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Abstract

We calculate the two-point spectral statistics for a class of quantum graphs in
the limit as the number of vertices tends to infinity. This is done two ways.
The first way uses the exact trace formula and a classification of the periodic
orbits on the graph. The second involves a direct study of the statistics of the
zeros of a transcendental eigenvalue equation. We show that these approaches
produce equivalent results. The first expression we derive takes the form of
a power series and is more efficient for numerical computations, while the
second involves an improper integral and is in a convenient form to study
the singularities of the form factor (the Fourier transform of the two-point
correlation function). We also find that the spectral statistics are the same
as those already found for the Seba billiard and we discuss the reasons for
this coincidence. As an application of the combinatorial methods developed in
this work we derive an exact expression for the quantum return probability on
infinite regular trees and analyse it numerically. We conclude that, for certain
values a parameter, the return probability tends to a non-zero limit, and, as a

consequence, that there exist localised eigenstates.
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Chapter 1

Introduction

When studying a large class of systems exhibiting a certain property, it usu-
ally helps to consider, as an example, a smaller subclass of simpler systems.
Then, after finding out how the property arises in the simpler systems, one
can hopefully gain some insight into what is happening in the general case.

This “class — subclass” relation is the connection between the quantum
chaos and quantum graphs and, to a lesser extent, between quantum graphs
and quantum star graphs.

So what is quantum chaos? Naturally, it is the subject studied by quantum

chaology,

the study of semiclassical, but non-classical, behaviour characteris-
tic of systems whose classical motion exhibits chaos. ‘Semiclassical’

here means ‘as Planck’s constant tends to zero’ [1].

The present work is related to a part of quantum chaology, the study of the
eigenvalues of the quantum systems, their spectrum. The spectra, although
different from system to system, have some universal features which are stated

in the conjectures:

Conjecture 1 (Berry-Tabor Conjecture). If the classical dynamics is in-

tegrable then the statistical properties of the spectrum are generically the same



as those of an uncorrelated sequence of levels, in particular the nearest neigh-

bour spacings distribution is Poissonian [2].

Conjecture 2 (Bohigas-Giannoni-Schmit Conjecture). If the classical
motion of a quantum system 1is chaotic then the statistical properties of the
spectrum are generically the same as those of eigenvalues of a large random
matriz from the Gaussian Orthogonal Ensemble (GOE) if the system is invari-
ant under time reversal and from the Gaussian Unitary Ensemble (GUE) if it

is not [3].

By the statistical properties we understand the functions such as the dis-
tribution of the spacing between neighbouring eigenvalues, various correlation
functions of the sequence of the eigenvalues and associated functions. The
Gaussian Orthogonal (Unitary) Ensemble is defined as the probability space
of real symmetric (Hermitian) matrices with the statistically independent ma-
trix elements endowed with the probability measure which is invariant under
any orthogonal (unitary) change of basis. The study of the statistical proper-
ties of such random matrices is a part of Random Matrix Theory (RMT).

The above conjectures do not hold for all systems, there are known coun-
terexamples to Berry-Tabor Conjecture (a good review of the cases in which
the Conjecture can be proved or disproved rigorously is given in [4]), and
to Bohigas-Giannoni-Schmit Conjecture, e.g. the geodesic motion on certain
arithmetic surfaces of constant negative curvature [5], and the cat maps [6].
The conjectures are expected to hold for generic systems where the meaning
of the word “generic” is the big open question of the field.

There are several approaches which allow one to study the statistical prop-
erties of the eigenlevels. For example, the level dynamics, which is the study
of the dependence of the eigenlevels on a parameter, makes it possible to trace
the transitions from one type of statistical behaviour to another (for instance,
the transition from GOE to GUE when the time-reversal symmetry is being

broken). In this work, however, we will be mostly concerned with the approach



which originates from the following observation.

For the conjectures to hold at all, the quantum system must know about
the chaotic (or not) behaviour of its classical counterpart. And the chaos is
defined through the properties of the orbits of the system, e.g. one of the
requirements is that almost all of the orbits explore the whole of the available
space in their wanderings. Thus one can say that the quantum system must
know about the orbits of the classical system. This connection is provided by
trace formulae.

A trace formula is a relation between the eigenvalues of the quantum system
and the periodic orbits of the underlying classical system. In general it is an
asymptotic formula, the so-called Gutzwiller trace formula [7], but it becomes
exact for certain classes of systems, such as systems of constant negative curva-
ture, and then it is referred to as Selberg trace formula [8, 9]. The information
about the spectrum is coded in the form of the density function, a function
which has d-peaks at the points of the real line corresponding to the eigenval-
ues FE,. The periodic orbits provide the coefficients of the decomposition of
the density functions into a sum of cosines:

2 e k
P Z ZAP”“ cos <ﬁ(5p + u,,)) :

p k=1

d(E) = i §(E—E,) ~d(E) +

(1.0.1)

Here p stands for periodic orbit, S, is the action of p, A,; is an amplitude
related to the stability of the kth repetition of p, and p, is its Maslov index;
d(E) is the mean density, that is the average number of the eigenvalues £,
per interval of unit length. The parameter 7 is equal to zero if the system is
classically chaotic and n = (n —1)/2 if the system is integrable with n degrees
of freedom.

It is widely believed that the trace formula contains all the information
needed to verify the conjecture but extracting this information is an extremely
difficult task. The contributions from different orbits balance very finely and

there are a lot of orbits to account for: their number increases exponentially
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with the length of the orbits. It turns out, however, that it is possible to
extract some information about the density of the periodic orbits weighted
with A?)’k without having the detailed knowledge about the periodic orbits of
the system. An important step in this direction was made by Hannay and

Ozorio de Almeida [10] who discovered that

aS  integrable,
oA~ (1.0.2)
i |Spl<S 3S?  chaotic (ergodic),
as S — oo. As we see, there is a clear distinction between the asymp-
totic behaviour of the sum in the integrable and chaotic cases. The Hannay-
Ozorio de Almeida sum rule was used by Berry in [11] where, among other

quantities, Berry considered the form factor which is the Fourier transform of

the spectral two-point correlation function
Ry(z) = (d(E)d(E + z)), (1.0.3)

where ( - ) denotes an energy average (there are also other types of averages,
and an average with respect to an ensemble of systems will be employed by us
later). Using the Gutzwiller trace formula one can obtain an approximation
to Ry(x) in the form of a sum over all pairs of periodic orbits. Applying the
Fourier transform

K(r)= /_00 Ry(x)e™™ /M dz, (1.0.4)

o0

one obtains an expression for the form factor K(7) as a sum over pairs of
orbits too. Berry’s analysis was based mostly on the diagonal approximation
which means that only the pairs of orbits which are identical with respect to
the system’s symmetries are kept. However the validity of the approximation
is restricted to the range 7 < 27hd and the calculation outside this range
necessarily involves evaluation of the off-diagonal terms associated with the
pairs of the orbits not related by symmetry.

