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Abstract

We consider a special case of multistate maps, maps with hysteresis. The map
under consideration is a collection of two continuous, monotone real-valued
functions with overlapping domains of definition. At each step we determine
the function to apply using the following rule: if the current iterate of the
initial point is in the domain of definition of the function we applied last then
we apply this function again, otherwise the second function is applied.

We study two different aspects of such maps: topological and combinato-
rial. The topological object of study is the global attractor (the limit image
of the whole space under the map). We review general properties of the
global attractor of a continuous map. However, maps with hysteresis are not
continuous. To fix this, we consider two approaches to the construction of a
continuous map with hysteresis. The first approach extends the map itself,
converting it to an upper semicontinuous set-valued map, while the second
one redefines the space, on which the map acts.

We consider a parameterized family of maps with hysteresis. After es-
tablishing some results on continuity of the global attractor as a function
of the parameter, a more detailed analysis of a special case of general maps
with hysteresis, a piecewise linear map with hysteresis, is presented. In two
different cases, when there are periodic points and when there are none,
we describe the global attractor, its continuity properties and points where
discontinuities occur.

Combinatorial aspects of the maps are explored by means of kneading
sequences and kneading invariants. We prove one-to-one correspondence be-
tween possible kneading invariants and equivalence classes of maps with hys-
teresis, where by equivalence we understand topological conjugacy.
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Chapter 1

Introduction

Given a metric space Y and an index set .S, which may be discrete or contin-
uous, define for each s € S a subset of Y, U,;. By a multistate map we mean
a discrete time dynamical system defined on

X=U x{s} cyxs. (1.1)

sES

We call the elements of Y observables, while elements of S are states. Given
an observable x, and state s,, we generate a new observable x,,, by the
transformation

Tp1 — F(xn; Sn)-
In turn, having determined the new observable x,,.; we generate a new state
Sn+1 by

Sn4+1 = G(ajn+17 Sn)-

In this work we study a special case of multistate maps, interval maps

with hysteresis. Here the index set S = {0,1} and the metric space ¥ =

R'. Functions F(-,0) = fy and F(-,1) = f; are continuous nondecreasing
functions defined on intervals [a, 5] and [« b] respectively, where 5 > «,

folw) Zzw,  file) <z

and

foB)=b and fi(a) =a.



Thus, the space of Eq. (1.1) reduces to

X = (la, 81 {0}) U (la 8] x {1}) (12)

Throughout the work, a point x € X, will mean the whole pair (z, s). Some-
times we use functions Obs(x) and St(x) to refer to observable x and state
s, respectively.

The topology on the space X}, is induced by the standard R topology, i.e.
U C X} is open if and only if

U = ((Wo nfa, 8))  {0}) U (U1 e B]) x {1}),

where Uy and U; are open subsets of real line. In the similar way we define
the measure on X}, induced by Lebesgue measure on R,

p(U) = p(Uo N a, B]) + 1 (Ur N [, 0])

the partial ordering of X, (we compare only points of the same state) and the
distance p between two points of the same state. We extend the definition
of the metric p on X}, to points of any state by setting p(x,y) = P, St(x) #
St(y), where constant P is sufficiently large to ensure triangle inequality.
With this metric X} becomes a compact metric space.

The mapping itself is defined on X, as follows: f(x;,$;) = (Tiy1, Sizt1),

where .
0if x;41 € [a,q)

Tit1 = fs,- (ZEZ) and  sj1 = { lifwqy € (ﬁ; b]

s; otherwise

with an initial point (o, s¢) € X},

As one can see, the periods of action of the two functions alternate and
each function, fy and f;, is applied as long as possible. The state switches
when the observable leaves the domain of definition of the corresponding
function. An example of a map with hysteresis and a typical trajectory are
shown on Fig. B.1.

When § = a the map f reduces to a single-valued function with one
discontinuity, a Lorenz-type map. This type of map is thoroughly studied in
the literature [1, 2].



In our work we develop a theory for general maps with hysteresis and
examine a special case, piecewise linear map with hysteresis (PLMH), in
detail. The PLMH is given by

fo(z) = vz, filz) =,

where 79 > 1 > v, > a and a = ,a, b = y. An example of the PLMH
is shown on Fig. B.2.

The dynamics of a piecewise linear map strongly depends on whether or
not there are integers k and [ such that 7¥7! = 1. In the former case all
points are eventually periodic and in the latter there are no periodic points
at all (the proof will be given in Lemma 11).

The global attractor (a definition will be given below) of the PLMH, ob-
tained with the aid of computer simulation, has a very interesting structure.
A typical example is given in Fig. B.3. The C programme which produced
this picture is included in Appendix A, but we describe its structure here.
One of the parameters of PLMH is being varied, e.g. Fig. B.3 is produced by
varying the second threshold value, 3, and keeping vy, 71 and « fixed. For
every value of the parameter the programme takes a large number of points
from X, (points are distributed uniformly in a subinterval of X},), performs
a number of preliminary iterates to stabilize the process and then gives the
next iterates of these points as an output. Thus for each value of the param-
eter, the output is a set of iterates of some points, which roughly corresponds
to the w-limit set of these points (all definitions are given in later Chapters).

The set shown in Fig. B.3 is an approximation to the global attractor|3],
defined by

L= F'(Xn). (1.3)

Although the set defined by Eq. (1.3) frequently contains no information
about classical (continuous) discrete dynamical systems it plays a very im-
portant role in the case of maps with hysteresis. After presenting various
definitions and recounting some useful facts in Chapter 2 we thoroughly
study the set L in Chapter 3. The set L is an attractor according to various
definitions and, when considering a parametric family of maps, its graph vs
the parameter is upper semicontinuous.

However these useful properties are established assuming the continuity
of the map f. The lack of continuity in the general map with hysteresis may



be removed by extending the definition of the map. Two possible extensions
are presented in Chapter 4. The first variant extends the map itself while the
second one redefines the space X,. Each definition has its own advantages, for
example, the first is convenient in considerations of the bifurcation diagram
(the graph of the set L vs some parameter) and the second one is used in the
theory of kneading invariants.

In Chapter 5, while studying PLMH, we prove theorems about the two
important threshold points («, 1) and (3, 0) and their images and preimages.
If the map f has no periodic points, the preimages of a and (§ turn to
be everywhere dense. This property is very useful in kneading theory and
corresponds to topological expansiveness in the theory of Lorenz maps. Then
we prove that the set L is the union of omega-limit sets of (a/71,1) and
(3/70,0) if these points are not mapped on to one-another. Now one of the
main results of the chapter, that L is a non-wandering set of the map f, is an
easy corollary of the above. Furthermore, we are able to prove that in this
case the set L is the omega-limit set of any point x € Xj. These results allow
us to reveal additional properties of the set L, as function of a parameter.
The graph of L turns out to be lower semicontinuous at certain points, in
addition to the upper semicontinuity proved in Chapter 4. We also study the
graph of L when

mwmn =1 (1.4)

for some integers k£ and [. The boundary of the graph is shown to be con-
tained in a simple set and this allows us to prove some additional results on
continuity.

In Chapter 6 we return to the general case of a map with a hysteresis.
Under assumption that the map is topologically expansive we develop a the-
ory of kneading sequences. Then we define the kneading invariant to be the
set, of kneading sequences of the points a, b, a and ( and state the main
theorem of that chapter: there is a set of inequalities such that a set of four
sequences is the kneading invariant of a map with hysteresis if and only if
the inequalities are satisfied.

Finally, we give an overview of the work and projected research in the
Summary.



Chapter 2

Basic definitions and notation

2.1 Basic definitions

Notation and definitions, used throughout the work, are included here for
ready reference. Less known and more specific definitions will appear in the
course of the report.

By X we denote an arbitrary compact metric space and X} is the space
defined by Eq. (1.2). For aset A C X, B.(A) is the open set of points within
distance € of A. The boundary of a set A is the set

O(A) = {x: Ve B(x) N A#( and Be(z) \ A # 0} .
By Int(A) and A we denote interior and closure of set A respectively,
Int(A) = A\ 0(A), A=AUd(A).

In order to compensate for the discontinuity of a map with hysteresis we
will be considering its set-valued extension (see Chapter 4). The following five
definitions, although formulated for single-valued maps, remain unchanged
in the set-valued case.

Let f be a (single or set-valued) map. The following standard notation
will be used in our study: the image of a set A under f is

F(A) = {f(z):z € A} = (] f(a).

T€eA



[terations of the map f are defined by induction
A= U ).
zefk(A)

Given a set A we define the set of its images by
lmg(4) = f1(4).
i=0
Definition 1 A set A is called forward invariant if f(A) C A. It is called
invariant if f(A) = A.

In other words, a set A is invariant if and only if it is forward invariant
and weakly backward invariant (for any x € A there is at least one y € A
such that = € f(y), see also [4]).

Definition 2 A point x is a periodic point for f if x € f"(x) for some
n > 0. A point is called eventually periodic if f*(x) contains a periodic point
for some k.

Definition 3 The w-limit set of a set U is the set
w(U) = {aj e X:3{ni} >y, Iuitis, C U, ;€ [ (y;) (ajl — x) } :

Definition 4 A point v € X is called non-wandering if for any open U C X,
x € U, there is an integer k such that f*(U)NU # 0. The set Q of all non-
wandering points s called the non-wandering set.

