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Abstra
t
We 
al
ulate the two-point spe
tral statisti
s for a 
lass of quantum graphs inthe limit as the number of verti
es tends to in�nity. This is done two ways.The �rst way uses the exa
t tra
e formula and a 
lassi�
ation of the periodi
orbits on the graph. The se
ond involves a dire
t study of the statisti
s of thezeros of a trans
endental eigenvalue equation. We show that these approa
hesprodu
e equivalent results. The �rst expression we derive takes the form ofa power series and is more eÆ
ient for numeri
al 
omputations, while these
ond involves an improper integral and is in a 
onvenient form to studythe singularities of the form fa
tor (the Fourier transform of the two-point
orrelation fun
tion). We also �nd that the spe
tral statisti
s are the sameas those already found for the �Seba billiard and we dis
uss the reasons forthis 
oin
iden
e. As an appli
ation of the 
ombinatorial methods developed inthis work we derive an exa
t expression for the quantum return probability onin�nite regular trees and analyse it numeri
ally. We 
on
lude that, for 
ertainvalues a parameter, the return probability tends to a non-zero limit, and, as a
onsequen
e, that there exist lo
alised eigenstates.
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Chapter 1
Introdu
tion
When studying a large 
lass of systems exhibiting a 
ertain property, it usu-ally helps to 
onsider, as an example, a smaller sub
lass of simpler systems.Then, after �nding out how the property arises in the simpler systems, one
an hopefully gain some insight into what is happening in the general 
ase.This \
lass | sub
lass" relation is the 
onne
tion between the quantum
haos and quantum graphs and, to a lesser extent, between quantum graphsand quantum star graphs.So what is quantum 
haos? Naturally, it is the subje
t studied by quantum
haology,the study of semi
lassi
al, but non-
lassi
al, behaviour 
hara
teris-ti
 of systems whose 
lassi
al motion exhibits 
haos. `Semi
lassi
al'here means `as Plan
k's 
onstant tends to zero' [1℄.The present work is related to a part of quantum 
haology, the study of theeigenvalues of the quantum systems, their spe
trum. The spe
tra, althoughdi�erent from system to system, have some universal features whi
h are statedin the 
onje
tures:Conje
ture 1 (Berry-Tabor Conje
ture). If the 
lassi
al dynami
s is in-tegrable then the statisti
al properties of the spe
trum are generi
ally the same2



as those of an un
orrelated sequen
e of levels, in parti
ular the nearest neigh-bour spa
ings distribution is Poissonian [2℄.Conje
ture 2 (Bohigas-Giannoni-S
hmit Conje
ture). If the 
lassi
almotion of a quantum system is 
haoti
 then the statisti
al properties of thespe
trum are generi
ally the same as those of eigenvalues of a large randommatrix from the Gaussian Orthogonal Ensemble (GOE) if the system is invari-ant under time reversal and from the Gaussian Unitary Ensemble (GUE) if itis not [3℄.By the statisti
al properties we understand the fun
tions su
h as the dis-tribution of the spa
ing between neighbouring eigenvalues, various 
orrelationfun
tions of the sequen
e of the eigenvalues and asso
iated fun
tions. TheGaussian Orthogonal (Unitary) Ensemble is de�ned as the probability spa
eof real symmetri
 (Hermitian) matri
es with the statisti
ally independent ma-trix elements endowed with the probability measure whi
h is invariant underany orthogonal (unitary) 
hange of basis. The study of the statisti
al proper-ties of su
h random matri
es is a part of Random Matrix Theory (RMT).The above 
onje
tures do not hold for all systems, there are known 
oun-terexamples to Berry-Tabor Conje
ture (a good review of the 
ases in whi
hthe Conje
ture 
an be proved or disproved rigorously is given in [4℄), andto Bohigas-Giannoni-S
hmit Conje
ture, e.g. the geodesi
 motion on 
ertainarithmeti
 surfa
es of 
onstant negative 
urvature [5℄, and the 
at maps [6℄.The 
onje
tures are expe
ted to hold for generi
 systems where the meaningof the word \generi
" is the big open question of the �eld.There are several approa
hes whi
h allow one to study the statisti
al prop-erties of the eigenlevels. For example, the level dynami
s, whi
h is the studyof the dependen
e of the eigenlevels on a parameter, makes it possible to tra
ethe transitions from one type of statisti
al behaviour to another (for instan
e,the transition from GOE to GUE when the time-reversal symmetry is beingbroken). In this work, however, we will be mostly 
on
erned with the approa
h3



whi
h originates from the following observation.For the 
onje
tures to hold at all, the quantum system must know aboutthe 
haoti
 (or not) behaviour of its 
lassi
al 
ounterpart. And the 
haos isde�ned through the properties of the orbits of the system, e.g. one of therequirements is that almost all of the orbits explore the whole of the availablespa
e in their wanderings. Thus one 
an say that the quantum system mustknow about the orbits of the 
lassi
al system. This 
onne
tion is provided bytra
e formulae.A tra
e formula is a relation between the eigenvalues of the quantum systemand the periodi
 orbits of the underlying 
lassi
al system. In general it is anasymptoti
 formula, the so-
alled Gutzwiller tra
e formula [7℄, but it be
omesexa
t for 
ertain 
lasses of systems, su
h as systems of 
onstant negative 
urva-ture, and then it is referred to as Selberg tra
e formula [8, 9℄. The informationabout the spe
trum is 
oded in the form of the density fun
tion, a fun
tionwhi
h has Æ-peaks at the points of the real line 
orresponding to the eigenval-ues En. The periodi
 orbits provide the 
oeÆ
ients of the de
omposition ofthe density fun
tions into a sum of 
osines:d(E) � 1Xn=1 Æ(E � En) � d(E) + 2~1+� Xp 1Xk=1 Ap;k 
os�k~(Sp + �p)� :(1.0.1)Here p stands for periodi
 orbit, Sp is the a
tion of p, Ap;k is an amplituderelated to the stability of the kth repetition of p, and �p is its Maslov index;d(E) is the mean density, that is the average number of the eigenvalues Enper interval of unit length. The parameter � is equal to zero if the system is
lassi
ally 
haoti
 and � = (n� 1)=2 if the system is integrable with n degreesof freedom.It is widely believed that the tra
e formula 
ontains all the informationneeded to verify the 
onje
ture but extra
ting this information is an extremelydiÆ
ult task. The 
ontributions from di�erent orbits balan
e very �nely andthere are a lot of orbits to a

ount for: their number in
reases exponentially4



with the length of the orbits. It turns out, however, that it is possible toextra
t some information about the density of the periodi
 orbits weightedwith A2p;k without having the detailed knowledge about the periodi
 orbits ofthe system. An important step in this dire
tion was made by Hannay andOzorio de Almeida [10℄ who dis
overed thatXp : jSpj<SA2p � 8><>:�S integrable;�S2 
haoti
 (ergodi
); (1.0.2)as S ! 1. As we see, there is a 
lear distin
tion between the asymp-toti
 behaviour of the sum in the integrable and 
haoti
 
ases. The Hannay-Ozorio de Almeida sum rule was used by Berry in [11℄ where, among otherquantities, Berry 
onsidered the form fa
tor whi
h is the Fourier transform ofthe spe
tral two-point 
orrelation fun
tionR2(x) = hd(E)d(E + x)i; (1.0.3)where h � i denotes an energy average (there are also other types of averages,and an average with respe
t to an ensemble of systems will be employed by uslater). Using the Gutzwiller tra
e formula one 
an obtain an approximationto R2(x) in the form of a sum over all pairs of periodi
 orbits. Applying theFourier transform K(�) = Z 1�1R2(x)eix�=~dx; (1.0.4)one obtains an expression for the form fa
tor K(�) as a sum over pairs oforbits too. Berry's analysis was based mostly on the diagonal approximationwhi
h means that only the pairs of orbits whi
h are identi
al with respe
t tothe system's symmetries are kept. However the validity of the approximationis restri
ted to the range � � 2�~d and the 
al
ulation outside this rangene
essarily involves evaluation of the o�-diagonal terms asso
iated with thepairs of the orbits not related by symmetry.The o�-diagonal terms are 
onne
ted with the 
orrelations between thea
tions of di�erent orbits and in [12℄ it was shown that one 
an \reverse" the5



Bohigas-Giannoni-S
hmit Conje
ture: assuming that the spe
tral 
u
tuationfollow RMT, a universal expression for the 
lassi
al a
tion 
orrelation fun
tionwas derived, supported by some numeri
al eviden
e. But the breakthrough
ame from a slightly di�erent dire
tion, or rather from two dire
tions at thesame time. The leading order os
illatory term in the RMT-predi
ted R2(x)was re
overed in [13℄ using supersymmetry approa
h (an a

essible explanationof the supersymmetry te
hnique is 
ontained, for example, in [14℄) and in[15℄ by relating the o�-diagonal terms in the periodi
 orbit expansion to thediagonal ones. Still the underlying assumption in [15℄ was, roughly speaking,that the 
orrelations between short periodi
 orbits 
an
el ea
h other. Theunderstanding of how it happens (and when it does not, why not) 
ould notonly provide a base for the above assumption but to show the way to re
over thehigher order terms too. To gain some intuition into su
h balan
ing betweenthe o�-diagonal terms, it was ne
essary to �nd an easy example where theperiodi
 orbits and their 
orrelations 
ould be studied in detail.Enter the quantum graphs. The idea was to 
onsider the eigenvalues of aLapla
ian on a metri
 graph. A graph is a 
olle
tion of verti
es and bondswhi
h 
onne
t some of the verti
es. A graph be
omes metri
 if we spe
ify thelengths of the bonds. Ex
ept at the verti
es, the graph is a one-dimensionalstru
ture so the di�erential equation is easily solvable. The boundary 
ondi-tions, imposed on the verti
es, would make �nding eigenvalues a nontrivial butstill a manageable task and would hopefully ensure that the RMT e�e
ts arepresent. The idea, it seems, was around for some time: the statisti
al prop-erties of the spe
trum of dis
rete Lapla
ian were studied, for instan
e, in [16℄and the exa
t tra
e formula, this main ingredient of a relevant example, wasproved for 
ontinuous Lapla
ian in [17℄. It was independently redis
overed in[19, 20℄, whi
h sparked a whole series of papers, reviewed below, and resear
hproje
ts, in
luding this work.The results of numeri
al simulations reported in [19℄ showed good agree-ment with the predi
tions of the RMT, thus establishing validity of the quan-6



tum graphs as a toy model of the quantum 
haos. Indeed, the ne
essaryingredients su
h as the ergodi
ity (in the Markov 
hain sense), the exponentialproliferation of the periodi
 orbits, and the tra
e formula were present. Thephenomenon, the aÆnity with RMT results, was shown to be there as well.There was a drawba
k that the quantum graphs did not have deterministi

lassi
al 
ounterparts, only the probabilisti
 ones (Markov 
hains). But it wasan advantage at the same time: it was easier to 
hara
terise the orbits.In the next, more detailed, study of the quantum graphs [20℄ the setup wasextended to in
lude more general boundary 
onditions now depending on aparameter. It was shown numeri
ally with an analyti
al justi�
ation that fordi�erent values of the parameter, the statisti
s undergo a 
hange from beingRMT-like to Poissonian. It was also found that the statisti
s for star graphs(a parti
ular type of graphs, see Fig. 2.1 in the next Chapter; sometimes it isalso 
alled Hydra graphs) show systemati
 deviations from RMT behaviour.As the name suggests, a star graph 
onsists of a 
entral vertex (the bodyof the Hydra) 
onne
ted to many periphery verti
es (numerous heads of theHydra). The deviations in the statisti
s of star graphs be
ome apparent onlyfor suÆ
iently large number of the periphery verti
es.In was also found in [20℄ that the multiply 
onne
ted rings (another typeof graphs) have exponentially lo
alised eigenstates (Anderson lo
alisation).A thorough analyti
al treatment of the Anderson lo
alisation in terms of theperiodi
 orbits on in�nite 
hain graphs was presented in [21℄. The in�nite 
haingraph is a graph 
omposed from an in�nite number of sequentially 
onne
tedverti
es. Thus, the valen
y (the number of bonds 
ommen
ing from a vertex)of ea
h vertex is 2. The quantity 
onsidered was the quantum probability toreturn to the origin: a spe
i�ed initial 
ondition was iterated using a quantumevolution operator and then the modulus squared of the resulting state was
omputed at the origin. The 
lassi
al 
ounterpart of the quantum returnprobability is the probability for a random walker to return to the origin aftern steps. It is well known that this probability de
ays with n. It turned out7



that the quantum return probability does not de
ay to zero as the number ofiterates n tends to in�nity, but saturates at a non-zero value. This e�e
t is aresult of the interferen
e between orbits of the same length.A work in a di�erent dire
tion [22℄ established that the quantum graphs
an also be used to study the generi
 behaviour of 
haoti
 s
attering systems.By 
onne
ting verti
es of a graph by leads to in�nity the graph was turned intoa s
attering problem. It was shown that su
h graphs display all features whi
h
hara
terise quantum 
haoti
 s
attering and, when 
onsidered statisti
ally,the ensemble of s
attering matri
es reprodu
ed quite well the predi
tions ofappropriately de�ned Random Matrix ensembles.In [23℄ an example of the quantum graph whose spe
tral two-point 
orrela-tion fun
tion reprodu
es the 
orresponding RMT expression exa
tly was found.The two-point 
orrelation fun
tion for 2-star graph (a star with only two rays)was 
omputed both dire
tly and through the periodi
 orbits approa
h. Uponsuitable averaging over the parameter spa
e the result would reprodu
e the
orresponding RMT expression for 2 � 2 matri
es. To prove the equivalen
eof two approa
hes, several new 
ombinatorial identities were derived. Theseidentities were later employed in [21℄ to derive a 
ompa
t form of the returnprobability.Another statisti
, the form fa
tor, was studied in detail for star graphswith large number of rays in [24℄. Basing on the periodi
 orbit theory, thefull (in
luding the o�-diagonal terms!) power series expansion around zero ofthe form fa
tor was obtained. Remarkably, the �rst four terms of the expan-sion were the same as those in the diagonal approximation derived in [20℄, butthe higher terms did not agree. The series obtained in [24℄, on its interval of
onvergen
e, perfe
tly �tted the numeri
al data of [20℄, whi
h was not RMTbut in 
ertain sense an intermediate between RMT and Poisson. The radiusof 
onvergen
e of the series was later extended using Pad�e method of improv-ing 
onvergen
e. The results of the paper [24℄ 
onstitute the major part ofChapter 3. 8



The form fa
tor was also studied in [25℄, where the periodi
 orbits expan-sions were used to 
ompute it expli
itly for several dire
ted binary graphs. Theresults showed good agreement with the RMT and promised to show an evenbetter one if the graph size was in
reased. Unfortunately 
ertain features inthe larger binary graphs made the appli
ation of exa
t 
ombinatorial methodsdeveloped in [25℄ impossible. Still, one of the important 
ontributions of [25℄was to �nd a simpler 
lass of graphs whi
h exhibit RMT e�e
ts.In the papers mentioned above di�erent types of averaging were appliedto the spe
tral statisti
s of the quantum graphs. The 
urrent work employs,in di�erent Chapters, spe
trum averaging and averaging with respe
t to theindividual lengths of the bonds. Averaging over the boundary 
onditions isalso possible and in [26℄ it was demonstrated that these types of averaging areequivalent.Quantum graphs also attra
ted a lot of attention re
ently in 
onne
tionwith the transport and thermodynami
 properties of weakly disordered and
oherent 
ondu
tors. These properties 
an be related to the spe
tral determi-nant of the Lapla
ian on a graph [27℄. The various expression for the spe
traldeterminant were studied in detail and an easy-to-use diagrammati
 methodof expansion of the spe
tral determinant in terms of a �nite number of periodi
orbits was derived in [28℄ (see also referen
es therein).A method to derive the level spa
ing distribution P (�) for the quantumgraphs without resorting to the periodi
 orbit theory was presented in [29℄.The authors express the eigenvalues of the system as the times at whi
h ahypersurfa
e, expli
itly de�ned by the topology of the graph, is interse
ted byan ergodi
 
ow on a torus. The level spa
ings are then expli
itly related tothe time of �rst return to the hypersurfa
e. An exa
t representation of thelevel spa
ing distribution is obtained in the form of an integral over the hyper-surfa
e. The small � behaviour 
omes from the near the singularities of thehypersurfa
e and 
an be studied using an approximation of the hypersurfa
enear the singularities. The analysis is performed for several simple graphs,9



in
luding the star graph with 3 bonds for whi
h the RMT-like level repulsionis observed for small �.In the present work we try to advan
e the understanding of the \
onstru
-tive interferen
e" of the periodi
 orbits whi
h produ
es parti
ular statisti
s.In Chapter 2 we give the de�nitions of the graphs and periodi
 orbits, de�nethe Lapla
ian and the boundary 
onditions. It is possible to write an expli
itsolution of the Lapla
ian and we obtain the eigenvalue 
ondition in the formof a determinant equation. Then we present a simple derivation of the tra
eformula for the quantum graphs. Having the tra
e formula at hand we moveon to de�ne the spe
tral statisti
s, su
h as the average (mean) density of theeigenvalues, the two-point 
orrelation fun
tion and the form fa
tor. We ex-press the latter two statisti
s as sums over pairs of periodi
 orbits and showthat only the pairs of orbits of the same lengths 
ontribute to the sums. Notethat the equality of the lengths of orbits p and p0 does not ne
essarily implythat the orbits are the same or related through some symmetry (e.g. reversingthe dire
tion of the orbit). The length of an orbit is simply the sum of lengthsof all the bonds it passes, therefore, in order to have the same lengths, twoorbits must pass through the same bonds the same number of times (althoughin a di�erent order), or, using the terminology introdu
ed in [25℄, have thesame bond staying rates. This subje
t is dis
ussed in detail and illustratedwith examples in Chapter 2.The next Chapter, largely based on the material of [24℄, is devoted to thedetailed study of the star graphs. Here we assume the Neumann boundary
onditions and derive a power series expansion of the form fa
tor in the limitas the number of bonds (rays) of the star tends to in�nity. To do so wederive an exa
t 
ombinatorial expression for the form fa
tor for any �nitenumber of bonds and then take the limit whi
h simpli�es the 
ombinatorialsums. The expression we obtain, however, is still too 
ompli
ated to be studiedanalyti
ally so we 
ompute exa
tly a large number of terms and then study10



them numeri
ally. In parti
ular we �nd that the radius of 
onvergen
e ofthe series is �nite and that one 
an extend the 
onvergen
e by applying thePad�e approximation. Pad�e approximation to the form fa
tor seems to 
apturesingularities lying in the 
omplex plane and, judging by the 
hara
ter of theapproximation, the singularities are not poles but essential singularities.It turns out that the 
ombinatorial methods developed in Chapter 3 
anbe applied to study the Anderson lo
alisation on in�nite regular trees (also
alled Bethe latti
es in the literature). A graph is a tree if there are no 
y
leson it and it is regular if the valen
y of all verti
es is the same. The in�nite lineis a spe
ial 
ase of the in�nite regular trees 
orresponding to the valen
y 2.The Anderson lo
alisation in a similar model (but not identi
al) was alreadystudied in [31℄ using the 
onne
tion between the lo
alisation of the eigenstatesand the probability distribution of �	(E)=�E, where the equation	(E) = 2�l (1.0.5)is satis�ed by the eigenvalues En. It was found that there are four ranges inthe parameter spa
e where di�erent types of eigenstates exist. In parti
ular,there is a range where the system has normalizable eigenstates and, therefore,there is a pure point 
omponent in the spe
trum. In Chapter 4 we approa
hthe problem from a di�erent viewpoint. We study the quantum probability toreturn to the origin of the tree after n steps. Bringing together the methodsdeveloped in [21℄ and [24℄, we derive an exa
t 
ombinatorial re
ursion for thereturn probability. Again, it is too 
ompli
ated to be solved analyti
ally butit gives a 
lear algorithm to analyse the problem numeri
ally. Our algorithmis of polynomial 
omplexity as opposed to exponential 
omplexity if one isto expli
itly 
ount all periodi
 orbits. Our numeri
al simulations show thatfor a 
ertain range of the parameter values the return probability tends to anon-zero limit as the number of steps goes to in�nity. This implies existen
eof lo
alised eigenstates. Our result agrees with those presented in [31℄, eventhe ranges are in approximate agreement.11



In Chapter 5 we return to the star graphs but using a di�erent approa
h.As explained in Chapter 2, the 
ondition for En to be an eigenvalue is thata 
ertain determinant is equal to zero. This determinant takes a parti
ularlysimple form for the star graphs, due to their spe
ial stru
ture. Then theeigenvalues of the Lapla
ian are the zeros of a quasi-periodi
 meromorphi
fun
tion. We apply the te
hnique developed in [32℄ to derive the two-point
orrelation fun
tion of the zeros. The two-point 
orrelation fun
tion is relatedto the form fa
tor of Chapter 3 through the Fourier transform and we show thatit is indeed the 
ase, that is the answers derived by two 
ompletely di�erentapproa
hes are the same. It provides us with another 
on�rmation of the fa
tthat the summation over the periodi
 orbits is possible and gives the rightanswer, although it might be diÆ
ult to perform.Chapter 5 gives us a representation of the form fa
tor in the form of anintegral. This integral 
ontains all the information about the form fa
tor,in parti
ular the information about the singularities. Studying the integralwe �nd the parti
ular pair of the singularities whi
h 
aused the divergen
eof the series of Chapter 3. As 
on
luded earlier from the Pad�e analysis, thesingularities are not poles, in fa
t we �nd that they are logarithmi
. We
al
ulate the dominant 
ontribution at the singularities and as a 
orollaryobtain the asymptoti
s of the 
oeÆ
ients of the power series expansion of theform fa
tor. We also noti
e that the resulting expression for the two-point
orrelation fun
tion is exa
tly the same as the expression obtained in [32℄for the two-point 
orrelation of the spe
trum of the �Seba billiard [33, 34℄, anintegrable system perturbed by a delta-fun
tion. Heuristi
ally, the reason forsu
h aÆnity is that the wave dynami
s in both systems is 
entred around thepoint s
atterer, the delta fun
tion in the billiard and the 
entral vertex in thestar graphs.The \heavy" 
ombinatorial derivations used in the text are deferred to theAppendix. The derivation of the number of permutations without liaisons, a
ombinatorial quantity used in Chapters 3 and 4, was signi�
antly simpli�ed12



from its original form [24℄. The derivations are illustrated with several �guresso if the reader 
hooses to enter the Appendix he should not abandon all hope.To summarise, we present a derivation of the two-point spe
tral statisti
sfor a 
lass of quantum graphs in the limit as number of verti
es tends to in�nity.We derive it in two ways. The �rst way uses the exa
t tra
e formula and a
lassi�
ation of the periodi
 orbits on the graph; to the best of our knowledgeit is the �rst exa
t derivation of its kind. The se
ond way studies the statisti
sof the zeros of the trans
endental eigenvalue equation dire
tly. We show thatthese approa
hes produ
e equivalent results whi
h 
omplement ea
h other: the�rst result obtained in the form of the power series expansion is more eÆ
ientfor numeri
al 
omputations and the se
ond result is in a 
onvenient form tostudy the singularities of the statisti
. We also �nd that the spe
tral statisti
sare the same as those already found for �Seba billiard and we dis
uss the reasonsfor this 
oin
iden
e. As an appli
ation of the 
ombinatorial methods developedin the work we derive an exa
t expression for the quantum return probabilityon the in�nite regular trees and analyse it numeri
ally. We 
on
lude thatfor a 
ertain range of the parameter values the return probability tends to anon-zero limit, hen
e there are lo
alised eigenstates.

