continuity of the graph of L(�)Theorem 10 Let ��1; ��1 2 L(�) for any � from some open neighbourhoodof �0. Then the graph L(�) is lower semi
ontinuous at �0.33



Proof. For any sequen
e �n ! �0 and any point xo 2 L (�0) we have to�nd a sequen
e xn ! x0, xn 2 L (�n).If x0 2 L (�n) we are done. Assume, that x0 62 L (�n) for any n (withoutloss of generality). We de�ne the sequen
e fkng to satisfyx0 2 fkn�1�n (Xh) and x0 62 fkn�n (Xh):Intervals Jn are the maximal intervals to satisfyx0 2 Jn � fkn�1�n (Xh) n fkn�n (Xh):Boundaries of the intervals Jn are 
ontained in the sets� �fkn�1�n (Xh)� [ � �fkn�n (Xh)�and, therefore, � (Jn) � Img(��1��1) � L (�n) with the last in
lusion im-plied by the 
ondition of the theorem.Now, if � (Jn) ! x0 we are done (we found a sequen
e xn 2 L (�n),xn ! x0). Assume that this is not true: there is a subsequen
e fn0g (= fngwithout loss of generality) su
h that � (Jn) > m > 0. Then there are two
ases to 
onsider:� fkng is unbounded. Then for ea
h interval Jn there is a sequen
e ofkn � 1 sets J�in � fkn�i�n (Xh) n fkn�i+1�n (Xh)su
h that f (J�in ) = J�i+1n . It is 
lear, that these sets are disjoint andif � is a non-in
reasing measure, we have � (J�in ) > � (Jn) > m, whi
his 
ontrary to the assumption that fkng is unbounded.� fkng is bounded. Without loss of generality we assume that kn = kfor any n. Then we 
onsider a k-preimage of point x0 under f�0 , pointx�k. Weak lower 
ontinuity and Lemma 2 imply that fk�n �x�k�! x0and we get a 
ontradi
tion.Therefore, the 
ase �Jn 6! x0 is impossible. Q.E.D.Theorem 11 Let a family of PLMH with the parameter � be weakly 
ontin-uous at a point �0, ln
1= ln 
0 be irrational and��1 62 Img���1� ; ��1 62 Img���1� :Then the graph L(�) is lower semi
ontinuous at the point �0.34



Proof. First we prove an auxiliary statement: if ��1 62 L(�0) thenthere is a neighbourhood of �0 su
h that for any � from the neighbourhood,��1 62 L(�).Let k be su
h that��1 2 fk�1�0 (Xh) and ��1 62 fk�0(Xh):Then there is � su
h that8� (j�� �0j < �)���1 62 fk� (Xh)�:Indeed, assuming the 
ontrary we obtain that9�n ! �0 9zn ! z���1 2 fk�n(zn)�and, by weak upper 
ontinuity, ��1 2 fk�0(z). This is a 
ontradi
tion.As a 
orollary we obtain that at least one of the points ��1 and ��1 is
ontained in the set L. Indeed, if ln 
1= ln
0 is irrational, Theorem 5 impliesthat one of these points has an in�nite number of preimages and, therefore,belongs to L. In the rational 
ase we assume the 
ontrary: both points arenot in the set L. Then we 
hoose 
0 as a parameter and employ our auxiliarystatement to dedu
e that ��1; ��1 62 L(�) in some neighbourhood of �. Butirrational maps are dense in this neighbourhood and we get a 
ontradi
tion.Now to prove the theorem we 
onsider two 
ases.��1 2 L (�0) and ��1 62 L (�0). Then L (�0) = ! (��1) (Lemma 14). Forany point x 2 L (�0) there is an image of ��1 whi
h is 
lose to x:8� > 0 9ex 2 fn�0�0 ���1� �(ex� x) < �=2�:Lemma 2 implies that there is � su
h that8� (j�� �0j < �) 9x� 2 fn� ���1� �jx� � exj < �=2�and, therefore, jx�� xj < �. Provided that x� 2 L(�) it is proof of the lowersemi
ontinuity of the graph.To prove that x� 2 L(�) it is suÆ
ient to prove that ��1 2 L(�). But ourauxiliary statement implies that ��1 62 L(�) for � in some neighbourhood of�0 and, using the 
orollary, we 
on
lude that ��1 2 L(�).35