Definition 5 A point v~ is said to be a k-preimage of x under a map f if
re fk (x*k).

To introduce notions of continuity for set-valued maps we need a metric
on the space of closed subsets of X.

Definition 6 The distance from a closed set A to a closed set B is
p*(A7 B) = SuPp(a; B)a
acA

where p(a, B) = infycp p(a,b). The Hausdorff metric p is then defined by
p(A, B) = max {p.(A, B), p.(B,A)}.



Now let X and Y be compact metric spaces.

Definition 7 A set-valued function f : X — C(Y), where C(Y) = {F C
Y : F is closed}, is upper semicontinuous at zq if

a:h—gclo p*(f(x)a f (330)) = 0.
Definition 8 A set-valued function f: X — C(Y') is lower semicontinuous
at xqy if

wlggo p*(f (‘TO) ) f(x)) =0.

There are also alternative (equivalent) definitions we will make use of.
For upper semicontinuity it is formulated in Theorem 1 below. For lower
semicontinuity it is the following: a set-valued function is lower semicontinu-
ous if for any point y € f(xy) and any sequence {x;} — x, there is sequence

{vi}, yi € f (x;) such that y; — yp.

Definition 9 We say that function F: X — C(Y') is continuous at xo if it
18 upper and lower semicontinuous at xg.

Definition 10 Let p be a measyre on the space Y. A set-valued function
f: X — C(Y) is measure-continuous at xy if

lim 4 (f (20) A f()) =0,

T—rT0

where AN B =A\BUB)\ A.

Definition 11 The graph of a set valued function f : X — C(Y) is a subset
of X xY:
Graph(f) = {(z,y) € X xY:y € f(x)}

In our study of the set L as a function of a parameter A\ we will need a
notion of convergence of set-valued functions.

Definition 12 Let f, be a sequence of set-valued maps. We say that it is
weakly upper convergent to a map f if for any subsequence {n'}

YV, Yy € fur (Tn) ((xnr = T)A (Y = y) =y € f(x))



Loosely speaking, if there is a sequence {(z,,y,/)} in the graphs of the
functions f,, which converges to a point (x,y) then y € f(x). Note, that this
notion differs from upper graphical convergence [5]: in our case the graph
of f may be bigger then the upper limit of graphs of f,. We introduce
this difference in order to ensure that this property is inherited by iterated
functions f¥, see Lemma 1.

Definition 13 Let {f\},c, be a family of set-valued maps. We say, that it
15 weakly upper continuous at a point Ny if for any sequence A\, — Xy the
sequence of functions f», is weakly upper convergent to the function f,.

We will also make use of the lower variant of convergence of maps. Again,
our definition of weak lower convergence differs from lower graphical conver-
gence [5].

Definition 14 Let f, be a sequence of set-valued maps. We say that it is
weakly lower convergent to a function f if for any point yo € f (zo) and any
sequence {x,} —

E|yn € fn (xn) (yn — yO) '

A family {fr},en of set-valued maps is said to be weakly lower continuous
at a point Ny if for any sequence A, — X, the sequence of functions fy, is
weakly lower convergent to the function fy,.

Definition 15 A family { fx},., of set-valued maps is weakly continuous if
it 15 weakly upper and lower continuous.
2.2 Some useful facts

Theorem 1 A set-valued map is upper semicontinuous if and only if its
graph s closed.

This theorem is well-known and we refer, for example, to [5] for the proof.
Lemma 1 Let a family {fr},cn of set-valued maps be weakly upper contin-

wous at a point Ng. Then for every k the family {f/’\C 15 weakly upper
continuous at Ag.

Fea



Proof. We prove this lemma by induction. We assume that statement
is true for k — 1, i.e. {f)’f_l}/\eA is weakly upper continuous at A\g. We want

to prove that if #,, — x and there are y, € f{ () such that y,, — y then

Each y, has a preimage z,,

Zn € f)lizl(xn); Yn € f)\n(zn)

We choose a convergent subsequence from {z,}:
dz,y and 3z, € f)’f_ll(xn/) (zn/ — Z)

The subsequence {xz, } converges to x and the assumption that {f)’f_l})\eA
is continuous implies that z € f¥. (). On the other hand, we have

Zpt = 2, Yn € f)\n/ (Zn’) and Yo' — Y.

Since fy are continuous at A\ this means that y € f,,(2). Together with the
previous observation we get that y € fF (z). Q.E.D.

Corollary 1 If a set-valued map [ is upper semicontinuous then its k-th
iterate f* is also upper semicontinuous for any k.

Indeed, if we take the family {fi},., with fy = f for every A, the defini-
tion of weak upper continuity of the family reduces to the definition of upper
semicontinuity of the map f and we can apply Lemma 1 to obtain the result.

A lemma, similar to Lemma 1, is true about weak lower continuity

Lemma 2 Let a family {fr},c, of set-valued maps be weakly lower contin-
uous at a point N\g. Then for every k the family {f/{“})\eA 15 weakly lower
continuous at \g.

Proof. Again we use induction for our proof. Let the statement be true
for k—1. We want to prove that for any point y € f§ () and any sequences
{An} — Ao and {z,} — x there is a sequence {y,} = yo, Yn € f¥ (zn).

Let the point z5 be such that

2p € ffo_l (xg) and yo € fr, (20) -



By the definition of weak lower continuity and assumption of induction there
is a sequence {z,} — 2o, 2, € fi ' (2,). We apply the definition of weak
lower continuity once more to get a sequence {y,}, y, € fa, (2,) such that
Yn — Yo. It is clear that the sequence {y,} is the one we need. This obser-
vation finishes the proof.

Lemma 3 If a set-valued map f: X — C(Y) is measure-continuous at a
point xy then there is a set N C f(xo), u(N) = 0, such that the set-valued

map f(z) = f(z) \ N is lower semicontinuous at xg.
Proof. We put

N={ye€ f(z): Jopen U, 3y, u(U,N f(x9)) =0}.

The set N has measure zero. Indeed, N admits the representation

N = UUymf(l"O)a

yeN

where U, N f(zp) has measure zero and open sets U, are chosen from a
countable base for the topology. The set of different possible U, is at most
countable, therefore the union above consists of at most a countable number
of distinct sets and we can use o-additivity of the measure to conclude that
u(N)=0.

We are going to prove that for any point y € f (zo) \ NV and any sequence
{z;} — o there is a sequence {y;} — vy, y; € f{x;}. Assume the contrary,
there is a sequence {z;} — x¢ and an open neighbourhood U of y € f (x¢)\N
such that U N f (x;) = () for any i. Then

U C f (i) \ f (o)

and the measure p (f (o) A f(x)) > p(UN(f (xp) \ N)) > 0 for any i. This
is in contradiction to the measure-continuity of the function f at the point

10



Chapter 3

Global attractor and its
properties

Let f be an upper semicontinuous set-valued map, f: X — C(X), on a
compact metric space X.
We define the global attractor [3] of the space X under the map f by

L= lim f*(X) = Oof (X).
The set L is non-empty, closed and invariant: f(L) = L. Indeed, f(X) C X,
therefore

frHX) = X)) € XD,
The sets f"(X) are closed for every n and the global attractor

L={)/"(x)

is also closed. This representation also implies that L is non-empty. To prove
invariance we need some additional reasoning.

The inclusion f(L) C L is trivial. To prove that L C f(L) we assume the
contrary: there exists a point x € L which does not have a preimage in L.
In other words, f~'(z) (L = 0, where f~'(z) is the set of all 1-preimages
of the point z. f~'(x) is a closed set, because f is upper semicontinuous.
Then the open set V = X \ f~!(z) D L is such that V) f~'(z) = 0. Using

11



the definition of L we infer that f"(X) C V for some n and, therefore,
f"(X) # x, which contradicts the hypothesis = € L.

Definition 16 A set A is called an attractor if there is an open set U,
U D A, such that the w-limit set of U is A.

Lemma 4 The global attractor L is an attractor according to Definition 16
and w(X) = L.

Proof. First we note that w(L) = L. Indeed, for any point = € L we
can find a preimage y, € L of x, then preimage y, € L of y; et cetera which
eventually forms the sequence used in Definition 3.

Then, as w(X) D w(L) = L we have to prove that any z satisfying
x € w(X) is in the set L. The definition of the w-limit set provides sequences
of points {y;}.-, and of iterations {n;};-, such that

Az € [ (y;) (xl — 3:)
Since X is compact the sequence {z;}:-,,

zi € M (i), zi € f*(z),

has a condensation point, #7%, for any k. Without loss of generality we
assume that {z;} itself converges to the point z=*. Finally, we have

zi—=a " a e ff(m), 1 —

We use upper continuity of the function f* (Corollary 1) to infer that x €
f¥(27*). Thus, z € f*(X) for any k and, therefore, z € L.

Now we take U = X in Definition 16 to finish the proof.

Another possible definition of an attractor involves an open set U which
is mapped into itself [6]:

Definition 17 A set A C X s called an attractor if for any € > 0 there is
an open set U of positive Lebesque measure in the e-neighbourhood of A such

that AC U, f(U) CU and x € U implies w(x) € A.