13



Chapter 2
De�nitions and preliminaries
2.1 De�nitionsLet G = (V;B) be a graph where V is a �nite set of verti
es and B is the setof bonds, B � V � V (2.1.1)The set B is symmetri
 in the sense that b = (i; j) 2 B i� b = (j; i) 2 B, wherei; j 2 V. We only 
onsider graphs without loops, that is (j; j) 62 B. The bondsb = (i; j), as we de�ned them, are dire
ted: they have an initial vertex, thevertex i, and an end-vertex, the vertex j; b denotes the reversal of the bond b.When we refer to \the non-dire
ted bond (i; j)", we mean the 
ouple of bonds,(i; j) and (i; j) = (j; i). The number of verti
es is denoted by V = jVj and thenumber of dire
ted bonds is 2B = jBj. The verti
es are usually marked by theintegers starting from 0 thus the set V = (0; : : : ; V � 1).De�nition 1. Asso
iated to every graph is its V �V 
onne
tivity (adja
en
y)matrix C. Its elements are given byCi;j = 8<: 1 if (i; j) 2 B0 otherwise ; i; j = 1; :::; V: (2.1.2)Sin
e the set B is symmetri
, the matrix C is symmetri
 too.14



2.1. De�nitionsDe�nition 2. The valen
y vi of the vertex i is the number of verti
es j whi
hare 
onne
ted to i, i.e. vi =Xj Ci;j: (2.1.3)De�nition 3. The bond 
onne
tivity matrix is the 2B � 2B matrix B withthe elements B(i;j)(k;l) = Æjk; (2.1.4)where (i; j), (k; l) 2 B.Example 1. The 
omplete graph KV is the graph with V = f1; : : : ; V g andB = V � V. That is there is a bond (i; j) for any i and j from V. The
onne
tivity matrix of su
h a graph has zeros on the diagonal and ones as itso�-diagonal elements. The valen
y is the same for ea
h vertex, it is equal toV � 1.De�nition 4. A sequen
e of bonds fbigni=1, su
h that Bbi;bi+1 = 1 for all i, is
alled a 
y
le if Bbn;b1 = 1 and bi 6= bj, bi 6= bj for all i 6= j.Example 2. The tree is any 
onne
ted graph with V = B + 1. The primeproperty of a tree is the absen
e of 
y
les.Example 3. The star graph (also 
alled Hydra graph) is a tree with V =f0; 1; : : : ; Bg and the set of edges B = f(0; i); (i; 0) : i = 1; : : : ; Bg. The va-len
y of ea
h vertex is equal to 1 ex
ept for the vertex 0 with the valen
yB. Let ePn be the set of all sequen
esp = [b1; b2; : : : ; bn℄; bi 2 B; n � 2 (2.1.5)
ompatible with B in the sense that Bbibi+1 = 1 for i = 1; : : : ; n where by bn+1we understand b1. We denote by eP the union of all ePn,eP = 1[n=2 ePn; (2.1.6)15



2.1. De�nitions
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0Figure 2.1: Examples of a graph (a), a tree (b) and a star graph (
).(sin
e there are no loops, eP1 = ;). De�ne the 
y
li
 shift operator � on ePn by��[b1; b2; : : : ; bn℄� = [b2; b3; : : : ; bn; b1℄: (2.1.7)We denote by Pn = ePn=� the set of all equivalen
e 
lasses in ePn with respe
tto the shift �.De�nition 5. For any sequen
e of edges p 2 ePn, its equivalen
e 
lass withrespe
t to the 
y
li
 shift operator � is 
alled the periodi
 orbit. The number nis 
alled the period of the orbit. Thus the set Pn is the set of all orbits of periodn and P = [1n=2Pn. The list of the bonds in the order they are traversed bythe orbit p, surrounded by the round bra
kets, is 
alled the symboli
 
ode ofthe orbit.Remark 1. The main di�eren
e between the periodi
 orbits and 
y
les is thata periodi
 orbit is allowed to pass a bond more than on
e.For some periodi
 orbits p there is a shorter orbit q = (q1; : : : ; qm) ofperiod m, n = mr, su
h thatp = (q1; : : : ; qm; q1; : : : ; qm; : : : ; q1; : : : qm) (2.1.8)Then we say that p is a repetition of the orbit q. The smallest m for whi
hde
omposition (2.1.8) is possible is 
alled the prime period of p and the 
or-responding r = n=m is 
alled the repetition number. If r = 1 we say that16



2.1. De�nitionsthe orbit is primitive. In the above notation ea
h orbit p 2 P 
orresponds tom = n=r sequen
es from eP.Example 4. If we denote � = (0; 1), � = (1; 2), 
 = (2; 0) for the graphs onFig. 2.1(a), the orbit (�; �; 
; �; �; 
) has the period 6, the prime period 3 andthe repetition 2. It 
orresponds to 3 di�erent sequen
es,[�; �; 
; �; �; 
℄ (2.1.9)[�; 
; �; �; 
; �℄ (2.1.10)[
; �; �; 
; �; �℄: (2.1.11)The graphs we will be 
onsidering are metri
, that is ea
h bond b has alength, Lb. Naturally, Lb = Lb. Note that we do not 
onsider whether it isgeometri
ally possible to have su
h a graph, e.g. we do not enfor
e the triangleinequality.As a rule, we will be assuming that the di�erent lengths are in
ommensu-rate (rationally independent) whi
h means that there are no integers ai 6= 0,su
h that Xi aiLbi = 0; (2.1.12)for some bonds fbig. The length of an orbit is de�ned as the sum of lengthsof the bonds it passes, lp = nXi=1 Lbi ; (2.1.13)where p = (b1; : : : ; bn).If individual lengths are in
ommensurate then two di�erent orbits havethe same length if and only if they pass through the same set of non-dire
tedbonds the same number of times (although in a di�erent order). An obvious
onsequen
e of this is that su
h orbits have the same period.The simplest example of two orbits of the same length is an orbit and its17



2.1. De�nitions

Figure 2.2: Two di�erent orbits with the same length.reversal: p = (b1; b2; : : : ; bn) (2.1.14)p = �bn; : : : ; b2; b1� :A less trivial example is shown on Fig. 2.2.More rigorously, we asso
iate with ea
h orbit a B-dimensional integer ve
-tor with nonnegative 
omponentsp 7! s 2 NB0 ; (2.1.15)where N0 = f0; 1; : : :g. Here the 
omponents si indi
ate the numbers of timesthe orbit passes through the nondire
ted bond bi. Following [25℄ we 
all si thebond staying rates. Then two orbits have the same length if and only if they
orrespond to the same ve
tor s. Sometimes to indi
ate that a ve
tor from NB0
orresponds to the orbit p we will write s(p) instead of just s.De�nition 6. Two orbits belong to the same degenera
y 
lass if they have thesame length or, equivalently, if they 
orrespond (2.1.15) to the same ve
tor s.In order to 
onsider fun
tions on the graph we identify ea
h dire
ted bondb with the interval [0; Lb℄. This gives us a lo
al variable xb on the bond b; itsgeometri
al meaning is the distan
e from the initial vertex. Note that if thebond �b is the reverse of the bond b then x�b = Lb � xb. The meaning of the18



2.1. De�nitionsequality sign is that both x�b and Lb�xb refer to the same geometri
al positionon the bond. Now one 
an de�ne a fun
tion on a bond and, therefore, de�nea fun
tion on the whole graph as a 
olle
tion of fun
tions on all bonds of thegraph. To ensure that the fun
tion is well de�ned we impose the 
ondition	b(xb) = 	�b (Lb � xb) for all b 2 B; (2.1.16)where 	b and 	�b are the 
omponents of a fun
tion 	 on the whole graph,de�ned on the dire
ted bonds b and �b 
orrespondingly. In this way we havethat the derivatives depend on the dire
tion of the bond,	0b(xb) = �	0�b (Lb � xb) for all b 2 B; (2.1.17)and the integrals do not,Z Lb0 	b(xb)dxb = Z Lb0 	�b(x�b)dxb: (2.1.18)One 
an also de�ne the s
alar produ
t of two integrable fun
tions 	 and� as the sum of the integralsZ Lb0 	(xb)�(xb)dxb (2.1.19)over all b 2 B. This s
alar produ
t de�nes the spa
e L2(G).The fun
tions 	 2 L2(G) whi
h will be of interest to us are those whi
hare twi
e di�erentiable on the bonds (on the endpoints the derivatives are one-sided) with their se
ond derivative being in L2(G) again. In addition theysatisfy the following 
onditions:	(i;j)(0) = 	(i;k)(0) for any i; j; k 2 V; (2.1.20)i.e. 	 is 
ontinuous on verti
es andXj : Ci;j=1 ddx	(i;j)(0) = 0; (2.1.21)the so-
alled 
urrent 
onservation 
ondition. The spa
e of all fun
tions satis-fying all the above 
onditions on a graph G we denote by F(G).19



2.1. De�nitionsWe are interested in the eigenspe
trum of the operator � d2dx2 a
ting on thefun
tions from F(G), namely the numbers k > 0 for whi
h the equation� d2dx2	 = k2	; 	 2 F(G) (2.1.22)has a nontrivial solution. We will show that there is a dis
rete (no a

umulationpoints) unbounded set fkig1i=0 2 R satisfying this 
ondition.De�nition 7. The set of values fkig1i=0 for whi
h Eq. (2.1.22) has a solutionis 
alled the quantum spe
trum of the graph G. To underline that we are
onsidering the properties of the quantum spe
trum we will sometimes referto G as quantum graph.It is important to verify that the operator � d2dx2 is self-adjoint. Indeed, ona bond b one hasZ Lb0 d2dx2b	b(xb)�b(xb)dxb = �d	bdxb �b �	bd�bdxb �Lb0 + Z Lb0 	b(xb) d2dx2b�b(xb)dxb:(2.1.23)Substituting the boundary values into the �rst summand on the right-handside and remembering Eq. (2.1.17) we obtain�d	bdxb �b�Lb0 = �d	bdxb (0)�b(0)� d	�bdx�b (0)��b(0): (2.1.24)When we sum su
h expressions over all bonds they 
an
el due to the 
ondi-tions (2.1.20) and (2.1.21), for exampleXb2B d	bdxb (0)�b(0) = X(i;j)2B d	(i;j)dx(i;j) (0)�(i;j)(0)=Xi2V �(i;j)(0) Xj : (i;j)2B d	(i;j)dx(i;j) (0) =Xi2V �(i;j)(0)� 0 = 0; (2.1.25)where we took out the fa
tor �(i;j)(0) sin
e it does not depend on j due to
ondition (2.1.20). Contributions of the se
ond summand of the right-handside of Eq. (2.1.23) disappear in exa
tly the same manner. This shows thatthe operator � d2dx2 is symmetri
. 20



2.2. Derivation of the quantization 
onditionIt is also 
lear that in order to haveXb2B �d	bdxb �b � 	bd�bdxb �Lb0 = 0 (2.1.26)for a �xed � and any 	 satisfying the 
onditions (2.1.20) and (2.1.21), thefun
tions � must satisfy these 
onditions as well1 whi
h means that the do-main of the de�nition of the adjoint operator 
oin
ides with F(G). Thus theoperator � d2dx2 is self-adjoint.Proposition 1. The set fkig1i=0 is real, unbounded and dis
rete.Proof. The above statement follows from the fa
t that the operator � d2dx2 isself-adjoint and the graph (as the domain of de�nition of fun
tions from F(G))is 
ompa
t (see, for example, [35℄).2.2 Derivation of the quantization 
onditionThe general solution to Eq. (2.1.22) reads	(i;j)(x) = A(i;j) exp f�ikxg +B(i;j) exp fikxg ; (2.2.1)where A(i;j) and B(i;j) are arbitrary 
oeÆ
ients that are to be �xed when weapply the boundary 
onditions, Eqs. (2.1.20) and (2.1.21).First of all, imposing 
ondition (2.1.16) we obtain the following relation,B(i;j) = A(j;i) exp ��ikL(i;j)	 : (2.2.2)Then, the 
urrent 
onservation 
ondition at the vertex i, Eq. (2.1.21), gives�ik Xj A(i;j) �Xj B(i;j)! = 0: (2.2.3)On the other hand we have the 
ontinuity 
ondition, Eq. (2.1.20), whi
h givesA(i;j) +B(i;j) = A(i;n) +B(i;n) (2.2.4)1This statement easily follows from the fa
t that it is possible to 
onstru
t 	 2 F(G)satisfying 	(i;j)(0) = �i and d	bdxb (0) = �b for any given numbers f�ig and f�bg.21



2.2. Derivation of the quantization 
onditionfor any verti
es j and n adjoint to the vertex i.For a �xed n we sum equations (2.2.4) over all j adjoint to i:Xj A(i;j) +Xj B(i;j) = �A(i;n) +B(i;n)� vi; (2.2.5)where vi is the valen
y of the vertex i. Together with Eq.(2.2.3) it gives2Xj A(i;j) = �A(i;n) +B(i;n)� vi: (2.2.6)Now we use relation (2.2.2) to eliminate the 
oeÆ
ients B(i;n). Thus we arriveto the equation2Xj A(i;j) = vi �A(i;n) + A(n;i) exp ��ikL(i;n)	� (2.2.7)and, therefore,A(n;i) = exp �ikL(n;i)	 2vi Xj A(i;j) � A(i;n)! = D(n;i)(n;i)X(i;j) S(n;i)(i;j)A(i;j):(2.2.8)Here we denoted S(n;i)(i;j) = 2vi � Æj;n; (2.2.9)where Æj;n is the Krone
ker delta, andD(n;i)(n;i) = exp �ikL(n;i)	 : (2.2.10)Thus we have a set of linear autonomous equations with respe
t to the 
oef-�
ients A(i;j) and we are looking for its nonzero solutions. Equations (2.2.8)
an be rewritten as the matrix equationa = DSa; (2.2.11)where a is the ve
tor of the 
oeÆ
ients A(i;j) and 2B � 2B matri
es S andD(k) are formed out of the matrix elements D(n;i)(n;i) and S(n;i)(i;j) spe
i�edby Eqs. (2.2.9) and (2.2.10). The elements of the matri
es S and D(k) thatare not spe
i�ed are assumed to be zero. Thus we obtain the following matrix
ondition on k 22



2.3. Properties of the matrix DS. Tra
e formula.Theorem 1. The system of equations (2.1.20){(2.1.22) has nontrivial solu-tions if and only if k is a solution of the equationdet (I�DS) = 0; (2.2.12)where the matrixD is diagonal with k-dependent elements given by Eq. (2.2.10)and the matrix S, with the elements given by Eq. (2.2.9), does not depend onk.2.3 Properties of the matrix DS. Tra
e for-mula.The foremost property of the matrix DS is unitarity. Indeed, the matrixD = eikL, where L is the diagonal matrix 2B � 2B of lengths Lb, is unitaryand the matrix S is real and 
an have nonzero elements only in the pla
es
orresponding to 1s of the matrix B. Thus the s
alar produ
t of (n; i)-th rowwith (k; l)-th row is always zero if i 6= l. Further, the matrix S has vi � 1elements 2=vi and one element 2=vi � 1 in the row (n; i). The number ofnonzero elements is independent of n but the position of the element 2=vi � 1does depend on n. Therefore if l = i but k 6= n then the 
orresponding s
alarprodu
t is equal toX(l;m)2B S(n;i)(l;m)S(k;i)(l;m) = 2� 2vi � 2vi � 1�+ (vi � 2)� � 2vi�2 = 0: (2.3.1)If both l = i and k = n, one getsX(l;m)2B S2(n;i)(l;m) = � 2vi � 1�2 + (vi � 1)� � 2vi�2 = 1; (2.3.2)whi
h proves the unitarity of the matrix S.Sin
e the matrix DS is unitary, its eigenvalues have the form �ei�l(k)	2Bl=1.We would like to prove the estimate0 < minb2B Lb � d�ldk � maxb2B Lb for all l = 1; : : : ; 2B: (2.3.3)23



2.3. Properties of the matrix DS. Tra
e formula.Let jv(k)i be the unit eigenve
tor 
orresponding to the eigenvalue ei�l(k) (inwhat follows we omit the subs
ript l). Di�erentiating the equationD(k)Sjv(k)i = ei�(k)jv(k)i (2.3.4)with respe
t to k we obtaindDdk Sjv(k)i+DSjv0(k)i = i d�dkei�jv(k)i+ ei�jv0(k)i; (2.3.5)where dDdk = iLD. Sin
e v is orthogonal to its derivative (v(k) belongs to theunit sphere for all k) and sin
e hvjDS = e�i�hvj , by multiplying Eq. (2.3.5)by hvj we arrive to hvjiLDSjvi = hvjiei� d�dkvi; (2.3.6)whi
h together with Eq. (2.3.4) leads tod�dk = hvjLjvi =Xb2B Lbjvbj2: (2.3.7)The estimate of Eq. (2.3.3) now easily follows.Theorem 1 tells us that we should be looking for the zeros of the determi-nant det (I�DS). The determinant is zero if and only if one of the eigenvaluesof DS is equal to 1 or, in other terms, �l(k) = 0 modulus 2� for some l. Thuswe 
an write d(k) �Xn Æ(k � kn) = 2BXl=1 Æ2�(�l(k)) ����d�ldk ���� ; (2.3.8)where Æ is the Dira
 delta fun
tion and Æ2� is the 2�-periodi
 Dira
 delta:Æ2�(x) = P1k=�1 Æ(x � 2�k). The fun
tion d(k) de�ned above is 
alled thespe
tral density fun
tion. It has the delta peaks at the values of k that we areinterested in. Expanding the fun
tion Æ2� as the Fourier seriesÆ2�(x) = 12� 1Xn=�1 eixn; (2.3.9)
24



2.3. Properties of the matrix DS. Tra
e formula.and noti
ing that the estimate (2.3.3) allows us to remove the modulus sign,we 
ontinued(k) = 12� 2BXl=1 1Xn=�1 ei�l(k)nd�ldk= 12� ddk 2BXl=1 �l(k) + 12� ddk 1Xn=1 1in 2BXl=1 �ei�l(k)n � e�i�l(k)n�= 12� ddk 2BXl=1 �l(k) + 1�= ddk 1Xn=1 1n 2BXl=1 ei�l(k)n= 12� ddk 2BXl=1 �l(k) + 1�= ddk 1Xn=1 1nTr(DS)n: (2.3.10)To simplify the �rst summand we noti
e that the determinant of the matrixDS is given by detDS = eikP2Bb=1 Lb detS = �eikP2Bb=1 Lb: (2.3.11)Alternatively, using the de�nition of the eigenphases f�lg2Bl=1,detDS = eiP2Bl=1 �l(k) (2.3.12)whi
h leads to ddk 2BXl=1 �l(k) = 2BXb=1 Lb � L: (2.3.13)Now we 
an expand the tra
es in the se
ond summand of Eq. (2.3.10) in termsof the matrix elements,Tr(DS)n = Xb1;::: ;bn(DS)b1b2(DS)b2b3 � � � (DS)bnb1= Xb1;::: ;bn eik(Lb1+Lb2+:::+Lbn )Sb1b2Sb2b3 � � �Sbnb1 ; (2.3.14)where [b1; b2; : : : ; bn℄ are all possible sequen
es of edges. However sin
e Sbkbk+1is nonzero only if Bbkbk+1 6= 0, the only nonzero terms in the sum (2.3.14)
orrespond to [b1; b2; : : : ; bn℄ 2 fPn. Introdu
ing the notationAp � nYi=1 Sbibi+1; where p = [b1; b2; : : : ; bn℄ and bn+1 = b1; (2.3.15)25



2.4. Geometri
 meaning of the matrix Swe write Tr(DS)n = Xp2fPn Apeiklp = Xp2Pn nrpApeiklp ; (2.3.16)where the summation now is over the periodi
 orbits, lp is the length of theorbit p, Eq. (2.1.13), and rp is the repetition number of the orbit p.Substituting this expression for the tra
e into Eq. (2.3.10) we arrive to whatwe will refer to as the tra
e formulad(k) �Xn Æ(k � kn) = L2� + 1�Xp2P lprpAp 
os(klp): (2.3.17)It will provide the basis for our analysis sin
e it establishes a link betweenthe periodi
 orbits of the graph and its quantum spe
trum. To the best ofour knowledge, this tra
e formula was �rst dis
overed by Roth [17℄. It wasthen independently derived by Kottos and Smilansky [19, 20℄ who pro
eededto analyse the statisti
s of the spe
trum.2.4 Geometri
 meaning of the matrix STo understand the geometri
 meaning of the matrix S it is helpful to representthe general solution to Eq. (2.1.22) in the form	(i;j)(x) = A(i;j) exp ��ikx(i;j)	 + A(j;i) exp��ikx(j;i)	 ; (2.4.1)whi
h is obtained by substitution of Eq. (2.2.2) into Eq. (2.2.1). Thus one 
an
onsider the wave on the nondire
ted bond (i; j) as the superposition of thewave travelling from j to i with the amplitude A(i;j) and the wave travellingfrom i to j with the amplitude A(j;i).The wave dynami
s is realised through the matrix DS: all the waves A(i;j)arriving to the vertex i 
ontribute to the outgoing amplitude A(n;i) with theweights S(n;i)(i;j). Then, as the wave travels along the bond (i; n), it a
quiresthe phase shift D(n;i)(n;i). The eigenfun
tions of the operator � d2dx2 are those26



2.4. Geometri
 meaning of the matrix Sfun
tions 	 (or indeed the ve
tors of amplitudes A(i;j)) whi
h are invariantunder the wave dynami
s de�ned above.If we square the matrix elements of S, i.e. 
onsider the matrixM with theelements de�ned by M(i;j)(n;i) = ��S(n;i)(i;j)��2 ; (2.4.2)it is easy to see that the matrixM is sto
hasti
, that is the sum of the elementsin ea
h row is equal to 1. Su
h matrix de�nes a Markov pro
ess on the graphG with ��S(n;i)(i;j)��2 being the probability to go from the bond (i; j) to thebond (n; i). One 
an 
onsider this pro
ess as a 
lassi
al analogue of our wavedynami
s.It is possible to generalise the matrix S in the view of the above 
onsidera-tions. Assume without loss of generality that the bonds numbered b1, b2, : : : ,bvi lead to the vertex i. Let S(i) be a vi � vi unitary matrix. Then we 
an putthe elements of the matrix S(i) instead of some elements of S in the followingmanner Sbkbn = S(i)kn: (2.4.3)This substitution will not 
hange the unitarity of S and we 
an 
onsiderthe generalised problem [23℄det (I�D(k)S) = 0; (2.4.4)where S is now the 
hanged matrix. The matrix S(i) is then 
alled the s
atteringmatrix at the vertex i. The diagonal elements of the matrix S(i) will be 
alledre
e
tion (or ba
ks
attering) amplitudes and will be often denoted by r. Theo�-diagonal will be 
alled transmission (or normal s
attering) amplitudes andwill be denoted by t.It 
an be shown that 
hanging the matrix S(i) 
orresponds to 
hoosingdi�erent boundary 
onditions at the vertex i.27



2.5. Smoothed tra
e formula2.5 Smoothed tra
e formulaThe tra
e formula as shown in Eq. (2.3.17) is exa
t: the right-hand side isa 
onvergent, in the sense of distributions, series whose sum is equal to thespe
tral density. However for some mathemati
al proofs it is more 
onvenientto 
onsider an approximation to the spe
tral density fun
tion whi
h is obtainedby smoothing the delta-peaks of the density fun
tion.Let ��(k) be a family of 
ontinuous fun
tions 
onvergent to the Dira
 deltafun
tion in the sense of distributions as �! 0. Then the approximate spe
traldensity d�(k) is equal to the 
onvolution of the density d(k) with the fun
tion��(k). As an example we 
an take��(k) = 1p��e�k2=�2 (2.5.1)so that d�(k) =Xn 1p��e�(k�kn)2=�2: (2.5.2)Now the 
orresponding approximation of the tra
e formula is also given bythe 
onvolution with ��(k),d�(k) = L2� + 1�Xp lprpAp Z 1�1 1p�� 
os (lp�) e�(k��)2=�2d�= L2� + 1�Xp lprpAp 
os (lpk) e�l2p�2=4: (2.5.3)Eq. (2.5.3) is easier to handle be
ause the fa
tors e�l2p�2=4 improve the 
onver-gen
e of the series. From the weak 
onvergen
e (
onvergen
e in the sense ofdistributions) of Eq. (2.3.17) we now move to the uniform 
onvergen
e for any� > 0.
28



2.6. Spe
tral statisti
sTo see it we write����� 1Xn=N Xp2Pn lprpAp 
os (lpk) e�l2p�2=4������ 1Xn=N X̀ �������Xp2Pnlp=` lprpAp 
os (lpk) e�l2p�2=4�������� 1Xn=N X̀ ` 
os (`k) e�`2�2=4 Xp2Pnlp=` ����Aprp ����� 1Xn=N nLmaxb e�(nLminb )2�2=4X̀ Xp2Pnlp=` ����Aprp ����/ 1Xn=N nLmaxb e�(nLminb )2�2=4nB�1; (2.5.4)where we sorted the orbits a

ording to their lengths (i.e. degenera
y 
lasses)and then used the estimates from Appendix A.1 in the last line.2.6 Spe
tral statisti
sHere we introdu
e the main obje
ts of our study: the spe
tral statisti
s asso-
iated with the spe
trum of the quantum graphs. The aim of this Se
tion is toexpress the spe
tral statisti
s in the form of sums over periodi
 orbits with theaid of the tra
e formula (2.3.17). Although for 
ompleteness we in
lude dis
us-sions of 
onvergen
e of the spe
tral statisti
s, the material dire
tly relevant tothe subsequent investigations is wholly 
ontained in equations (2.6.1), (2.6.5),(2.6.6), (2.6.22), and (2.6.26), (2.6.30). These equations give the de�nitionsand the periodi
 orbit expansions of the mean density, two-point 
orrelationfun
tion and the form fa
tor 
orrespondingly.
29



2.6. Spe
tral statisti
s2.6.1 Average densityThe average (mean) density of the eigenspe
trum is de�ned byd � hd(k)ik � limT!1 1T Z T0 d(k)dk (2.6.1)and its meaning is the average number of the eigenvalues kn per interval ofunit length.De�ne d(T ) = 1T Z T0 d(k)dk (2.6.2)d�(T ) = 1T Z T0 d�(k)dk: (2.6.3)We in
lude the following Proposition without proof.Proposition 2. If the fun
tion �� is su
h that R ��(x)dx = 1 and ��(x) > 0for all x then for the 
orresponding d�,limT!1 d�(T ) = limT!1d(T ): (2.6.4)The equality of the limits here means that the limits either both do not exist orboth exist and are equal.Now we 
an integrate the series (2.5.3) and take the limit termwise (we 
ando it sin
e the series is uniformly 
onvergent) to obtaind = L2� ; (2.6.5)where L = Pb2B Lb. In the following we will usually res
ale the spe
traldensity, i.e. 
onsider 1dd�kd�. The mean spa
ing between two eigenvalues ofsu
h res
aled density is equal to one.2.6.2 Two-point 
orrelation fun
tionThe two-point 
orrelation fun
tion is de�ned byR2(x) � �2�L �2�d(k)d�k + 2�xL ��k (2.6.6)� �2�L �2 limT!1 1T Z T0 d(k)d�k + 2�xL � dk:30