The off-diagonal terms are connected with the correlations between the

actions of different orbits and in [12] it was shown that one can “reverse” the



Bohigas-Giannoni-Schmit Conjecture: assuming that the spectral fluctuation
follow RMT, a universal expression for the classical action correlation function
was derived, supported by some numerical evidence. But the breakthrough
came from a slightly different direction, or rather from two directions at the
same time. The leading order oscillatory term in the RMT-predicted Ry (z)
was recovered in [13] using supersymmetry approach (an accessible explanation
of the supersymmetry technique is contained, for example, in [14]) and in
[15] by relating the off-diagonal terms in the periodic orbit expansion to the
diagonal ones. Still the underlying assumption in [15] was, roughly speaking,
that the correlations between short periodic orbits cancel each other. The
understanding of how it happens (and when it does not, why not) could not
only provide a base for the above assumption but to show the way to recover the
higher order terms too. To gain some intuition into such balancing between
the off-diagonal terms, it was necessary to find an easy example where the
periodic orbits and their correlations could be studied in detail.

Enter the quantum graphs. The idea was to consider the eigenvalues of a
Laplacian on a metric graph. A graph is a collection of vertices and bonds
which connect some of the vertices. A graph becomes metric if we specify the
lengths of the bonds. Except at the vertices, the graph is a one-dimensional
structure so the differential equation is easily solvable. The boundary condi-
tions, imposed on the vertices, would make finding eigenvalues a nontrivial but
still a manageable task and would hopefully ensure that the RMT effects are
present. The idea, it seems, was around for some time: the statistical prop-
erties of the spectrum of discrete Laplacian were studied, for instance, in [16]
and the exact trace formula, this main ingredient of a relevant example, was
proved for continuous Laplacian in [17]. It was independently rediscovered in
[19, 20], which sparked a whole series of papers, reviewed below, and research
projects, including this work.

The results of numerical simulations reported in [19] showed good agree-

ment with the predictions of the RMT, thus establishing validity of the quan-



tum graphs as a toy model of the quantum chaos. Indeed, the necessary
ingredients such as the ergodicity (in the Markov chain sense), the exponential
proliferation of the periodic orbits, and the trace formula were present. The
phenomenon, the affinity with RMT results, was shown to be there as well.
There was a drawback that the quantum graphs did not have deterministic
classical counterparts, only the probabilistic ones (Markov chains). But it was
an advantage at the same time: it was easier to characterise the orbits.

In the next, more detailed, study of the quantum graphs [20] the setup was
extended to include more general boundary conditions now depending on a
parameter. It was shown numerically with an analytical justification that for
different values of the parameter, the statistics undergo a change from being
RMT-like to Poissonian. It was also found that the statistics for star graphs
(a particular type of graphs, see Fig. 2.1 in the next Chapter; sometimes it is
also called Hydra graphs) show systematic deviations from RMT behaviour.
As the name suggests, a star graph consists of a central vertex (the body
of the Hydra) connected to many periphery vertices (numerous heads of the
Hydra). The deviations in the statistics of star graphs become apparent only
for sufficiently large number of the periphery vertices.

In was also found in [20] that the multiply connected rings (another type
of graphs) have exponentially localised eigenstates (Anderson localisation).
A thorough analytical treatment of the Anderson localisation in terms of the
periodic orbits on infinite chain graphs was presented in [21]. The infinite chain
graph is a graph composed from an infinite number of sequentially connected
vertices. Thus, the valency (the number of bonds commencing from a vertex)
of each vertex is 2. The quantity considered was the quantum probability to
return to the origin: a specified initial condition was iterated using a quantum
evolution operator and then the modulus squared of the resulting state was
computed at the origin. The classical counterpart of the quantum return
probability is the probability for a random walker to return to the origin after

n steps. It is well known that this probability decays with n. It turned out



that the quantum return probability does not decay to zero as the number of
iterates n tends to infinity, but saturates at a non-zero value. This effect is a
result of the interference between orbits of the same length.

A work in a different direction [22] established that the quantum graphs
can also be used to study the generic behaviour of chaotic scattering systems.
By connecting vertices of a graph by leads to infinity the graph was turned into
a scattering problem. It was shown that such graphs display all features which
characterise quantum chaotic scattering and, when considered statistically,
the ensemble of scattering matrices reproduced quite well the predictions of
appropriately defined Random Matrix ensembles.

In [23] an example of the quantum graph whose spectral two-point correla-
tion function reproduces the corresponding RMT expression exactly was found.
The two-point correlation function for 2-star graph (a star with only two rays)
was computed both directly and through the periodic orbits approach. Upon
suitable averaging over the parameter space the result would reproduce the
corresponding RMT expression for 2 x 2 matrices. To prove the equivalence
of two approaches, several new combinatorial identities were derived. These
identities were later employed in [21] to derive a compact form of the return
probability.

Another statistic, the form factor, was studied in detail for star graphs
with large number of rays in [24]. Basing on the periodic orbit theory, the
full (including the off-diagonal terms!) power series expansion around zero of
the form factor was obtained. Remarkably, the first four terms of the expan-
sion were the same as those in the diagonal approximation derived in [20], but
the higher terms did not agree. The series obtained in [24], on its interval of
convergence, perfectly fitted the numerical data of [20], which was not RMT
but in certain sense an intermediate between RMT and Poisson. The radius
of convergence of the series was later extended using Padé method of improv-
ing convergence. The results of the paper [24] constitute the major part of

Chapter 3.



The form factor was also studied in [25], where the periodic orbits expan-
sions were used to compute it explicitly for several directed binary graphs. The
results showed good agreement with the RMT and promised to show an even
better one if the graph size was increased. Unfortunately certain features in
the larger binary graphs made the application of exact combinatorial methods
developed in [25] impossible. Still, one of the important contributions of [25]
was to find a simpler class of graphs which exhibit RMT effects.

In the papers mentioned above different types of averaging were applied
to the spectral statistics of the quantum graphs. The current work employs,
in different Chapters, spectrum averaging and averaging with respect to the
individual lengths of the bonds. Averaging over the boundary conditions is
also possible and in [26] it was demonstrated that these types of averaging are
equivalent.

Quantum graphs also attracted a lot of attention recently in connection
with the transport and thermodynamic properties of weakly disordered and
coherent conductors. These properties can be related to the spectral determi-
nant of the Laplacian on a graph [27]. The various expression for the spectral
determinant were studied in detail and an easy-to-use diagrammatic method
of expansion of the spectral determinant in terms of a finite number of periodic
orbits was derived in [28] (see also references therein).