Lemma 5 The global attractor L is an attractor according to Definition 17.

12



Proof. In order to show that L satisfies the definition we have to find a
neighbourhood U of L such that f(U) C U; the second condition is satisfied
since w(x) C w(X) = L for any z € X.

Step 1. For any € > 0 and set U satisfying

L cU C B.(L), flU)cu
there is a 0y > 0 such that
f¥(Bs(U)) € B(L)

for any k and 0 < dg.

Assume the contrary: there is a decreasing sequence 6,, — 0 and sequences
{k,} and {x,} such that

2, € X\ B(L) and =z, € f* (B, (U))

Since X \ B((L) is compact we can assume x,, — =y ¢ B.(L) without loss
of generality. There are two cases to consider:

e {k,} is unbounded. Then, according to Definition 3, xy belongs to
w(X)=L. But L CU C B(L), which is a contradiction.

e {k,} is bounded. Then there is a number k¢ which is repeated in {k,}
infinitely many times. We assume that &, = k¢ for any n without loss
of generality. Then z, € f* (y,), where y, € Bs, (U). As 6, — 0 the
sequence {y,} converges to the set U and, therefore, has a point y € U
among its limit points. Due to the continuity of f*° and the property
f(U) C U we have

Yo =Y, Tn € [P (y,), 2, = 39 = z0 € fF(y) CU C B(L),
which is a contradiction.

Step 2. For any € > 0 there exists an open set U D L such that

U C B.(L), flU)ycu

13



We define sets U,, = f (ﬁn,1>, where U, = B, (U,), with p, depending
on n, being such that

for any k. The initial set is Uy = L. To prove that condition (3.1) is possible
to satisfy we use induction. For n = 0 it is possible due to Step 1. Assume
the statement is true up to the n — 1-th step. We consider the set W,, =

UiZ, f* (U?:[)l ﬁj), which is invariant under f and is contained in B.(L) by

our assumption. Therefore W), satisfies the conditions of Step 1 and we choose
the next p to obtain f* (B, (W,)) C B.(L). Then U, = B, (U,) C B, (W,)
and condition (3.1) is satisfied.

Finally we put U = (J;2, U, which finishes the proof of Step 2: U is

forward invariant, because f (ﬁk) C ﬁkﬂ, is contained in B.(L) and its

measure is

p(U) 2 1 (Uo) = (By(L)) > 0.

The lemma is proven.

Lemma 6 Let f: X — C(X) be an upper semicontinuous map. Then the
nonwandering set 2 is contained in the global attractor L.

Proof. Let U, = B, (X) be a sequence of open neighbourhoods of a
point x € 2 with ¢, — 0. Let {k,} be a positive sequence such that k = k,
is the minimal number to satisfy f* (U,) N U, # (). We consider two cases.

Sequence {k,} is bounded. Then there is a subsequence of indices, {n'}
such that k,, = k. From the continuity of f we imply that the point x is
k-periodic, z € f*(x), and, therefore, x € L.

Sequence {k, } is not bounded. Then for any i there is a subsequence {n'}
such that k. > i, therefore any point from f* (U,/) N U, has i-preimages.
These preimages have an accumulation point, z;, and by continuity =z €

Now let {fx},c5 be a family of set-valued maps weakly upper continuous
at a point Ay (for more general results, see [7]).

Theorem 2 The function L(\) is upper semicontinuous at \g.

14



Proof.

It is sufficient to prove, that the graph of L()) is closed in the space Rx X
(see Theorem 1). Let {(\;, ;) };, be a convergent sequence with z; € L (\;)
and (A, z;) — (Ao, o). We want to prove that zq € L ()g), thus we have to
find a k-preimage of zy under f,, for any k.

Let x;k be a k-preimage of the point z; under f),. Since X is compact,
we assume without loss of generality that sequence converges z; L
Then we have

a:i_k —a* oxe ffi (xz_k) , Xy — Tg.
Since {f1},c, is assumed to be weakly upper continuous we apply Lemma 1
to infer that f§ is also continuous and, therefore, zy € f* (x_k) Thus z 7%
is k-preimage of the point xy. Q.E.D.

15



Chapter 4

Continuous maps with
hysteresis and their properties

4.1 Definition of continuous map with hys-
teresis

A map with hysteresis, as defined in Chapter 1, is not continuous.
Notation. If the points (ffl(a), 1) and (fo’l(ﬁ), 0) belong to the space
X, we call them discontinuity points and denote them by a~! and 87! re-
spectively.
At the point o', the map f is continuous from the right only:

_ S (fi(Obs(x)),1) if x > o'
f(Obs(x), 1) = { (f,(Obs(x)),0) if x < a~!’

where St(x) = 1 and therefore comparison of x with a~! is legitimate. The

situation is the same with the point 37!, but here the map f is continuous
from the left. In order to make use of facts derived in the previous chapter
we have to redefine f in such a way that it becomes continuous.

We present two different ways of redefinition. The first one is to consider
the map f as a set-valued map, i.e. to set

f(a7h) ={(e1), (0, 0)} and f(87") = {(8,1), (8,0)}

With this definition map f becomes an upper semicontinuous set-valued map,
it is also lower semicontinuous everywhere except at points o ! and 5!,
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Another concept is closely related to the previous one, but instead of
having two images of a troublesome point it splits the troublesome point
into two (see also [8]).

We define the space extended 5(2 as consisting of all points which are not
preimages of o ! and 3! plus for each point x such that f*(x) = a ! or
B! we distinguish x_ and x,. The first sort of points we call two-sided and
the second is one-sided (or +- and —-points). Furthermore, we regard the
following points as one-sided:

(O!,l) = Q4 (ﬁao) :ﬂ,
(a,0) = a4 (b,1) =b_.

An ordering (for points with same state) is induced on X by the ordering
of X} with the addition x_ < x.

An extended mapping fis defined by

e if x is two-sided then f(x) = f(x)

e if x is one-sided then

A sign in parentheses is used only when the corresponding point is split.
The next step is to fix a metric on the extended space X;,. The metric of

X gives
p(x_,x;) =0 therefore x_ =x,

which does not suit us. The new definition of the metric is closely related to
the notion of the kneading sequence of a point. If St(x) = St(y) we put

px,y) = p(Obs(x), Obs(y)) + 3 27ISt(f'(x)) = St(f'(¥) |, (41)
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where p(-, ) is the distance in R'. For x and y such, that St(x) # St(y) we
set

p(x,y) =P +1, (4.2)

where
P= sup plu,v)
St(u)=St(v)

is the maximal distance between points of the same state.
Now to check triangle inequality in the case St(x) = St(y) = St(z) we
observe, that

p(St(x). St(2)) + p(St(2) . St(y))
St(F60) - St (=) |
+[St(f*(z)) — St(f*(y)) | for any 4,

(St St(y))
St(£(x)) = St(F ) |

since p is a metric and St(f*(-)) are real numbers. Summing these inequalities
according to Eq. (4.1) we obtain the result for p.

When states of points x, y and z are different we note, that the distance
between any two points with the same state is not greater than P + 1 and
Eq. (4.2) ensures that the triangle inequality holds.

Lemma 7 In the metric p the space 3(71 18 compact and complete.

Proof. Any sequence in X}, corresponds to a sequence in 3(71, which may
be “larger” in the sense that some points of the first sequence correspond
to two points of the second. We employ this correspondence to obtain our
result.

First we prove the auxiliary statement: if a sequence {x,} € X}, converges
to a point x in the space X then there is a subsequence {x/ } € X, which
converges either to x or to one of x; = {x_, x4 }. N

There are two cases to consider, x € X}, corresponds to one point x € X,
and x corresponds to two points, x_ and x. In the latter case we choose a
monotone subsequence {x/ } which converges in X, to x from one side. Let
it be convergent from the left, without loss of generality. Assume, that this
subsequence does not converge to x_ in Xj,. Then there must be a number
i, such that St(f*(x,)) # St(f*(x_)) for any n’ > N. Otherwise, since
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St(fi(xn)) = St(fi(x_)) implies St(f*(xn)) = St(f(x_)) for any n' > N
(for explanation see Chapter 6) we obtain

> 278t (xw) = SE(F1(x)) | = 0,

which is a contradiction.

Thus we have St(f*(x,/)) # St(f*(x_)) and it means that there is a i-
preimage of a discontinuity point, y., such that x,, < y+ < x_. The points
y+ correspond to a point y € X; and x,y <y < x, which contradicts our
assumption that x,, — x.

[t is interesting to note, that the sequence {x,} may contain subsequences
which converge to x_ and subsequences which converge to x,. This is not
the case when x is not a preimage of a discontinuity point. However, the
same argument as above can be used to prove the convergence x,, — x and
thus we omit it. .

Now to prove the compactness of the space X, we take an arbitrary
sequence {x,} € X, and consider the corresponding sequence in the space
X;. The space X}, is compact and we find a subsequence which is convergent
in Xj,. Then, using the auxiliary statement, we choose a subsubsequence
convergent in X,. .