2.6. Spe
tral statisti
sAs it 
an easily be shown from the de�nition, the fun
tion R2 is even.If we assume, for simpli
ity, that L = 2� then the two-point 
orrelationfun
tion R2(x) 
an be also expressed asR2(x) = limM!1 1M MXm=0 1Xn=0 Æ�x� (kn � km)�; (2.6.7)or it 
an be de�ned by its a
tion on a test fun
tion h(x),hh;R2i = limM!1 1M MXm=0 1Xn=0 h(kn � km): (2.6.8)From these equalities the meaning of the fun
tion R2(x) 
an be easily under-stood. For example, if we take h(x) to be normalised 
hara
teristi
 fun
tionof an interval2, one 
an see that hh;R2i 
ounts the average number of 
ouplesof eigenvalues whose di�eren
e lies in the interval. Basing on Eq. (2.6.7) one
an also say that R2(x) is the density fun
tion of all possible di�eren
es ofeigenvalues.We de�ne the smoothed two-point 
orrelation fun
tion byR2;�(x) � �2�L �2 limT!1 1T Z T0 d�(k)d��k + 2�xL � dk (2.6.9)where d�(k) =Pn ��(k � kn) with ��(k)! Æ(k) as �! 0.A proposition similar to Proposition 2 
an be formulated for the two-point
orrelation fun
tion.Proposition 3. Let Æ(k) = lim�!0 ��(k), with ��(k) 
ontinuous and nonnega-tive. If there exists the average density d and if the fun
tion R2;�(x), as de�nedby Eq. (2.6.9), exists for some �0 then it exists for all � andlim�!0 (R2;�(x)�R2(x)) = 0 (2.6.10)in the weak sense.2although it is not a test fun
tion, under 
ertain 
onditions Eq. (2.6.8) will still makesense 31



2.6. Spe
tral statisti
sProof. We will give a s
hemati
 proof for the 
ase when the approximatingfun
tions �� have 
ompa
t support. If we additionally require that �� arefrom C1 than their 
onvolution with 
os(lpk) will produ
e fa
tors de
ayingexpronentially fast with lp. Su
h fa
tors will play the role of e�l2p�2=4 in a prooflike in Eq. (2.5.4).Let the fun
tions �� have their support inside the interval [�a; a℄. We alsoassume, for simpli
ity, that L = 2�.Then for a �xed x and � we 
an estimate1T Xa<km<T�aa<x+kn<T�a��(x� (kn � km)) � 1T Z T0 d�(k)d�(k + x)dk (2.6.11)� 1T X�a<km<T+a�a<x+kn<T+a��(x� (kn � km));where ��(k) = Z 1�1 ��(�)��(�+ k)d�: (2.6.12)The fun
tion �� is bounded thus the di�eren
e between the left and the rightestimate in Eq. (2.6.11) is in the number of the eigenvalues in two intervals,[�a; a℄ and [T � a; T + a℄. Su
h number, divided by T , must de
rease to zeroas T !1 (otherwise the average density d would not exist). Thus we haveR2;�(x) = limM!1 1M MXm=0 1Xn=0 �� (x� (kn � km)) ; (2.6.13)The fun
tions ��(k) have support in the interval [�2a; 2a℄ and also 
onvergeto delta fun
tions as �! 0.Introdu
e the notationF�(M;x) = MXm=0 1Xn=0 �� (x� (kn � km)) ; (2.6.14)F (M;x) = MXm=0 1Xn=0 Æ (x� (kn � km)) : (2.6.15)We would like to prove that for any test fun
tion h(x) with support in [�b; b℄,lim�!0 � limM!1 1M DF (M;x)� F�(M;x); h(x)E� = 0: (2.6.16)32



2.6. Spe
tral statisti
sSin
e the fun
tions ��(k) approximate Æ(k), we havejhÆ(x� k)� ��(x� k); h(x)ij � �(�)! 0; (2.6.17)as �! 0 for any �xed h(x) and for all values of the shift k.Now we 
an estimate���DF (M;x)� F�(M;x); h(x)E��� < N(M)�(�); (2.6.18)where N(M) is the number of pairs kn, km su
h that the support of the fun
tion�� (x� (kn � km)) overlaps with support of h(x). In other words, it is numberof pairs of eigenvalues kn, km su
h that m < M and kn�km 2 [�2a�b; 2a+b℄.The existen
e of R�0(x) for some �0 implies that limM!1N(M)=M is bounded.This remark proves Eq. (2.6.16).Using Proposition 3, we substitute Eq. (2.5.3) into de�nition (2.6.9) toobtainR2;�(x) = �2�L �2 limT!1 1T Z T0 " L2� �d�(k) + d��k + 2�xL �� L2�� (2.6.19)+ 1�2 Xp;q lplqrprqApAq 
os (lpk) 
os�lqk + lq L2�� e�(l2p+l2q)�2=4#dk;where the double series in the se
ond line is uniformly 
onvergent with re-spe
t to k. The integration of the summand in the �rst line produ
es (
.f.Subse
tion 2.6.1) 2�L �d+ d� L2�� = 1; (2.6.20)while in the se
ond line we expand the produ
t of 
osines
os (lpk) 
os�lqk + lq 2�xL � = 12 �
os�(lq � lp)k + lq2�xL �+ 
os�(lp + lq)k + lq2�xL �� : (2.6.21)Now when we integrate and take the termwise limit, the only terms left willbe those whi
h had the 
oeÆ
ient of k in the 
osine being equal to zero. Thus33



2.6. Spe
tral statisti
sfrom the double sum only the pairs of periodi
 orbits with equal length willsurvive,R2;�(x) = 1 + 2L2 Xp;q2P lplqrprqApAq 
os�lq2�xL � e�(l2p+l2q)�2=4Ælp;lq= 1 + 2L2 Xs `2 
os�lq2�xL � e�`2�2=20� Xs(p)=s Aprp 1A2 ; (2.6.22)where ` is the length of the periodi
 orbits from the degenera
y 
lass s and thesymbol Ælp;lq is equal to 1 if lp = lq and is 0 otherwise. Using Theorems 3 and4 from Appendix A.1 one 
an show that the series in Eq. (2.6.22) is 
onvergentuniformly in x for any value of � > 0. Thus R2;�(x) exists and 
onverges toR2(x) as �! 0.Remark 2. The main (and only) e�e
t of the averaginglimT!1 1T Z T0 � dk; (2.6.23)was to remove the 
osines, as in Eq. (2.6.21), when lp 6= lq and thus restri
tthe summation in (2.6.22) to the pairs of orbits of the same length. Anotherway to a
hieve this is to average with respe
t to individual bond lengths andthen send k to in�nity,limk!1Z L0+�LL0 � � �Z L0+�LL0 
os ((lq � lp)k + �) dL1�L � � � dLB�L = Ælp;lq 
os�: (2.6.24)The above follows from the representationslp = BXi=0 si(p)Li; lq = BXi=0 si(q)Li; (2.6.25)where si(p) is the staying rate of the orbit p on the ith bond, and the fa
tthat unless si(p) = si(q), the integration with respe
t to Li will produ
e afa
tor of order k�1. Thus the averaging de�ned in (2.6.24) is formally equiv-alent to averaging (2.6.23), although it is hard to justify it more rigorously.Averaging (2.6.24) will be employed in Chapter 5.34



2.6. Spe
tral statisti
s2.6.3 The form fa
torAnother fun
tion asso
iated with the spe
trum is the form fa
tor K(�). Theform fa
tor K(�) is the Fourier transform (in the generalised sense) of thetwo-point 
orrelation fun
tionK(�) � Z 1�1(R2(x)� 1) exp(2�ix�)dx: (2.6.26)Sin
e the Fourier transform is 
ontinuous, we 
an write K(�) = lim�!0K�(�),where K�(�) � Z 1�1(R2;�(x)� 1) exp(2�ix�)dx: (2.6.27)Taking the Fourier transform termwise usingZ 1�1 e2�ix� 
os�2�xlpL � dx = 12Æ�� + lpL� + 12Æ�� � lpL� ; (2.6.28)we arrive toK�(�) = 1L2 Xp;q2P lprp lqrqApAqÆ�� � lpL� e�(l2p)�2=2Ælp;lq ; (2.6.29)for � > 0 (the form fa
tor is even: K(��) = K(�)). Now we 
an take thelimit �! 0 termwise to �nally obtain the periodi
 orbit expansion of the formfa
tor, K(�) = 1L2 Xp;q2P lprp lqrqApAqÆ�� � lpL� Ælp;lq: (2.6.30)In the next 
hapter we derive an expansion for the form-fa
tor for star-graphs (see Example 3) starting with Eq. (2.6.30) and then \enumerating" theperiodi
 orbits and the degenera
y 
lasses.
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Chapter 3
Form-fa
tor for the star graphs
In this 
hapter we study the form-fa
tor K(�) (de�ned by Eqs. (2.6.26-2.6.30))in the limit B ! 1 for a spe
ial family of graphs, known as star graphs.These are graphs with B+1 verti
es marked 0 to B and with the set of bondsB = f(0; i); (i; 0) : i = 1 : : : Bg; see Fig. 2.1. For simpli
ity we shall numberthe (nondire
ted) bonds by the number of their outward endvertex. For stargraphs the valen
y of the vertex 0 is B and the valen
y of the other verti
es is1 whi
h signi�
antly simpli�es the matrix S; for example, the ba
ks
atteringfrom the verti
es 1 : : : v has the weight 1. We shall 
all su
h ba
ks
atteringstrivial. As for the transitions through the vertex 0, the ba
ks
attering hasthe weight r = B�2B while normal s
attering has the weight t = 2=B. Thus itis 
lear that in the limit B ! 1 the leading-order 
ontributions 
ome fromorbits with the maximum number of nontrivial ba
ks
atterings. This will formthe basis of our analysis.
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3.1. Expansion of the form fa
tor3.1 Expansion of the form fa
tor3.1.1 General formulaeIn Se
tion 2.6.3 we derived an expansion of the form-fa
tor in terms of theperiodi
 orbits,K(�) = 1L2 1Xn=2 Xp;q2Pn lprp lqrqApAqÆ�� � lpL� Ælp;lq ; (3.1.1)when � > 0 (K is an even fun
tion). Loosely speaking, the form fa
tor isa sum of delta-fun
tions positioned at the lengths of the periodi
 orbits andweighted by the fa
tors Ap. A very important fa
tor in Eq. (3.1.1) is the
oupling between di�erent orbits of the same length whi
h is present due tothe Krone
ker delta. It shows that the 
ontribution 
omes only from the
ouples of orbits p and q whi
h belong to the same degenera
y 
lass.Let us 
onsider the 
ontribution of a parti
ular degenera
y 
lass 
hara
-terised by the length ` of its orbits,Xp;q : lp=lq=` r̀p r̀qApAqÆ�� � L̀� = `2Æ�� � L̀�0� Xp2Pn : lp=` Aprp 1A2 : (3.1.2)This allows us to writeK(�) = 1L2 1Xn=2 X̀ `2Æ�� � L̀�0� Xp2Pn; lp=` Aprp 1A2 ; (3.1.3)where the �rst (outmost) sum is over all periods, the se
ond is over all degen-era
y 
lasses, parametrised here by the length `, and the last is over the orbitswithin the degenera
y 
lass.In this Chapter we aim to 
al
ulate the weak limit of K(�) as B !1 andour approa
h is best des
ribed with the aid of Fig. (3.1). On the s
hemati
drawing of the form fa
tor for a B = 3 star graph the individual lengths of thebonds are 
hosen in su
h a way that the delta fun
tions 
orresponding to thedegenera
y 
lasses of the period 2k (on star graphs all orbits have even period)37



3.1. Expansion of the form fa
tor
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Figure 3.1: S
hemati
 plot of the form fa
torK(�) and its approximation eK(�)for a 3-star graph. The delta fun
tions are denoted by arrows pointing up.are 
lustered around the point k=B. Then we 
an integrate K(�) against the
hara
teristi
 fun
tions of the intervals of the size 1=B around these pointsobtaining the stair
ase approximation to the form fa
tor whi
h we denote byeK(�). Ea
h step in eK(�) 
olle
ts in itself all 
ontributions from orbits of thesame period. It is easy to see that eK(�) and K(�) have the same weak limitas B ! 1, therefore it is enough to study the approximation eK(�). The
ondition on the bonds lengths and the details of the integration are des
ribedbelow.We assume that the individual lengths of the edges are densely distributedaround their average, whi
h, without loss of generality, we take to be unity.Pi
king the lengths at random does not 
ontradi
t our usual 
ondition thatthe lengths should be in
ommensurate. In fa
t, having 
ommensurate lengthsis an event of zero probability.For example, we 
an use the uniform distribution on the interval [1 �1=(2B); 1 + 1=(2B)℄ in su
h a way that L = 2B. Note that the distribution
hanges with the valen
y B. This is done in su
h a way that the orbits of period38



3.1. Expansion of the form fa
tor2k have their lengths distributed in the interval [2k � k=B; 2k + k=B℄ and,therefore, when k=B � 1 the 
orresponding delta fun
tions are 
on
entratedin the interval � kB � k2B2 ; kB + k2B2� � � kB � 12B; kB + 12B� : (3.1.4)Thus the 
ontribution from orbits of di�erent period will be 
on�ned to non-interse
ting intervals if k < B. To approximate the form fa
tor around k=Bwe integrate it against the 
hara
teristi
 fun
tion of the 
orresponding interval� kB � 12B ; kB + 12B � and divide by the length 1=B of the interval. This 
ontri-bution is equal to eK(�) = BL2 X̀ `20� Xp2P2k; lp=` Aprp 1A2 (3.1.5)for � 2 � kB � 12B ; kB + 12B �. As mentioned above, eK(�) and K(�) have the sameweak limitK lim(�) as B !1 in the sense of distributions. In what will follow,to determine the value of the form fa
tor K at a point � we will send both Band k to in�nity in su
h a way that limk=B = � .Under the above 
onditions on the distribution of the lengths, the formfa
tor K(k=B) is well approximated by another quantity, hjTrS2kj2i=(2L), theperiodi
 orbit expansion for whi
h 
an be obtained from (3.1.5) by substituting` = 2k. In what follows we make the approximation ` � 2k (i.e. 
onsiderhjTrS2kj2i=(2L) instead of K(k=B)) but still refer to the resulting expressionas the form fa
tor.Sin
e the star graphs are spe
ial we will have to 
hange the 
onventionswe introdu
ed in Chapter 2, in order to simplify notation. For ea
h orbit thenumber of traversals of a given bond is even so throughout this Chapter we will
ount the traversals in one dire
tion only, e.g. from the 
entre to periphery.As before, ea
h degenera
y 
lass will be marked by a ve
tor s. However nowthe 
omponent si of the ve
tor s is the number of traversals of the bond i inthe outward dire
tion. When we write a symboli
 
ode for an orbit p, we also39



3.1. Expansion of the form fa
tor
3

1

4

5

2

orbit:   (1, 3, 4)

degeneracy class:

(1, 0, 1, 1, 0)

Figure 3.2: An example of simpli�ed notation for the periodi
 orbit and the
orresponding degenera
y 
lass.list only traversals of a bond in the outward dire
tion. For example to denotethe orbit passing through the bonds (0; 1), (1; 0), (0; 3), (3; 0), (0; 4) and (4; 0)su

essively, as depi
ted in Fig. 3.2, we will use the simpli�ed notation (1; 3; 4).Clearly this information is suÆ
ient to identify the orbit.We start by dividing all orbits into B groups, based on the number j ofdi�erent edges the orbit traverses. This number is an invariant of the degen-era
y 
lass; thus the sums over the degenera
y 
lasses will remain inta
t. Wewill be interested in the degenera
y 
lasses with exa
tly j nonzero 
omponentsin their ve
tor s and with jsj = Pvi=1 si = k, the half-period. Thus, writingthe symboli
 
ode for an orbit p from su
h a degenera
y 
lass, we get a se-quen
e of k symbols of j di�erent types. When we 
al
ulate the weight Apof the orbit, Eq. (2.3.15), ea
h pair of di�erent symbols standing next to ea
hother 
ontributes the fa
tor t = 2=B to Ap and ea
h pair of identi
al symbolsgives r = 2=B � 1. These 
ontributions multiply together to produ
e Ap, forexample the orbit (1; 1; 2; 2; 1; 3) givesAp = t4r2 = � 2B�4� 2B � 1�2 : (3.1.6)Note that the transition between last 3 and �rst 1 is also 
ontributing. Avery important feature of an orbit is the number of groups of identi
al symbolsstanding next to ea
h other. For example, the orbit (1; 1; 2; 2; 1; 3) has two40



3.1. Expansion of the form fa
torgroups of \1"s, one group of \2"s and one of \3"s. On the other hand, dueto the 
y
li
ity, the orbit (1; 2; 2; 1) has only one group of \1"s. It is 
learthat the number of transitions of the orbit through the 
entral vertex (thus
ontributing the fa
tor t) is given by the total number of the groups1. Thus to
al
ulate the 
ontribution from a degenera
y 
lass, it is ne
essary to know thenumber of orbits in this degenera
y 
lass that have gi groups of the symbol\i" in their representation, i = 1; : : : ; j. We denote su
h number by N g1;::: ;gjs1;::: ;sj .Then we 
an write for the 
ontribution of a degenera
y 
lass s0Xs(p)=s0 Aprp = s1Xg1=1 � � � sjXgj=1N g1;::: ;gjs1;::: ;sj tGrk�G; (3.1.7)where G =Pji=1 gi is the total number of groups. In order for Eq. (3.1.7) to beexa
t, the number N g1;::: ;gjs1;::: ;sj should take into a

ount the repetitions, i.e. 
ountan orbit whi
h is a repetition of another orbit not as 1 but as 1=rp.We now rewrite the 
ontribution of the degenera
y 
lass s in the formXs(p)=s Aprp = rk(t=r)j s1Xg1=1 � � � sjXgj=1N g1;::: ;gjs1;::: ;sj (t=r)G�j = rk(t=r)jDs(B) (3.1.8)and thus obtain from Eq. (3.1.5)K lim(�) = limB!1 eK(�) = limB!1 BL2 Xs (2k)2r2k(t=r)2jD2s(B)= K1(�) + limB!1 BL2 1Xj=2(2k)2�Bj ��B � 2B �2k � 2B � 2�2jHj(B)� 1Xj=1 Kj(�); (3.1.9)where� the term for j = 1 is slightly di�erent and has to be treated separately,� L = 2B is the total length of the graph,� (2k)2 is the approximate squared length of the orbits,1The only ex
eption to this rule are the orbits whi
h have 1 group in total, that is theorbits that are 
on�ned to one edge. Su
h orbits do not have fa
tors t in their 
oeÆ
ient Ap41



3.1. Expansion of the form fa
tor� the binomial 
oeÆ
ient �Bj � is the number of ways to 
hoose j traversededges out of the available B,� and Hj(B) = Xjsj=kD2s(B) (3.1.10)is the sum over all degenera
y 
lasses s 2 N j with all j 
omponentsnonzero.Taking the limit as B ! 1 in Eq. (3.1.9) termwise and with � = k=B�xed, we �ndK lim(�) = limB!1 eK(�) = K1(�) + 1Xj=2 4jj!Hj� 2 exp(�4�); (3.1.11)where Hj = limB!1B1�jHj(B) and the limitlimB!1�B � 2B �2k = limB!1�1� 1B=2�4�B=2 = exp(�4�) (3.1.12)was used.3.1.2 Cal
ulation of K1(�)K1(�) is the 
ontribution from the orbits whi
h are 
on�ned to only one edge.All fa
tors in K1(�) are the same as for general j, with the ex
eption thatthe fa
tor � 2B�2�2j disappears altogether. Indeed, the weight of an orbit whi
hpasses through only one bond is rk, not rk�1t. The number of orbits in adegenera
y 
lass is obvious for j = 1, it is N g1s1 = 1=k for g1 = 1 and 0 otherwise(here s1 = k). This number takes into a

ount the repetitions: there is onlyone orbit and it has rp = k.Adjusting the formula in Eq. (3.1.9) we obtainK1(�) = limB!1" BL2 (2k)2B�B � 2B �2k �1k�2# = exp (�4�) ; (3.1.13)where � = k=B was held �xed. 42



3.1. Expansion of the form fa
torAs we shall see later this is the dominant 
ontribution for small � : the next
ontribution 
oming form the orbits whi
h traverse only 2 di�erent bonds is oforder � 3 as � ! 0.3.1.3 The j = 2 
ontributionThe j = 2 
ontribution is relatively simple and 
an be 
onsidered separatelyto illustrate our approa
h. It has the formK2(�) = 422! � 2 exp(�4�)H2 (3.1.14)where H2 = limB!1 H2(B)B is the quantity we now want to 
al
ulate. Writingout the formula for H2(B) we arrive toH2 = limB!1 1B k�1Xs1=1D2(s1;k�s1); (3.1.15)with D(s1;s2)(B) being the 
ontribution from orbits whi
h traverses only twoedges s1 and s2 times respe
tively. Now we make use of the fa
t that as B !1the sum 
an be repla
ed by an integral, so thatH2 = Z �0 D2(q1; � � q1)dq1; (3.1.16)where D(q1; q2) is the B !1 limit of D(s1;s2)(B), qi = si=B and � = k=B, asbefore. D(s1;s2)(B) 
an be expanded asD(s1;s2)(B)= 1 + 12b(s1; 2)b(s2; 2)� 2B � 2�2 + 13b(s1; 3)b(s2; 3)� 2B � 2�4 + : : := 1Xg=1 1gb(s1; g)b(s2; g)� 2B � 2�2g�2 ; (3.1.17)where 2=(B � 2) = �t=r and b(s; g) = �s�1g�1� is the number of partitions of aninterval of length s into g non-interse
ting subintervals of integer length (seeSe
tion A.2 for the derivation). The idea of the de
omposition is based on the43



3.1. Expansion of the form fa
torfa
t that a j = 2 orbit may be represented in general as(1; : : : ; 1| {z }a1 ; b1z }| {2; : : : ; 2; 1; : : : ; 1| {z }a2 ; : : : ; 1; : : : ; 1| {z }ag ; bgz }| {2; : : : ; 2); (3.1.18)
orresponding to a1 traversals of the �rst edge, then b1 traversals of the se
ond,then another a2 of the �rst, and so on. Thus, as we see, g1 = g2 = g. Thesum Pgi=1 ai is equal to s1 and Pgi=1 bi = s2. In the general term in (3.1.17),b(s1; g) is the number of ways to de
ompose s1 into a sum of ai's, b(s2; g) is thenumber of ways to de
ompose s2 into a sum of bi's multiplied by the weightfa
tor (t=r)g1+g2�j and divided by g, whi
h 
orresponds to the 
y
li
 symmetryand takes 
are of the repetitions at the same time (as will be explained in detailin the next se
tion). There is no approximation involved in (3.1.17).Taking the limit B !1 of D(s1;s2)(B) termwise while keeping q1 = s1=B,q2 = s2=B �xed, we obtain2D(q1; q2) = 1 + 12q1q222 + 13 12!q21 12!q2224 + : : : (3.1.19)= 1Xg=1 (4q1q2)g�1g!(g � 1)! = I1 �4pq1q2�2pq1q2 ;where I1(x) is a Bessel fun
tion, and so, using the substitution q1 = (� +� 
os�)=2 we evaluateH2 = Z �0 I21 (4pq1(� � q1))4q1(� � q1) dq1 = 12� Z �0 I21 (2� sin�)sin� d�= 14� 2 (I1(4�)� 2�) : (3.1.20)Thus, K2(�) = 2 exp (�4�) (I1(4�)� 2�) : (3.1.21)Sin
e I1(4�) = 2� + 4� 3 +O(� 5), K2(�) is of order � 3 as � ! 0.2In this parti
ular 
ase it is possible to justify the validity of the termwise limit: individ-ual terms in D(s1;s2)(B) are in
reasing with B and the whole sum is bounded from abovebyD(3�; 3�). 44



3.1. Expansion of the form fa
tor3.1.4 Kj(�) for general jWe now pro
eed to 
al
ulate the degenera
y fa
tor Ds(B) of (3.1.8) for generalj. Without loss of generality we assume that the edges numbered 1 to j aretraversed. We are looking for the number N g1;::: ;gjs1;::: ;sj of all orbits whi
h passthrough the bond i si times in su
h a way that these traversals grouped intogi groups.Let us 
onsider a slightly di�erent problem. We want to 
ount the numberof all sequen
es of symbols, si symbols of the type i grouped into gi groups.We require the sequen
es to start with a group of 1s and to end with a groupof symbols di�erent from 1. The di�eren
e from the orbits is that we do notidentify the sequen
es obtained from one another by a shift. Ea
h orbit pwill then 
orrespond to g1=rp su
h sequen
es whi
h is best illustrated with anexample.Example 5. The orbit (1; 2; 1; 1; 3; 3; 1; 4) 
orresponds to 3=1 = 3 sequen
es[1; 2; 1; 1; 3; 3; 1; 4℄; [1; 1; 3; 3; 1; 4; 1; 2℄ and [1; 4; 1; 2; 1; 1; 3; 3℄: (3.1.22)The orbit (1; 2; 1; 1; 3; 1; 2; 1; 1; 3) with rp = 2 will 
orrespond to 4=2 = 2sequen
es [1; 2; 1; 1; 3; 1; 2; 1; 1; 3℄ and [1; 1; 3; 1; 2; 1; 1; 3; 1; 2℄: (3.1.23)Thus if we divide the number of all sequen
es, 
hara
terised by s1; : : : ; sjand g1; : : : ; gj, by g1 then we will obtain the number of all periodi
 orbits withthe repetitions already taken into a

ount. In fa
t, this is what was done inthe previous se
tion: we divided the number of all sequen
es, b(s1; g)b(s2; g),by the number of groups g1 = g.To obtain all possible sequen
es we follow the following algorithm. Firstwe divide the symbols i into gi groups. Then we mix the groups in su
h away that: (a) the order of the groups of the same symbol is preserved, (b) the�rst group of 1s 
omes �rst, (
) the last group is not a group of 1s and (d) no45



3.1. Expansion of the form fa
tor
11 − 1 − 11 222 333 − 3

1  1  1  1  1 2  2  2 3  3  3  3

11  333  1  222  11  3

11  333  1  3  11  222

11  222  1  333  11  3

Initial setup.

Step 1.

Step 2.