A method to derive the level spacing distribution P(A) for the quantum
graphs without resorting to the periodic orbit theory was presented in [29].
The authors express the eigenvalues of the system as the times at which a
hypersurface, explicitly defined by the topology of the graph, is intersected by
an ergodic flow on a torus. The level spacings are then explicitly related to
the time of first return to the hypersurface. An exact representation of the
level spacing distribution is obtained in the form of an integral over the hyper-
surface. The small A behaviour comes from the near the singularities of the
hypersurface and can be studied using an approximation of the hypersurface

near the singularities. The analysis is performed for several simple graphs,



including the star graph with 3 bonds for which the RMT-like level repulsion

is observed for small A.

In the present work we try to advance the understanding of the “construc-
tive interference” of the periodic orbits which produces particular statistics.
In Chapter 2 we give the definitions of the graphs and periodic orbits, define
the Laplacian and the boundary conditions. It is possible to write an explicit
solution of the Laplacian and we obtain the eigenvalue condition in the form
of a determinant equation. Then we present a simple derivation of the trace
formula for the quantum graphs. Having the trace formula at hand we move
on to define the spectral statistics, such as the average (mean) density of the
eigenvalues, the two-point correlation function and the form factor. We ex-
press the latter two statistics as sums over pairs of periodic orbits and show
that only the pairs of orbits of the same lengths contribute to the sums. Note
that the equality of the lengths of orbits p and p’ does not necessarily imply
that the orbits are the same or related through some symmetry (e.g. reversing
the direction of the orbit). The length of an orbit is simply the sum of lengths
of all the bonds it passes, therefore, in order to have the same lengths, two
orbits must pass through the same bonds the same number of times (although
in a different order), or, using the terminology introduced in [25], have the
same bond staying rates. This subject is discussed in detail and illustrated
with examples in Chapter 2.

The next Chapter, largely based on the material of [24], is devoted to the
detailed study of the star graphs. Here we assume the Neumann boundary
conditions and derive a power series expansion of the form factor in the limit
as the number of bonds (rays) of the star tends to infinity. To do so we
derive an exact combinatorial expression for the form factor for any finite
number of bonds and then take the limit which simplifies the combinatorial
sums. The expression we obtain, however, is still too complicated to be studied

analytically so we compute exactly a large number of terms and then study
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them numerically. In particular we find that the radius of convergence of
the series is finite and that one can extend the convergence by applying the
Padé approximation. Padé approximation to the form factor seems to capture
singularities lying in the complex plane and, judging by the character of the
approximation, the singularities are not poles but essential singularities.

It turns out that the combinatorial methods developed in Chapter 3 can
be applied to study the Anderson localisation on infinite regular trees (also
called Bethe lattices in the literature). A graph is a tree if there are no cycles
on it and it is regular if the valency of all vertices is the same. The infinite line
is a special case of the infinite regular trees corresponding to the valency 2.
The Anderson localisation in a similar model (but not identical) was already
studied in [31] using the connection between the localisation of the eigenstates

and the probability distribution of 0¥ (E)/OE, where the equation
U(E) = 2l (1.0.5)

is satisfied by the eigenvalues F,,. It was found that there are four ranges in
the parameter space where different types of eigenstates exist. In particular,
there is a range where the system has normalizable eigenstates and, therefore,
there is a pure point component in the spectrum. In Chapter 4 we approach
the problem from a different viewpoint. We study the quantum probability to
return to the origin of the tree after n steps. Bringing together the methods
developed in [21] and [24], we derive an exact combinatorial recursion for the
return probability. Again, it is too complicated to be solved analytically but
it gives a clear algorithm to analyse the problem numerically. Our algorithm
is of polynomial complexity as opposed to exponential complexity if one is
to explicitly count all periodic orbits. Our numerical simulations show that
for a certain range of the parameter values the return probability tends to a
non-zero limit as the number of steps goes to infinity. This implies existence
of localised eigenstates. Our result agrees with those presented in [31], even

the ranges are in approximate agreement.
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In Chapter 5 we return to the star graphs but using a different approach.
As explained in Chapter 2, the condition for F, to be an eigenvalue is that
a certain determinant is equal to zero. This determinant takes a particularly
simple form for the star graphs, due to their special structure. Then the
eigenvalues of the Laplacian are the zeros of a quasi-periodic meromorphic
function. We apply the technique developed in [32] to derive the two-point
correlation function of the zeros. The two-point correlation function is related
to the form factor of Chapter 3 through the Fourier transform and we show that
it is indeed the case, that is the answers derived by two completely different
approaches are the same. It provides us with another confirmation of the fact
that the summation over the periodic orbits is possible and gives the right
answer, although it might be difficult to perform.

Chapter 5 gives us a representation of the form factor in the form of an
integral. This integral contains all the information about the form factor,
in particular the information about the singularities. Studying the integral
we find the particular pair of the singularities which caused the divergence
of the series of Chapter 3. As concluded earlier from the Padé analysis, the
singularities are not poles, in fact we find that they are logarithmic. We
calculate the dominant contribution at the singularities and as a corollary
obtain the asymptotics of the coefficients of the power series expansion of the
form factor. We also notice that the resulting expression for the two-point
correlation function is exactly the same as the expression obtained in [32]
for the two-point correlation of the spectrum of the Seba billiard [33, 34], an
integrable system perturbed by a delta-function. Heuristically, the reason for
such affinity is that the wave dynamics in both systems is centred around the
point scatterer, the delta function in the billiard and the central vertex in the
star graphs.

The “heavy” combinatorial derivations used in the text are deferred to the
Appendix. The derivation of the number of permutations without liaisons, a

combinatorial quantity used in Chapters 3 and 4, was significantly simplified
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from its original form [24]. The derivations are illustrated with several figures
so if the reader chooses to enter the Appendix he should not abandon all hope.

To summarise, we present a derivation of the two-point spectral statistics
for a class of quantum graphs in the limit as number of vertices tends to infinity.
We derive it in two ways. The first way uses the exact trace formula and a
classification of the periodic orbits on the graph; to the best of our knowledge
it is the first exact derivation of its kind. The second way studies the statistics
of the zeros of the transcendental eigenvalue equation directly. We show that
these approaches produce equivalent results which complement each other: the
first result obtained in the form of the power series expansion is more efficient
for numerical computations and the second result is in a convenient form to
study the singularities of the statistic. We also find that the spectral statistics
are the same as those already found for Seba billiard and we discuss the reasons
for this coincidence. As an application of the combinatorial methods developed
in the work we derive an exact expression for the quantum return probability
on the infinite regular trees and analyse it numerically. We conclude that
for a certain range of the parameter values the return probability tends to a

non-zero limit, hence there are localised eigenstates.
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Chapter 2

Definitions and preliminaries

2.1 Definitions

Let G = (V, B) be a graph where V is a finite set of vertices and B is the set
of bonds,

BCVxV (2.1.1)

The set B is symmetric in the sense that b = (i,7) € Biff b = (j,4) € B, where
i,j € V. We only consider graphs without loops, that is (4, j)  B. The bonds
b = (i,7), as we defined them, are directed: they have an initial vertex, the
vertex 4, and an end-vertex, the vertex j; b denotes the reversal of the bond b.
When we refer to “the non-directed bond (i, )”, we mean the couple of bonds,
(1,7) and (i, ) = (j,4). The number of vertices is denoted by V = |V| and the
number of directed bonds is 2B = |B|. The vertices are usually marked by the
integers starting from 0 thus the set V = (0,...,V —1).