We make use of the same approach to prove that the space X, is complete.
From a Cauchy sequence, which converges in X, we choose a subsequence
convergent in Xj. But if a Cauchy sequence has a convergent subsequence
it converges itself and X}, is complete. Q.E.D.

Each extension of couple (Xj, f) has its advantages and we make use of
both of them. First (set-valued) approach is used in the rest of the current
chapter and in Chapter 5 and the second approach is very convenient in the
development of kneading theory, Chapter 6.

4.2 Maps with hysteresis and discontinuous
maps

There are many different ways to establish correspondences between the dy-
namics of a map with hysteresis and the dynamics of a classical discontinuous
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interval map. We present two constructions of this type. However, we found
it harder to study these classical maps than the original one.

4.2.1 Map with “mirrors”

A point x with St(x) = 0 is switched to state 1 by the map f if and only if
X € (ﬂ_l, (8, O)] Similarly, if St(x) = 1 and z € [(a, 1), a‘l), the state of
the next iterate is St(f(z)) = 0.

The idea of the map with mirrors is to put two functions f, and f; suf-

ficiently far aside such that their domains of definitions do not intersect and
to place two additional linear functions of the form x+ ¢, “mirrors”, in order

to transfer points from fy to f; and back. Thus, the interval (ﬁfl, (8, 0)]

is mapped onto the first “mirror” and then to the corresponding interval
in the domain of the function f;. This construction adds one step to the
trajectory each time it switches from one state to the other, but trajectories
of the original problem are in one-to-one correspondence with trajectories of
the modernized map.

An example of a map with hysteresis and of a corresponding map with
mirrors is presented on Fig. B.4.

4.2.2 First return map

Assume that a map with hysteresis has no fixed points. Then the dynamics is
such that if we take a sufficiently large interval in the domain of definition of
a function f;, i = 1,2, trajectories of points from the interval will eventually

return to it. Examples of such intervals are (ﬁ_l, (8, 0)] and [(ﬁ, 1), (b, 1)]

The first choice has an advantage that no points are in the interval after the
first iteration.
We define the map g: Jg — Js, Jg = (ﬁfl, (8, 0)] by putting

g(x) = f*9(x),

where k(x) = min;so { f*(x) € J3}.

An example of a first return map is given on Fig. B.5. As seen on the pic-
ture it has a regular structure with some discontinuity points. The structure
is very similar to one of a NDI map [1]:
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Definition 18 NDI (N discontinuities, increasing) maps of the interval are
those h:[a,b] — |a,b] satisfying:
There exist a < ¢; < ¢ < --- < cy < b such that

1. h is continuous and strictly increasing on (a,c1), (c1,¢2), ..., (cn,b).

2. limy .- h(x) = b and limy_,.,+ h(x) =a foralli=1,...,N.

Actually, the first return map of a map with hysteresis is a composition
of two NDI maps:

Lemma 8 An interval map g: J — J, J = (Obs(87'), 8], is the first return
map of a map with hysteresis without fized points if and only if there are N DI
maps hy, ho: J — J that g(x) = hs (h1(x)).

We consider first visit maps (defined in analogy to first return map) hy
from interval J to J' = (Obs(87'), 3] and hot J' — J. Tt is easy to see
that the maps are (after applying an homeomorphism from J’ to J) NDI
maps and, conversely, given two NDI maps there is a choice of a map with
hysteresis, such that these maps are first visit maps.

4.3 Topologically expansive maps and conju-
gate maps

Here we introduce definitions specific to maps with hysteresis.

Definition 19 A map with hysteresis f is said to be topologically expansive
iof for any points x and 'y, which are not preimages of the discontinuity points,
there is an iteration n such that

St(f*(x)) # St(f/"(y)) -

The following lemma gives the relation of this definition to the alternative
one [1].

Lemma 9 The following statements are equivalent:

1. Preimages of the points o' and 8% are everywhere dense in Xj,.
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2. f 1is topologically expansive.

3. There exists € > 0 such that for any points x and y, which are not
preimages of the discontinuity points

p (%), ['(y) > e
for some 1.

Proof. 1. = 2. Let St(x) = St(y). Let k be the minimal number such
that there is a k-preimage of a discontinuity point in the interval (x,y). Then
St(fi(x)) = St(fi(y)), i = 1,...k and St(f*'(x)) # St(f*(y)).

2. = 3. By the definition of the metric on Xj, St(f'(x)) # St(f*(y))
implies that p {f*(x), f'(y)} > P, where P is a constant.

3. = 1. Here we use an argument similar to the one in [1]. Let A; and A,
be the sets of preimages of the discontinuity points o * and 57! respectively.
We are going to prove that closure A = X, where A = A, [J A,.

Assume the contrary, B = X \ A is nonempty. The set B is open by the
definition, therefore it is a countable collection of intervals. Now we take an
arbitrary interval By C B from the collection. The set B is invariant therefore
By is mapped by f to another interval, which we denote by B;: f (By) C B;.
Proceeding by induction we get the sequence {B;}:°,, f (B;) C Bi1.

There are two possibilities to consider: either the sequence is periodic or
the intervals B; are all different. In the first case, f maps some interval into
itself, which is incompatible with condition 3. In the second case, lengths of

intervals will eventually become less than any € which is also a contradiction.
Q.E.D.

Definition 20 Two maps with hysteresis f and g defined on spaces X; and
X, are said to be topologically conjugate if there is a state-preserving home-
omorphism ¢: X, — X} such that

Obs(¢ (f(x))) = Obs(g(¢(x))) and St(f(x)) = St(g(¢(x))).  (4.3)

4.4 Continuity of the graph of L

Although we were able to prove upper semicontinuity of the graph of the
global attractor L vs a parameter A, a general map with hysteresis does not
have other types of continuity (lower semicontinuity and measure-continuity).
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Example 1 For the map shown on Fig. B.6 the set L is the whole interval
[a, 5] x {0} and three intervals on the branch 1. However, any increase of the
parameter ¢ (with the parameter d fixed) will result in disappearance of the

interval [(fo_l(d), 0), (f5'(e),0)] from the branch 0 after some iterations.

Thus, the choice A = ¢ causes both lower and measure discontinuity in L(\).

However, in some simple cases we can prove continuity of the graph. First
we prove an auxiliary lemma.

Lemma 10 The boundary of the global attractor is (L) C Img({a~", 3=1}).

Proof. For the boundary of the global attractor one has

o0

a(L) c [Jo (ri(xw)

1=0

and, therefore, it is sufficient to prove that the boundary 0 (f*(X})) belongs
to the set

U @ )urt(s™)
k=0
for any 1.
We prove it by induction. The boundary of f°(X}) consists of the points
a, B, (a,0) € f(a) and (b,1) € f(3). Assume that the statement is proven
for fZ (Xh)
The closed set f"'(X}) is a finite collection of closed intervals. Let
x € O(f*"'(X})). Then x has a preimage y. If y € 9 (f*(X})) we are done
by induction. In the other case y is a point of discontinuity of the function
f,y=alory = 31! Indeed, assume the contrary: f is continuous at
y and, therefore, monotone. Then there exists an open neighbourhood U,
y € U C f!(X},) such that f is continuous on U. Therefore, f(U) is an open
set and x € f(U) C f"'(X}). Thus we get x ¢ 9 (f*™'(X})), which is a
contradiction.

Q.E.D.
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Theorem 3 Let {fi},c, be a family of (set-valued) maps with hysteresis
weakly upper continuous at \g. Let at the point \g the set L be equal to
f™(X}p) for some n and

ot g (), e (BTY) 1<i<n+l
FfrlaHYnfFB =0 0<ij<n+l.

Then graph of L is lower semicontinuous and measure-continuous at Ag.

Proof. To prove the theorem we develop a slightly new approach to the
set L. For each iteration ¢ we consider the set

Bi={a 7 f (). f(B7") . T (a7h) S (B7Y) )

of the possible boundaries of the set f*(X}) (points a~! and 8~! are not the
possible boundaries, but we include them also). The set B; depends on A,
which we indicate by writing B;(\) sometimes. Conditions of the theorem
imply that for each 0 < i < n+ 1 the set B;()\g) consists of exactly 4i + 6
points. Note, that f (a™!) and f (871) are sets of two points each.

Now we divide intervals [a, 5] x {0} and [« b] X {1} into subintervals with
boundaries in B;. For example, for i = 0 subintervals are

[(a, 0),5_1], [ﬁ_l, (5,0)] on 0-branch

and
[(a, 1), a_l], [a‘l, (b, 1)] on 1-branch.

Every time we obtain exactly 4: + 4 subintervals. We denote the set of
subintervals by S;. It is easy to see that the interior of any subinterval from
S; may either be a subset of f{(X}) or be disjoint with it (otherwise there
are boundary points in the interior which is in contradiction to the definition
of S;). We say that a subinterval J € S; is full if S; C f*(X}). Otherwise we
say that it is empty. For example, for 7 = 0 there are no empty intervals.

Although we use here the first (set-valued) concept of a continuous map
with hysteresis it is helpful to split points o' and 37!. In other words, we
put, for example

f(l(@,1),07']) = la,a] x {0} and f([a™, (b,1)]) = [o £i(8)] x {1}
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However, this addition is made to simplify the proof and has no effect on the
dynamics of the map (it is implied of the fact that ! and =1 are not in
the set of possible boundaries of f*(X}) for 0 < < n+1).