If both ��1 and ��1 are 
ontained in L(�0) then L(�0) = ! (��1) =! (��1). Therefore, we 
an perform the same analysis for both ��1 and ��1to get 8� (j�� �0j < �1) 9x� 2 fn� ���1� �jx� � xj < ��8� (j�� �0j < �2) 9y� 2 fn� ���1� �jy� � xj < ��:Now, sin
e either ��1 or ��1 belong to L(�) we dedu
e that either x� or y�belong to L(�) too. Q.E.D.5.7 The graph of L(�)We 
onsider the graph of L whi
h is obtained by varying the threshold �,� = �. We 
onsider the 
ase when
k0
l1 = 1for some mutually prime k and l. Let 
 be su
h that
0 = 
k; 
1 = 
�k:For ea
h value of � the set L(�) 
onsists of �nite number of 
losed inter-vals. Furthermore, the number of intervals is uniformly bounded if � belongsto some bounded interval.Lemma 10 implies that for any ��(L(�)) � Img(�) [ Img(�) � �
i�:�k � i � k0	 [ �
i�: l0 � i � l	 ;where k0 = maxi �
i� � b	 l0 = mini �
i� � a	 :We are going to prove that boundaries of the graph of L(�) are also 
ontainedin this set.Lemma 16�(Graph(L(�)) � ���; 
i�� :�k � i � 1	 [ ���; 
i�� :�1 � i � l	 :36



Proof. In this and the subsequent proofs we will use ideas from the proofof Lemma 3.First we denote the set of possible boundaries by B,B = ���; 
i�� :�k � i � 1	 [ ���; 
i�� :�1 � i � l	 :Set B 
onsists of 
ountable (and �nite on any �nite interval) number ofstraight lines and is shown on Fig. B.8 for 
 = 8=7, k = 3 and l = 4.To prove the lemma we assume the 
ontrary. There is a point (�0;x) 2�(Graph(L(�)) whi
h is not in the set B.The properties of this point are� x 2 L (�0), be
ause the graph is 
losed.� fn�0(x) = x for some n, be
ause all motion on L (�0) is periodi
.� f i�0(x) 62 B for any i, be
ause B is invariant under f�0 .Let � > 0 be su
h that��; f i�0(x)� 62 B for any 0 � i < n and � 2 (�0 � �; �0 + �) : (5.2)Then one has f i�0(x) = f i�(x). Indeed, by indu
tion, let f i�1�0 (x) = f i�1� (x).Eq. (5.2) implies that f i�1� (x) satis�es the same inequalities with respe
t to� and � (= �) as f i�1�0 (x) does and, therefore, the a
tion of f is the same onboth points. For i = n this property yields fn� (x) = fn�0(x) = x, therefore, xis periodi
 under f�, is 
ontained in L(�) and f i�(x) 2 L(�) for any i.Now let � < � be su
h that(y; �) \B = ;;where y 2 B� �f i�0(x)� for some i < n and � 2 B� (�0). Then for any su
h �the set �(�;y):y 2 B� �f i�0(x)�	 either belongs to L(�) or does not interse
twith it. But we already know that f i�(x) 2 L(�), therefore the whole set�(�;y) : y 2 B� �f i�0(x)� ; � 2 B� (�0)	 � Graph(L(�)and point (�0;x) is not boundary point of the graph. We get a 
ontradi
tion.Corollary 2 The graph of L(�) is measure-
ontinuous.37