Definition 1. Associated to every graph is its V' x V' connectivity (adjacency)

matriz C. Its elements are given by

lLif (i,7) € B
i = ) ; iLj=1..,V. (2.1.2)
0 otherwise

Since the set B is symmetric, the matrix C is symmetric too.

14



2.1. Definitions

Definition 2. The wvalency v; of the vertex i is the number of vertices j which

are connected to ¢, i.e.
J

Definition 3. The bond connectivity matriz is the 2B x 2B matrix B with

the elements

B j) k1) = Ok (2.1.4)
where (i, 7), (k1) € B.

Example 1. The complete graph K" is the graph with V = {1,...,V} and
B =V x V. That is there is a bond (i,j) for any i and j from V. The
connectivity matrix of such a graph has zeros on the diagonal and ones as its

off-diagonal elements. The valency is the same for each vertex, it is equal to

V-1

Definition 4. A sequence of bonds {b;};_,, such that By, ,,, =1 for all 4, is
called a cycle if By, p, = 1 and b; # b;, b; # b; for all i # j.

Example 2. The tree is any connected graph with V' = B 4+ 1. The prime

property of a tree is the absence of cycles.

Example 3. The star graph (also called Hydra graph) is a tree with V =
{0,1,..., B} and the set of edges B = {(0,4), (i,0):¢=1,...,B}. The va-
lency of each vertex is equal to 1 except for the vertex 0 with the valency

B.
Let 75n be the set of all sequences
P = [bl,bg,... ;bn]; bz EB, n>2 (215)

compatible with B in the sense that By, = 1for:=1,... ,n where by b,

i+1

we understand b;. We denote by P the union of all 7571,

P = G P, (2.1.6)
n=2
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2.1. Definitions

4 2
1
0 3
Q 3
12 S
a) 4 C)

Figure 2.1: Examples of a graph (a), a tree (b) and a star graph (c).

(since there are no loops, P = (). Define the cyclic shift operator o on P, by

0([b1,b2, o ,bn]) = [ba, by, - .. by bu]. (2.1.7)

We denote by P,, = 75n /o the set of all equivalence classes in 7571 with respect

to the shift o.

Definition 5. For any sequence of edges p € 7571, its equivalence class with
respect to the cyclic shift operator o is called the periodic orbit. The number n
is called the period of the orbit. Thus the set P, is the set of all orbits of period
n and P = US2,P,,. The list of the bonds in the order they are traversed by
the orbit p, surrounded by the round brackets, is called the symbolic code of
the orbit.

Remark 1. The main difference between the periodic orbits and cycles is that

a periodic orbit is allowed to pass a bond more than once.

For some periodic orbits p there is a shorter orbit q = (¢1,...,¢n) of

period m, n = mr, such that

p= (qla"' yGmyqiy - - 5 qmy - - - 7q17"'qm) (218)

Then we say that p is a repetition of the orbit q. The smallest m for which
decomposition (2.1.8) is possible is called the prime period of p and the cor-

responding r = n/m is called the repetition number. If r = 1 we say that
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2.1. Definitions

the orbit is primitive. In the above notation each orbit p € P corresponds to

m = n/r sequences from P.

Example 4. If we denote o = (0,1), 5 = (1,2), v = (2,0) for the graphs on
Fig. 2.1(a), the orbit («, 3,7, «, 3,) has the period 6, the prime period 3 and

the repetition 2. It corresponds to 3 different sequences,

[, 8,7, a0, B, 7] (2.1.9)
18,7, 2, 8,7, 0] (2.1.10)
[v, . 8,7, a0, B]. (2.1.11)

The graphs we will be considering are metric, that is each bond b has a
length, L,. Naturally, L, = L;. Note that we do not consider whether it is
geometrically possible to have such a graph, e.g. we do not enforce the triangle
inequality.

As a rule, we will be assuming that the different lengths are incommensu-
rate (rationally independent) which means that there are no integers a; # 0,

such that

> a;iLy, =0, (2.1.12)

for some bonds {b;}. The length of an orbit is defined as the sum of lengths
of the bonds it passes,

b= Ly, (2.1.13)
i=1

where p = (by,... ,by,).

If individual lengths are incommensurate then two different orbits have
the same length if and only if they pass through the same set of non-directed
bonds the same number of times (although in a different order). An obvious
consequence of this is that such orbits have the same period.

The simplest example of two orbits of the same length is an orbit and its

17



2.1. Definitions

N\

Figure 2.2: Two different orbits with the same length.

reversal:

P = (bi,by,...,by) (2.1.14)

P = (bu--- b2 b1).

A less trivial example is shown on Fig. 2.2.
More rigorously, we associate with each orbit a B-dimensional integer vec-

tor with nonnegative components
prsse N, (2..15)

where Ny = {0, 1,...}. Here the components s; indicate the numbers of times
the orbit passes through the nondirected bond b;. Following [25] we call s; the
bond staying rates. Then two orbits have the same length if and only if they
correspond to the same vector s. Sometimes to indicate that a vector from N¥

corresponds to the orbit p we will write s(p) instead of just s.

Definition 6. Two orbits belong to the same degeneracy class if they have the

same length or, equivalently, if they correspond (2.1.15) to the same vector s.

In order to consider functions on the graph we identify each directed bond
b with the interval [0, Ly]. This gives us a local variable x, on the bond b; its
geometrical meaning is the distance from the initial vertex. Note that if the

bond b is the reverse of the bond b then x5 = Ly — xp. The meaning of the

18



2.1. Definitions

equality sign is that both x7 and L, — x; refer to the same geometrical position
on the bond. Now one can define a function on a bond and, therefore, define
a function on the whole graph as a collection of functions on all bonds of the

graph. To ensure that the function is well defined we impose the condition
Uy () = U (L — xp) for all b € B, (2.1.16)

where ¥, and W are the components of a function ¥ on the whole graph,
defined on the directed bonds b and b correspondingly. In this way we have
that the derivatives depend on the direction of the bond,

Uy (z) = =3 (Ly — ) for all b € B, (2.1.17)

and the integrals do not,

Ly Ly
/ U, () dy = / U, () dy. (2.1.18)
0 0

One can also define the scalar product of two integrable functions ¥ and

® as the sum of the integrals

/Lb ()P () das (2.1.19)

over all b € B. This scalar product defines the space L?(G).