Figure 3.3: An example of produ
ing sequen
es satisfying 
onditions (a)-(d)for s1 = 5, s2 = 3, s3 = 4, g1 = 3, g2 = 1 and g3 = 2.two groups of the same symbols stand next to ea
h other. This algorithm isillustrated in Fig. (3.3).The number of possible sequen
es of the given stru
ture is thus given bythe produ
t of the available 
hoi
es at ea
h step,Rg1;::: ;gj jYi=1 �si � 1gi � 1�: (3.1.24)The �rst step produ
es the fa
tors b(si; gi) = �si�1gi�1�, where b(s; g) is the numberof de
ompositions of the integer s into a sum of g nonzero summands, seeSe
tion A.2. The se
ond step gives the fa
tor Rg1;::: ;gj whi
h is the number ofways to mix g1; : : : ; gj groups in su
h a way that 
onditions (a)-(d) are satis�edand whi
h is dis
ussed in detail in Se
tion A.3. This fa
tor, 
alled the numberof permutation without liaisons is equal toRg1;::: ;gj = (�1)Gg1 Xk1;::: ;kj (�1)k1+:::+kjk1 + : : :+ kj�k1 + : : :+ kjk1; : : : ; kj � jYi=1 �gi � 1ki � 1�;(3.1.25)Thus the number we are looking for, N g1;::: ;gjs1;::: ;sj , is given byN g1;::: ;gjs1;::: ;sj = (�1)G Xk1;::: ;kj (�1)KK � Kk1; : : : ; kj� jYi=1 �gi � 1ki � 1��si � 1gi � 1�; (3.1.26)46



3.1. Expansion of the form fa
torwhere we denoted K = k1 + : : :+ kj.Going ba
k to Ds(B) we obtain with the aid of Eq. (3.1.26)Ds(B) = s1Xg1=1 � � � sjXgj=1N g1;::: ;gjs1;::: ;sj � tr�G�j (3.1.27)= Xg1;::: ;gj �� tr�G�j (�1)j Xk1;::: ;kj (�1)KK � Kk1; : : : ; kj�� jYi=1 �gi � 1ki � 1��si � 1gi � 1�= (�1)j Xg1;::: ;gj Xk1;::: ;kj (�1)KK � Kk1; : : : ; kj�� jYi=1 �� tr�gi�1�gi � 1ki � 1��si � 1gi � 1�where, as before, G = Pji=1 gi and K = Pji=1 ki. Now we take the limitB !1 termwise keeping si=B = qi �xed�� tr�gi�1�si � 1gi � 1� = � 2B � 2�gi�1�si � 1gi � 1�! (2qi)gi�1(gi � 1)! : (3.1.28)We obtainD(q1; : : : ; qj) = Xg1;::: ;gj Xk1;::: ;kj (�1)KK � Kk1; : : : ; kj� jYi=1 (2qi)gi�1(gi � 1)!�gi � 1ki � 1�;(3.1.29)where the summation over gi goes from 1 to in�nity, ki goes from 1 to gi andwe dropped the fa
tor (�1)j be
ause D(q1; : : : ; qj) is going to be squared.Inter
hanging the summation signs and rearranging the general term in theprodu
t givesD(q1; : : : ; qj) = Xk1;::: ;kj Xg1;::: ;gj (�1)KK � Kk1; : : : ; kj� jYi=1 (2qi)gi�ki(gi � ki)! (2qi)ki�1(ki � 1)!= Xk1;::: ;kj (�1)KK � Kk1; : : : ; kj� jYi=1 (2qi)ki�1(ki � 1)! Xg1;::: ;gj jYi=1 (2qi)gi�ki(gi � ki)! ; (3.1.30)where now the summation over ki goes from 1 to in�nity and gi goes from ki toin�nity. Performing the summations over gis we get Qji=1 exp (2qi) and, sin
e47



3.1. Expansion of the form fa
torq1+ : : :+ qj = � and exp (q1 + : : :+ qj) � exp (q1)+ : : :+exp (qj), we arrive atD(q1; : : : ; qj) = exp(2�) Xk1;::: ;kj (�1)KK � Kk1; : : : ; kj� jYi=1 (2qi)ki�1(ki � 1)! ; (3.1.31)where the summation over ki goes from 1 to in�nity.For 
onvenien
e we shift the summation, ni = ki � 1,D(q1; : : : ; qj) = exp(2�) 1Xn1;::: ;nj=0(�2)N (N + j � 1)! jYi=1 qniini!(ni + 1)! ; (3.1.32)where N =Pji=1 ni. Using the fa
t on
e again that as B !1 the summationin (3.1.10) 
an be repla
ed by the integralHj = ZPji=1 qi=� D2(q1; : : : ; qj)dq1 : : : dqj�1; (3.1.33)where the integration is performed over j � 1 variables. It is 
lear that toperform the integration we need to do the integrals of the typeZPji=1 qi=� qm11 � � � qmjj dq1 : : : dqj�1: (3.1.34)For 
ompleteness we in
lude the derivation of this integral for j = 3. We haveZq1+q2+q3=� qm11 qm22 qm33 dq1dq2dq3 = Z �0 qm22 dq2 Z ��q20 qm11 (� � q2 � q1)m3dq1:(3.1.35)Thus �rst we need to evaluate the integral of the formZ y0 xa(y � x)bdx; (3.1.36)whi
h is exa
tly (3.1.34) for j = 2. Repeatedly integrating by parts we obtainZ y0 xa(y � x)bdx = ba+ 1 Z y0 xa+1(y � x)b�1dx = : : :: : : = b!(a+ 1) � � � (a+ b) Z y0 xa+bdx= a!b!(a+ b + 1)!ya+b+1: (3.1.37)48



3.1. Expansion of the form fa
torSubstituting this result into Eq. (3.1.35) produ
esZq1+q2+q3=� qm11 qm22 qm33 dq1dq2dq3 = m1!m3!(m1 +m3 + 1)! Z �0 qm22 (��q2)m1+m3+1dq2= m1!m3!(m1 +m3 + 1)! m2!(m1 +m3 + 1)!(m1 +m2 +m3 + 1)!�m1+m2+m3= m1!m2!m3!(m1 +m2 +m3 + 1)!�m1+m2+m3 : (3.1.38)It is straightforward to derive the formula for general j,ZPji=1 qi=� qm11 � � � qmjj dq1 : : : dqj�1 = m1! � � �mj!(M + j � 1)!�M+j�1; (3.1.39)where M =Pji=1mi.Now we expand the square in Eq. (3.1.33) and apply Eq. (3.1.39) to obtainHj = exp(4�) 1Xk1;::: ;kj=0n1;::: ;nj=0(�2)N+K�N+K+j�1 (N + j � 1)!(K + j � 1)!(N +K + j � 1)!� jYi=1 (ni + ki)!ni!ki!(ni + 1)!(ki + 1)! ; (3.1.40)where K =Pji=1 ki and N =Pji=1 ni. Therefore, the �nal result for Kj(�) isKj(�) = 4jj! 1XM=0CM�M+j+1 (3.1.41)and so K lim(�) = K1(�) + 1Xj=2 1XM=0 4jj!CM�M+j+1; (3.1.42)whereCM = (�2)M Xk1+:::+kj+n1+:::+nj=M(K + j � 1)!(N + j � 1)!(M + j � 1)! jYi=1 �ni+kini �(ni + 1)!(ki + 1)!(3.1.43)with K =Pji=1 ki, N =Pji=1 ni, and the sum being performed over the 2j�1variables ki and ni (i.e. 2j variables minus one 
onstraint).This is the main result of the 
hapter. It 
onstitutes a general formulafor 
omputing the 
oeÆ
ients in the expansion of K(�) (from now on we will49



3.1. Expansion of the form fa
toralways omit the overs
rip lim when talking about K lim(�)) in powers of �around � = 0. Note that as � ! 0, the sum in (3.1.42) tends to zero as � 3,and so it follows from (3.1.13) that K(�) ! 1 in this limit. This is the sameas for the Poisson form fa
tor, and unlike the random-matrix results, whi
h allapproa
h zero linearly in � . However, the Poisson form fa
tor is independentof � , and K(�) here 
learly is not: after an initial de
rease as � in
reases, iteventually rises to the limiting value of one[11℄. In this sense, the result isintermediate between the Poisson and random-matrix forms.The expression for CM 
an be written in another form that is more suitablefor numeri
al 
omputation. De�ningF1(K;N) = �K+NN �(N + 1)!(K + 1)! (3.1.44)and usingXk1+:::+kj+n1+:::+nj=M (K + j � 1)!(N + j � 1)!(M + j � 1)! jYi=1 �ni+kini �(ni + 1)!(ki + 1)!= XK+N=M (K + j � 1)!(N + j � 1)!(M + j � 1)! Xk1+:::+kj=Kn1+:::+nj=N jYi=1 �ni+kini �(ni + 1)!(ki + 1)! (3.1.45)it follows thatCM = (�2)M MXK=0 (K + j � 1)!(M �K + j � 1)!(M + j � 1)! Fj(K;M �K); (3.1.46)where Fj(K;N) = KXk=0 NXn=0 F1(k; n)Fj�1(K � k;N � n); (3.1.47)whi
h is a form of 
onvolution. The expression (3.1.46) for the 
oeÆ
ients CMis 
omputationally more 
onvenient be
ause there is a 
lear re
ursive relationfor the 
oeÆ
ients Fj(K;N) whi
h 
an be further fa
ilitated using the dis
reteFourier transform. The results of numeri
al 
omputations with the �rst few
oeÆ
ients of the expansion are shown in Fig. 3.4. Even few �rst terms of theexpansion give a reasonable agreement with the numeri
al data up to around50



3.2. A summable approximation
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Figure 3.4: The �rst 11 terms (solid line) and the �rst 7 terms (dashed line) inthe expansion for K(�), 
ompared with data from the numeri
al simulation byKottos and Smilansky [20℄ for hjTrS2kj2i=(4B), B = 50 (
ir
les). The dottedline 
orresponds to the diagonal approximation (3.2.3)0:6. However it seems that after 0:6 the series might diverge. In Se
tion 3.3we will see that it is indeed the 
ase and we will study the possible ways toimprove the 
onvergen
e.3.2 A summable approximationOne possible approximation to eK(�) 
an be made by ignoring two 
ontribu-tions:1. the o�-diagonal terms in (3.1.1). We 
all a term in the summation in(3.1.1) diagonal if it 
orresponds to p = q, otherwise we 
all it o�-diagonal. In symboli
 form, the diagonal approximation isK(�) � Kdiag(�) = 1L2 1Xn=2 Xp2Pn� lprp�2A2pÆ�� � lpL� : (3.2.1)
51



3.2. A summable approximation2. all orbits for whi
h the number of ba
ks
atterings is less than the maxi-mum in their degenera
y 
lass or, in other terms, orbits whi
h have a gigreater than one. For example, the orbits (1,1,4,6,6,6) and (1,1,6,4,6,6)belong to the same degenera
y 
lass. The �rst orbit gives the 
ontri-bution of t3r3 whi
h, in the limit B ! 1 is more substantial than these
ond orbit's 
ontribution of t4r2. It is not hard to see that out of ea
hdegenera
y 
lass only (j � 1)! orbits will survive this approximation,where j, as before, is the number of distin
t edges traversed by the orbit.The result of the above approximations is that the 
ontribution Ej of thedegenera
y 
lasses in (3.1.9) is redu
ed to a fa
tor of (j� 1)!, the 
ontributionof one degenera
y 
lass, multiplied by the number of degenera
y 
lasses, �k�1j�1�:Kdiag(�) � K1(�)+ limB!1 (2k)2BL2 1Xj=2 �Bj �� 2B�2j �B � 2B �2k�2j (j � 1)!�k � 1j � 1�: (3.2.2)Taking the limit B !1 termwise, with � = k=B �xed, we arrive atKdiag(�) � K1(�) + � 2 1Xj=2 22j exp(�4�)� j�1j!= exp(�4�) + � exp(�4�) 1Xj=2 (4�)jj!= exp(�4�) + � exp(�4�)(exp(4�)� 1� 4�)= � + exp(�4�)(1� � � 4� 2); (3.2.3)whi
h, in the limit of large B with � = k=B �xed, is exa
tly equal to anapproximation to hjTrS2kj2i=(4B) obtained in [20℄ using a di�erent approa
hdetailed below. Interestingly, the �rst four terms in the expansion of Kdiag inpowers of � agree with those of K 
omputed in the last se
tion. The rest donot.It is worth remarking that one 
an get exa
tly the same asymptoti
 formulafor Kdiag(�) using only assumption 1. Following [20℄, we obtain from (3.2.1)52



3.2. A summable approximation(n = 2k)Kdiag(�) = limB!1 4kBL2 Xp2P2k kr2pA2p (3.2.4)= K1(�) + limB!1 4kBL2  Xp2P2k kr2pA2p �B �B � 2B �2k!� K1(�) + limB!1 4kBL2  Xp2P2k krpA2p �B �B � 2B �2k! ;where in the se
ond line we have split Kdiag(�) into K1(�) and \the rest", asbefore. The only di�eren
e between the se
ond and the third line is in thepower of rp, i.e. in the third line we partly ignored the repetitions. We 
ando that sin
e the orbits without the repetitions are exponentially dominant (it
an be expli
itly shown using M�obius inversion theorem). But to do it we �rsthave to separate a spe
ial 
lass of orbits, the one restri
ted to one edge, out ofthe sum.Now we are going to evaluate \the rest" using a sum rule. We note thatPp2P2k krpA2p = TrAk, where the B � B matrix A is given byAb1;b2 = � 2B � Æb1;b2�2 ; (3.2.5)where b1 and b2 are nondire
ted bonds. To evaluate the tra
e of any power ofthe matrix A we need to know its eigenvalues. First of all, 1 is an eigenvaluewhi
h 
orresponds to the eigenve
tor 
onsisting of all ones: the sum of elementsin any row of the matrix A is (2=B � 1)2 + 4(B � 1)=B2 = 1. Let us now
onsider the eigenvalue equation for B = 3���������19 � � 49 4949 19 � � 4949 49 19 � �
��������� = ���������19 � � 49 4939 + � �39 � � 039 + � 0 �39 � �

���������= (3=9 + �)2 ���������19 � � 49 491 �1 01 0 �1��������� = 0; (3.2.6)53



3.3. Numeri
al analysis of the series expansionwhere the �rst line was subtra
ted from the rest and then the 
ommon fa
tor(3=9 + �)2 was separated. From here it is obvious that 3=9 is an eigenvaluewith multipli
ity 2. For general B the fa
tor to separate would be of the form2=B2 � (2=B � 1)2 + � of the multipli
ity B � 1. Thus the matrix A has theeigenvalues f1; B�4B ; : : : ; B�4B g and, therefore,TrAk = 1 + (B � 1)�B � 4B �k : (3.2.7)Using this we writeKdiag(�) � K1(�) + limB!1 �  1 + (B � 1)�B � 4B �k � B �B � 2B �2k!=K1(�) + limB!1 �  1� �B � 4B �k +B(�B � 4B �k � �B � 2B �2k)!=exp(�4�) + � (1� exp(�4�)� 4� exp(�4�)) ; (3.2.8)where we have used the limitlimn!1n��1 + 1an + 1(an)2�n � �1 + 1an�n� = e1=aa : (3.2.9)We note that Eq.(3.2.8) is exa
tly the same as Eq. (3.2.3). This means that theorbits ignored in the se
ond assumption above do not 
ontribute to the diagonalapproximation in the limit B ! 1. The fa
t that they do 
ontribute to thefull expansion of K(�) shows the limitations of the diagonal approximation.3.3 Numeri
al analysis of the series expansionBefore we a
tually pro
eed to analyse the power series (3.1.41)-(3.1.43) nu-meri
ally, we would like to prove that there is an interval on whi
h the series
onverge.Proposition 4. The radius of 
onvergen
e of the series (3.1.41)-(3.1.43) isgreater than zero. 54



3.3. Numeri
al analysis of the series expansionProof. Let us �rst �nd an upper bound on the modulus of the 
oeÆ
ient CMde�ned in Eq. (3.1.41). Starting o� with Eq. (3.1.46) we writejCM j � M2M maxK+N=M (K + j � 1)!(N + j � 1)!(M + j � 1)! Fj(K;N)� M2M (j � 1)! maxK+N=M Fj(K;N); (3.3.1)where we used the fa
t that (assuming, without loss of generality, thatK � N)(K + j � 1)!(N + j � 1)! � (K + j)!(N + j � 2)!� (K + j + 1)!(N + j � 3)! � : : : � (K +N + j � 1)!(j � 1)! (3.3.2)and thus maxK+N=M (K + j � 1)!(N + j � 1)!(M + j � 1)! = (j � 1)!: (3.3.3)To �nd the maximum of the fa
tor Fj(K;N) we estimateFj(K;N) �XK;N Fj(K;N); (3.3.4)and apply the re
ursion relation (3.1.47) to obtainXK;N Fj(K;N) = 1XK=0 1XN=0 KXk=0 NXn=0 F1(k; n)Fj�1(K � k;N � n) (3.3.5)= Xk;n;r;sF1(k; n)Fj�1(r; s) =Xk;n F1(k; n)Xk;n Fj�1(k; n) = F j;where F =Xk;n F1(k; n) =Xk;n (k + n)!k!n!(k + 1)!(n+ 1)! <1: (3.3.6)Thus jCM j �M2M (j � 1)!F j; (3.3.7)and substituting it into Eq. (3.1.42) we obtainjK(�)j < K1(�) + � 1XM=0M2M�M � 1Xj=2 (4F�)jj ; (3.3.8)whi
h implies that the radius of 
onvergen
e is greater or equal to (4F )�1.55
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Figure 3.5: Determining the radius of 
onvergen
e: (an)�1=n is plotted against1=n. The radius of 
onvergen
e is the lower limit of the plotted points as1=n! 0. The line is to guide the eye only.Remark 3. The bound found above, (4F )�1 � 0:061, is very far from beingexa
t, but the e�ort needed to derive a better one is, at the 
urrent stage,exponentially greater than the importan
e of having an exa
t result.The expressions for the 
oeÆ
ients of expansion of K(�), Eqs. (3.1.46)-(3.1.47), provide us with a 
lear numeri
al re
ipe for their 
omputation and,given enough 
omputer resour
es, one 
an 
ompute as many of the 
oeÆ
ientsas needed to get a fair idea of what the behaviour of the expansion is like. The
oeÆ
ients 
an be 
omputed exa
tly, in the rational form.Let us write K(�) = exp(�4�) + 1Xi=3 ai� i: (3.3.9)In our numeri
al study we 
omputed 
oeÆ
ients up to a60. First of all we
an estimate the radius of 
onvergen
e of the series by plotting the numbersan=an+1 or the numbers (an)�1=n as a fun
tion of n. In our 
ase we haveos
illating 
oeÆ
ients with in
reasing amplitude of the os
illations thus the56
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Figure 3.6: The result of Pad�e approximation of order M = N � 1 = 21(thin line) and M = N = 23 (thi
k line) 
ompared to the results of numeri
al
omputation of K(�) [Kottos and Smilansky℄. The approximation is good farbeyond the radius of 
onvergen
e (� 0:64).better quantity to look at is the se
ond one. Looking at the plot, Fig. 3.5, andestimating where the interse
tion with the y-axis would be, we 
an see thatthe radius of 
onvergen
e is approximately 0:64. Before we 
ontinue analysingthe 
oeÆ
ients of the series, let us try to approximate the form fa
tor K(�)by rational fun
tions.In other words, we are going to apply Pad�e approximation (see, for example,[30℄) to the partial series we have. The general idea behind Pad�e approximationis the following. Let SK(x) be the K-th partial sum of the power series forsome fun
tion S(x), SK = KXi=0 aixi: (3.3.10)We are trying to represent S(x) as a ratio of two polynomials PN(x) andQM(x), of order N and M 
orrespondingly,S(x) = PN(x)QM (x) + o�xM+N� ; as x! 0: (3.3.11)57



3.3. Numeri
al analysis of the series expansionwhere by o �xM+N� we understand the terms of order higher than M + N .Rewriting Eq. (3.3.11) asPN(x)�QM(x)S(x) = o �xM+N� (3.3.12)we obtain M + N + 1 linear equations | the �rst N +M + 1 
oeÆ
ients ofthe series on the left are equal to zero. There are M + N + 2 unknowns, the
oeÆ
ients of PN and QM , but sin
e we are looking at the ratio P=Q, we 
an�x one of the 
oeÆ
ients, say put QM(0) = 1. In fa
t, to solve Eq. (3.3.12) wedo not need the whole of the series S(x), the partial sum SM+N is enough.As an example we 
onsider the N = M = 1 approximation to our formfa
tor. It is 
onvenient to take the fa
tor � 3 out:K(�) = exp(�4�) + � 3�8� 323 � + 163 � 2 + o(� 2)� : (3.3.13)Then the equation for the 
oeÆ
ients of Q and P is taking the formp0 + p1� � (1 + q1�)�8� 323 � + 163 � 2� = o(� 2); (3.3.14)thereforep0 � 8 = 0; p1 � 8q1 + 323 = 0; 323 q1 � 163 = 0; (3.3.15)whi
h leads to P1(�) = 8� 203 �; Q1(�) = 1 + 12�: (3.3.16)Very often the approximation PN(x)=QM(x) happens to be very good evenbeyond the radius of 
onvergen
e. To understand it heuristi
ally, suppose S(x)is an expansion of a fun
tion whi
h has a pole at the distan
e R from the originsomewhere in the 
omplex plane, but not on the positive real line and we wantto plot S(x) for real x > 0. If lu
ky, the pole of S(x) will be represented bya zero of the polynomial QM(x) and then the divergen
e of the original serieswill be absorbed into the rational fun
tion PN(x)=QM(x) while the remainingpart o �xM+N� will be 
onvergent and small. Then the approximating fun
tion58
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Figure 3.7: Zeros of the polynomial QM(x) for N=M = 23=23 (
ir
les) andN=M = 24=23 (stars). Only the poles nearest to the origin are shown on theplot. The 
onje
tured positions of the singularities are marked by the 
rosses.PN(x)=QM(x) will follow S(x) 
losely even for the values of x greater than R.However most often it is not possible to say whether Pad�e approximation isgoing to work on a parti
ular series before one a
tually tries it.For our series the approximation happens to work best when M = N orM = N � 1 with two examples plotted on Fig. 3.6. From 
omparison with thenumeri
al data it is 
lear that Pad�e approximation extends the 
onvergen
e ofthe series beyond the estimated radius of 0:64. The results for other 
hoi
es ofM and N are not very di�erent as long as jM �N j is not too large.As mentioned earlier, one of the properties of Pad�e method is that theapproximants P=Q try to represent the singularities of the original series withthe poles, i.e. zeroes of the polynomial Q(x). Some of the zeroes will not
orrespond to any properties of the approximated fun
tion, these \spurious"zeroes usually disappear or 
hange their position when we 
hange the order Nof the approximating polynomials P (x) and Q(x). Those zeroes whi
h persistwhen we 
hange N are likely to 
orrespond to the real singularities of S(x).59
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Figure 3.8: The quantity (nan)�1=n is plotted against 1=n. Again, the radiusof 
onvergen
e is given by the lower limit of the data as 1=n! 0. The line isto guide the eye only.If a singularity of S(x) is not a pole, it is often represented by a sequen
eof poles of the approximant. Looking at the pattern of the zeroes of thepolynomial Q(x) in our 
ase, Fig. 3.7 we 
an see that there are two sequen
es
onverging approximately to z = 0:464 + 0:42i and z = 0:464 � 0:42i. Thissequen
e is persistent and 
ontains more zeroes larger N we take. This is astrong indi
ation that z 
orresponds to an essential singularity of K(�), theone whi
h limits the 
onvergen
e of the series, sin
e jzj � 0:626.Let us now go ba
k to the 
oeÆ
ients of the expansion of K(�). It is notunnatural to assume that the singularity at z is logarithmi
. This would meanthat the 
oeÆ
ients are well approximated by the formula an = < (zn=n). To
he
k it we plot the quantity (nan)�1=n against 1=n, see Fig. 3.8. Indeed, the
onvergen
e now is mu
h more \linear" than on Fig. 3.5. The estimated radiusof 
onvergen
e is now 0:625.The further support to the 
laim that an = < (zn=n) will be presented inChapter 5. 60



Chapter 4
Quantum return probability fortrees
In this 
hapter we dis
uss an analogue of the form-fa
tor for in�nite trees, thequantum return probability. The work on trees was inspired by the paper byS
hanz and Smilansky [21℄ who performed the analysis in the 
ase of in�nite
hain (valen
y of every vertex is 2). We follow their work 
losely and derive there
ursion relation for the return probability for a general in�nite regular tree.Our main result is a general formula for the lo
al 
ontribution of a degenera
y
lass. This made possible a numeri
al investigation, sin
e the 
omplexity ofthe formulae do not en
ourage attempts to analyse the limiting behaviour ofthe return probability analyti
ally. We also show a way to obtain a powerseries expansion of the return probability in the limit of large bran
hing.4.1 De�nitionsWe have de�ned tree is a 
onne
ted graph without any 
y
les. We here 
onsidermainly a spe
ial type of trees, the in�nite one-sided regular tree, although mostof the results 
an be easily extended to any trees.An example of in�nite one-sided regular tree is shown on Fig. 4.1. Theone-sided tree has an origin, the vertex O of valen
y 1. All other verti
es have61



4.1. De�nitions
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Figure 4.1: The one-sided in�nite tree with B = 3. The upper subtree is shownwith the thi
ker lines.the same valen
y1 B; B is equal to 3 for the graph on Fig. 4.1.As des
ribed in Se
tion 2.4, we asso
iate a unitary matrix S(v) to ea
hvertex v of the in�nite tree. To simplify matters we require that the matri
eshave the form S(v) = 0BBBBBB�rv tv : : : tvtv rv : : : tv... ... . . . ...tv tv : : : rv
1CCCCCCA ; (4.1.1)i.e. all diagonal elements are equal to rv while the non-diagonal elementsare equal to tv. Thus we have two types of \amplitudes": the amplituderv asso
iated to the re
e
tion (going from a bond b to the bond b) and theamplitude tv asso
iated to the transmission. The matrix SO 
orresponding tothe origin is 1� 1 and we �x rO = 1.The quantum return probability (also 
alled the survival probability), whi
hgives the probability to �nd the quantum parti
le at time t in its initial state1Sin
e the tree is in�nite, the number of bonds is in�nite thus we re-use B to denote thebran
hing of the tree. However its role is very similar to the role of B for the star graphs.62