For a given �0 the indi
ator fun
tions IL(�) 
onverge to IL(�0) as � ! �0pointwise everywhere ex
ept possible boundary points (i.e. almost every-where). Indeed, for any y 2 L(�0) n �(L(�0)) the previous lemma impliesthat y 2 L(�) if � is 
lose to �0. The di�eren
e IL(�0)(y)� IL(�)(y) is, there-fore, 0. By the Dominated Convergen
e Theorem, jIL(�) � IL(�0)j ! 0 inmeasure and this is equivalent to measure-
ontinuity.Lemma 17 If f i�0 ���1� 63 ��1 and f i�0 ���1� 63 ��1for any i then the graph of L(�) is lower semi
ontinuous at the point �0.Proof. This lemma is an extension of Lemma 3 for the spe
ial 
ase ofperiodi
 PLMH and varying threshold �. Indeed, the only violated 
onditionof Lemma 3 is��1 62 f i ���1� ; ��1 62 f i ���1� 1 � i � n+ 1; (5.3)be
ause the dynami
s of the map is periodi
 and the period of ��1 or ��1might be less then n, where n is determined by the 
ondition fn(Xh) = L.However, we made assumption (5.3) in order to ensure that the sets Bi(see proof of Lemma 3) are preserved under small 
hanges of the parameter�. Now the nature of the problem is su
h, that traje
tories of ��1 and ��1may 
hange only if, for example, f i (��1) = ��1 for some i. But this 
aseis ex
luded by the 
ondition of the lemma. Thus we 
an apply the proof ofLemma 3 to our 
ase. Q.E.D.
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Chapter 6Kneading invariant of mapswith hysteresis
6.1 De�nition of kneading invariantsThroughout this 
hapter we will use the se
ond 
on
ept of a 
ontinuous mapwith hysteresis and regard Xh and f as an extended spa
e and map. Themap f is assumed to be topologi
ally expansive.For a point x 2 Xh we de�ne the kneading sequen
e as a binary sequen
ek(x) = s0s1s2 � � � ;where si = St(f i(x)).We order kneading sequen
es lexi
ographi
ally, i.e. s0s1 � � � < r0r1 � � � ifand only if there is j � 0 su
h that si = ri for i < j and sj < rj. Thisordering 
an be obtained also by writing a sequen
e as a number in base 2,[k(x)℄ = 1Xi=0 si2�(i+1):It is easy to see, that in this de�nition of the ordering kneading sequen
es aremonotone in x: k(x) � k(y) whenever x < y. The de�nition of topologi
allyexpansive map impliesLemma 18 k(x) = k(y) if and only if x = y.39



Corollary 3 If the kneading sequen
e of a point x is periodi
 then x is alsoperiodi
.Now we de�ne the shift operator �:� (s0s1 � � �) = s1s2 � � � :Its a
tion 
learly 
orresponds to the a
tion of f on the original point x,�(k(x)) = k(f(x)):The most important kneading sequen
es for our analysis are�a = k (a+) ; �b = k (b�) ;�� = k �(�; 0)(�)� ; �� = k �(�; 1)(+)� :Together they form the kneading invariant of the map f .Next we de�ne three types of 
ondition, for the two-sided points, the �-points and the +-points. A kneading sequen
e �x = k(x) satis�es a middle
ondition (C) if �a < �i(�x) < �b;�i(�x) < �� if �i�1(�x) = 10 � � � ; (C)�i(�x) > �� if �i�1(�x) = 01 � � � ;for i > 1. Lower (C�) and upper (C+) 
onditions are the similar 
onditionsfor the �-points and the +-points�a < �i(�x) � �b;�i(�x) � �� if �i�1(�x) = 10 � � � ; (C�)�i(�x) > �� if �i�1(�x) = 01 � � � ;�a � �i(�x) < �b;�i(�x) < �� if �i�1(�x) = 10 � � � ; (C+)�i(�x) � �� if �i�1(�x) = 01 � � � ;The meaning of these 
onditions is simple: ea
h su

essive image of apoint under the mapping f (and, therefore, kneading sequen
e of the image)40



must lie between a and b | �rst inequality; when the state swit
hes from1 to 0, the point must be somewhere between a and � | se
ond inequality| and when state swit
hes to 1, the point must be between � and b |third inequality. Some inequalities are stri
t be
ause a two-sided point 
anbe mapped only to two-sided, a �-point 
annot be mapped to +-point et
.Lemma 19 Every point x 2 Xh satis�es 
orresponding 
ondition. Con-versely, for any sequen
e �x, satisfying one of the 
onditions (C), (C�) or(C+) there is a point x 2 Xh su
h that k(x) = �x.Proof. The �rst part of the Lemma is already proven. To prove these
ond part we assume that �x = 1s1s2 : : : (without loss of generality) and
onsider the points y1 = supk(y)��xy and y2 = supk(y)��xy:Sin
e k(�; 1) < �x < �b (the �rst inequality is implied by �(k(�; 1)) = �a <�(�x)) points y1 and y2 are well de�ned. It is easy to see that only two 
asesare possible: y1 = y2 = y and y1 = y�, y2 = y+ for some y 2 Xh.Now we refer to the auxiliary statement, formulated in the proof ofLemma 7. It 
an be rephrased as followslimz!z(�)� k(z) = k(z(�)); limz!z(+)+ k(z) = k(z(+));where limits are understood in the topology, indu
ed by the ordering. Thus,k(y1) � �x � k(y2). We want to prove that either k(y1) = �x or k(y2) = �x.Assume the 
ontrary: inequalities are stri
t. Case y1 = y2 = y is thereforeex
luded. The only possibility is k(y�) < �x < k(y+), y is a preimage ofa dis
ontinuity point. Let f i(y) = ��1. The states of fk(y�) and fk(y+)
oin
ide for k � i. We apply �i+1 to the inequality to obtaink(f i+1(y�)) < �i+1(�x) < k(f i+1(y+))and �� = k(�; 0) < �k+1(�x) < k(�; 1):The �rst inequality is impossible if �k+1(�x) = 0 : : : and the se
ond one isimpossible if �k+1(�x) = 1 : : : (it implies �k+2(�x) < �(k(�; 1)) = �a). We get a
ontradi
tion. 41