The functions ¥ € L?*(G) which will be of interest to us are those which
are twice differentiable on the bonds (on the endpoints the derivatives are one-
sided) with their second derivative being in L?(G) again. In addition they

satisfy the following conditions:
\If(m-)(()) = \If(iyk)(()) for any i,j, ke V, (2.1.20)
i.e. ¥ is continuous on vertices and

d
> %\If(i,j)(o) =0, (2.1.21)
Jj: Ci =1

the so-called current conservation condition. The space of all functions satis-

fying all the above conditions on a graph G we denote by F(G).
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2.1. Definitions

We are interested in the eigenspectrum of the operator —% acting on the

functions from F(G), namely the numbers k& > 0 for which the equation

d2
— U = kU, v e F(G) (2.1.22)

dx?
has a nontrivial solution. We will show that there is a discrete (no accumulation

points) unbounded set {k;}.-, € R satisfying this condition.

Definition 7. The set of values {k;};-, for which Eq. (2.1.22) has a solution
is called the quantum spectrum of the graph G. To underline that we are
considering the properties of the quantum spectrum we will sometimes refer

to G' as quantum graph.

It is important to verify that the operator —% is self-adjoint. Indeed, on

a bond b one has

Lo g2 — L, Ly A
By () By (@) day = | T, — @, Uy(29) - @y () dy.
/0 a2 o () Py (03) iz [ » = W ] +/0 b(l"b)dxg b(wp)dy

(2.1.23)

Substituting the boundary values into the first summand on the right-hand

side and remembering Eq. (2.1.17) we obtain

T = —TLO®0) - OO (2.1.24)

d\yba Lo d¥y, ,  ——— ¥
0 dl‘b

dxy
When we sum such expressions over all bonds they cancel due to the condi-

tions (2.1.20) and (2.1.21), for example

Z &(O)m _ Z %(O)Q(i,j)(o)

bep 0T (i.§)€B i
—N"3; (0 Wi ) =S o0 x0=0, (2.1.25
= 2a(0) )Y dx”()—Z(m)()X =0, (2.1.25)
icy j: Gijyen - d) icy

where we took out the factor @ ;(0) since it does not depend on j due to

condition (2.1.20). Contributions of the second summand of the right-hand

side of Eq. (2.1.23) disappear in exactly the same manner. This shows that
d2

the operator —7= is symmetric.
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2.2. Derivation of the quantization condition

It is also clear that in order to have

Ly

U, — i)

> ey ) R (2.1.26)
dl‘b dl‘b 0

beB

for a fixed ® and any ¥ satisfying the conditions (2.1.20) and (2.1.21), the
functions ® must satisfy these conditions as well' which means that the do-

main of the definition of the adjoint operator coincides with F(G). Thus the

operator —% is self-adjoint.

Proposition 1. The set {k;}.°, is real, unbounded and discrete.

d2

Proof. The above statement follows from the fact that the operator —J= is

self-adjoint and the graph (as the domain of definition of functions from F(G))

is compact (see, for example, [35]). O

2.2 Derivation of the quantization condition
The general solution to Eq. (2.1.22) reads

where A ;) and B ;) are arbitrary coefficients that are to be fixed when we
apply the boundary conditions, Eqgs. (2.1.20) and (2.1.21).

First of all, imposing condition (2.1.16) we obtain the following relation,
Bijy = Ag, exp {—ikLi } - (2.2.2)

Then, the current conservation condition at the vertex i, Eq. (2.1.21), gives

—ik (Z Aipy = B(m-)) = 0. (2.2.3)
J J

On the other hand we have the continuity condition, Eq. (2.1.20), which gives

AGij) + Bij)y = Ay + Blim) (2.2.4)

IThis statement easily follows from the fact that it is possible to construct ¥ € F(Q)
satisfying ¥(; ;)(0) = A; and %(0) = pp for any given numbers {A;} and {u}.
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2.2. Derivation of the quantization condition

for any vertices 7 and n adjoint to the vertex i.

For a fixed n we sum equations (2.2.4) over all j adjoint to :
Z A(i,j) + Z B = (A(i,n) + B(i,n)) Vg, (2.2.5)
J J
where v; is the valency of the vertex i. Together with Eq.(2.2.3) it gives
2 Z Agig) = (A(i,n) + B(i,n)) ;. (2.2.6)
J

Now we use relation (2.2.2) to eliminate the coefficients By; ). Thus we arrive

to the equation

2 Z A(i,j) =; (A(i,n) + A(n,i) exp {—ikL(i,n) }) (2.2.7)
i
and, therefore,
. 2
Ay = exp {ikLn } (; > A - A(m)) = Diniyns) D Sni)i Aia):
b (i.9)
(2.2.8)

Here we denoted

2
Swaig) = o~ = s (2.2.9)
where 0, is the Kronecker delta, and
Diniyni) = exp {tk Lz } - (2.2.10)

Thus we have a set of linear autonomous equations with respect to the coef-
ficients A(; ;) and we are looking for its nonzero solutions. Equations (2.2.8)

can be rewritten as the matrix equation
a = DSa, (2.2.11)

where a is the vector of the coefficients A ;) and 2B x 2B matrices S and
D(k) are formed out of the matrix elements Dy, ;)n:) and Sga,j) specified
by Eqgs. (2.2.9) and (2.2.10). The elements of the matrices S and D(k) that
are not specified are assumed to be zero. Thus we obtain the following matrix

condition on k
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2.3. Properties of the matrix DS. Trace formula.

Theorem 1. The system of equations (2.1.20)—(2.1.22) has nontrivial solu-

tions if and only if k is a solution of the equation
det (I — DS) =0, (2.2.12)

where the matriz D is diagonal with k-dependent elements given by Eq. (2.2.10)
and the matriz S, with the elements given by Eq. (2.2.9), does not depend on
k.

2.3 Properties of the matrix DS. Trace for-
mula.

The foremost property of the matrix DS is unitarity. Indeed, the matrix
D = ¢*Y' where L is the diagonal matrix 2B x 2B of lengths L;, is unitary
and the matrix S is real and can have nonzero elements only in the places
corresponding to 1s of the matrix B. Thus the scalar product of (n,7)-th row
with (k,[)-th row is always zero if i # [. Further, the matrix S has v; — 1
elements 2/v; and one element 2/v; — 1 in the row (n,i). The number of
nonzero elements is independent of n but the position of the element 2/v; — 1
does depend on n. Therefore if [ = ¢ but k£ # n then the corresponding scalar
product is equal to

2 (2 2\°

Y SwaumSwaam =2 X = (- - 1) + (vi — 2) x (—) =0. (23.1)
Ui \Vi Ui
(I,m)eB
If both [ =7 and k& = n, one gets
2 ? 2\?