4.1. De�nitions 0, taken from the 
orresponding Hilbert spa
e, is given by��h 0jUtj 0i��2 ; (4.1.2)where U is the time evolution operator. Its Ces�aro average1T Z T0 ��h 0jUtj 0i��2 dt; (4.1.3)is 
alled the mean return probability over time T . In our 
ase (see Se
tion 2.4)the evolution is dis
rete and the evolution operator is the matrix DS, now ofin�nite size; the state ve
tor  is the `2 ve
tor of the amplitudes A(i;j) of thewave travelling from vertex i to vertex j. Thus the mean return probability inour 
ase is given by1N NXn=1 jh 0j (DS)n j 0ij2 � 1N NXn=1 PB(n); (4.1.4)where by PB(n) we denoted the quantum return probability (not mean).We will take  0 to be the wave leaving the vertex O in the dire
tion 11,i.e. we take the 
omponent A(O;1) = 1 and A(i;j) = 0 for all other 
hoi
es ofthe verti
es i and j. Then one 
an expandPB(n) = jh 0j (D(k)S)n j 0ij2= ������ X[i1=(O;1);i2;::: ;in℄ (D(k)S)i1;i2 (D(k)S)i2;i3 � � � (D(k)S)in;i1������2= ������ Xp2fPn(O)Apeiklp������2 ; (4.1.5)where the se
ond sum is taken over all periodi
 sequen
es of bonds (see (2.1.5)and subsequent explanations) whi
h start from the vertex O. The fa
tor Ap is,as usual, the produ
t of the elements of the matrix S over the sequen
e p. Weremind that the sequen
es are not identi�ed with respe
t to the shift, in thesense that, for example, [1; 2; 3; 1; 4℄ and [1; 4; 1; 2; 3℄ are di�erent sequen
es,unlike the situation we had with the orbits from P.63



4.1. De�nitions
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[a, b, c, a ]

[a, b [a, b, c

[a, b, c, a [a, b, c, a]
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Figure 4.2: Step-by-step re
onstru
tion of the sequen
e denoted by [a; b; 
; a℄.In the top left 
orner the subtree 
overed by the sequen
e is drawn (the bondsare relabelled for 
onvenien
e). The bonds whi
h are missed in the shortenednotation are shown in dashed lines.Due to the spe
ial stru
ture of the tree all periodi
 sequen
es have evenperiod. If a sequen
e left a vertex v along the bond b = (v; v0), it will later
ome ba
k to v along the bond b = (v0; v) and not along any other bond. Thisfa
t is 
ru
ial to our derivation and is spe
i�
 to the trees. It is easy to seethat when writing the 
ode for a sequen
e on the tree, we 
an mention onlythe traversal of a bond in the outward dire
tion; basing on this information we
an always re
onstru
t the whole des
ription of the orbit, see Fig. 4.2. Also,when we write the ve
tor s for a degenera
y 
lass, the element sb (the stayingrate on the bond b) 
ounts the number of traversals of the bond b in outwarddire
tion only. The ve
tors s are now in�nite dimensional but they have only�nite number of nonzero 
omponents sin
e we demand jsj =Pb sb =M .We now return to our de�nition of the quantum return probability. To theoperations performed in Eq. (4.1.2) we add an averaging, either over a rangeof k or over individual lengths of the bonds of the tree G. It is easy to see thatsquaring the expression on the right-hand side of Eq. (4.1.5) and then applying64



4.1. De�nitionsthe averaging will lead to the expression for the quantum return probabilityafter n steps, PB(n) = Xp;q2fPn(O)ApAqÆlp;lq; (4.1.6)where Ælp;lq is, as before, equal to 1 if lp = lq and is 0 otherwise. Sin
eall periodi
 sequen
es on a tree have even period, we put n = 2M . RewritingEq. (4.1.6) in the terms of degenera
y 
lasses we arrive to the expression whi
hwe will use as the de�nition.De�nition 8. The quantum return probability after 2M steps is de�ned byPB(2M) = Xs : jsj=M ������ Xp : s(p)=sAp������2 ; (4.1.7)where the sum is over all degenera
y 
lasses of the sequen
es that start fromthe vertex O.Besides being an interesting quantity in its own right, the quantum returnprobability is 
losely related to the existen
e of lo
alised eigenstates of theevolution operator DS. Su
h states 
orrespond to the pure point spe
trum ofDS. Sin
e the underlying graph is no longer 
ompa
t, the spe
trum of DS 
annow 
ontain both pure point and 
ontinuous (in
luding singular 
ontinuous)parts. To see whether there is a pure point 
omponent we formally substitutethe spe
tral de
ompositionDS = Z j�ieiE�h�jdE� (4.1.8)into the de�nition of the mean return probabilitylimN!1 1N NXn=1 PB(n) = limN!1 1N NXn=1 ����Z eiE� jh j�ij2 dE�����2= ZZ limN!1 1N NXn=1 ein(E��E�0) jh j�ij2 jh j�0ij2 dE�dE�0= ZZ jh j�ij4 ÆE�;E�0dE�dE�0 ; (4.1.9)65



4.1. De�nitionswhere we used the identity limN!1 1N NXn=1 einE = ÆE;0: (4.1.10)It is not hard to see that the last integral in Eq. (4.1.9) is equal to zero ifthe measure dE� has only 
ontinuous part (for more rigorous statements andresults we refer to [36℄). Thus a nonzero limit of the mean return probabilitywould signify the presen
e of the pure point spe
trum, hen
e the lo
alisedstates.This was exa
tly the situation revealed by S
hanz and Smilansky in [21℄for the in�nite 
hain graphs (an in�nite 
hain is a tree with B = 2). It wasfound that the quantum return probability saturates to a �nite value while itsdiagonal approximation de
ays di�usively. Thus the 
oherent (i.e. taking 
areof the degenera
y 
lasses) summation of the 
ontributions of di�erent orbitsreally makes a di�eren
e. The aim of the following se
tions is to use the ideasfrom the previous Chapter to treat the 
ontributions of the degenera
y 
lassesin an exa
t way for B > 2.But before doing so we give a brief summary of the related resear
h. Thelo
alised eigenstates of the dis
rete Hamiltonian on in�nite trees (
alled Bethelatti
e in the literature) is a mu
h studied topi
, �rst introdu
ed by Anderson[37℄. We refer to the paper by Klein[38℄ for a review of the results in thisarea. Our model, however, is one step removed from the spe
i�
ation of theHamiltonian. Instead, we start with the time evolution operator. In thisrespe
t our model is similar to the one 
onsidered by Chalker and Siak in [31℄,although in the model of [31℄ there is no time-reversal symmetry. Among otherresults, Chalker and Siak report the existen
e of normalizable lo
alised statesfor a 
ertain range of the parameter of the model.For our model we also �nd a strong numeri
al eviden
e that the quantumreturn probability tends to a nonzero limit for 
ertain values of the parameter.This implies that the mean return probability also tends to the same limitand, therefore, there are lo
alised eigenstates. We also �nd that the transi-66



4.2. Re
ursion for the return probabilitytion between delo
alisation and lo
alisation o

urs approximately at the sameparameter value as in [31℄.4.2 Re
ursion for the return probabilityConsider the 
ontribution Pp : s(p)=s Ap from one degenera
y 
lass s. For agiven vertex v we de�ne m1(v) to be the staying rate on the bond leading to vfrom the dire
tion of the origin. We also denote by m2(v) the staying rate onthe �rst bond leading out of v and so on up to mB(v), thus m1(v); : : : ; mB(v)provide the lo
al information about the bond staying rates around the vertex v.It turns out that the 
ontribution of the degenera
y 
lass s 
an be de
omposedinto a produ
t, Xp : s(p)=sAp =Yv2GUv�m1(v); m2(v); : : : ; mB(v)�; (4.2.1)where the fa
tor Uv�m1(v); m2(v); : : : ; mB(v)� is the lo
al 
ontribution of thedegenera
y 
lass s whi
h depends only on the matrix S(v) and the lo
al infor-mation about the degenera
y 
lass, the numbers m1(v), : : : ,mB(v). To explainwhy this happens we 
onsider an example.In the top left 
orner of Fig. 4.3 the subtree 
overed by a degenera
y 
lassis shown. In the bottom left 
orner the 
orresponding elements of the ve
tor sare listed next to the bonds. To the right, all six di�erent sequen
es belongingto su
h degenera
y 
lass are shown together with their 
odes in terms of thebonds. We write the number of the bond in the 
ode only when it is traversedin the outward (up) dire
tion. It is important to note that the sequen
es inthe same row have the same stru
ture around the vertex 2 while the sequen
esin the same 
olumn share the stru
ture around the vertex 1. One 
an say thata sequen
e is made out of building blo
ks, ea
h representing the stru
ture inthe vi
inity of a vertex.This idea is illustrated by Fig. 4.4. In the rounded boxes the possibleblo
ks, or realisations of the lo
al stru
ture of the degenera
y 
lass, are listed.67



4.2. Re
ursion for the return probability
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Figure 4.3: An example of degenera
y 
lass. In the top left 
orner the subtree
overed by the degenera
y 
lass is relabelled for 
onvenien
e. In the bottom left
orner the nonzero elements of the ve
tor s are written next to their bonds. Toillustrate the notation introdu
ed in the text, the numbers mi for the vertex1 are m1 = 1, m2 = 2 and m3 = 1. To the right, all sequen
es from thedegenera
y 
lass are listed together with their symboli
 
odes.To the right from the boxes their lo
al 
ontributions towards Ap are addedup. It is not hard to see that if we multiply these sums together we obtain the
ontribution of the whole degenera
y 
lass, in this 
ase�2t31r1 + t41�� r23 � 2t32 � r4 � r5 = 4r23t31r1t32r4r5 + 2r23t41t32r4r5 (4.2.2)The reason for this fa
torization is that the behaviour of the sequen
e onthe vertex 2, for example, and the behaviour of the sequen
e on the vertex 1are 
ompletely independent. The only information that the vertex 1 has aboutthe vertex 2 is that the sequen
e leaves 1 in the dire
tion of 2 and then 
omesba
k. Similarly, all that 1 knows about 3 is the number of times the sequen
emust leave 1 in the dire
tion 3. This would not be the 
ase if a sequen
e68



4.2. Re
ursion for the return probability
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Figure 4.4: Constru
ting the sequen
es whi
h belong to the degenera
y 
lassof Fig. (4.3). We make up the sequen
es using various blo
ks 
orresponding tothe verti
es of the subgraph. The blo
ks 
hosen at ea
h vertex are independent:we 
an use any of the 3 blo
ks at the vertex 1 together with any of the 2 blo
ksat the vertex 2. Next to the boxes with the blo
ks their lo
al 
ontributionsare listed. The 
ontribution of the degenera
y 
lass is given by the produ
t ofthe lo
al ones.
ould leave the vertex 1 along the bond b and then 
ome ba
k along the bond
. Fortunately there are no 
y
les on trees and therefore the fa
torisation ofEq. (4.2.1) holds.Now we de�ne another quantity. We will denoteUM(m1) � Xs : m1(1)=m10� Xs(p)=sAp1A2 ; (4.2.3)the return probability given that the sequen
e traverses the �rst bondm1 times(or 
onditional return probability). Obviously the full probability PB(2M) is
69



4.2. Re
ursion for the return probabilityequal to the sum of UM(m1) over m1,PB(2M) = MXm1=1UM(m1): (4.2.4)It is possible to derive a re
ursion [21℄ for the 
onditional probabilityUM(m1). We restri
t ourselves to the 
ase B = 3, the generalisation to B > 3will be obvious. We de�ne the upper subtree of the tree G, Gu to be the treebased on the verti
es 1, 2, 4, 5, 8, 9, 10, 11 et
, see Fig. 4.1. The lower subtreeGl 
ontains, 
orrespondingly, the verti
es 1, 3, 6, 7 et
. The �rst bond, leadingfrom O to 1 does not belong to either of the subtrees. We are going to use thefa
t that the subtrees are isomorphi
 to the original trees.Given a degenera
y 
lass ve
tor s, we denote by su (sl) the part of s whi
h
orresponds to the bonds from the upper (
orrespondingly lower) subtree.Then s 
an be expressed as the dire
t sum s = m1 � sl � su, where m1 isthe number of traversals of the �rst bond (the bond leading from O to 1). Letus �x the parameters m1(1) = m1, m2(1) = m2, m3(1) = m3, jsuj =M2 � m2and jslj =M3 � m3 su
h that m1 +M2 +M3 =M . Then the 
ontribution ofall degenera
y 
lasses with these parameters �xed 
an be written asXs Yv2V(G)U2v = ��U1(m1; m2; m3)��20�Xsu Yv2V(Gu)U2v1A0�Xsl Yv2V(Gl)U2v1A= ��U1(m1; m2; m3)��2UM2(m2)UM3(m3); (4.2.5)where with U2v we abbreviate the squared lo
al 
ontribution of the degenera
y
lass at the vertex v, ��Uv (m1(v); m2(v); m3(v)) ��2. Here we used the fa
t thatPsuQv2V(Gu) U2v is exa
tly the 
onditional return probability on the uppersubtree and, sin
e it is isomorphi
 to the whole tree, their return probabili-ties are equal. Now we 
an sum this 
ontribution over all possible 
hoi
es ofpreviously �xed parameters m2, m3, M2 and M3 to obtain UM (m1):UM(m1) = XM2+M3=M�m1 M2Xm2=1 M3Xm3=1 ��U (m1; m2; m3) ��2UM2 (m2)UM3 (m3) ;(4.2.6)70



4.3. Lo
al 
ontribution of the degenera
y 
lassor, for general B,UM(m1) = XM2+:::+MB=M�m1 M2Xm2=1 � � � MBXmB=1 ��U (m1; m2; : : : ; mB) ��2 BYi=2 UMi (mi) :(4.2.7)Here the summations over Mi are starting from 0 and the summations for miare starting from 1 unless the 
orresponding Mi is equal to 0. If for some i wehave Mi = 0, the summation over mi is dropped and the fa
tor UMi (mi) istaken to be 1.4.3 Lo
al 
ontribution of the degenera
y 
lassIn the previous Se
tion we have shown that to determine the return probabilitywe need to 
al
ulate the lo
al 
ontribution of degenera
y 
lasses. The lo
al
on�guration of the tree is the B-star graph and the lo
al information aboutthe degenera
y 
lass is the number of traversals of the bonds of this star. Itis 
lear that 
al
ulating the lo
al 
ontribution should be similar to derivingthe 
ontribution of the degenera
y 
lasses for star graphs, the feat whi
h wasa

omplished in Se
tion 3.1.4.The lo
al numbering of the bonds is arbitrary with the ex
eption of the�rst bond whi
h points to the origin. We are given B numbers mi and thequestion is to �nd all possible lo
al sequen
es of bonds where ith bond o

ursmi times. Ea
h sequen
e is given a weight whi
h is determined a

ordingto the usual rules: the weight of the sequen
e is the produ
t of the weightsof the individual transitions with the re
e
tion 
olle
ting the fa
tor r andtransmission 
olle
ting the fa
tor t; the transition between the last bond andthe �rst should also be taken into a

ount. The lo
al 
ontribution is then thesum of these weights over all possible sequen
es.Ea
h sequen
e is 
hara
terised by the number of groups of di�erent sym-bols. If we denote the number of groups of the bond with the lo
al number i bygi then the weight of the sequen
e 
hara
terised by m1, : : : ,mB and g1, : : : ,gB71



4.3. Lo
al 
ontribution of the degenera
y 
lassis given by tGrM(v)�G, where we introdu
ed the notation G = g1+ : : :+ gb andM(v) = m1 + : : :+mB. Thus the main question here is how many sequen
eswith the above 
hara
teristi
s are there. To 
ount su
h sequen
es we try torelate the number of sequen
es to the number of sequen
es N g1 ;::: ;gjs1;::: ;sj , derivedin Se
tion 3.1.4.First of all, while an orbit is a 
y
le, without a beginning or an end, the se-quen
e is a linear obje
t, with both a beginning and an end. We are interestedin all sequen
es whi
h start with a 1, but we do not demand that it does notend with a 1 (
ompare to 
ondition (
), Se
tion 3.1.4). Further, if a sequen
eends with a group of 1s, we 
ount the last and the �rst group of 1 as one group.Thus ea
h orbit 
orresponds to m1 sequen
es: we 
an 
ut an orbit before ea
ho

urren
e of 1, obtaining with ea
h su
h 
ut a new sequen
e. For example,the orbit (1; 1; 2; 1; 3) 
orresponds to 3 sequen
es starting with a 1: [1; 1; 2; 1; 3℄,[1; 2; 1; 3; 1℄ and [1; 3; 1; 1; 2℄. If, however, the orbit was a repetition of anotherorbit, with the repetition number rp, we obtain ea
h sequen
e rp times. Butthen su
h an orbit was 
ounted as 1=rp in the total number of orbits N g1;::: ;gjm1;::: ;mjthus multiplying by m1 works with the repetitions too. Therefore the numberof all possible sequen
es 
hara
terised by m1, : : : ,mB and g1, : : : ,gB is givenby m1N g1;::: ;gjm1;::: ;mj ,m1N g1 ;::: ;gjm1;::: ;mj = m1(�1)G Xk1;::: ;kv (�1)KK � Kk1; : : : ; kv� BYi=1 �mi � 1gi � 1��gi � 1ki � 1�;(4.3.1)where K = k1 + : : : + kB and G = g1 + : : : + gB.. Now if we sum the aboveexpression over all possible 
hoi
es of gi, multiplying them by tGrM(v)�G, the

72



4.3. Lo
al 
ontribution of the degenera
y 
lassresult is the lo
al 
ontribution of a degenera
y 
lass,U (m1; m2; : : : ; mB)= m1 Xg1;::: ;gB(�t)GrM(v)�G Xk1;::: ;kB (�1)KK � Kk1; : : : ; kB� BYi=1 �mi � 1gi � 1��gi � 1ki � 1�= m1 miXki=1 (�1)KK � Kk1; : : : ; kB� BYi=1 �mi � 1ki � 1� miXgi=ki��tr �gi rmi�mi � kigi � ki �;(4.3.2)where the �rst sum is in fa
t a B-tuple sum over all ki. Here we have used theidentity �m� 1g � 1��g � 1k � 1� = �m� 1k � 1��m� kg � k�: (4.3.3)Now, performing the innermost summationmiXgi=ki��tr �gi rmi�mi � kigi � ki � = rmi ��tr �ki �1� tr�mi= (r � t)mi � �tr � t�ki ; (4.3.4)we �nally obtainU (m1; m2; : : : ; mB)= m1(r � t)M(v) miXki=1 1K� Kk1; : : : ; kB�� tr � t�K BYi=1 �mi � 1ki � 1�: (4.3.5)This expression together with the re
ursion (4.2.7) and Eq. (4.2.4) gives the
omplete set of exa
t formulae to determine the return probability.One 
an also derive an alternative expression for U (m1; m2; : : : ; mB). Todo so, we represent the fa
torial (K � 1)! as an integral,(K � 1)! = Z 10 zK�1 exp(�z)dz (4.3.6)and noti
e that the summations over di�erent indi
es ki be
ome un
oupled. It73



4.3. Lo
al 
ontribution of the degenera
y 
lassleads to the expressionU (m1; m2; : : : ; mB)= m1(r � t)M(v) Z 10 exp(�z) BYi=1 miXki=1 1ki! � tzr � t�ki �mi � 1ki � 1�dzz= m1(r � t)M(v) Z 10 exp(�z) BYi=1 L�1mi (��z) dzz ; (4.3.7)where � = t=(r � t) andL�1m (x) = mXk=1 (�x)kk! �m� 1k � 1�; (4.3.8)is the generalised Laguerre polynomial.4.3.1 The 
ase B = 2When B = 2 the tree is redu
ed to the line and we should re
over the formulaefrom [21℄. To do so we use the 
ombinatorial identitymXj=0(�1)j�a + jb ��mj � = (�1)m� ab�m� (4.3.9)to simplify the summation(�1)G Xk1;::: ;kB (�1)KK � Kk1; : : : ; kB� BYi=1 �gi � 1ki � 1� (4.3.10)in the se
ond line of Eq. (4.3.2) in the 
ase B = 2. For this summation,denoted Rg1;g2 (see Appendix A.3), one hasRg1;g2 = (�1)G g2Xk2=1 g1Xk1=1 (�1)k1+k2k1 + k2 �k1 + k2k2 ��g1 � 1k1 � 1��g2 � 1k2 � 1�= (�1)G g2Xk2=1 (�1)k2+1k2 �g2 � 1k2 � 1� g1Xk1=1(�1)k1�1�k2 + k1 � 1k2 � 1 ��g1 � 1k1 � 1�= (�1)g2 g2Xk2=1 (�1)k2k2 �g2 � 1k2 � 1�� k2k2 � g1�; (4.3.11)74



4.4. Extending results to the 
omplete treewhere we applied identity (4.3.9) with the parameters j = k1 � 1, a = k2,b = k2 � 1, m = g1 � 1. Now using that1k2� k2k2 � g1� = 1g1�k2 � 1g1 � 1� (4.3.12)and applying identity (4.3.9) on
e again, now with the parameters j = k1� 1,a = 0, b = g1 � 1, m = g2 � 1, we obtainRg1;g2 = (�1)g2+1g1 g2Xk2=1(�1)k2�1�k2 � 1g1 � 1��g2 � 1k2 � 1�= 1g1 (�1)g2+1(�1)g2�1� 0g1 � g2� = 1g1 Æg1;g2: (4.3.13)Substituting this result ba
k into the se
ond line of Eq. (4.3.2) we obtainU (m1; m2) = m1Xg1;g2 tGrM(v)�G�m1 � 1g1 � 1��m2 � 1g2 � 1� 1g1 Æg1;g2= Xg1 t2g1rM(v)�2g1�m1g1 ��m2 � 1g1 � 1�; (4.3.14)whi
h is exa
tly the 
orresponding expression from [21℄.4.4 Extending results to the 
omplete treeA natural question to ask is how one 
an extend the results obtained aboveto the 
ase of the 
omplete tree, i.e. a tree where all verti
es, in
luding theorigin, are of valen
y B. The initial 
onditions are the same as before: a waveleaving the origin in one 
hosen dire
tion, see Fig. 4.5.It turns out that the return probability of su
h wave pa
ket on the 
ompletetree is related to the quantity we already des
ribed, the one-sided 
onditionalreturn probability UM(m). Indeed, due to our initial 
ondition, the �rst bond(the bond (O; 11)) is traversed at least on
e. We denote the number of traver-sals of this bond bym1. Now we 
an introdu
e an auxiliary vertex �, of valen
y2, in the middle of the �rst bond. We set the amplitudes t = 1 and r = 0 onthis vertex thus the traje
tory will never be re
e
ted at the vertex �.75



4.4. Extending results to the 
omplete tree
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Figure 4.5: Complete in�nite tree with B = 3. The arrow from the originindi
ates the initial wave-pa
ket. Inset: Introdu
ing the auxiliary vertex �whi
h separates the tree into upper and lower parts.Assume that the sum of all traversals of the bonds in the upper part of thetree, as pi
tured on Fig. 4.5, is given by M1, m1 � M1 � M . Then the totalnumber of traversals of the bonds in the lower part is M �M1 + m1, wherewe add m1 be
ause the �rst bond is now split into two. Using the argumentsimilar to the one used to prove Eq. (4.2.5) one 
an see that the 
ontributionof the sequen
es 
hara
terised by the numbers m1 and M1 is given byUM1(m1)UM�M1+m1(m1)U(m1; m1); (4.4.1)where UM1(m1) is the one-sided 
onditional return probability to the vertex� from the upper part, UM�M1+m1(m1) is return probability from the lowerpart and U(m1; m1) is the lo
al 
ontribution at the vertex �. It is easy tosee that with our 
hoi
e of the s
attering matrix at �, the lo
al 
ontributionis U(m1; m1) = 1. Performing the summation of Eq. (4.4.1) over all possible
hoi
es of m1 and M1 we obtain the expression for the return probability forthe 
omplete tree,P 
B(2M) = MXm1=1 MXM1=m1 UM1(m1)UM�M1+m1(m1): (4.4.2)76



4.5. Numeri
al evaluationIt is interesting to note that the form of the expression is independent of theparameter B.4.5 Numeri
al evaluation4.5.1 Parameters t and rBefore we present the results of the numeri
al evaluation of Eqs. (4.2.7) and(4.3.5), we dis
uss the possible values of the amplitudes t and r. These prob-abilities are the elements of the matrix (4.1.1) whi
h is required to be unitary.Without loss of generality we 
an assume that r is real: otherwise we 
anmultiply the whole matrix by �r=jrj. If we write t as t = �jtjei�, the unitarity
ondition implies r2 + (B � 1)jtj2 = 1; (4.5.1)2r 
os�� (B � 2)jtj = 0; (4.5.2)where � 2 [0; �=2℄ whi
h leads tor = ��1 + 4(B � 1)(2�B)2 
os2 ���1=2 t = 2r 
os�2� B exp(i�): (4.5.3)Note that the re
e
tion amplitude r varies from (B � 2)=B (for � = 0) to 1(� = �=2) thus the range of possible values of r shrinks as B tends to in�nity.One 
an 
onsider the matrix S(v) of a more general form, in fa
t any unitarymatrix would generate 
onsistent dynami
s on the tree and thus the diagonal(o�-diagonal) elements do not have to be equal. However, taking the elementsto be di�erent signi�
antly 
ompli
ates the expression in Eq. (4.3.5) for B =3 and makes the derivation of su
h an expression using the same methodsimpossible for B > 3.An alternative des
ription of r and t 
an be given in terms of q = jtj=jrj,a parameter whi
h has more physi
al meaning to it than the phase �. If we77