Corollary 4 Two topologi
ally expansive maps with hysteresis have the samekneading invariant if and only if they are topologi
ally 
onjugate.Proof. De�nition 20 implies that kneading invariants of 
onjugate mapsare equal.To prove the 
onverse we put: h(x) = x0 if and only if k(x) = k (x0), wherex 2 Xh and x0 2 X 0h. It is easy to see that h is 
ontinuous and 
ontinuallyinvertible. Thus h is the homeomorphism needed in De�nition 20. The
orollary is proven.Now we 
an state our main theorem (
ompare to [1℄):Theorem 12 Let F be a topologi
ally expansive map with hysteresis withkneading invariant (�a;�b; ��; ��). Then �a and �� satisfy (C+), �b and �� satisfy(C�).Conversely, for any kneading sequen
es ��a;�b; ��; ��� satisfying (C+) and(C�) respe
tively there exists a topologi
ally expansive map f with hysteresiswith the given kneading invariant and f is unique up to 
onjuga
y.6.2 Proof of Theorem 12An observation made in Lemma 8 simpli�es the proof in the 
ase when fdoes not have �xed points (topologi
ally expansive map with hysteresis 
anhave only two �xed points: f(a) = a and f(b) = b). In the absen
e of �xedpoints the theorem is just a 
orollary of the similar result for NDIE maps(N dis
ontinuities, in
reasing expansive maps) [1℄.However, when there are �xed points this approa
h is not easily appli
a-ble. Thus we prefer to give our own variant of the proof, suitable for any
ase. It is based on the ideas of the proof given in [1℄, but sin
e 
onditions(C�) and (C+) are more stri
t than the 
orresponding 
onditions in [1℄ theirimplementation is slightly more diÆ
ult.The �rst part of the Theorem and uniqueness in the se
ond part areproven in the previous Lemma and its Corollary. To prove the rest of these
ond part we use the 
orresponden
e between kneading sequen
es and num-bers written in base 2 to 
onstru
t a mapping on a 
ir
le whi
h is 
onjugateto the original mapping f . 42



The mapping on a 
ir
le is indu
ed by the shift operator:�(x) = 2x mod 1:We need to 
hoose those points of the 
ir
le whi
h 
orrespond to possiblekneading sequen
es. Therefore, these points must satisfy one of the 
ondi-tions (C), (C�) or (C+), where � is now a fun
tion on the 
ir
le and theinequalities are 
onsidered in the sense of real numbers. To 
hoose thesepoints we iterate the following algorithm:The initial values are W 11 = [�a; ��℄ and W 12 = [��;�b℄.1. Gj+11 = [�a; 1=2℄ \ S1i=1W j2 =2iGj+12 = [1=2;�b℄ \ S1i=1 �W j1 + 2i � 1� =2i2. W j+11 = [�a; ��℄ \Gj+11W j+12 = [��;�b℄ \Gj+12Here kneading sequen
es are 
onsidered as numbers written in base 2. Thisalgorithm is 
onstru
ted to 
hoose appropriate images of the intervals W 11and W 12 under the 2-valued fun
tion ��1.We 
onsider the limit sets of the algorithm:G1 = limj!1Gj1; G2 = limj!1Gj2W1 = limj!1W j1 ; W2 = limj!1W j2 ;whi
h satisfy the following properties:1. G1 = [�a; 1=2℄ \ S1i=1W2=2iG2 = [1=2;�b℄ \ S1i=1 (W1 + 2i � 1) =2i2. W1 = [�a; ��℄ \G1W2 = [��;�b℄ \G23. W1 � G1W2 � G2 43