With this modernization, the properties of the set S; are the following:

e For every J € S; the function f|; is a monotone continuous function.

e Let J; € S; and J, € S;y1 be such that f(J;) NJy # 0. Then J, C
f ().

There is a certain partial ordering of the sets B;()), i < n 4+ 1 and it is
easy to see, that for small € > 0 the ordering for A € (A\g — €, \g + €) is the
same as for \g. The set B,; consists of finite number of points; we can
choose ¢ such that d-neighbourhoods of these points do not intersect. Then
for each point x,, € B4, we find corresponding €, such that x,, belongs to
a d-neighbourhood of x,,, provided, that A € (Ag — €, Ao + €;). The needed
€ is minimum of €, over all x € B, ;.

If the ordering is preserved then set S; is preserved too. There is a natural
one-to-one correspondence between S;(A) and S; (\g). We argue that an
interval from S;(\) is full if and only if the corresponding interval from S; (\o)
is full.

We prove it by induction. For ¢ = 0 the statement is true. Assume it is
true for ¢ — 1. If an interval Jy, € S; ()\) is full then there is a full interval
Ji, € Si-1(Xo) such that f(J5) D Jy. Then the corresponding interval
J§ € Si—1(A) is also full (by induction assumption) and preserved ordering
of B;(\) implies that interval corresponding to Jy,, Jx, is Jyx C fa (J}). The
same argument proves that if an interval Jy is full, Jy, is full also.

Finally we obtain that the equality f{*'(X,) = fy (X,) implies that

"(X,) = f2(Xp) and, therefore, f2(X;) = L()\) with the intervals of
L()\) in one-to-one correspondence to the intervals of L ()g). We already
know, that the Hausdorff distance between B, () and B, (\¢) can be made
arbitrarily small and, therefore,

p(L(XNo),L(N)—=0 as— A\

This observation implies lower semicontinuity and, since the number of in-
tervals in L(A) is constant, measure-continuity. Q.E.D.
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Chapter 5

Piecewise linear maps with
hysteresis

5.1 Basic properties of the the PLMH

The piecewise linear map with hysteresis is a map with

fow) =z and  fi(z) =z
and the threshold points are

a b
a=— and f[=—
T Yo
Lemma 11 A piecewise linear map with hysteresis has periodic points if and
only if Y8+ =1 for some integer k and l. If there are any periodic points

then each point is eventually periodic.

Proof. It easy to see that existence of periodic points implies that 7§~} =
1. To prove the converse we consider all irreducible numbers of the form
zyiyl, where (z,s) is a point from X;. We call a number irreducible if and
only if there are no i’ and j' such that

i <i, g <j and vyl =i
In other words, either ¢ must be less than k or j less than [ (otherwise take

i' =i—k and j' = j —[). This condition and condition 0 < a < zvy}y] < b
clearly imply that there is only a finite number of possibilities for ¢ and j.
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For any n we have Obs(f"(z,s)) = azviy] and, since there is only a
finite number of possibilities, f"(z,s) = f"**(x, s) for some n and k. This
observation finishes the proof.

Note that the period k£ and the transition n are uniformly bounded. An-
other way to formulate this lemma is to say, that a PLMH is periodic if and
only if Inv;/In~y is rational. Observe that in this case « € L if and only if
x is periodic (and not just eventually periodic).

Lemma 12 If a piecewise linear map is obtained from another map by
o Multiplying the numbers a, b, a and 3 by a positive coefficient k.
e Raising the numbers a, b, a, 3, Yo and v, to a positive power p

then these maps are topologically conjugate.

To prove this lemma we use homeomorphism ¢(z, s) = (kz, s) in the first
case and ¢(z,s) = (2P, s) in the second case.

Another useful property of PLMH is existence of the non-increasing mea-
sure.

Definition 21 The measure i s said to be non-increasing under a map f if
for any open set U

u(f(U)) < w(U).

Lemma 13 The measure du = dlnxz is non-increasing under a PLMH.
Moreover, if St(x) = St(y) for any x,y € U then u(f(U)) = p(U)

We remind that for any A C X,
A= (A x{0})U (A x {1})

and A is measurable if Ay and A; are measurable,

p(A) = p(Ag) + p(Ar) :/IAOdlnx—l—/IAldlnx,

where 4, and I4, are indicator functions.
Now we consider a family of piecewise linear maps with hysteresis which
are obtained by varying one of the parameters a, 3, 7 or ;. This family
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is weakly continuous at every point and, therefore, the graph of L()) as a
function of the parameter is upper semicontinuous at every point. We cannot
say the same about lower semicontinuity. However we observe that in the
example of a non-continuous graph (see Chapter 4) a crucial role is played
by a trajectory which connects two discontinuity points.

Conjecture 1 The graph L()) is lower semicontinuous if
ol ¢ Img(ﬁ_l) g7l ¢ Img(a‘l) )

We will prove the conjecture in the irrational case after learning some
properties of the discontinuity points o ! and 571.

There exists a possibility to classify the sets L basing on the number of
discontinuities of the first return maps used in Lemma 8. The possible pairs
of numbers are 0 and 1, 1 and 1, 1 and greater than 1. The simplest case is
0 and 1 or, in other words

ay; ¢ [B,0] forany i or  Bv;" € [a, o] for any i.

Then the first return map to the interval [, 0] x {0} (in the first case) is just
a circle homeomorphism [9] and the set L has the very simple structure,

N

L=JF(8.5,0)

i=0
with some finite N. The example of such a map with the set L and the first
return map is shown on Fig. B.7.
5.2 Principle of equivalent distance
Our subsequent analysis will be based mostly on the following Principle:

Theorem 4 (Principle of equivalent distance). Let an interval (x,y) C
X}, contain no k-preimages of the discontinuity points, where k =1,..., K.
Then the set f¥((x,y)) is a connected open interval for k =1,..., K and

Crr < p(f*x),,f*(y)_) < Cor,
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where r = p(x,y), k=1,..., K,
fF(zo)r = lim f*(z)

z—zyt

and C1, Cy are constants depending on [ only.

Proof. Since there are no preimages of the discontinuity points, f* is
continuous on (x,y). Moreover, f¥ acts on observables as a linear function,
f¥(2) = y&+lz, for some k and [. These observations settle the first part of
the Principle.

The choice of the possible k and [ is restricted since f¥(z) does not leave
the interval [a,b]. In other words, there is a number z € [a,b] such that
Y&~z € [a,b]. This implies that the inequalities

wne<b and b >a
must be satisfied. We summarize the inequalities in

b
<5 < a

Sl IS

and put C; = a/b, Cy = b/a to finish the proof.

5.3 Preimages of the discontinuity points

Theorem 5 Let the slopes vy and vy, be such that function f has no periodic
points. Then the set of preimages of the discontinuity points o' and 31 is
everywhere dense in Xp,.

Proof. We assume the contrary and repeat the third part of the proof of
Lemma 9 to get the sequence {B;}.

Interval B; is new for each i, i.e. B; # B; when 7 # j. Otherwise,
there exist i and j such, that f/ (B;) C B;. B; does not contain preimages
of threshold points, therefore f/ is continuous on B; and has a fixed point.
However f does not have periodic points and we get contradiction.

Now by the Principle of equivalent distance we have

1 (Bj) > i (f7 (Bo)) > Cipu(By)
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for any j, where p is (Lebesgue) measure. Therefore

00 > fu(Xp) ZZ >C1ZN(BO):OO
1=0 1=0

and we get a contradiction. Q.E.D.

5.4 Omega-limit sets of the discontinuity
points

In this Section we study images of discontinuity points a~' and S~

Definition 22 A finite set F' is said to be an e-net of a set A if

Ac|JBdx)

TeF

If A is compact and G is dense in A than one can choose an e-net F', F' C G.
The following lemmas are proven under assumption that Inv;/In~yg is
irrational and the condition

gt ¢ Img(a_l) , ol ¢ Img(ﬁ_l) ) (5.1)
is satisfied.

Lemma 14 Let the set of preimages of the point a~' be everywhere dense.
Then L = w (™).

Proof. The conditions of the lemma imply that for any point x the
set, f¥(x) consists of two points at most. Indeed, map f is single-valued
everywhere, except the points o' and 8~ !. If a point x is a preimage of
a1 then the set f*(x) will consist of two values after some iterations. But
further division is impossible, because f*(x) cannot be equal to o ! again (f
has no periodic points) and cannot be equal to 5~ due to condition (5.1).

The structure of the map f suggests that for any x, two possible values
of f¥(xq) are

lim f*(x) and lim f*(x).