4.5. Numeri
al evaluationassume that t is real thent = q1 + q2(B � 1) (4.5.4)r = �(B � 2)q �p(B � 2)2q2 � 42 + 2q2(B � 1) ; (4.5.5)where q varies from 0 to 2=(B � 2) and the 
onne
tion between � and q isq = 2 
os(�)=(B � 2).4.5.2 Computing U (m1;m2; : : : ;mB)The aim of this Subse
tion is to simplify the 
omputation of the lo
al 
ontri-bution U (m1; m2; : : : ; mB). As given by Eq. (4.3.5), it is a B-fold summationwhi
h requires a lot of ma
hine time to evaluate for large mi. Instead we aregoing to derive a re
ursion relation satis�ed by U .First of all we noti
e that jr�tj2 = 1, whi
h 
an be easily veri�ed by addingtogether Eqs. (4.5.1) and (4.5.2). Therefore the fa
tor (r � t)m in front of theexpression for U (m1; m2; : : : ; mB) 
an be dropped.Next we introdu
e the quantityVm1;m2;::: ;mB = U (m1; m2; : : : ; mB) =m1 (4.5.6)whi
h is symmetri
 with respe
t to its argument mi. We haveVm1;m2;m3 = Z 10 exp(�z)Lm1 (��z)Lm2 (��z)Lm3 (��z) dzz ; (4.5.7)where we took B = 3 as this 
ase will be of the most interest to us. Wealso omit the supers
ript �1 over L. It is well-known [39℄ that the Laguerrepolynomials satisfy the re
ursion relation (the supers
ript �1 is omitted!)Ln+1(x) = 2n� xn+ 1 Ln(x)� n� 1n+ 1Ln�1(x); (4.5.8)whi
h 
an be easily proved using the te
hniques des
ribed in [40℄. However, ifwe put the re
ursion (4.5.8) straight into Eq. (4.5.7) it will do us no good be-
ause of the non-numeri
al fa
tor x multiplying Ln(x). Instead we reformulate78



4.5. Numeri
al evaluationthe above re
ursion in the formxLn(x) = �(n + 1)Ln+1(x) + 2nLn(x)� (n� 1)Ln�1(x); (4.5.9)and apply it twi
e to the produ
t Lm1+1(x)Lm2(x), �rst as (4.5.8) with n = m1and then as (4.5.9) with n = m2,(m1 + 1)Lm1+1(x)Lm2(x)= 2m1Lm1(x)Lm2(x)� xLm1(x)Lm2(x)� (m1 � 1)Lm1�1(x)Lm2(x)= 2m1Lm1(x)Lm2(x) + (m2 + 1)Lm1(x)Lm2+1(x)� 2m2Lm1(x)Lm2(x)+ (m2 � 1)Lm1(x)Lm2�1(x)� (m1 � 1)Lm1�1(x)Lm2(x): (4.5.10)Substituting the above re
ursion in the integral de�nition of Vm1;m2;m3 we �ndthat it satis�es a similar relation,(m1 + 1)Vm1+1;m2;m3 = (m2 + 1)Vm1;m2+1;m3 + 2(m1 �m2)Vm1;m2;m3+ (m2 � 1)Vm1;m2�1;m3 � (m1 � 1)Vm1�1;m2;m3 : (4.5.11)4.5.3 Results of the simulationsIn our simulations we 
omputed the 
onditional return probability UM (m)for the bran
hing number B = 3 and then performed the summation eithera

ording to Eq. (4.2.4) to get the return probability P3(2M), or a

ordingto Eq. (4.4.2) to obtain the return probability for the 
omplete tree, P 
3 (2M).We assumed the matri
es S(v) to be the same for all verti
es v, apart form O,whi
h is 
learly spe
ial. Thus the probabilities t and r were taken to be thesame throughout the tree.First of all we would like to 
ompare the quantum return probability toits 
lassi
al analogue. We turn our tree into the probabilisti
 system with therules similar to the quantum ones. The state is spe
i�ed by the bond and thedire
tion; the re
e
tion (i.e. 
hange of the dire
tion) has probability jrj2 andthe transmission to one of the 2 adja
ent bonds happens with probability jtj2.79



4.5. Numeri
al evaluation
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Figure 4.6: Linear-log plot of the quantum (diamonds) and 
lassi
al (
ir
les)return probabilities for the 
omplete trees with the bran
hing B = 3. Here wetake the value of � = �=3 whi
h 
orresponds to jtj2 = jrj2 = 1=3. The line�tted to the quantum return probability is given by expf�1:36M0:39g.Sin
e the 
lassi
al return probability is not really 
ru
ial to our exposition, wewill only give an upper bound for it in the 
ase when jrj2 = jtj2 = 1=3 and thetree is 
omplete,P
l(2M) � �29�M �2M � 1M � � �89�M 1p2M� as M !1: (4.5.12)The 
orresponding quantum 
ase is given by � = �=3 and the result of the 
om-parison is presented on Fig. 4.6. As is 
lear from the plot, the quantum returnprobability de
ays to zero but does it at a slower rate than the 
orresponding
lassi
al quantity.If we are to look for the lo
alisation, however, the natural 
andidate wouldbe the region of � 
lose to �=2. For � = �=2 the answer is trivial: the re
e
tionamplitude r is equal to one and t = 0 so that the traje
tory is 
on�ned to the�rst bond and therefore PB(2M) = 1 for any integerM . Thus we automati
allyget lo
alisation. The real question is whether we get the lo
alisation for anyvalue of � other than �=2. The return probability for several values of � 
lose80



4.5. Numeri
al evaluation
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Figure 4.7: Plot of the quantum return probability P3(2M) for several valuesof the parameter �, as indi
ated, versus the inverse number of steps 1=M .In all 
ases the value of P3(2M) was 
omputed up to Mmax = 80 (ex
ept� = 0:48� where Mmax = 140). The limiting value of P3(2M) 
orresponds tothe proje
ted interse
tion with the y-axis. However the lower three 
urves arenot likely to have a nonzero limiting value as they bend down while approa
hingthe y-axis.to �=2 is plotted on Fig. 4.7. It 
an be seen from the plot that for bigger �the return probability P3(2M) tends to a nonzero limit as 1=M ! 0 but for� � 0:45� the plots of P3(2M) bend down 
onsiderably.An enlarged plot of P3(2M) for the larger values of � is shown on Fig. 4.8.It seems plausible that all three 
urves have a nonzero limit. On the 
ontrary,the plots for other 3 values of � seem to de
ay as M� whi
h is illustrated bythe 
orresponding �t on Fig. 4.9.We also tried to �t the 
urves for � = 0:46� and � = 0:47� to a fun
tionof the form �M�. The resulting � is less than zero but it is inevitable for anyde
reasing fun
tion. The exponents � for di�erent values of � are plotted onFig. 4.10. The drasti
 
hange of behaviour of � at � = 0:46� is remarkable.Basing on this plot we 
onje
ture that the transition between lo
alisation and81



4.5. Numeri
al evaluation
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4.6. Large B limit
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alisation o

urs around � = 0:46�.Sin
e our model and the model of [31℄ are not identi
al, one 
annot drawexa
t analogies between the two. But there is a rough 
orresponden
e between� and the parameter � of [31℄, it is 2 
os� = jtj=jrj = 1= sinh �. The lo
alisationin [31℄ was predi
ted in the range � 2 [1:88;1) whi
h 
orresponds to � 2[0:45�; 0:5�℄, showing a good agreement between the two results.4.6 Large B limitIn this se
tion we show a way to get an expansion of the return probability inthe limit B ! 1. The idea of the expansion is similar to what was done inChapter 3. First, we 
onje
ture that the limitP (�) = limB!1PB(B�) (4.6.1)exists and is analyti
 in some neighbourhood of zero. This res
aled returnprobability P (�) is the fun
tion we are going to expand.83



4.6. Large B limitWe set the parameters t and r to bet = 2=B r = 2=B � 1: (4.6.2)This sele
tion simpli�es Eq. (4.3.5) sin
e r � t = �1. Besides we do not loosegenerality with su
h sele
tion. Indeed, from Eq. (4.5.3) (or Eq. (4.5.4)) itfollows that any sele
tion of jtBj would go to zero at least as B�1. If it de
reasesfaster than B�1, the expansion below would be
ome trivial and therefore non-interesting. Thus we should �x jtBj / B�1 whi
h is adequately re
e
ted inEq. (4.6.2).This sele
tion makes the sequen
es with the least number of transitions tmore signi�
ant in the limit B ! 1. The largest 
ontribution (as in Chap-ter 3) 
omes from the sequen
e whi
h is 
on�ned to the �rst bond2. Thesequen
e undergoes M = B� rebounds and the 
orresponding Ap is thereforegiven by Ap = (1� 2=B)B� . Thus the 
ontribution of the sequen
e to thereturn probability isK1(�) = limB!1 (1� 2=B)2B� = exp(�4�): (4.6.3)The next most signi�
ant 
lass of sequen
es 
onsists of the sequen
es whi
hvisit only two bonds be
ause su
h sequen
e 
an have as few as 2 transitions t.Let us 
onsider the 
ontribution made by su
h sequen
es in detail.The �rst bond in su
h sequen
es is �xed while there are B � 1 
hoi
esfor the se
ond bond. We denote the number of traversals (in one 
hosendire
tion) of the �rst bond by m1 and number of traversals of the se
ond bondby m2 with the 
ondition m1 +m2 = B� . To 
al
ulate Ap we noti
e that thesequen
e pi
ks up m2 rebounds at the end of the se
ond bond and pi
ks upthe 
ontribution U (m1; m2) at the vertex where �rst and se
ond bonds meet.Thus the 
ontribution isK2(�) = limB!1(B � 1) B��1Xm2=1 ��U (B� �m2; m2) ��2(1� 2=B)2m2 : (4.6.4)2If we took jtB j to be de
reasing faster than B�1, i.e. if jtB jB ! 0 as B ! 1, this
ontribution would be equal to 1 while all other 
ontributions would be 084



4.6. Large B limitDenoting m2=B by q, expanding U2 (B� �m2; m2) a

ording to Eq. (4.3.5),taking the limit B ! 1 termwise and approximating the summation by anintegral we obtainK2(�)= limB!1B B��1Xm2=1 �����Xk1;k2 (K � 1)!(k1 � 1)!k2! ��2B �K �m1k1 ��m2 � 1k2 � 1������2�1� 2B�2m2= Z �0 �(�2)k1+k2 (� � q)k1qk2�1(k1 + k2 � 1)!k1!k2!(k1 � 1)!(k2 � 1)! �2 exp(�4q)dq; (4.6.5)where m1 = B� �m2 and K = k1+k2, and we have made the approximations1Bk2�1�m2 � 1k2 � 1�! qk2�1(k2 � 1)! and 1Bk1�m1k1 �! (� � q)k1k1! : (4.6.6)Next we expand the square and do the integration term by term using the ruleZ �0 qa(� � q)b exp(�4q)dq = 1Xl=0 (�4)ll! Z �0 qa+l(� � q)bdq (4.6.7)= 1Xl=0 (�4)l�a+b+l+1(a+ b + l + 1)! a!(b + l)!l! : (4.6.8)We arrive toK2(�) � � 1Xl=0 1Xki=1 1Xni=1 2N+K+2l (��)K+N+l�1(k1 + n1)!(k2 + n2 + l � 2)!(K +N + l � 1)!l!�(K � 1)!(N � 1)! 2Yj=1 1kj!nj!(kj � 1)!(nj � 1)! ; (4.6.9)where K = k1 + k2 and N = n1 + n2. Sin
e the minimum values for K and Nare 2, the expansion of K2(�) starts with � 3.The expression for K2(�) is already very 
ompli
ated, involving summa-tions over �ve indi
es. To give a further example, the 
ontribution from thesequen
e sket
hed on the inset of Fig. 4.11 
an be expressed in the formK33(�) � limB!1"2�B � 12 ��B � 12 �B4 (4.6.10)� Zq1+:::+q5=� V 2(q1; q2; q3)B4 V 2(q3; q4; q5)B4 e�4(q2+q4+q5)dq#= 12 Zq1+:::+q5=� V 2(q1; q2; q3)V 2(q3; q4; q5)e�4(q2+q4+q5)dq;85



4.6. Large B limit
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Figure 4.11: The shapes of the periodi
 sequen
es whose 
ontribution's expan-sion starts with the term of order 8 or lower. Thi
ker 
ir
le 
orresponds to theorigin. Inset: 
al
ulating the lowest power in the expansion for a sequen
e.The lowest power is given by twi
e the number of verti
es of valen
y 2 orgreater (shaded 
ir
les) plus number of all bonds minus 1.where qi = mi=B,V (q1; q2; q3) = limB!1 �B2U(Bq1; Bq2; Bq3)� (4.6.11)= q1 Xk1;k2;k3�1 (�2)KK � Kk1; k2; k3� 3Yi=1 qki�1i(ki � 1)!and the integral is taken over P5i=1 qi = � , i.e. the integration is over fourvariables q2, q3, q4, and q5, with q1 = � � q2 � q3 � q4 � q5. Although it ispossible to perform the integration to obtain an expli
it expression for the
oeÆ
ients of the � expansion, the expression is in
redibly bulky. It is 
lear,though, that the expansion starts from the power � 8.Fig. 4.11 lists the shapes of periodi
 sequen
es whose 
ontribution startsfrom the term of order 8 or below. 86



4.6. Large B limitProposition 5. For a general shape (subtree), the lowest power in the expan-sion of the 
orresponding 
ontribution to P (�) is given by twi
e the number ofthe verti
es in the subtree with valen
y greater than 1 plus the number of bondsof the subtree minus one.Indeed, ea
h vertex of the valen
y greater than 1 will produ
e the fa
torV 2(qi; : : : ; qj) whose expansion starts with the term of order q2i (it 
orrespondsto taking the parameters ki = : : : = kj = 0 in the sum of Eq. (4.6.11)). Thenthe integration will add the power equal to the number of the bonds of thesubtree minus one | the number of free variables in the integration.
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Chapter 5
Integral Representation
In this Chapter we return to the star graphs. But now we will approa
hthe problem of deriving the statisti
s not through the tra
e formula and theperiodi
 orbits but by using the se
ular equation (2.2.12) dire
tly. One 
anevaluate the determinant and obtain a (trans
endental) equation on k for anygiven graph, but for star graphs it takes an espe
ially simple form,BXj=1 tanLjk = 0: (5.0.1)Our aim is to derive an expression for the two point 
orrelation fun
tion inthe limit B !1 and to 
ompare it with the expansion of the form fa
tor weobtained in Chapter 3. The derivation is based on the method developed in[32℄ for statisti
s of the �Seba billiard [33, 34℄.5.1 Statement of the problemHere we 
onsider an alternative approa
h to the question of 
al
ulating thespe
tral statisti
s. Instead of averaging over a large spe
tral interval we applythe averaging with respe
t to the lengths of the individual bonds. That iswe assume that the lengths Lj are independent random variables distributeduniformly on the interval [L0; L0 +�L℄ and rede�ne the two-point 
orrelation88



5.1. Statement of the problemfun
tion as R2(x) = limk!1 1�d2 Dd(k)d�k + x�d�EfLjg ; (5.1.1)where d(x), as before, is the spe
tral density. The averaging is de�ned byh � ifLjg = Z L0+�LL0 � � �Z L0+�LL0 � dL1�L � � � dLB�L : (5.1.2)We argue that de�nition (5.1.1) produ
es an equivalent result to the one 
on-sidered in Se
tion 2.6.2. Indeed, imaging applying the averaging to a termof the form 
os �(lq � lp)k + lq 2�xL �, see Eq. (2.6.21). We 
an write lp ass1;pL1 + : : : + sB;pLB, where the ve
tor sp is the ve
tor of the bond stay-ing rates of the orbit p. Similarly lq = s1;qL1 + : : :+ sB;qLB and if for some jthe 
orresponding staying rates sj;p and sj;q are not equal then after averagingwith respe
t to Lj the 
osine term will a
quire a fa
tor of order 1=k. Thusall 
ontributions from the pairs of orbits of di�erent length will disappear inthe limit k !1, re
overing Eq. (2.6.22). Unfortunately it is hard to put thisargument into a more rigorous form.In this se
tion we make the following assumptions� we are interested in the limits �L! 0 and B !1.� when the limits �L! 0 and k !1 are to be taken together we assumethat k�L!1.In what follows we will not 
on
ern ourselves with the periodi
 orbits. On the
ontrary, we will derive a formula for R2(x) from the \�rst prin
iples".The general solution of Eq. (2.1.22) on a star graph 
an be written inthe form 	0;j(x) = Aj 
os(k(x + �j)), j = 1; : : : ; B. Applying the 
urrent
onservation 
ondition, (2.1.21), on the outer verti
es (x = Lj), we obtain�j = �Lj. Condition (2.1.20) on the 
entral vertex implies Aj 
os(Ljk) =
onst. Finally, applying 
ondition (2.1.21) and dividing by Aj 
os(Ljk) weobtain BXj=1 tanLjk = 0: (5.1.3)89



5.2. Average densityThus k is an eigenlevel if and only if it is a zero of the fun
tionF (k) = BXj=1 tanLjk: (5.1.4)Now we remember that for any fun
tion F (k) the densityd(k) =Xn Æ(k � kn); (5.1.5)of the zeros fkng of F 
an be expressed asd(k) = jF 0(k)jÆ(F (k)) = 12� Z jF 0(k)jeizF (k)dz; (5.1.6)where the integral is taken over the whole real line. In our 
ase F (k) =PBj=1 tanLjk and thusd(k) = 12� Z BXs=1 Ls
os2 LskeizPBj=1 tanLjkdz: (5.1.7)5.2 Average densityFirst of all we would like to 
al
ulate the average density d now de�ned as�d = lim�L!0;k!1Dd(k)EfLjg (5.2.1)and 
ompare it to the result we derived in Subse
tion 2.6.1. Applying theaveraging (5.1.2) to Eq. (5.1.7) we obtainDd(k)EfLjg = 12� Z 1�1 dz BXs=1 Z � � �Z L0+�LL0 Ls eizPBj=1 tan kLj
os2 kLs dL1�L � � � dLB�L= B2� Z 1�1 dz�Z L0+�LL0 eiz tan kL dL�L�B�1 �Z L0+�LL0 Leiz tan kL
os2 kL dL�L�� B2� Z 1�1 ~fB�1(z)~g(z) dz: (5.2.2)Here the fun
tion g(z) is~g(z) = Z L0+�LL0 Leiz tan kL
os2 kL dL�L � L0�Lk Z L0+�LL0 eiz tan kL� tan kL�L dL; (5.2.3)90



5.2. Average density

π

= 4x + O(1)
0L + ∆L 0 L

Figure 5.1: Illustration to the transition from Eq.(5.2.3) to Eq. (5.2.4): theinterval [L0; L0 +�L℄ 
ontains approximately k�L=� periods of tan kL. Thein
omplete bits of the period on the left and right give the O(1) 
ontribution.where we were able to approximate L by L0 be
ause it is slowly varying,
omparing to tan kL, and ultimately we will take the limit �L ! 0. Now,sin
e tan kL is a periodi
 fun
tion with the period of �=k and the integrationis performed over the interval 
ontaining approximately �Lk=� periods, seeFig. 5.1, we 
an further approximate~g(z) = L0�Lk  �Lk� Z �=(2k)��=(2k) eiz tan kL� tan kL�L dL+O(1)! (5.2.4)� L0� Z 1�1 eiz�d� = 2L0Æ(z);where O(1) is a quantity whi
h is bounded as �Lk ! 1 and � = tan kL.Similarly for the fun
tion ~f(z),~f(z) = Z L0+�LL0 eiz tan kL dL�L = L0�Lk Z L0+�LL0 eiz tan kL d tan kL1 + tan2 kL� 1� Z 1�1 eiz�1 + �2d� = e�jzj; (5.2.5)91



5.3. Two-point 
orrelation fun
tion
i
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α

α
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R

Figure 5.2: Closing the 
ontour in the integral of Eq. (5.2.5) in the 
ase z > 0.Along the ar
 the integral is bounded by 1=R. The residue at the pole is equalto �eiz.where the last integral was evaluated by 
losing the 
ontour in either the upper(z > 0, see Fig. 5.2) or lower (z < 0) half-plane.Substituting the results into Eq. (5.2.2) we obtain for the average density�d = B2�2L0 Z 1�1 e�(B�1)jzjÆ(z)dz = L0B� ; (5.2.6)whi
h 
oin
ides with the expression of Eq.(2.6.5).5.3 Two-point 
orrelation fun
tion5.3.1 The re
ipeTo shorten the notation we introdu
e the fun
tionR(k1; k2) = hd(k1)d(k2)i (5.3.1)= *Z 1�1 BXr;s=1 LrLseiPBj=1(z1 tan k1Lj+z2 tan k2Lj)
os2 k1Lr 
os2 k2Ls dz4�2+fLjg ;where z = (z1; z2). Then the two-point 
orrelation fun
tion is given byR2(x) = limk!1 1�d2R �k; k + x�d� ; (5.3.2)where �d is the mean density. 92



5.3. Two-point 
orrelation fun
tionApplying the averaging, as was done in Eq. (5.2.2), to the integral inEq. (5.3.1) we redu
e it toR(k1; k2) = Z 1�1 �Bg(z)fB�1(z) + (B2 �B)�1(z)�2(z)fB�2(z)	 dz4�2 ;(5.3.3)where f(z) = 1�L Z L0+�LL0 ei(z1 tan(k1L)+z2 tan(k2L))dL (5.3.4)g(z) = 1�L Z L0+�LL0 L2
os2 k1L 
os2 k2Lei(z1 tan(k1L)+z2 tan(k2L))dL(5.3.5)�1(z) = 1�L Z L0+�LL0 L
os2 k1Lei(z1 tan(k1L)+z2 tan(k2L))dL (5.3.6)�2(z) = 1�L Z L0+�LL0 L
os2 k2Lei(z1 tan(k1L)+z2 tan(k2L))dL: (5.3.7)5.3.2 The ingredientsSubstituting k1 = k, k2 = k + �x=(BL0) for �xed x and taking the limitsk !1, �L! 0 (while k�L!1) we obtain for the �rst integralf(z) = 1�L Z L0+�LL0 ei�z1 tan(kL)+z2 tan�kL+ �xLBL0 ��dL� 1� Z �=2��=2 ei(z1 tan �+z2 tan(�+�xB ))d�; (5.3.8)where we put L=L0 � 1 be
ause it is slowly varying and, as in transition fromEq. (5.2.3) to Eq. (5.2.4), we approximated f by the integral over one periodlength. We writetan��+ �xB � = tan�+ tan ��xB �1� tan� tan ��xB � = 1 + �2� � tan� � �; (5.3.9)where � = (tan(�x=B))�1 / B=(�x) (we are interested in B ! 1 limit).Performing the 
hange of variables � = tan�� �, we arrive tof(z1; z2) � ei�(z1�z2)� Z 1�1 eiz1��iz2 �2+1� d�(�+ �)2 + 1 ; (5.3.10)Note that f(z) is invariant under ex
hange z1 $ z2 and � ! ��, whi
h 
anbe veri�ed by the 
hange of variables � = (�2 + 1)=y in Eq. (5.3.10).93



5.3. Two-point 
orrelation fun
tionTo evaluate the integral of Eq. (5.3.10) we di�erentiate it with respe
t toz1 and z2 to get�f�z1 � �f�z2 = iei�(z1�z2)� Z 1�1 eiz1��iz2 �2+1� �2� + � + �2 + 1� � d�(� + �)2 + 1= iei�(z1�z2)� Z 1�1 eiz1��iz2 �2+1� d�� = �ei�(z1�z2)�(z1; z2); (5.3.11)where we denoted�(z1; z2) � � i� Z 1�1 eiz1��iz2 �2+1� d�� (5.3.12)= 2 sign(z1)H(�z1z2)J0 �2p�(�2 + 1)z1z2� ;where J0(x) is the Bessel fun
tion of the �rst kind and H(x) is the Heavisidefun
tion (
hara
teristi
 fun
tion of the half axis [0;1)).Now to �nd the fun
tion f(z) we need to solve the partial di�erentialequation �f�z1 � �f�z2 = �ei�(z1�z2)�(z1; z2): (5.3.13)We are going to use the method of 
hara
teristi
s, a general method of solving�rst order PDEs of the formP (z) �f�z1 +Q(z) �f�z2 = R(z): (5.3.14)The idea behind the method is to �nd the foliation of the plane into set of
urves z1 = z1(t), z2 = z2(t) su
h that the left hand side of the equation isthe di�erential of f with respe
t to t. It leads to a set of ordinary di�erentialequations, usually written asdyQ(z) = dxP (z) = dfR(z) : (5.3.15)In our 
ase P = 1, Q = 1 and R = �ei�(z1�z2)�(z) , and, applying the method,we obtain the solution in the formf(z) = C(z1 + z2) + Z z10 R (y; z1 + z2 � y)dy; (5.3.16)94