Proposition 1 Any point 
 2 G1 [ G2 satis�es one of the 
onditions (C),(C�) or (C+).Indeed, let point 
 belong to set G1. Then, by the property 1, 
 2 2�k1W2for some k1. Applying � su

essively we get�j(
) 2 2�k1+jW2 � [�a; 1=2℄ for j < k1�k1(
) 2 W2 � [ ��;�b℄ � [1=2;�b℄:Thus the 
onditions are 
learly met for the �rst k1 iterations. Furthermore,�k1(
) 2 W2 � G2, therefore �k1(
) 2 2�k2W1+�2k2 � 1� 2�k2 and we pro
eedby indu
tion.Proposition 2 Any point 
 2 [0; 1℄nG1[G2 does not satisfy the 
onditions.Let the point 
 belong to [0; 1=2℄, 
 2 Gj�11 and 
 62 Gj1. Then 
 2 2�kW j�22for some k and one has�k(
) 2 W j�22 � Gj�22�k(
) 62 W j�12 therefore �k(
) 62 Gj�12 :We pro
eed by indu
tion until the pro
ess ends in the situation�n(
) 2 W 0� and �n(
) 62 W 1�:The point �n(
) is thrown out after the �rst iteration and 
learly does notsatisfy the 
onditions. Therefore, 
 does not satisfy the 
onditions too. Theproposition is proven.Note, that the points �a, �b, �� and �� are in the set G1 [G2, be
ause theysatisfy the 
onditions. Similarly, if 
 is a preimage of one of these points(under �) and 
 2 G11 [G12 then 
 2 G1 [G2 also.Proposition 3 Set [0; 1℄nG1[G2 
onsists of disjoint open intervals without
ommon endpoints.Assume that 
 is a 
ommon endpoint of two open intervals, therefore
 2 G1 [G2 and 
 is isolated.We say that a point x is the +-boundary of a set S if x 2 S and (x ��; x) \ [0; 1℄ n S 6= ;. Analogi
ally, x is the �-boundary if x 2 S and (x; x +44



�) \ [0; 1℄ n S 6= ;. An example is the point �a whi
h is +-boundary of the setG1.It is easy to see that all �-boundaries of the sets Gk1 [Gk2 are preimagesof �� or b under �. The same is true about +-boundaries and the points ��and a. Now we 
on
lude that 
 
annot be isolated after a �nite number ofsteps: otherwise it is preimage of (�� or b) and (�� or a) and, therefore, 
 is a+-point and a �-point simultaneously whi
h is not a

eptable.Thus 
 2 Jk � Gk1 [Gk2 for any k, where Jk is an isolated 
losed intervaland 1\k=0Jk = 
: (*)However the remark we made after Proposition 2 implies that boundariesof Jk are 
ontained in Gk1 [ Gk2. On the other hand, Eq. (*) implies that�(Jk) ! 
, where �(Jk) is the boundary of Jk. Therefore, 
 is not isolated.The proposition is proven.Now to 
onstru
t a map with hysteresis on an interval we use monotonebije
tions to map h1 : G1 \ [�a; ��℄! [a; �℄� f0gh2 : G2 \ [ ��;�b℄! [�; b℄� f1gh3 : G1 \ [��; 1=2℄! [�; �℄� f0gh4 : G2 \ [1=2; ��℄! [�; �℄� f1gRemark 1 The sets G1 and G2 
ontain entire intervals only in the degen-erate 
ase �a = 0, �b = 1 and �� = �� = 1=2. Otherwise, images of this intervalunder � will eventually 
over the whole 
ir
le.To show that bije
tions are possible we propose a simple way to 
onstru
t,for example, h1. We represent set [�a; ��℄ n G1 as a union of a 
ountablenumber of open intervals S1i=1 Ui. Then we identify the �rst interval U1with some point in [a; �℄, say, (a + �)=2, interval U2 with the point (a +3�)=4 or (3a + �)=4, depending on the position of U2 with respe
t to B1et
. Thus we establish one-to-one 
orresponden
es between intervals Ui andbinary rationals of interval [a; �℄. Intervals Ui are dense in [�a; ��℄ \ G1 (inthe sense of Remark 1) and we extend the 
orresponden
e by 
ontinuity.45