X—X0— X—X0+
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Now every point y € L has a k-preimage y, such that

lim f*(x)=y or lim f*x)=y.
X—=>Yr— X—=Yr+
It is easy to see that for any € > 0 there is N such that n-preimages of
the point o', n = 1,..., N form a €/2-net of the space Xj. Let y; be a
k-preimage of a point y, k > N and y is the limit of f*(x) as x — y; from
the left, without loss of generality. The open interval (y, — €,yx) contains
at least one of the n-preimages of the point a=', n = 1,...,k. Let o™/
be the nearest of these preimages. Then the interval (a7, y;) satisfies the

conditions of Principle of equivalent distance and applying f* we obtain

lim ff(x)=z¢€lmg(a™), lim f(x)=y, and p(z,y) < Cse.

x—a I+ X—Yrp—

Since € was arbitrary and Oy is fixed we can find an image of o ! in any
neighbourhood of y. Therefore, y € w (a™!).

The converse, w (a~!) C L, is always true. Q.E.D.

Lemma 15 Let the sets X, and Xg of limit points of preimages of a™* and
B~ be non-empty. Then L =w (a™!) =w (B71).

Proof. First of all, Theorem 5 implies that
Xp = Xy U Xp.

It is easy to see that there are points p; and p, such that for any € there are
preimages of o~ ! in the intervals (p; — €, p1) and (p2, p2 + €) and preimages
of 37! in the intervals (py,p; + ¢) and (p; — €, p2). Next we find the intervals

(a7, 7)) C (p1 —€,p1 +¢) 1<k
(a™2,87%) C (p1 — €,p1 + €) J2 > ky
(ﬂfjsa kag) C (p2 — €,p2 +¢€) J3 < k3
(57].4, 047]94) C (p2 —€,p2+e) Ja = ky

to satisfy Principle of equivalent distance.
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Applying the function f*~! n = max{j, k}, to each interval we get that
a ! is a limit point of images of 4! with limiting sequences approaching

form both left and right. The same is true about 3=!. Thus we have

Img(a™') Cw (ﬁfl) ,
Img(f~1) Cw(a™).

However, observe, that w(x) C Img(x) for any x and, therefore, w (37!) =
w (a™!). Now we repeat the proof of Lemma 14 to conclude that any y € L
is contained either in w ($71) or in w (a™'), but since they coincide we obtain

L=w (5_1) =w (a_l) )

The lemma is proven.
In the following theorem condition (5.1) is not compulsory.

Theorem 6 Let Invy,/Invyg be irrational. The set Img({a™t, 371}) is every-
where dense in L:

L cTmg({a 1.5 ).

Proof. Proofs of the enclosure y € w (o~ ')U(37!), as given in Lemmas 14
and 15, are still valid for any y € L which is not an image of a discontinuity
point even if condition (5.1) is violated. Therefore,

L=w (a_l) Uw (ﬁ_l) U Img({a_l, ﬁ_l}) C Img({a~1, 5~1}).
Q.ED.

5.5 Main theorems

Now we can summarize the consequences of the previous sections.

Theorem 7 If Invy/In~yg is irrational and condition (5.1) is satisfied then
L = w(x) for any x.

Proof. Union of sets X, and Xg, defined in the Lemma 15, is the whole
space Xp,, therefore, for any x (for x equal a, b, o or 3 consider f%(x) instead)
we can find intervals

(yi,x) and (x,¥2); p(y1,x) <€ p(x,y2) <e
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where y; and y, are some preimages of the discontinuity points. Applying
Principle of equivalent distance to the intervals we obtain that (at least one
of) the discontinuity points are (is) contained in w(x). Lemmas 14 and 15
now imply that L C w(x). Conversely w(x) C L is always true and the
theorem is proven.

Theorem 8 A piecewise linear map is topologically expansive if and only if
Invy/Iny is irrational.

Indeed, if Inv;/Inyp is irrational then preimages of points o' and 4}
are everywhere dense. Conversely, if preimages are everywhere dense then
the set of preimages must be infinite. When In~;/In~y is rational all points
are eventually periodic with uniformly bounded periods and transitions, see
Lemma 11. Let p be the longest period and ¢ be the longest transition. Then
the set of preimages of point « and [ is

p+t

U T {a, BY),

which is clearly finite and nowhere dense.

Theorem 9 Let f be a piecewise linear map with hysteresis. We impose
condition (5.1) in the case when ln~y,/ln~yy is irrational. Then the global
attractor L is equal to the non-wandering set €.

Lemma 6 implies that €2 C L. To prove inclusion L C ) we consider two
cases: Inv;/In~y, is rational and it is not. In the former case x € L if and
only if x is periodic, therefore L C (2.

If Inv;/In~y, is irrational we employ Theorem 7 to conclude that L =
w(x) C Q.

5.6 Continuity of the graph of L(\)

Theorem 10 Let o !, 371 € L()\) for any \ from some open neighbourhood
of Ao. Then the graph L(\) is lower semicontinuous at Ag.
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Proof. For any sequence \, — A\g and any point x, € L (\g) we have to
find a sequence x, — Xq, X, € L (\y,).

If xg € L ()\,) we are done. Assume, that xo & L (A,,) for any n (without
loss of generality). We define the sequence {k,} to satisfy

xo € [i* 7N (Xy) and xo & fy"(Xn).
Intervals .J,, are the maximal intervals to satisfy

Xg € Jn C [N (X)) \ S (Xn).

Boundaries of the intervals .J,, are contained in the sets

0 (fr M (Xn) U A (fxr (X))

and, therefore, 9 (J,,) C Img(a 1) C L(\,) with the last inclusion im-
plied by the condition of the theorem.

Now, if d(J,) — xo we are done (we found a sequence x, € L (\,),
X, — Xp). Assume that this is not true: there is a subsequence {n'} (= {n}
without loss of generality) such that p(J,) > m > 0. Then there are two
cases to consider:

e {k,} is unbounded. Then for each interval .J, there is a sequence of
k, — 1 sets
Jnfz C fk:fi(Xh) \ fk:fi+1(Xh)
such that f(J;%) = J,"T'. It is clear, that these sets are disjoint and
if 41 is a non-increasing measure, we have p (J, %) > u (J,,) > m, which
is contrary to the assumption that {k,} is unbounded.

e {k,} is bounded. Without loss of generality we assume that k, = k
for any n. Then we consider a k-preimage of point x, under f),, point
x~*. Weak lower continuity and Lemma 2 imply that ff (x7%) — xg
and we get a contradiction.

Therefore, the case 0J,, /4 X¢ is impossible. Q.E.D.

Theorem 11 Let a family of PLMH with the parameter \ be weakly contin-
uous at a point N, In~y,/In~yy be irrational and

gt e Img(ofl) , ald Img(ﬂfl) .

Then the graph L(\) is lower semicontinuous at the point Ag.
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Proof. First we prove an auxiliary statement: if o' ¢ L(\) then
there is a neighbourhood of Ay such that for any A from the neighbourhood,
at & L(N).

Let k£ be such that

a”te fit(Xp) and o7t ¢ £ (Xa).
Then there is o such that
VA (A= Xl < ) (a7 & FE(X)).
Indeed, assuming the contrary we obtain that

N, = Ao Iz, — z(cf1 € f)]fn(zn))

and, by weak upper continuity, o ' € f§ (z). This is a contradiction.

As a corollary we obtain that at least one of the points o ! and 3! is
contained in the set L. Indeed, if In~; /In~y, is irrational, Theorem 5 implies
that one of these points has an infinite number of preimages and, therefore,
belongs to L. In the rational case we assume the contrary: both points are
not in the set L. Then we choose 7, as a parameter and employ our auxiliary
statement to deduce that a1, 371 & L(\) in some neighbourhood of \. But
irrational maps are dense in this neighbourhood and we get a contradiction.

Now to prove the theorem we consider two cases.

€ L(\) and a=' ¢ L(X\g). Then L()\g) = w(87") (Lemma 14). For
any point x € L (\g) there is an image of 37! which is close to x:

Ve> 03K e [l (7)) (R—x) < ¢/2).
Lemma 2 implies that there is o such that
YA(IA = Ao| < 0) Ixy € f2 (87 (|xA ~X| < 6/2>

and, therefore, |x) — x| < €. Provided that x) € L(\) it is proof of the lower
semicontinuity of the graph.

To prove that x, € L(\) it is sufficient to prove that ' € L()\). But our
auxiliary statement implies that o' ¢ L(A) for A in some neighbourhood of
Ao and, using the corollary, we conclude that 87 € L(\).
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If both ot and 7! are contained in L()\g) then L()\y) = w(f7!) =
w (a~t). Therefore, we can perform the same analysis for both a1 and g}
to get

YA(A = Xo| < o1) Ixy € f{ () (|x>\ —x| < e)

VA(A = No| < 02) Fyx € £ (B7Y) (|yA x| < e).

Now, since either a~' or 37! belong to L()\) we deduce that either x, or y,
belong to L()\) too. Q.E.D.

5.7 The graph of L(5)

We consider the graph of L which is obtained by varying the threshold [,
A = (3. We consider the case when

1 =1
for some mutually prime k£ and [. Let « be such that
=7,  m=r"

For each value of A the set L(A) consists of finite number of closed inter-
vals. Furthermore, the number of intervals is uniformly bounded if A belongs
to some bounded interval.

Lemma 10 implies that for any A

O(L(N)) C Img(a) Ulmg(B) C {Y'a: —k <i <K }u{y'p:l' <i<li},

where . .
k' = max {7'a < b} '=min{+'6>a}.