5.3. Two-point 
orrelation fun
tionwhere the fun
tion C( � ) is to be found from the boundary 
ondition(s). Fixingz1 = 0 we haveC(z2) = f(0; z2) = f� 7!��(z2; 0)= e�i�z2� Z 1�1 eiz2� d�(�� �)2 + 1 = e�jz2j; (5.3.17)whi
h �xes the fun
tion C(�). Thus from Eqs. (5.3.11), (5.3.16) and (5.3.17),f(z) = e�jz1+z2j � Z z10 ei�(2y�z1�z2)� (y; z1 + z2 � y) dy: (5.3.18)We treat the integral for g(z) (see Eq. (5.3.5)) in a fashion similar to theone used to obtain Eq. (5.3.10). This leads us tog(z1; z2) � L20� Z �=2��=2 ei(z1 tan(�)+z2 tan(�+�x=B))
os2(�) 
os2(�+ �x=B)d� (5.3.19)= L20 ei�(z1�z2)� Z 1�1 eiz1��iz2 �2+1�  1 + �1 + �2� + ��2! d�;where we made the 
hange of variable � = tan�� � and used the identity1
os2(�+ �x=v) = 1 + tan2(�+ �x=v) =  1 + � 1 + �2tan�� � + ��2! :(5.3.20)Comparing the integral above to the de�nition of the fun
tion �(z1; z2),Eq. (5.3.12), we note that1 + �1 + �2� + ��2 = �2 + 1� �� + � + �2 + 1� + �� (5.3.21)and therefore represent g(z) asg(z) = L20(�2 + 1)� ��z1 � ��z2��ei�(z1�z2)�(z1; z2)� ; (5.3.22)whi
h 
an be veri�ed by simple di�erentiation.One 
an derive a similar expression for the fun
tions �1(z),�1(z) � L0 ei�(z1�z2)� Z 1�1 eiz1��iz2 �2+1� d� = L0ei�(z1�z2) ��z1�(z1; z2); (5.3.23)95



5.3. Two-point 
orrelation fun
tionand �2(z),�2(z) � L0 ei�(z1�z2)� Z 1�1 eiz1��iz2 �2+1�  1 + �1 + �2� + ��2! d�(�+ �)2 + 1= L0 ei�(z1�z2)� Z 1�1 eiz1��iz2 �2+1� (�2 + 1)d��2= �L0ei�(z1�z2) ��z2�(z1; z2); (5.3.24)whi
h again 
an be easily veri�ed by the di�erentiation of the expression for�(z1; z2), Eq. (5.3.12).5.3.3 The resultNow we have all ne
essary ingredients for evaluating the integral in Eq. (5.3.3).Substituting the expression for g(z), Eq. (5.3.22), into the �rst half of theintegral and integrating it by parts we obtainZ dz4�2BfB�1g = BL20 Z dz4�2fB�1(�2 + 1)� ��z1 � ��z2��ei�(z1�z2)��= �BL20 Z dz4�2 (�2 + 1)ei�(z1�z2)�� ��z1 � ��z2��fB�1(z)�= B(B � 1)L20 Z dz4�2 (�2 + 1)fB�2e2i�(z1�z2)�2; (5.3.25)and, gathering everything together,R2(x) = B(B � 1)L20�d2 Z dz4�2fB�2e2i�(z1�z2) �(�2 + 1)�2 � ���z1 ���z2� : (5.3.26)Now we need to take the limit B !1. To do so we write fB�2(z) = e(B�2) ln fand res
ale f(z)f(u=�) = e� ju1+u2j� � 1� Z u10 ei(2y�u1�u2)	(y; u1 + u2 � y)dy (5.3.27)Thus, to the leading order in 1=� = �x=B, we have(B � 2) ln f(u) � ��x�ju1 + u2j+ Z u10 ei(2y�u1�u2)	(y; u1 + u2 � y)dy�� ��xQ (5.3.28)96



5.3. Two-point 
orrelation fun
tionwhere 	 is the res
aled fun
tion �,	(u) = ��u�� = 2 sign(u1)H(�u1u2)J0 �2p�u1u2� ; (5.3.29)and we have taken the limit B !1 (� !1).Renormalising the rest of the Eq. (5.3.26) and taking the limit B !1 weobtain R2(x) = 14 Z due��xQe2i(u1�u2) �	2 � �	�u1 �	�u2� : (5.3.30)For the derivatives of the fun
tion 	 one has�	�u1 = 2�J0(0)Æ(u1) + sign(u1)H(�u1u2)u2J 00(2p�u1u2)p�u1u2 � ; (5.3.31)�	�u2 = 2��J0(0)Æ(u2) + sign(u1)H(�u1u2)u1J 00(2p�u1u2)p�u1u2 � ;(5.3.32)therefore, using J0(0) = 1 and J 00(x) = �J1(x),�	�u1 �	�u2 = �4 �Æ(u1)Æ(u2) +H(�u1u2)J1(2p�u1u2)� : (5.3.33)ThusR2(x) = 1 + Z e��xM+2i(u1�u2) �J20 (2p�u1u2) + J21 (2p�u1u2)�H(�u1u2)du:(5.3.34)Now we perform the 
hange of variables u2 7! �u2 arriving to the integralrepresentation of the two-point 
orrelation fun
tion,R2(x) = 1 + ZD e��xM(u)+2i(u1+u2) �J20 (2pu1u2) + J21 (2pu1u2)� du; (5.3.35)where the domain of integration D in
ludes �rst and third quarters of the R2and M(u) is given byM(u) �M(u1; u2) = ju1 � u2j+ Z u10 ei(2y�u1+u2)	(y; u1 � u2 � y)dy:(5.3.36)97



5.3. Two-point 
orrelation fun
tion5.3.4 Properties of the fun
tion M(u)In the subsequent material the fun
tion M(u) plays an important role. Weholds the key to both the asymptoti
 expansion of the two-point 
orrelationfun
tion and the study of the singularities of the form fa
tor. We begin byderiving the power series representation of M(u).We only need to 
onsider the fun
tion M(u) in the region u1u2 > 0. Letus start with u1; u2 > 0. ThenM(u) = ju1 � u2j+ 2 Z u10 ei(2y�u1+u2)H (y(y � u1 + u2)) J0 �2py(y � u1 + u2)� dy: (5.3.37)Due to the presen
e of the Heaviside fun
tion H we need to 
onsider two 
ases.If u2 > u1 then y(y � u1 + u2) � 0 for any y : 0 � y � u1 and thereforeM(u) = u2 � u1 + 2 Z u10 ei(2y�u1+u2)J0 �2py(y � u1 + u2)� dy: (5.3.38)In the 
ase u1 > u2, however, the lower limit of the integration 
hanges,M(u) = u1 � u2 + 2 Z u1u1�u2 ei(2y�u1+u2)J0 �2py(y � u1 + u2)� dy: (5.3.39)To �nd an expression whi
h is valid for both regions, we 
al
ulate the integralZ u1�u20 ei(2y�u1+u2)J0 �2py(y � u1 + u2)� dy: (5.3.40)For simpli
ity we denote u1 � u2 = b and writeei(2y�b)J0 �2py(y � b)� = �(y; y � b); (5.3.41)where�(x; y) � ei(x+y)J0 (2pxy) = 1Xj;k=0 ij+kxjyk(j + k)! �j + kj � 1Xn=0(�1)nxnynn!n!= 1Xr;s=0xrys min(r;s)Xn=0 (�1)nir+s�2nn!n!(r � n)!(s� n)! = 1Xr;s=0 ir+sxrysr!s! 1Xn=0 �rn��sn�= 1Xr;s=0 ir+s�r + sr �xrysr!s! : (5.3.42)98



5.3. Two-point 
orrelation fun
tionHere we used the identity 1Xn=0 �rn��sn� = �r + sr �: (5.3.43)Now we substitute x = y � b and integrate the series, remembering thatZ b0 (y � b)rysdy = (�1)r r!s!(r + s+ 1)!br+s+1; (5.3.44)see also Eq. (4.6.7). We obtainZ b0 �(y; y � b)dy = 1Xr;s=0 ir+sbr+s+1(r + s+ 1)!(�1)r�r + sr �= 1Xr+s=0 ir+sbr+s+1(r + s+ 1)!Ær+s;0 = b: (5.3.45)Thus, adding and subtra
ting 2b from Eq. (5.3.39), we 
an show that (5.3.38)is valid for both u2 > u1 and u1 > u2.We remember that the fun
tion f(u) whi
h gave rise to M(u) in our 
al-
ulation in the previous Se
tion satis�ed a linear partial di�erential equationof the �rst order. Cal
ulating partial derivatives of M(u),�M�u1 = �1 + 2 Z u10 ��u1�(y; y � u1 + u2)dy + 2�(u1; u2); (5.3.46)�M�u2 = 1 + 2 Z u10 ��u2�(y; y � u1 + u2)dy= 1� 2 Z u10 ��u1�(y; y � u1 + u2)dy; (5.3.47)we see that M(u) also satis�es a PDE,�M�u1 + �M�u2 = 2�(u1; u2): (5.3.48)The initial 
ondition 
an be easily supplied by substituting u1 = 0:M(0; u2) = u2: (5.3.49)Now we 
an �nd the series expansion ofM(u) by solving Eq. (5.3.48) with theinitial 
ondition (5.3.49). WritingM(u) = 1Xj;k=0Aj;kuj1uk2; (5.3.50)99



5.3. Two-point 
orrelation fun
tionand denoting by Bj;k the 
oeÆ
ients of the expansion of 2�(u1; u2), as givenby Eq. (5.3.42), we arrive to the re
ursionAj+1;k = 1j + 1 (Bj;k � (k + 1)Aj;k+1) ; A0;k = Æ0;k: (5.3.51)This re
ursion is satis�ed by A1;0 = A0;1 = 1 andAj;k = �2ij+k+1 (j + k � 2)!j!k!(j � 1)!(k � 1)! : (5.3.52)Indeed,1j + 1 (Bj;k � (k + 1)Aj;k+1) = 2ij+k(j + 1)!k! ��j + kk �� �j + k � 1k ��= �2ij+k+2(j + 1)!k!�j + k � 1j � = Aj+1;k: (5.3.53)Thus for u1; u2 > 0M(u) = u1 + u2 � 2i 1Xr;s=1 (iu1)r(iu2)s(r + s� 2)!r!s!(r � 1)!(s� 1)! : (5.3.54)Comparing the expansions for the fun
tions M(u) and �(u) we noti
e thatthey are quite similar. In fa
t,�2M�u1�u2 (u) = 2i�(u): (5.3.55)An analysis, similar to the one presented in the pages above, of the fun
tionM(u) in the region u1; u2 < 0 yields the PDE�M�u1 + �M�u2 = �2�(u1; u2); M(0; u2) = �u2: (5.3.56)Solving this PDE using the same methods we arrive to the general formula forM(u),M(u) = ju1j+ ju2j � 2i sign(u1) 1Xr;s=1 (iu1)r(iu2)s(r + s� 2)!r!s!(r � 1)!(s� 1)! : (5.3.57)While we are at it, we might as well derive an expansion for the se
ondfa
tor in the integrand of representation (5.3.35) of the two-point 
orrelation100



5.4. Expansion for large xfun
tion, the sum of the Bessel fun
tions, J20 (2p�u1u2) + J21 (2p�u1u2). Toderive it we use the standard formula (see, e.g. [41℄)J�(z)J�(z) = (z2)�+� 1Xk=0 (�1)k�(� + �+ 2k + 1)(z=2)2k�(� + k + 1)�(�+ k + 1)�(� + �+ k + 1)k! :(5.3.58)Applying this formula to our 
ase, with � = � = 0 and � = � = 1, we obtainJ20 (2p�u1u2) + J21 (2p�u1u2)= 1Xk=0 (�1)k(2k)!uk1uk2k!k!k!k! � 1Xk=1 (�1)k(2k)!uk1uk2k!k!(k + 1)!(k � 1)!= 1 + 1Xk=1 (�1)k(2k)!uk1uk2k!k! � 1k!k! � 1(k + 1)!(k � 1)!�= 1Xk=0 (�1)k(2k)!uk1uk2k!k!(k + 1)!k! (5.3.59)5.4 Expansion for large xTo derive an expansion of the two point 
orrelation fun
tion R2(x) for large xwe noti
e that sin
eM(�u) =M(u), the integral over the third quarter-planein Eq. (5.3.35) is equal to the 
omplex 
onjugate of the integral over se
ondquarter-plane, i.e.R2(x) = 1 + 2< Z Z 10 e��xM(u)+2i(u1+u2)J(u)du; (5.4.1)where J(u) = J20 (2pu1u2) + J21 (2pu1u2) = 1Xn=0 (�1)nun1un2 (2n)!(n+ 1)!(n!)3 : (5.4.2)Now we 
an use the expansion of M(u), Eq. (5.3.57), to expand R2(x) in thepowers of 1=x. We substitute ui = 
i=(x�) and obtainR2(x) = 1 + 2< 1x2�2 Z Z 10 d
1d
2e�
1�
2 �1 + 2i (
1 + 
2 � 
1
2)x�� (5
1
2 + 2
21 + 2
22 � 5
1
22 � 5
21
2 + 2
21
22)x2�2 +O� 1x3��= 1 + 2< � 1x2�2 + 2ix3�3 � 1x4�4 + : : : � : (5.4.3)101



5.4. Expansion for large xTo 
ompare it to the expansion of the form fa
tor K(�) we remember that theexpansion of R2(x) in powers of 1=x and the expansion of K(�) in powers of� are 
onne
ted through the Fourier transform: if K(�) = 1 +P1k=1 ak�k for� > 0 and K(��) = K(�) thenR2(x)� 1 = Æ(x) + 2< lim�!0 Z 10 (K(�)� 1)e�i2�(x�i�)�d�= Æ(x) + 2< lim�!0 1Xk=1 ak Z 10 �ke�i2�(x�i�)�d�= Æ(x) + 2< 1Xk=1 ��i2��k+1 akk!xk+1 : (5.4.4)Applying this rule toK(�) = 1� 4� + 8� 2 � 83� 3 +O(� 4); (5.4.5)we see that the �rst few 
oeÆ
ients of the both expansions agree.1 In fa
t, it ispossible to prove a mu
h more general result, due to Bogomolny (also reportedin [42℄)Theorem 2. Asymptoti
 expansion (5.4.1) of the two-point 
orrelation fun
-tion and expansion (3.1.42) for the form fa
tor agree under Fourier transform,Z Z 10 e��xM(u)+2i(u1+u2)J(u)du = Z 10 (K(� 0)� 1) e�2�ix� 0d� 0: (5.4.6)Proof. When taking the Fourier transform in Eq. (5.4.6), we give x a smallimaginary part and then take limit as done in Eq.(5.4.4). This establishes the
orresponden
e between the terms in the asymptoti
 expansion offR2(x) = Z Z 10 e��xM(u)+2i(u1+u2)J(u)du (5.4.7)and the terms of the small � expansion of K(�). This 
orresponden
e is1(2�ix)k  ! �k�1(k � 1)! : (5.4.8)1Æ(x) is not present in the expansion Eq. (5.4.3), sin
e the large x expansion \does notknow" about the lo
alised delta fun
tion. 102



5.4. Expansion for large xOur plan is to modify the integrand in the de�nition of fR2(x), getting ridof the fa
tor e2i(u1+u2)J(u), expand the integral in the inverse powers of x andapply the 
orresponden
e rule (5.4.8) re
overing expansion (3.1.42).First of all, let us derive a series expansion for�1(u) = �2ipu1u2J1 (2pu1u2) ei(u1+u2): (5.4.9)One way to do it is to relate �1(u) to the fun
tion �(u) = ei(u1+u2)J0 �2pu1u2�,expansion for whi
h we know, see Eq. (5.3.42). We have����(�x; �y) = i(x + y)�(�x; �y)� 2p�2xyJ1 (2�pxy) ei�(x+y)= x ���u1 (�x; �y) + y ���u2 (�x; �y); (5.4.10)where ��=�ui denotes the derivative of � with respe
t to ith argument. Hen
ewe have for �1(u)�1(u) = i�u1 ��u1�(u) + u2 ��u2�(u)� + (u1 + u2)�(u): (5.4.11)Substituting the series expansion of the fun
tion �(u) into the above equationwe obtain for the 
oeÆ
ient of the ur1us2 term of the fun
tion �1(u),ir+s+1 (r + s)(r + s)!r!s!r!s! + ir+s�1 (r + s� 1)!((r � 1)!s!)2 + ir+s�1 (r + s� 1)!(r!(s� 1)!)2= 2ir+s+1 (r + s� 1)!r!s!(r � 1)!(s� 1)! ; (5.4.12)for r; s > 0. Now we noti
e that the general terms of the expansions of thefun
tionsM(u) and �1(u) are very similar, the only di�eren
e being the fa
tor�(r + s � 1) in the expansion of �1(u). One of the ways to relate M(u) to�1(u) is to write ��x �xM ��1x ; �2x �� = �1 ��1x ; �2x � : (5.4.13)This is the �rst of the identities we will need. The se
ond one is a modi�
ationof Eq. (5.3.48),� ���1 + ���2��xM ��1x ; �2x �� = 2���1x ; �2x � : (5.4.14)103



5.4. Expansion for large xApplying the �rst of the above identities we 
al
ulate�2�x2 e��xM(�1x ;�2x ) = e��xM  �2� ��x (xM)�2 � � �2�x2 (xM)!= e��xM ��4�2�1�2x2 J21 e2� � 2�ix3 �2J0e��1�2 + iJ1e�p�1�2(�1 + �2)�� ;(5.4.15)where � = i(�1 + �2)=x and the argument (�1=x; �2=x) of the fun
tions M ,J0, and J1 is omitted.Similarly using identity (5.4.14), we derive� ���1 + ���2�2 e��xM(�1x ;�2x ) = e��xM ��2�2 � �� ���1 + ���2���= e��xM �4�2J20 e2� � 2�i�1�2x �2J0e��1�2 + iJ1e�p�1�2(�1 + �2)��(5.4.16)Noti
ing the similarities of Eqs. (5.4.15) and (5.4.16) we subtra
t the �rst fromthe se
ond, with the appropriate fa
tors, to obtain14�2 " 1x2 � ���1 + ���2�2 � 1�1�2 �2�x2# e��xM(�1x ;�2x )= 1x2 �J20 + J21 � e2�e�xM ; (5.4.17)where, as before, � = i(�1 + �2)=x and the argument (�1=x; �2=x) is omittedafterM , J0 and J1. The right hand side of Eq. (5.4.17) is exa
tly the integrandof Eq. (5.4.1) if we perform the 
hange of variables ui = �i=x and therefore,fR2(x) = ZZ 10 d�1d�24�2 " 1x2 � ���1 + ���2�2 � 1�1�2 �2�x2# e��xM(�1x ;�2x ):(5.4.18)The �rst summand in the integral 
an be evaluated as follows,ZZ 10 d�1d�24�2x2 � ���1 + ���2�2 e��xM(�1x ;�2x )= ��2� ZZ 10 d�1d�24�2x2 � ���1 + ���2��e��xM�= �� Z 10 d�22�x2 ��e��xM�1�1=0 � Z 10 d�12�x2 ��e��xM�1�2=0� : (5.4.19)104



5.4. Expansion for large xSin
e h���1x ; �2x � e��xM(�1x ;�2x )i1�1=0 = �ei�2=xe���2 ; (5.4.20)we obtain for the 
ontribution of the �rst summandZZ 10 d�1d�24�2x2 � ���1 + ���2�2 e��xM(�1x ;�2x )= �Z 10 d�22�x2 ei�2=x���2 + Z 10 d�12�x2 ei�1=x���1�= 12�x2 2� � i=x: (5.4.21)Now we 
an expand the answer in the inverse powers of x and apply the
orresponden
e rule, Eq. (5.4.4). We obtain1�x 1�x� i = � 1Xk=0 � i�x�k+2= � 1Xk=0 (�2)k+2(2�ix)k+2  ! 2 1Xk=0 (�2�)k+1(k � 1)! = 2 �e�2� � 1� : (5.4.22)Now we need to expand the se
ond part of the integrand of Eq. (5.4.18),�2�x2 e��xM(�1x ;�2x ) = �2�x2 e��(�1+�2) exp 2�i 1Xr;s=0 (i�1)r+1(i�2)s+1(r + s)!xr+s+1r!s!(r + 1)!(s+ 1)!!= e��(�1+�2) �2�x2 24 1Xj=0 (2�i)jj!  1Xr;s=0 (i�1)r+1(i�2)s+1(r + s)!xr+s+1r!s!(r + 1)!(s+ 1)!!j35 (5.4.23)Following notation (3.1.44) we expand the power j, 1Xr;s=0 (i�1)r+1(i�2)s+1(r + s)!xr+s+1r!s!(r + 1)!(s+ 1)!!j =  1Xr;s=0 (i�1)r+1(i�2)s+1xr+s+1 F1(r; s)!j= 1XR;S=0 (i�1)R+j(i�2)S+jxR+S+j Fj(R; S); (5.4.24)where, as in Chapter 3,Fj(R; S) = Xr1+:::+rj=R Xs1+:::+sj=S jYi=1 (ri + si)!ri!si!(ri + 1)!(si + 1)! ; (5.4.25)105



5.5. Singularities of the form fa
tori.e. Fj(R; S) is the jth 
onvolution of the in�nite matrix F1(R; S) with itself.Continuing Eq. (5.4.23) we obtain�2�x2 e��xM(�1x ;�2x ) = e��(�1+�2) 1Xj=1 (2�i)jj!� 1XR;S=0 (R + S + j � 1)!(i�1)R+j(i�2)S+j(R + S + j + 1)!xR+S+j+2 Fj(R; S): (5.4.26)Finally we integrate against d�1d�2=(4�2�1�2) to arrive at� ZZ 10 d�1d�24�2�1�2 �2�x2 e��xM(�1x ;�2x )= � 1Xj=1 (2�i)j4�2j! 1XR;S=0 (R + S + j + 1)!(R + j � 1)!(S + j � 1)!(R + S + j � 1)!(�i�)R+S+2jxR+S+j+2 Fj(R; S)= 1Xj=1 (�2)j4j! 1XR;S=0 (R + S + j + 1)!(R + j � 1)!(S + j � 1)!(R + S + j � 1)!(�i�x)R+S+j+2 Fj(R; S) ! 1Xj=1 (�2)j4j! 1XR;S=0 (�2�)R+S+j+2(R + j � 1)!(S + j � 1)!�(R + S + j � 1)! Fj(R; S)= � 1Xj=1 (4�)jj! 1XR;S=0 (�2�)R+S(R + j � 1)!(S + j � 1)!(R + S + j � 1)! Fj(R; S): (5.4.27)This is exa
tly the same as the j sum in Eq. (3.1.42) with the ex
eption of theextra j = 1 term in the summation above. For j = 1 we have4� 2 1XR;S=0 (�2�)R+SR!S!(R + S)! Fj(R; S) = 1XR;S=0 (�2�)R+S+2(R + 1)!(S + 1)!=  1XR=0 (�2�)R+1(R + 1)! ! 1XS=0 (�2�)S+1(S + 1)! ! = (1� e�2� )2= 1� 2e�2� + e�4� ; (5.4.28)whi
h together with the terms 1 and 2(e�2� � 1) gives the 
orre
t 
ontributione�4� .5.5 Singularities of the form fa
torIt turns out that one 
an obtain some information about the singularities ofK(�) by studying integral representation (5.4.1). We are going to apply the106



5.5. Singularities of the form fa
torFourier transform to the integral in Eq. (5.4.1) to re
over the expansion of theform fa
tor. There is, however, a subtle problem asso
iated with this. Theform fa
tor is by de�nition an even fun
tion de�ned on the real line. Whatwe want to get from transforming Eq. (5.4.1) is an analyti
 fun
tion whi
h
oin
ides with the form fa
tor for real � > 0.As we saw above,fR2(x) = Z Z 10 e��xM(u)+2i(u1+u2)J(u)du = Z 10 (K(� 0)� 1)e�2�ix� 0d� 0:(5.5.1)Integrating (5.5.1) against e2�ix� on the real line (and thus e�e
tively invertingthe Fourier transform) we obtainZ 1�1fR2(x)e2�ix�dx = K(�)� 1; � > 0: (5.5.2)The left hand side 
an be viewed as the analyti
 
ontinuation of the form fa
torrestri
ted to � > 0 into the 
omplex plane. Now we use fR2(�x) = fR2(x) towrite Z 1�1 e2�ix�fR2(x)dx = Z 10 �e2�ix�fR2(x) + e�2�ix�fR2(x)� dxThe only fa
tor in the integral for fR2(x) whi
h depends on x is e��xM(u) andZ 10 e2�ix�e��xM(u)dx = 1�(M(u)� 2i�) ; (5.5.3)thus we have for the form fa
torK(�) = 1 + 1� Z Z 10 " e2i(u1+u2)M(u)� 2i� + e�2i(u1+u2)M(u) + 2i� # J(u)du: (5.5.4)The representation (5.5.4) presents us with a way to �nd the singularitiesof the form fa
tor K(�). They are given by the 
ondition � =M(us)=(2i) and� =M(us)=(2i), where the point us is su
h that�M�u1 (us) = �M�u2 (us) = 0: (5.5.5)107



5.5. Singularities of the form fa
torThe derivative with respe
t to u2 is�M�u2 = 1� 2 Z u10 hei(y+z)J1 (2pyz)py=z � iei(y+z)J0 (2pyz)i dy; (5.5.6)where z = y � u1 + u2 and we assumed that u1 > u2 > 0. It is obviousfrom the expansion (5.3.57), however, that the fun
tion M(u) is 
ontinuouslydi�erentiable if u1u2 > 0 and that the expression (5.5.6) is valid for all u1 > 0and u2 > 0. The expression in Eq. (5.5.6) is not easy to analyse and to simplifyit we redu
e our sear
h to the values u2 = u1,�M�u2 (u2 = u1) = 1� 2 Z u10 e2iyJ1(2y)dy + 2i Z u10 e2iyJ0(2y)dyIntegrating the se
ond integral by parts,Z u10 e2iyJ0(2y)dy = e2iyJ0(2y)2i ����u10 + 22i Z u10 e2iyJ1(2y)dy; (5.5.7)we obtain, after simpli�
ation,�M�u2 (u2 = u1) = e2iu1J0(2u1): (5.5.8)Sin
e �M�u1 (u2 = u1) = �M�u2 (u2 = u1), the zeros of the derivatives of M(u)on the line u2 = u1 are given by the zeros of the Bessel fun
tion J0. Thenearest zero is at us � 1:202. Then one of the poles of K(�) is given by�s =M(1:202; 1:202)=(2i) = 0:462� 0:420i whi
h is in a very good agreementwith the results of the numeri
al analysis. Although the numeri
al analysis isin favour of the 
laim that �s is the singularity nearest to the origin, we 
anprove it only partly.Proposition 6. Among the singularities arising from the values u2 = u1, thesingularity at �s =M(1:202; 1:202)=(2i) is the nearest to the origin.Proof. To show that the statement is true we need to prove that the fun
tionjM(u; u)j is growing with u. Indeed, on the line u1 = u2 the fun
tionM isM(u; u) = Z 2u0 eiyJ0(y)dy = 2e2iuu (J0(2u)� iJ1(2u)) : (5.5.9)108