Z S(2n,i)(l,m) = (v_ - 1) + (v; — 1) x <v_> =1, (2.3.2)
(I,m)eB ¢ ¢

which proves the unitarity of the matrix S.

i0,(k) 1 2B

Since the matrix DS is unitary, its eigenvalues have the form {e 1

We would like to prove the estimate

df)
0<minL, < — <maxL, foralll=1,...,2B. (2.3.3)
beB dk beB
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2.3. Properties of the matrix DS. Trace formula.

Let |v(k)) be the unit eigenvector corresponding to the eigenvalue e?®) (in

what follows we omit the subscript ). Differentiating the equation

D(K)S|v(k)) = @ |u(k)) (2.3.4)

with respect to k£ we obtain

D d@ et? 0y,
D SJu(k) + DS () = 12 u(h) + e (k). (23

where 92 = JLD. Since v is orthogonal to its derivative (v(k) belongs to the
unit sphere for all k) and since (v|DS = e~®(v| , by multiplying Eq. (2.3.5)

by (v| we arrive to

(v[iLDS|v) = (U|z’ei03—Zv>, (2.3.6)
which together with Eq. (2.3.4) leads to
do

beB
The estimate of Eq. (2.3.3) now easily follows.
Theorem 1 tells us that we should be looking for the zeros of the determi-
nant det (I — DS). The determinant is zero if and only if one of the eigenvalues
of DS is equal to 1 or, in other terms, 6;(k) = 0 modulus 27 for some [. Thus

we can write

(2.3.8)

= "ok — ky) }:@W& V&

where ¢ is the Dirac delta function and d,, is the 2m-periodic Dirac delta:

dor(x) = D 5o . 0(x — 27wk). The function d(k) defined above is called the

spectral density function. It has the delta peaks at the values of k that we are

interested in. Expanding the function d5, as the Fourier series

Sor(r) = — 3 e, (2.3.9)

Ny
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2.3. Properties of the matrix DS. Trace formula.

and noticing that the estimate (2.3.3) allows us to remove the modulus sign,

we continue

| o
dk) = — i, (k)n “Y1
0 =g 2 G
1 d 2B 1 d fe's) 1 2B
- - k - - 16;(k)n —i0;(k)n
o I 2= a )+27rdkn§:1mlzzl(e ¢ )
1 d 2B 1 d o0 1 2B
- - k e - 16;(k)n
or I 2= 1 Hﬁdk;n;e
1 d & 1 d X1
_ LN+ 2L STt ps)ye, 2.3.1
2ndk;l()+n°dk;nr( ) (2.3.10)

To simplify the first summand we notice that the determinant of the matrix

DS is given by
det DS = * X% Lo det S = ek Xt Lo, (2.3.11)
Alternatively, using the definition of the eigenphases {0;}?51,
det DS = ¢! %1 (k) (2.3.12)
which leads to

d 2B 2B
yre d (k)= Ly=L. (2.3.13)
=1 b=1

Now we can expand the traces in the second summand of Eq. (2.3.10) in terms

of the matrix elements,

Tr(DS)" = Y (DS)0,(DS)psp, - - - (DS,
b1yeen b
= Y ettt Gy S Sy, (2.3.14)
b1een b
where [by, by, ..., b,] are all possible sequences of edges. However since Sy, .,

is nonzero only if By, . # 0, the only nonzero terms in the sum (2.3.14)

correspond to [by, by, ..., b,] € 73; Introducing the notation

Ap =[] Soibiys  where p=1[b,bs,... ,by] and by = by, (2.3.15)
i=1
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2.4. Geometric meaning of the matrix S

we write

Te(DS)" = Y Apetle = 37 e, (2.3.16)

— p
PEPn PEPn

where the summation now is over the periodic orbits, [, is the length of the
orbit p, Eq. (2.1.13), and rp is the repetition number of the orbit p.
Substituting this expression for the trace into Eq. (2.3.10) we arrive to what

we will refer to as the trace formula
d(k) = Zé(k —ky) = L + 1 Z l—pA cos(kly). (2.3.17)
~ 2r om ST P P

It will provide the basis for our analysis since it establishes a link between
the periodic orbits of the graph and its quantum spectrum. To the best of
our knowledge, this trace formula was first discovered by Roth [17]. It was
then independently derived by Kottos and Smilansky [19, 20] who proceeded

to analyse the statistics of the spectrum.

2.4 Geometric meaning of the matrix S

To understand the geometric meaning of the matrix S it is helpful to represent

the general solution to Eq. (2.1.22) in the form
Wii)(@) = Ay exp {—ikwij) } + Ay exp { ik} (2.4.1)

which is obtained by substitution of Eq. (2.2.2) into Eq. (2.2.1). Thus one can
consider the wave on the nondirected bond (i, ) as the superposition of the
wave travelling from j to ¢ with the amplitude A(; ;) and the wave travelling
from 7 to j with the amplitude A; ;.

The wave dynamics is realised through the matrix DS: all the waves A ;)
arriving to the vertex i contribute to the outgoing amplitude A, ; with the
weights S, ;)i,;)- Then, as the wave travels along the bond (i,n), it acquires

the phase shift D, ;). The eigenfunctions of the operator —% are those
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2.4. Geometric meaning of the matrix S

functions ¥ (or indeed the vectors of amplitudes A ;) which are invariant
under the wave dynamics defined above.

If we square the matrix elements of S, i.e. consider the matrix M with the
elements defined by
‘2

M jyny) = ‘S(n,i)(i,j) ’ (2.4.2)

it is easy to see that the matrix M is stochastic, that is the sum of the elements
in each row is equal to 1. Such matrix defines a Markov process on the graph
G with ‘S(n,i)(i,j)‘2 being the probability to go from the bond (7,j) to the
bond (n,7). One can consider this process as a classical analogue of our wave
dynamics.

It is possible to generalise the matrix S in the view of the above considera-
tions. Assume without loss of generality that the bonds numbered by, bo, ... ,
b,, lead to the vertex i. Let S® be a v; x v; unitary matrix. Then we can put
the elements of the matrix S instead of some elements of S in the following

manner
Sich, = Shr. (2.4.3)

This substitution will not change the unitarity of S and we can consider

the generalised problem [23]
det (I —D(k)S) =0, (2.4.4)

where S is now the changed matrix. The matrix S® is then called the scattering
matriz at the vertex i. The diagonal elements of the matrix S® will be called
reflection (or backscattering) amplitudes and will be often denoted by r. The
off-diagonal will be called transmission (or normal scattering) amplitudes and
will be denoted by t.

It can be shown that changing the matrix S® corresponds to choosing

different boundary conditions at the vertex .
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2.5. Smoothed trace formula

2.5 Smoothed trace formula

The trace formula as shown in Eq. (2.3.17) is exact: the right-hand side is
a convergent, in the sense of distributions, series whose sum is equal to the
spectral density. However for some mathematical proofs it is more convenient
to consider an approximation to the spectral density function which is obtained
by smoothing the delta-peaks of the density function.