We are going to prove that boundaries of the graph of L(\) are also contained
in this set.

Lemma 16

d(Graph(L(\)) € {(A\,7'a):—k <i<oo} U{(N\7'\):—c0 <i<I}.
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Proof. In this and the subsequent proofs we will use ideas from the proof
of Lemma 3.
First we denote the set of possible boundaries by B,

B={(\7'a):—k<i<oo}U{(A\y\):—c0<i<lI}.

Set B consists of countable (and finite on any finite interval) number of
straight lines and is shown on Fig. B.8 for v =8/7, k =3 and [ = 4.
To prove the lemma we assume the contrary. There is a point (g, x) €

0(Graph(L(\)) which is not in the set B.
The properties of this point are

e x € L()\y), because the graph is closed.
e fi (x) = x for some n, because all motion on L ()\o) is periodic.
o fi,(x) & B for any i, because B is invariant under fy,.

Let € > 0 be such that
(A, fi,(x)) € Bforany 0 <i<mnand A€ (g —€,\g+€). (5.2)

Then one has fi (x) = fi(x). Indeed, by induction, let fi-'(x) = f{~'(x).
Eq. (5.2) implies that f~'(x) satisfies the same inequalities with respect to
aand B (= )) as fi_'(x) does and, therefore, the action of f is the same on
both points. For i = n this property yields f{(x) = f} (x) = x, therefore, x
is periodic under fy, is contained in L()\) and fi(x) € L()) for any i.

Now let o < € be such that

(y,\)NB =09,

where y € B, (fi (x)) for some i < n and A € B, (Xg). Then for any such A
the set {(A,y):y € By (fi,(x))} either belongs to L(A) or does not intersect
with it. But we already know that f}(x) € L()\), therefore the whole set

{ny): y€B,(fi,(x)), A€ By (X))} C Graph(L(})
and point (A\g, x) is not boundary point of the graph. We get a contradiction.

Corollary 2 The graph of L(\) is measure-continuous.
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For a given Ao the indicator functions Ir(y) converge to Ir(x,) as A — Ag
pointwise everywhere except possible boundary points (i.e. almost every-
where). Indeed, for any y € L(\y) \ 9(L(Ag)) the previous lemma implies
that y € L(A) if A is close to Ag. The difference I1,5,)(y) — 1) (y) is, there-
fore, 0. By the Dominated Convergence Theorem, |I) — I — 0 in
measure and this is equivalent to measure-continuity.

Lemma 17 If ' '
fro (@) #87 and f3, (87) # o™

for any i then the graph of L(\) is lower semicontinuous at the point \y.

Proof. This lemma is an extension of Lemma 3 for the special case of
periodic PLMH and varying threshold . Indeed, the only violated condition
of Lemma 3 is

ot fi(oT), BEF(FY) 1<i<n+l,  (53)

because the dynamics of the map is periodic and the period of ot or f!
might be less then n, where n is determined by the condition f"(X}) = L.

However, we made assumption (5.3) in order to ensure that the sets B;
(see proof of Lemma 3) are preserved under small changes of the parameter
A. Now the nature of the problem is such, that trajectories of a~! and 3!
may change only if, for example, f* (o ') = 3! for some i. But this case
is excluded by the condition of the lemma. Thus we can apply the proof of
Lemma 3 to our case. Q.E.D.
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Chapter 6

Kneading invariant of maps
with hysteresis

6.1 Definition of kneading invariants

Throughout this chapter we will use the second concept of a continuous map
with hysteresis and regard X, and f as an extended space and map. The
map f is assumed to be topologically expansive.

For a point x € X, we define the kneading sequence as a binary sequence

k(x) = s¢s152-- -,

where s; = St(f*(x)).

We order kneading sequences lexicographically, i.e. sgsq--+ < rory---if
and only if there is 7 > 0 such that s; = r; for ¢ < 7 and s; < r;. This
ordering can be obtained also by writing a sequence as a number in base 2,

k(o)) = 3 si2 0,

It is easy to see, that in this definition of the ordering kneading sequences are
monotone in x: k(x) < k(y) whenever x < y. The definition of topologically
expansive map implies

Lemma 18 k(x) = k(y) if and only if x =y.
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Corollary 3 If the kneading sequence of a point X is periodic then X is also
periodic.

Now we define the shift operator o:
o (50817 ") = S182+ .
Its action clearly corresponds to the action of f on the original point x,
o(k(x)) = k(f(x).
The most important kneading sequences for our analysis are

= h(as), b= kb)),
= k((@0)), B8 = k((B:.)w)-

Together they form the kneading invariant of the map f.

Next we define three types of condition, for the two-sided points, the —-
points and the +-points. A kneading sequence T = k(x) satisfies a middle
condition (C) if

Q1 i

a < o'(x)<b,
o'(z) < a ife"Hz)=10---, (C)
o'(7) > B ifo"Hz)=01---,

for i > 1. Lower (C—) and upper (C+) conditions are the similar conditions
for the —-points and the +-points

a < o'(z) <b,

o'(z) < a ifo"HF) =10, (C—)
o'(z) > B ifo"Hz)=01---,

a < o'(x) <b,
o'(z) < a ifo"Hz)=10---, (C+)
o'(z) > B ifo"Hz)=01---,

The meaning of these conditions is simple: each successive image of a
point under the mapping f (and, therefore, kneading sequence of the image)
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must lie between a and b — first inequality; when the state switches from
1 to 0, the point must be somewhere between a and o« — second inequality
— and when state switches to 1, the point must be between [ and b —
third inequality. Some inequalities are strict because a two-sided point can
be mapped only to two-sided, a —point cannot be mapped to +-point etc.

Lemma 19 FEvery point x € X, satisfies corresponding condition. Con-
versely, for any sequence T, satisfying one of the conditions (C), (C—) or
(C+) there is a point x € X}, such that k(x) = .

Proof. The first part of the Lemma is already proven. To prove the
second part we assume that T = 1s;so... (without loss of generality) and
consider the points

y1= sup y and y;= sup y.
k(y)<z k(y)>z
Since k(a,1) < Z < b (the first inequality is implied by o(k(a,1)) = @ <
o(Z)) points y; and y9 are well defined. It is easy to see that only two cases
are possible: yy =y, =y and y; =y_, y» =y, for somey € X}.
Now we refer to the auxiliary statement, formulated in the proof of

Lemma 7. It can be rephrased as follows

jim k(z) = k(z)), Jim ) k(z) = k(24)),

Z=2(-) ZZ(4)
where limits are understood in the topology, induced by the ordering. Thus,
k(y1) <z < k(y2). We want to prove that either k(y,) = Z or k(y2) = 7.
Assume the contrary: inequalities are strict. Case y; = y» = y is therefore
excluded. The only possibility is k(y_) < T < k(yy), y is a preimage of
a discontinuity point. Let fi(y) = a~!. The states of f*(y_) and f*(y,)
coincide for k < i. We apply o*t! to the inequality to obtain

F(f ™ (y-)) < o™H@) < k(F7 (v+)

and

a=k(a,0) < o"™(z) < k(a, 1).
The first inequality is impossible if o**1(Z) = 0... and the second one is
impossible if o**1(z) = 1... (it implies 0*"2(Z) < o(k(a, 1)) = @). We get a
contradiction.
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Corollary 4 Two topologically expansive maps with hysteresis have the same
kneading invariant if and only if they are topologically conjugate.

Proof. Definition 20 implies that kneading invariants of conjugate maps
are equal.

To prove the converse we put: h(x) = x" if and only if k(x) = k (x'), where
x € X and x’ € X;. It is easy to see that h is continuous and continually
invertible. Thus h is the homeomorphism needed in Definition 20. The
corollary is proven.

Now we can state our main theorem (compare to [1]):

Theorem 12 Let F' be a topologically expansive map with hysteresis with
kneading invariant (a,b, @, 3). Then a and B satisfy (C+), b and & satisfy
(C—). -

Conversely, for any kneading sequences (d, b, d,ﬁ) satisfying (C+) and
(C—) respectively there exists a topologically expansive map f with hysteresis
with the given kneading invariant and f is unique up to conjugacy.

6.2 Proof of Theorem 12

An observation made in Lemma 8 simplifies the proof in the case when f
does not have fixed points (topologically expansive map with hysteresis can
have only two fixed points: f(a) = a and f(b) = b). In the absence of fixed
points the theorem is just a corollary of the similar result for NDIE maps
(N discontinuities, increasing expansive maps) [1].

However, when there are fixed points this approach is not easily applica-
ble. Thus we prefer to give our own variant of the proof, suitable for any
case. It is based on the ideas of the proof given in [1], but since conditions
(C—) and (C+) are more strict than the corresponding conditions in [1] their
implementation is slightly more difficult.

The first part of the Theorem and uniqueness in the second part are
proven in the previous Lemma and its Corollary. To prove the rest of the
second part we use the correspondence between kneading sequences and num-
bers written in base 2 to construct a mapping on a circle which is conjugate
to the original mapping f.
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The mapping on a circle is induced by the shift operator:
o(z) = 2x mod 1.