5.5. Singularities of the form fa
tor
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Figure 5.3: The 
oeÆ
ients of the power series expansion of K(�) normalisedby �n (
rosses) are 
ompared to the predi
tion of Eq. (5.5.15). The �t getsbetter as n in
reases.Then jM(x=2; x=2)j = x2 (J20 (x) + J21 (x)) and its derivative is (see [41℄)ddx jM(x=2; x=2)j2= 2x �J20 (x) + J21 (x)�+ x2�� 2J0(x)J1(x) + 2J1(x) (J0(x)� J1(x)=x) �= 2xJ20 (x) � 0 (5.5.10)
Further, one 
an approximate the behaviour of K(�) near the singularities.Denoting a stationary point of M(u) by us = (us; us), we expandM(u) � M(us) + 12 �2M�u21 (us)(u1 � u2)2 + 12 �2M�u22 (us)(u2 � us)2+ �2M�u1�u2 (us)(u1 � us)(u2 � us)= M(us) + �s �(u1 � us)2 + (u2 � us)2� ; (5.5.11)where, as we saw in Eq. (5.3.55), �2M�u1�u2 (us) = e2iusJ0(2us)=(2i) and is equalto zero sin
e �M�u1 is equal to zero at us. For the singularity asso
iated with the109



5.6. Small x limit of R2(x)�rst Bessel zero, �s = :385� :349i. Then the form fa
torK(�)� 1��s Z Z 10 J(u)e2i(u1+u2)du(u1 � us)2 + (u2 � us)2 + (M(us)� 2i�)=�s + 
.
.(5.5.12)where the 
omplex 
onjugate (
.
.) was taken pretending that � is real. Themain 
ontribution to the integral 
omes from around the point us. Theintegral near a singularity 
an be approximated by the value of the fa
torJ(u)e�2i(u1+u2)= (��s) at the singularity multiplied byZ Z0 duu21 + u22 + � = Z 2�0 Z0 rdrr2 + � = � Z0 dr2r2 + � = �� ln�; (5.5.13)where the absen
e of the upper limit indi
ates that the integral is taken in thevi
inity of the lower limit. Thus we 
on
lude that the leading order approx-imation of the form fa
tor in the vi
inity of the singularities (i.e. where �,whi
h 
orresponds to M(us)� 2i� or M(us) + 2i� , is small) is given byK(�) / �C ln�1� 2i�M(us)�� C ln 1 + 2i�M(us)! ; (5.5.14)where C = J(us)e4ius=�s. Expanding the 
ontribution of Eq. (5.5.14) into theseries around � = 0 we getK(�) / 2< C 1Xn=1 �n ein�n �n! = 2A 
os(�n+  )�nn �n; (5.5.15)where A = jJ(us)e4ius=�sj � 0:519,  = arg (J(us)e4ius=�s) � �0:737, � =j2i=M(us)j � 1:602 and � = arg (2i=M(us)) � 0:737. By Darboux Prin
iple,the 
oeÆ
ients of expansion (5.5.15) should 
omprise the leading 
ontributionto the exa
t 
oeÆ
ients given by Eqs. (3.1.42)-(3.1.43). To 
ompare themwe plot the exa
t 
oeÆ
ients nan=�n against the approximated 
oeÆ
ients2A 
os(�n+  ). The result is shown on Fig. 5.3.5.6 Small x limit of R2(x)To derive an expression for R2(x) whi
h is 
onvenient in the limit of small xwe return to Eq. (5.3.30). There we want to reexpress the term in the square110



5.6. Small x limit of R2(x)bra
kets in su
h a way that it is possible to do the integration by parts.First of all, we noti
e that the properties of the Bessel fun
tions imply thatthe fun
tion 	(u) satis�es �2	�u1�u2 (u) = 	(u): (5.6.1)Then, looking at the identities��u1 �e2i(u1�u2)	2� = 2ie2i(u1�u2)	2 + 2e2i(u1�u2)	 �	�u1 ; (5.6.2)��u2 �e2i(u1�u2)	2� = �2ie2i(u1�u2)	2 + 2e2i(u1�u2)	 �	�u2 ; (5.6.3)and �2�u1�u2 �e2i(u1�u2)	2�= e2i(u1�u2)�4	2 + 4i	 �	�u2 � 4i	 �	�u1 + 2 �	�u1 �	�u2 + 2	 �2	�u1�u2�= e2i(u1�u2)�6	2 + 4i	 �	�u2 � 4i	 �	�u1 + 2 �	�u1 �	�u2� ; (5.6.4)we noti
e that� �22�u1�u2 + i� ��u1 � ��u2�� �e2i(u1�u2)	2�= e2i(u1�u2)��	�z1 �	�z2 � 	2� : (5.6.5)Substituting it into Eq. (5.3.30) and integrating by parts we obtainR2(x) = �14 Z due��xQ � �22�u1�u2 + i� ��u1 � ��u2���e2i(u1�u2)	2(u1; u2)�= Z du4 e2i(u1�u2)	2 �i� ��u1 � ��u2�� �22�u1�u2� �e��xQ� : (5.6.6)Now, using the identities (
ompare to Eqs.(5.3.48) and (5.3.55))�Q�u1 � �Q�u2 = ei(u1�u2)	; �2Q2�u1�u2 = �iei(u1�u2)	; (5.6.7)
111



5.7. Comparing star graphs and �Seba billiardswe write�i� ��u1 � ��u2�� �22�u1�u2� �e��xQ�= e��xQ��i�x� �Q�u1 � �Q�u2� + �x2 �2Q�u1�u2 � (�x)22 �Q�u1 �Q�u2�= �e��xQ�3i�x2 ei(u1�u2)	+ (�x)22 �Q�u1 �Q�u2� : (5.6.8)Thus we �nally obtainR2(x) = � Z du8 e��xQe2i(u1�u2)	2 ��2x2 �Q�u1 �Q�u2 + 3i�x	ei(u1�u2)� ; (5.6.9)From Eq. (5.6.9) one 
an see that the two-point 
orrelation fun
tion R2(x) islinear in x for small x and the 
orresponding numeri
al fa
tor was 
omputedin [32℄,3i� Z e3i(u1�u2)	3du = 3i� ZD sign(u1)e3i(u1�u2)J30 �2p�u1u2� du= 3i� Z 10 Z 0�1 e3i(u1�u2)J30 �2p�u1u2� du1du2 + 
.
.= ��p32 ; (5.6.10)produ
ing R2(x) = �p32 x +O(x2): (5.6.11)5.7 Comparing star graphs and �Seba billiardsThe original �Seba billiard, whi
h is a re
tangular billiard quantized and per-turbed by a delta fun
tion, see Fig. 5.4, was introdu
ed in [33℄ as an exampleof a system whose 
lassi
al 
ounterpart is integrable (the delta fun
tion a�e
tsonly measure zero set of the orbits) but whi
h nonetheless exhibits features ofquantum 
haos. This 
onstru
tion was later generalized to quantized versionsof any integrable system [34℄ whi
h retained the aforementioned properties.We will refer to any system in this 
lass as a \�Seba billiard".112



5.7. Comparing star graphs and �Seba billiards
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Figure 5.4: A star graph with v edges (a) and a �Seba billiard (b): di�erentsystems with the same statisti
s.The energy levels of a �Seba billiard 
an be found by solving an expli
itequation whi
h depends on the levels of the original unperturbed system andon the boundary 
onditions imposed at the singularity. This equation takesthe general form �(z) = 0, where �(z) is a meromorphi
 fun
tion; for example,for one parti
ular 
hoi
e of boundary 
ondition [33, 34℄�(z) =Xn � 1En � z � EnE2n + 1� ; (5.7.1)where fEig are the eigenlevels of the unperturbed system. Using this expli
itexpression and assuming that fEig are given by a Poisson pro
ess, one 
anderive the asso
iated fun
tions su
h as the joint distribution of the levels ofthe �Seba billiard, asymptoti
s of the level spa
ing distribution [34℄ and thetwo-point spe
tral 
orrelation fun
tion [32℄. The results show the presen
e ofthe spe
tral 
orrelations but are substantially di�erent from RMT results.The derivation presented above in the Se
tions 5.2, 5.3 and 5.6 is the re-sult of the appli
ation of the methods developed in [32℄ to 
al
ulating R2(x)for the star graphs. Although 
on
erning statisti
s of zeroes of two di�erentfun
tions, (5.1.3) and (5.7.1), both derivation follow the same route and, mostimportantly, produ
e exa
tly the same result.113



Chapter 5. Integral RepresentationThe heuristi
 reasons for this somewhat surprising result are the follow-ing. First, the dynami
s in both systems is 
entered around the single points
atterer. In the star graphs it is the 
entral vertex and in the �Seba billiardsit is the delta fun
tion. Furthermore, in between s
atterings the dynami
s isintegrable in both 
ases.The se
ond reason is given by an appli
ation of the Mittag-Le�er theoremto the meromorphi
 fun
tion tan z:tan z = 1Xn=�1� 1n� + �=2� z � 1n� + �=2� : (5.7.2)Thus we 
an rewrite Eq. (5.1.3) in the form similar to (5.7.1) and sin
e thepoles of the fun
tion in Eq. (5.1.3) in the limit B !1 have properties similarto the ones of a Poisson sequen
e, it is less surprising that the two point
orrelation fun
tions are the same.Finally, we remark that the results of this Chapter demonstrate that, atleast in the spe
ial 
ase 
onsidered here, graphs are able to reprodu
e fea-tures of other, experimentally realizable, quantum systems, and also that theyprovide further 
on�rmation that spe
tral statisti
s 
an be 
omputed exa
tlyusing the tra
e formula as we have done in Chapter 3.
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Appendix A
Combinatorial results
A.1 General properties of degenera
y 
lassesTheorem 3 (The number of the degenera
y 
lasses). Let G be a graphwith V verti
es and B (non-dire
ted) bonds. Denote by D(m) the number ofthe degenera
y 
lasses of the period m. Then D(2n)+D(2n+1) is a polynomialin n of order B � 1 with the leading term2B�V+1 nB�1(B � 1)! : (A.1)Proof. First we re
all that the degenera
y 
lasses 
an be labelled by the ve
torss 2 NB0 (
.f. Eq. (2.1.15) and Def. 6). However not all su
h ve
tors 
orrespondto degenera
y 
lasses. There are two restri
tions. First, the \Euler 
ondition",is Xj : (i;j)2B s(i;j) is even for any i 2 V; (A.2)where s(i;j) is the 
omponent of the ve
tor s 
orresponding to the non-dire
tedbond (i; j). The above 
ondition arises from the fa
t that passing through thevertex i adds 2 to the sum in Eq. (A.2) and if the sum was odd it would meanthat the orbits in the degenera
y 
lass would \get stu
k" at the vertex i.The se
ond restri
tion is the 
onne
tivity of the degenera
y 
lass. For thisrestri
tion there is no 
onvenient des
ription in terms of the ve
tor s. However,115
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Figure A.1: On the left: an example of a graph. On the right: addition of twoskeletons. The dotted bond disappears after the addition.as we shall see, the number of dis
onne
ted degenera
y 
lasses is sub-dominantto the number of 
onne
ted ones.First we 
ount all degenera
y 
lasses, both 
onne
ted and dis
onne
ted.That is, we 
ount all ve
tors s satisfying Eq. (A.2). For a degenera
y 
lass,the skeleton is the set of all bonds b su
h that sb is odd. It is 
lear that theskeleton of a degenera
y 
lass will satisfy Eq. (A.2) itself and will have theasso
iated ve
tor ss
 2 NB0 with the 
omponents equal to 1 
orresponding tothe bonds that are in the skeleton and zeros 
orresponding to the bonds thatare not. Thus we de
ompose ea
h ve
tor s satisfying Eq. (A.2) into the sums = ss
 + sfl; (A.3)where the \
esh 
omponent" sfl has only even 
omponents. Su
h a de
ompo-sition is 
learly unique.Now we want to 
ount the number of all possible skeletons on our graph.Let ZG denote the 
y
le spa
e of the graph and let fzigdimZGi=1 be a basis ofthe 
y
le spa
e (see, e.g., [43℄). For example, the dimension of the 
y
le spa
eof the graph on Fig. A.1 is four and one of the possible 
hoi
es of the basis116



Appendix A. Combinatorial results
onsists of the 
y
les f(1; 3; 6); (1; 2; 4); (2; 3; 5); (6; 7; 8)g. We de�ne the sumof two 
y
les as a set whi
h 
onsists of all the bonds whi
h belong to one of thesummands but not to both (logi
al ex
luding OR). For example, the addition(1; 3; 6) + (6; 7; 8) = (1; 3; 8; 7) (A.4)is illustrated on Fig. A.1. Sum of more than two summands is de�ned byindu
tion, like in(1; 3; 6) + (1; 2; 4) + (2; 3; 5) = (2; 3; 6; 4) + (2; 3; 5) = (4; 5; 6) (A.5)One 
an 
he
k that this operation is asso
iative and that the result is always askeleton. It is also true that any skeleton 
an be represented as a sum of someof the basis 
y
les with 
oeÆ
ients 0 or 1 in a unique way. Thus the numberof all possible skeletons is equal to 2dimZG with the empty skeleton being oneof them. It is a well-known result that the dimension of the 
y
le spa
e isdimZG = B � V + 1 (see, for example, [43℄).Now if we have a skeleton ss
 with jss
j \bones", we have to 
ount allpossible \
esh 
omponents" with the sum of the ve
tor elements equal to2n � jss
j(+1), where 1 is added if jss
j is odd. It is the same as the numberof ways to distribute n � [jss
j℄ 
ouples of obje
ts between B distinguishablebins. Here [x℄ stands for the integer part of x. The answer to our question isthe binomial 
oeÆ
ient �n� [jss
j℄ +B � 1B � 1 �; (A.6)whi
h is a polynomial in n with the leading term given by nB�1(B�1)! , independent ofjss
j. Multiplying the leading term by the number of all skeletons we obtain theleading order approximation to the number of all degenera
y 
lasses, 
onne
tedand dis
onne
ted.We 
an estimate from above the number of dis
onne
ted degenera
y 
lassesby the number of all dis
onne
ted subgraphs of G multiplied by the numberof all degenera
y 
lasses that belong to the subgraph. But the number of the117



Appendix A. Combinatorial resultssubgraphs does not depend on n and the number of the degenera
y 
lasses ina subgraph must have order less than B� 1 sin
e the subgraph has less bondsthan the original graph. Thus the number of dis
onne
ted degenera
y 
lassesis sub-dominant.Remark. If Se is the number of all skeletons with even number of bonesand So is the number of odd ones thenD(2n) / Se nB�1(B � 1)! (A.7)D(2n+ 1) / So nB�1(B � 1)! (A.8)However it is better to 
onsider the sum D(2n)+D(2n+1) as it might happenthat So = 0 (e.g. for star graphs). There is always at least one even skeleton| the empty one.Theorem 4 (Upper bound on a degenera
y 
lass 
ontribution).Given a degenera
y 
lass s, its 
ontribution is bounded by������ Xs(p)=s Aprp ������ � 2B; (A.9)where B is the number of bonds of the graph.Proof. We remind ourselves that the 
ontribution of the degenera
y 
lass s isthe 
oeÆ
ient of eik` in the expansion of Tr(DS)n, Eq. (2.3.16), where ` =PBi=1 siLi.Form the 2B � 2B diagonal matrix Z with the elements Zb;b = zb, wherezb are 
omplex variables, and identify the variables zb and zb. Then if we putzi = eikLi , we will re
over the matrix D, Eq. (2.2.10).The tra
e Tr(ZS)n is a polynomial of degree n in B 
omplex variables. The
ontribution of the degenera
y 
lass s is given by the 
oeÆ
ient of zs11 zs22 � � � zsBB .The upper bound for su
h 
oeÆ
ient is given by the Cau
hy inequality,������ Xs(p)=s Aprp ������ � max jTr(ZS)nj ; (A.10)118



Appendix A. Combinatorial resultswhere the maximum is taken over the variables zi taking values on the unit
ir
le, zi = ei�i . However for su
h values of the variables the matrixZ is unitarythus (ZS)n is also unitary of dimension 2B�2B thus max jTr(ZS)nj � 2B.A.2 Partitions of an integer into a sum of non-zero summandsThe number of partitions of the integer n into k non-zero summands is awell known 
ombinatorial quantity. Rigorously speaking, it is the number ofsolutions in N = f1; 2; 3; : : :g of the equationx1 + x2 + � � �+ xk = n; xi 2 N : (A.1)We denote su
h number by b(n; k).Let (a1; : : : ; ak) be su
h a solution. Then the set fa1; a1 + a2; : : : ; a1 +� � � + ak�1g 
onsists of k � 1 numbers whi
h are distin
t, ordered, greaterthan 0 and less than n. In fa
t, the solutions of Eq. (A.1) are in one-to-one
orresponden
e with su
h subsets of the set f1; : : : ; n � 1g: given an orderedsubset f
1; 
2; : : : ; 
k�1g we obtain a solution of Eq. (A.1) by setting a1 = 
1,a2 = 
2 � 
1, : : : , ak�1 = 
k�1 � 
k�2, ak = n� 
k�1. Thus the number of thesolutions to Eq. (A.1) is equal to the number of all k � 1-element subsets off1; : : : ; n� 1g, b(n; k) = �n� 1k � 1�: (A.2)This number is extensively used in the present work whi
h was the reason forthe in
lusion of its derivation.A.3 Permutations without liaisons.In this se
tion we address one of the most important underlying questions ofthe present work. Given g1 ordered obje
ts of type 1, g2 ordered obje
ts of type119
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1 2 3 1 1 2Given: , ,, , ,

1 2 3 121

1 2 3 211

1 1 2 1 3 2Allowed: 

1 2 3 12 1Not allowed:

1 21 3

1 1 22

1 2

31Figure A.2: Permutations that are allowed and not allowed. Di�erent shapes
orrespond to the di�erent types of obje
ts: there are 3 types with g1 = 3,g2 = 1 and g3 = 2. The three examples of the permutations that are notallowed violate 
onditions 2, 3 and 4 
orrespondingly. The o�ending obje
tsare shaded.2, : : : , gj ordered obje
ts of type j, 
ount the permutations of these obje
tswhi
h satisfy the following 
onditions,1. First obje
t of the type 1 
omes �rst.2. Order of the obje
ts is preserved in the permutation.3. No obje
ts of the same type may stand next to ea
h other.4. The last obje
t 
annot be of the type 1.We denote the answer to our question by Rg1;::: ;gj . This question is purely
ombinatorial and throughout this se
tion we forget about the nature of theobje
ts as groups of bonds.Remark 4. Condition 4 may be 
onsidered to be a spe
ial 
ase of 
ondition 3,if we adopt the 
y
li
 vision of the permutation.120



Appendix A. Combinatorial resultsFor an example of permutations satisfying and not satisfying the above
onditions, see Fig. A.2. Following the solution of a similar problem in [24℄,we address this problem using an in
lusion-ex
lusion prin
iple. Temporarilywe forget about 
onditions 3 and 4 and 
onsider all permutation satisfying theremaining 
onditions. If two obje
ts of the same type stand next to ea
h otherwe say that they form a liaison. Our ultimate goal is to 
ount all permutationwithout liaisons.Sin
e 
ondition 2 remains in for
e, only two 
onse
utive obje
ts of the sametype 
an form a liaison. Thus there is maximum of gi�1 liaisons to be formedby the obje
ts of the type i and G � v possible liaisons altogether, whereG =Pji=1 gi.To 
ount all permutation without liaisons we use the following in
lusion-ex
lusion prin
iple. Let X be a �nite set and P be a �nite set of booleanfun
tions (properties) on X:8p 2 P p : X ! f0; 1g : (A.1)If p is a property then we denote by Xp the set of all x for whi
h the propertyp holds, i.e. p(x) = 1. If P is a subset of P, by XP we denote the subset of XXP = nx 2 X : (8p 2 P ) [p(x) = 1℄o = \p2P Xp: (A.2)We also put X; = X.Proposition 7. The number of elements in X whi
h do not satisfy any prop-erties from P is given by�����X n [p2PXp����� = XP�P(�1)jP j jXP j ; (A.3)where the modulus sign stands for the number of elements in the set and thesum is taken over all subsets of P, in
luding the empty set and the set P itself.Proof. Eq. (A.3) is a slightly altered version of the more traditional in
lusion-121



Appendix A. Combinatorial resultsex
lusion prin
iple�����[p2PXp����� =Xp2P jXpj � Xp;q2P jXp \Xqj+ Xp;q;r2P jXp \Xq \Xrj � : : : ; (A.4)whi
h is obtained by iterating the formulajA [ Bj = jAj+ jBj � jA \ Bj : (A.5)
If the properties P are su
h that jXP j depends only on jP j,jXP j = f(jP j) (A.6)then �����X n [p2PXp����� = jPjXi=0 (�1)i�jPji �f(i): (A.7)We now generalise Proposition 7 to j sets of propertiesProposition 8. If there are j sets of properties, Pi, i = 1; : : : ; j, andXP1;P2;::: ;Pj = j\i=1XPi (A.8)are su
h that jXP1;P2;::: ;Pj j = f(jP1j; jP2j; : : : ; jPjj) (A.9)then the number of elements in X whi
h do not satisfy any of the properties isgiven by�����X n j[i=1 [p2PiXp!����� = Xl1;l2;::: ;lj(�1)l1+���+ljf(l1; l2; : : : ; lj) jYi=1 �jPijli �: (A.10)To apply Proposition 8 to our problem we de�ne a set of properties on allpossible permutation of obje
t as follows: to ea
h of the possible liaisons weasso
iate a fun
tion whi
h is equal to one on the permutations that 
ontainsu
h liaison and is zero otherwise. We group the properties by the type of the122



Appendix A. Combinatorial resultsliaison they are asso
iated with. Thus we obtain j sets of properties, G � jproperties in total. The quantity we are seeking, the number of permutationswithout liaisons, is exa
tly the left-hand side of Eq. (A.10).To make use of Eq. (A.10) we need to know the number f(l1; : : : ; lv). Themeaning of this number is as follows: �x l1 liaisons of the �rst type, l2 liaisonsof the se
ond type et
; how many permutations are there 
ontaining those �xedliaisons and, possibly, other liaisons as well. If li = 0 for all i (the situationwith no restri
tions) then it is not hard to see that f(0; 0; : : : ; 0) is equal tothe number of all permutations of G � 1 = g1 � 1 + g2 + : : : + gj obje
ts ofj types with any two obje
ts of the same type being indistinguishable. Theminus one 
ontribution is there be
ause the position of one obje
t of the �rsttype is �xed, it must 
ome �rst. The indistinguishability 
omes from the needto preserve the order of the obje
ts of the same type: being ordered and beingindistinguishable is equivalent in terms of 
ombinatori
s. Thus the answer forf(0; 0; : : : ; 0) is f(0; : : : ; 0) = (G� 1)!(g1 � 1)!g2! � � � gv! : (A.11)Let us now sele
t l1 liaisons among the obje
ts of the type 1, l2 liaisonsamong the obje
ts of the type 2 and so forth, 0 � li � gi� 1. We 
an 
onsidertwo or more obje
ts bound together by liaison(s) to be a single obje
t, itsposition in the ordering within its type being obvious. Now, by analogy withEq. (A.11), we derivef(l1; : : : ; lv) = (G� l1 � : : :� lv � 1)!(g1 � l1 � 1)!(g2 � l2)! � � � (gv � lv)! : (A.12)Applying Proposition 8 we obtain the number of permutations without liaisonsto be equal toXl1;::: ;lv(�1)l1+:::+lv (G� l1 � : : :� lv � 1)!(g1 � l1 � 1)!(g2 � l2)! � � � (gv � lv)! vYi=1 �gi � 1li �: (A.13)There is one last detail to be �xed: nothing in our derivation prevents 
ondi-tion 4 from being violated. To mend it we 
onsider the situation when this123



Appendix A. Combinatorial results
ondition is violated to be a spe
ial form of liaison, between the last group andthe �rst group of \1". This way there are g1 liaisons of type 1 to 
hoose fromand we should write �g1l1� instead of �g1�1l1 �. The rest of formula (A.13) remainsun
hanged. Performing 
hange of variables ki = gi � li we �nally arrive toRg1;::: ;gv = (�1)Gg1 Xk1;::: ;kv (�1)k1+:::+kvk1 + : : :+ kv�k1 + : : :+ kvk1; : : : ; kv � vYi=1 �gi � 1ki � 1�;(A.14)where G =Pvi=1 gi.
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Appendix B
List of notations�nk� binomial (for n < k or k < 0 de�ned to be 0)[a; b; 
℄ sequen
e(a; b; 
) orbitfa; b; 
g setÆxy Krone
ker delta (1 whenever x = y, 0 otherwise)Æ(x) Dira
 delta fun
tionjsj =P si if s is a ve
torjSj number of elements in S if S is a setN0 set of non-negative integers<z real part of z=z imaginary part of zend of proof (QED)
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