Note, that the boundaries of open intervals are mapped into one point x inthe interval [a; �℄, but this 
orresponds to splitting x into x� and x+. Thusbije
tion is established between G1 \ [�a; ��℄ and the extended interval [a; �℄.Finally we de�ne the bran
h f0 of a map with hysteresis by putting�0(x) = �� �h�11 (x)� if x 2 [a; �℄� f0g� �h�13 (x)� if x 2 [�; �℄� f0gf0(x) = 8<:h1 (�0(x)) if �0(x) 2 [�a; ��℄h3 (�0(x)) if �0(x) 2 [��; 1=2℄h2 (�0(x)) if �0(x) 2 [ ��; b℄and the fun
tion f1 is de�ned analogously. Thus we 
onstru
ted a map withhysteresis and it is an easy 
orollary of the pro
edure of the 
onstru
tionthat kneading invariant of the map is the given (�a;�b; ��; ��). This observation�nishes the proof.
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Chapter 7SummaryIn the work we studied a spe
ial 
ase of multistate maps, interval maps ofwith hysteresis. We developed a theory for general maps with hysteresis aswell as for a simple example, a pie
ewise linear map with hysteresis. Themain obje
t of our study was the global attra
tor L, or, in other words, thelimit image of the spa
e X under the map f .The global attra
tor was shown to play a signi�
ant role in the dynami
sof the map f . In the pie
ewise linear 
ase (with some additional require-ments) the set L turned to be the omega-limit set of any point and, there-fore, nonwandering set of the map. We were able to prove 
ontinuity of theset L with respe
t to a parameter �. In addition to upper semi
ontinuity inthe general 
ase, the set L(�), 
onsidered as a set-valued fun
tion of the pa-rameter, is lower semi
ontinuous in a number of spe
ial 
ases. A 
onje
tureformulated in Se
tion 5.1 is a topi
 for future resear
h. Other possible topi
sare: 
lassi�
ation of types of L based on �rst return maps, formulation ofsuÆ
ient 
ondition of dis
ontinuity and a study of the appli
ability of ourte
hnique to the 
ase of general maps with hysteresis.A part of the work was devoted to the study of 
ombinatorial propertiesof maps with hysteresis. A natural extension of our results obtained is tode�ne the renormalisation operator [2℄ for su
h maps. This will possiblysimplify the 
lassi�
ation of global attra
tor types.
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Appendix AC Programme
/* Three 
ommline args: name of the output file, numberof preliminary iterations, number of valid iterations.Start point is varying. Slope is also varying. */#in
lude<stdio.h>#in
lude<math.h>int i;long int st, it;float x0, xs, a=1.35358, b, trsh1=1.0, trsh2=1.9;FILE *outf;
har stat='0';
har Iter(void);main(int arg
, 
har *argv[℄){ if (arg
 < 3) return 0;if ( (outf=fopen(argv[1℄, "w")) == NULL)puts("Hrenovo s failom! Error opening file!");st=atoi(argv[2℄);it=atoi(argv[3℄); 48



for(b=0.46; b<0.7; b+=0.002){/* slope is varying here */for(xs=0.6; xs<1.2; xs+=0.05) {/* st is start point for iteration */stat='0'; x0 = xs;for(i=1; i<st; i++) stat=Iter();/* preliminary iterations */for(i=1; i<it; i++){ stat=Iter();/* valid iterations */if (stat == '1')fprintf(outf,"%f %f\n",b, x0);/* Print observables when state is 0 */}}}f
lose(outf);}/* iteration fun
tion */
har Iter(void){ if ( (stat=='0') ) x0*=a; else x0*=b;if (x0 > trsh2) return '1';if (x0 < trsh1) return '0';/* return new state */return stat;} 49



Appendix BFigures
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a bα βFigure B.1: An example of a map with hysteresis and a typi
al traje
tory
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a bα β
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Figure B.2: An example of a pie
ewise linear map with hysteresis and atypi
al traje
tory
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Figure B.3: Graph of the global attra
tor of a pie
ewise linear map withhysteresis. The varying parameter is �.53



bα βa

bβαa α b’’’ βFigure B.4: A map with hysteresis and the 
orresponding map with \mir-rors". 54
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potential gap

α -1a bα β

d

c

c’

e

Figure B.6: An example of a family of maps whi
h produ
e dis
ontinuousgraph. If we 
hoose 
 as a parameter, with d �xed, the global attra
tor L(
)is both measure and lower dis
ontinuous.
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α α -1Figure B.7: The simplest example of a pie
ewise linear map with hysteresis.The �rst return map to the interval [�; b℄ is a 
ir
le homeomorphism. Theglobal attra
tor 
onsists of one interval on the bran
h 0 and two intervals onthe bran
h 1.
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Figure B.8: Graph of the global attra
tor when 
0 = (8=7)3, 
1 = (7=8)4and the varying parameter is �. On the se
ond plot lines y = (8=7)k andy = (8=7)kx are added. 58
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