We need to choose those points of the circle which correspond to possible
kneading sequences. Therefore, these points must satisfy one of the condi-
tions (C), (C—) or (C+), where o is now a function on the circle and the
inequalities are considered in the sense of real numbers. To choose these
points we iterate the following algorithm:

The initial values are W = [a, @] and Wi = [3,b].

G o= [a,1/2)n Uz, W /2

1.
G o= /2,00 U2, (W 4+ 20 —1) /2
witt = [a,a]nGIM

2.

Wit = (3,0 NGy

Here kneading sequences are considered as numbers written in base 2. This

algorithm is constructed to choose appropriate images of the intervals W
and W3 under the 2-valued function o=

We consider the limit sets of the algorithm:

Gy = lim G7, Gy = lim G}
j—o0 j—00

W, = lim W/, W, = lim WY,
J—00 J—00

which satisfy the following properties:

L Gio= [,1/20 UE, Wh/2

Gy = [1/2,b]n U2, Wy + 28— 1) /2!
9 Wy = [C} C:Y] NGy
' W2 = [57 b] N G2
3 W, c Gy
W, C Gy
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Proposition 1 Any point ¢ € G1 U Gy satisfies one of the conditions (C),
(C—) or (C+).

Indeed, let point ¢ belong to set G;. Then, by the property 1, ¢ € 2751,
for some k;. Applying o successively we get

ol(c) € 27MTW, Cla,1/2] forj <k
ofi(c) € W, C[B,b] C[1/2,0].

Thus the conditions are clearly met for the first k; iterations. Furthermore,
o¥1(c) € Wy C G, therefore 0¥ (c) € 277 W, + (2 — 1) 27 and we proceed
by induction.

Proposition 2 Any point ¢ € [0,1]\ G1 UGy does not satisfy the conditions.

Let the point ¢ belong to [0,1/2], ¢ € G " and ¢ ¢ GY. Then ¢ € 27FWj 2
for some k and one has

ofc) € WitcaGy™

o*(c) ¢ WJ™" therefore o*(c) ¢ G} ".

We proceed by induction until the process ends in the situation
o"(c) € W and 0" (c) ¢ W3.

The point 0" (c) is thrown out after the first iteration and clearly does not
satisfy the conditions. Therefore, ¢ does not satisfy the conditions too. The
proposition is proven.

Note, that the points @, b, @ and 3 are in the set G; U G5, because they
satisfy the conditions. Similarly, if ¢ is a preimage of one of these points
(under o) and ¢ € G} UGS3 then ¢ € G U G5 also.

Proposition 3 Set [0, 1]\ G1 UG consists of disjoint open intervals without
common endpoints.

Assume that ¢ is a common endpoint of two open intervals, therefore
c € GGy UGy and c is isolated.

We say that a point z is the +-boundary of a set S if x € S and (z —
e,x)N[0,1]\ S # (. Analogically, z is the —boundary if z € S and (z,z +
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€)N[0,1]\ S # 0. An example is the point @ which is +-boundary of the set
Gl.

It is easy to see that all —boundaries of the sets G U G} are preimages
of @ or b under o. The same is true about +-boundaries and the points 3
and a. Now we conclude that ¢ cannot be isolated after a finite number of
steps: otherwise it is preimage of (@ or b) and (3 or a) and, therefore, c is a
+-point and a —-point simultaneously which is not acceptable.

Thus ¢ € J, C G¥ UG% for any k, where .J; is an isolated closed interval
and

N=e (*

However the remark we made after Proposition 2 implies that boundaries
of Jj are contained in G¥ U GE. On the other hand, Eq. (*) implies that
J(Jx) — ¢, where O(Ji) is the boundary of Ji. Therefore, ¢ is not isolated.
The proposition is proven.

Now to construct a map with hysteresis on an interval we use monotone
bijections to map

hy : GiNJa c:v] [a,a] x {0}

hy :+ GaN[B,0] — [B,0] x {1}

hs : GiN[a,1/2] = [a, 5] x {0}
[

hi + G2 N[1/2,5] = [a, 8] x {1}

Remark 1 The sets Gy and Gy contain entire intervals only in the degen-
erate case a =0, b=1 and a = = 1/2. Otherwise, images of this interval
under o will eventually cover the whole circle.

To show that bijections are possible we propose a simple way to construct,
for example, h;. We represent set [@,@| \ G as a union of a countable
number of open intervals |Jio, U;. Then we identify the first interval U;
with some point in [a, @], say, (¢ + «)/2, interval Uy with the point (a +
3a)/4 or (3a + «)/4, depending on the position of U, with respect to B
etc. Thus we establish one-to-one correspondences between intervals U; and
binary rationals of interval [a,a]. Intervals U; are dense in [a,@] N Gy (in
the sense of Remark 1) and we extend the correspondence by continuity.
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Note, that the boundaries of open intervals are mapped into one point z in

the interval [a, @], but this corresponds to splitting = into x_ and x,. Thus

bijection is established between G N [a@, ] and the extended interval [a, a.
Finally we define the branch f, of a map with hysteresis by putting

o [ (@) i € ool x {0)
Po(x) = {a(hgl(x)) if z € [a, f] x {0}

hl (¢0($)) if ¢0($) € [d, d]
folx) = § hs (do(x)) if ¢o(x) € [@,1/2]
h (do(x)) if go(x) € [0, 0]
and the function f; is defined analogously. Thus we constructed a map with
hysteresis and it is an easy corollary of the procedure of the construction
that kneading invariant of the map is the given (@, b, @, 3). This observation
finishes the proof.
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Chapter 7

Summary

In the work we studied a special case of multistate maps, interval maps of
with hysteresis. We developed a theory for general maps with hysteresis as
well as for a simple example, a piecewise linear map with hysteresis. The
main object of our study was the global attractor L, or, in other words, the
limit image of the space X under the map f.

The global attractor was shown to play a significant role in the dynamics
of the map f. In the piecewise linear case (with some additional require-
ments) the set L turned to be the omega-limit set of any point and, there-
fore, nonwandering set of the map. We were able to prove continuity of the
set, L with respect to a parameter \. In addition to upper semicontinuity in
the general case, the set L(\), considered as a set-valued function of the pa-
rameter, is lower semicontinuous in a number of special cases. A conjecture
formulated in Section 5.1 is a topic for future research. Other possible topics
are: classification of types of L based on first return maps, formulation of
sufficient condition of discontinuity and a study of the applicability of our
technique to the case of general maps with hysteresis.

A part of the work was devoted to the study of combinatorial properties
of maps with hysteresis. A natural extension of our results obtained is to
define the renormalisation operator [2] for such maps. This will possibly
simplify the classification of global attractor types.
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Appendix A

C Programme

/* Three commline args: name of the output file, number
of preliminary iterations, number of valid iteratioms.
Start point is varying. Slope is also varying. */

#include<stdio.h>
#include<math.h>

int i;

long int st, it;

float x0, xs, a=1.35358, b, trshl1=1.0, trsh2=1.9;
FILE *outf;

char stat=’0’;

char Iter(void);

main(int argc, char *argv[])
{

if (argc < 3) return 0;
if ( (outf=fopen(argv[1], "w")) == NULL)
puts("Hrenovo s failom! Error opening file!");

st=atoi(argv[2]);
it=atoi(argv[3]);
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for(b=0.46; b<0.7; b+=0.002){
/* slope is varying here */

for(xs=0.6; xs<1.2; xs+=0.05) {
/* st is start point for iteration */

stat=’0’; x0 = xs;
for(i=1; i<st; i++) stat=Iter();
/* preliminary iterations */

for(i=1; i<it; i++)
{
stat=Iter();
/* valid iterations *x/

if (stat == ’1°)
fprintf (outf,"%f %f\n",b, x0);
/* Print observables when state is 0 */

}
}
fclose(outf) ;
+

/* iteration function */
char Iter(void)
{
if ( (stat==’0’) ) x0%*=a; else x0%x=b;

if (x0 > trsh2) return ’1’;
if (x0 < trshl) return ’0’;
/* return new state *x/
return stat,;
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Appendix B

Figures
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Figure B.1: An example of a map with hysteresis and a typical trajectory
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.....................

fo=Y,X

f,=y, X

................

Figure B.2: An example of a piecewise linear map with hysteresis and a
typical trajectory
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Figure B.3: Graph of the global attractor of a piecewise linear map with
hysteresis. The varying parameter is 3.
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Figure B.4: A map with hysteresis and the corresponding map with “mir-

rors”.
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0.3 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

X

Figure B.5: A map with hysteresis, a = 1.0, 8§ = 3.0, 7 = 2.0, 73 = 0.3 and
the first return map of interval [0.3, 1.0].
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potential gap

Figure B.6: An example of a family of maps which produce discontinuous
graph. If we choose ¢ as a parameter, with d fixed, the global attractor L(c)
is both measure and lower discontinuous.
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Figure B.7: The simplest example of a piecewise linear map with hysteresis.
The first return map to the interval [3,0] is a circle homeomorphism. The
global attractor consists of one interval on the branch 0 and two intervals on
the branch 1.
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Figure B.8: Graph of the global attractor when vy = (8/7)%, v = (7/8)*
and the varying parameter is 3. On the second plot lines y = (8/7)* and
y = (8/7)%x are added.
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