Let n.(k) be a family of continuous functions convergent to the Dirac delta
function in the sense of distributions as ¢ — 0. Then the approximate spectral
density d.(k) is equal to the convolution of the density d(k) with the function
ne(k). As an example we can take

D (k) = —e K/ (2.5.1)
/e

so that
1 (ke )2 /2

Now the corresponding approximation of the trace formula is also given by

the convolution with 7 (k),

. L 1 lp o0 ]. —(k—fi)2/e2
de(k) = -+ Ep: EA,, /OO 7 o8 (Ipk) e s
L 1 [ 2 2
= o + - Z T—pAp cos (Ipk) e~'pe /4, (2.5.3)
p p

2.2/, .
/4 improve the conver-

Eq. (2.5.3) is easier to handle because the factors e
gence of the series. From the weak convergence (convergence in the sense of
distributions) of Eq. (2.3.17) we now move to the uniform convergence for any

e > 0.
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2.6. Spectral statistics

To see it we write

> [
330 Py cos tph) e B

n=N pEPp p

00
< Z annaxe—(nLi“‘“)zez/él Z

n=N ¢ PEPn
lp=t

x Z nL?axe_(”L;’nin)w/‘lnB_l, (2.5.4)

n=N

.

Tp

where we sorted the orbits according to their lengths (i.e. degeneracy classes)

and then used the estimates from Appendix A.1 in the last line.

2.6 Spectral statistics

Here we introduce the main objects of our study: the spectral statistics asso-
ciated with the spectrum of the quantum graphs. The aim of this Section is to
express the spectral statistics in the form of sums over periodic orbits with the
aid of the trace formula (2.3.17). Although for completeness we include discus-
sions of convergence of the spectral statistics, the material directly relevant to
the subsequent investigations is wholly contained in equations (2.6.1), (2.6.5),
(2.6.6), (2.6.22), and (2.6.26), (2.6.30). These equations give the definitions
and the periodic orbit expansions of the mean density, two-point correlation

function and the form factor correspondingly.
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2.6. Spectral statistics

2.6.1 Average density

The average (mean) density of the eigenspectrum is defined by

d = (d(k)) = lim l/T (k) de (2.6.1)

T—o0
and its meaning is the average number of the eigenvalues k, per interval of

unit length.

Define
aT) = % /OTd(k)cﬂc (2.6.2)
) = /OTde(k)dk. (2.6.3)

We include the following Proposition without proof.

Proposition 2. If the function n. is such that [ n.(x)dz =1 and n.(z) > 0

for all x then for the corresponding d.,

lim d(T) = lim d(T). (2.6.4)

T—o0 T—o0
The equality of the limits here means that the limits either both do not exist or

both exist and are equal.

Now we can integrate the series (2.5.3) and take the limit termwise (we can

do it since the series is uniformly convergent) to obtain

- L
d=— 2.6.
=, (26.5)

where L = 3, o Ly. In the following we will usually rescale the spectral
density, i.e. consider %d (%) The mean spacing between two eigenvalues of

such rescaled density is equal to one.

2.6.2 Two-point correlation function

The two-point correlation function is defined by

<2%>2 <d(l<;)d <k + 27%) >k (2.6.6)
(%”)2%220%/: d(k)d (k 4 2”%”) dk.
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2.6. Spectral statistics

As it can easily be shown from the definition, the function R is even.
If we assume, for simplicity, that L = 27 then the two-point correlation

function Ry(x) can be also expressed as

Ryfx) = lim % mzo ; (ke — k). (2.6.7)

or it can be defined by its action on a test function h(z),

(h, Ry) = A}i“oo_ ZZh (2.6.8)

m=0 n=0
From these equalities the meaning of the function Ry(z) can be easily under-
stood. For example, if we take h(x) to be normalised characteristic function
of an interval?, one can see that (h, Ry) counts the average number of couples
of eigenvalues whose difference lies in the interval. Basing on Eq. (2.6.7) one
can also say that Ry(z) is the density function of all possible differences of
eigenvalues.

We define the smoothed two-point correlation function by

Ro(e) = (%”)2 lim l/OTde(k)d <k+2”7x> di - (2.6.9)

where d.(k) =", n.(k — ky) with n.(k) — 6(k) as e = 0.
A proposition similar to Proposition 2 can be formulated for the two-point

correlation function.

Proposition 3. Let §(k) = lim._,on.(k), with n(k) continuous and nonnega-
tive. If there exists the average density d and if the function Ry (), as defined
by Eq. (2.6.9), exists for some € then it exists for all € and

lim (Ra,o(w) — Ba(w)) = 0 (2.6.10)

i the weak sense.

Zalthough it is not a test function, under certain conditions Eq. (2.6.8) will still make
sense
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2.6. Spectral statistics

Proof. We will give a schematic proof for the case when the approximating
functions 7. have compact support. If we additionally require that n, are

from C'* than their convolution with cos(lpk) will produce factors decaying

expronentially fast with /. Such factors will play the role of e '5¢’/4 in a proof

like in Eq. (2.5.4).
Let the functions 7. have their support inside the interval [—a, a]. We also
assume, for simplicity, that L = 2.

Then for a fixed z and € we can estimate

% > xelw = (kn — k) < %/0 d.(k)d(k + z)dk (2.6.11)

a<km<T—a
a<zx+kn<T—a

1
—a<km<IT'+a
7a<$+kn<T+a
where
e () = / e A\ + ) dA. (2.6.12)

The function x. is bounded thus the difference between the left and the right
estimate in Eq. (2.6.11) is in the number of the eigenvalues in two intervals,
[—a,a] and [T — a, T + a]. Such number, divided by 7', must decrease to zero

as T — oo (otherwise the average density d would not exist). Thus we have

Roclr) = Jim LSS v (o~ (kb)) (2.6.13)
The functions x.(k) have support in the interval [—2a, 2a] and also converge
to delta functions as € — 0.
Introduce the notation

F(Mz) = > > xe(@— (kn—km)), (2.6.14)

m=0 n=0

F(Mz) = Y ) 6(x— (kn— km)). (2.6.15)

m=0 n=0

We would like to prove that for any test function A(x) with support in [—b, b],

lim | lim %<F(M, z) — F.(M,z), h(aj)>] ~0. (2.6.16)

e—0 [M—)oo
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2.6. Spectral statistics

Since the functions x.(k) approximate §(k), we have
[(6(x — k) — xe(x — k), h(z))] < a(e) =0, (2.6.17)

as € — 0 for any fixed h(x) and for all values of the shift .

Now we can estimate
‘<F(M, ) — F(M,z), h(x)>‘ < N(M)ale), (2.6.18)

where N (M) is the number of pairs k,, &k, such that the support of the function
Xe (x — (kn — ki) overlaps with support of A(x). In other words, it is number
of pairs of eigenvalues k,,, k,,, such that m < M and k,, —k,, € [-2a—0b,2a+0].
The existence of R, (z) for some €, implies that limy,_, ., N(M)/M is bounded.
This remark proves Eq. (2.6.16). O

Using Proposition 3, we substitute Eq. (2.5.3) into definition (2.6.9) to
obtain
L

o\ 2 1 (" o L
) lim = il 7)) 261
(L) TEEOT/O o (de(k)+d6<k+ L) 27r>( 6.19)

1 lpl I o
+ LL A, A, cos (Ipk) cos (lqk + [q2_> o~ (B+1)e /4] dk,
7r

2
T roT
pq P4

RQ,E(.I')

where the double series in the second line is uniformly convergent with re-
spect to k. The integration of the summand in the first line produces (c.f.

Subsection 2.6.1)

2 (- — L
— —— ] =1 2.6.2
7 <d+d 27r> , (2.6.20)

while in the second line we expand the product of cosines

2mx 1

cos (Ipk) cos (lqk + qu> =3 {cos ((lq —lp)k+ qu>

2
+ cos ((lp )k + lq%xﬂ . (2.6.21)

Now when we integrate and take the termwise limit, the only terms left will

be those which had the coefficient of k£ in the cosine being equal to zero. Thus
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2.6. Spectral statistics

from the double sum only the pairs of periodic orbits with equal length will

survive,
. 2 lplq 271_./13 _ l2+l2 62/4
Ry (z) = 1+ﬁ Z rquA pAq cos (l T) e (1p+15) Ol 1o
P,9€P
2
27T.T 2 2 A

= 1+=> 72 —e)2 =P 2.6.22
+ Z cos( >e Z o ( )

s(p)=s
where / is the length of the periodic orbits from the degeneracy class s and the
symbol d;, 5, is equal to 1 if [, = [4 and is 0 otherwise. Using Theorems 3 and
4 from Appendix A.1 one can show that the series in Eq. (2.6.22) is convergent
uniformly in = for any value of € > 0. Thus Ry () exists and converges to

Ry(x) as € = 0.

Remark 2. The main (and only) effect of the averaging

1 T
lim ~ / . dk, (2.6.23)
0

was to remove the cosines, as in Eq. (2.6.21), when [, # lq and thus restrict
the summation in (2.6.22) to the pairs of orbits of the same length. Another
way to achieve this is to average with respect to individual bond lengths and
then send k to infinity,

lim
k—o0

L0+AL/L0+AL dLl dLB -5 (2.6.24)
— Ipilg COS (. 0.

cos ((lq — lp)k + a) — AL AL

The above follows from the representations

B B
= Z si(p)Ls, lg= Zsi(q)Li, (2.6.25)
i=0 i=0

where s;(p) is the staying rate of the orbit p on the ith bond, and the fact
that unless s;(p) = s;(q), the integration with respect to L; will produce a
factor of order £~1. Thus the averaging defined in (2.6.24) is formally equiv-
alent to averaging (2.6.23), although it is hard to justify it more rigorously.
Averaging (2.6.24) will be employed in Chapter 5.
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2.6. Spectral statistics
2.6.3 The form factor

Another function associated with the spectrum is the form factor K (7). The
form factor K(7) is the Fourier transform (in the generalised sense) of the
two-point correlation function

K(r) = / (Ra(z) — 1) exp(2riar)da. (2.6.26)
Since the Fourier transform is continuous, we can write K (7) = lim,_,o K(7),
where

K (r)= / (Ry(x) — 1) exp(2mixT)dx. (2.6.27)

Taking the Fourier transform termwise using

& ) 2zl 1 [ 1 [
2miTT p — P — _ P 2.6.2
/_ooe cos( 7 )dx 2(5<T+L>+25<T L)’ (2.6.28)

we arrive to

l 2.2
Ke(T) - L_ Z ——quAq(S <T a ZP) ei(lp)e /25ZP’lq7 (2629)

for 7 > 0 (the form factor is even: K(—7) = K(7)). Now we can take the
limit € — 0 termwise to finally obtain the periodic orbit expansion of the form

factor,
l
K(r) =2 e 2 P <T — Z") Ot 1 (2.6.30)

In the next chapter we derive an expansion for the form-factor for star-
graphs (see Example 3) starting with Eq. (2.6.30) and then “enumerating” the

periodic orbits and the degeneracy classes.
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Chapter 3

Form-factor for the star graphs

In this chapter we study the form-factor K (7) (defined by Egs. (2.6.26-2.6.30))
in the limit B — oo for a special family of graphs, known as star graphs.
These are graphs with B 41 vertices marked 0 to B and with the set of bonds
B = {(0,7),(i,0): i =1...B}; see Fig. 2.1. For simplicity we shall number
the (nondirected) bonds by the number of their outward endvertex. For star
graphs the valency of the vertex 0 is B and the valency of the other vertices is
1 which significantly simplifies the matrix S; for example, the backscattering
from the vertices 1...v has the weight 1. We shall call such backscatterings
trivial. As for the transitions through the vertex 0, the backscattering has
the weight r = % while normal scattering has the weight ¢ = 2/B. Thus it
is clear that in the limit B — oo the leading-order contributions come from
orbits with the maximum number of nontrivial backscatterings. This will form

the basis of our analysis.
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3.1. Expansion of the form factor

3.1 Expansion of the form factor

3.1.1 General formulae

In Section 2.6.3 we derived an expansion of the form-factor in terms of the

periodic orbits,

S b Iy b
K(T) = ﬁ Z Z EEAPACI(S (T - Z) (Slp,lq, (311)

n=2 p,q€Pn

when 7 > 0 (K is an even function). Loosely speaking, the form factor is
a sum of delta-functions positioned at the lengths of the periodic orbits and
weighted by the factors A,. A very important factor in Eq. (3.1.1) is the
coupling between different orbits of the same length which is present due to
the Kronecker delta. It shows that the contribution comes only from the
couples of orbits p and q which belong to the same degeneracy class.

Let us consider the contribution of a particular degeneracy class charac-

terised by the length ¢ of its orbits,

K(T):%g l %5 (T—%) > Ap : (3.1.3)

where the first (outmost) sum is over all periods, the second is over all degen-
eracy classes, parametrised here by the length ¢, and the last is over the orbits
within the degeneracy class.

In this Chapter we aim to calculate the weak limit of K (7) as B — oo and
our approach is best described with the aid of Fig. (3.1). On the schematic
drawing of the form factor for a B = 3 star graph the individual lengths of the
bonds are chosen in such a way that the delta functions corresponding to the

degeneracy classes of the period 2k (on star graphs all orbits have even period)
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3.1. Expansion of the form factor

30

K

WL Meyl]

1=1/3— T
k=1 k=2 k=3

Figure 3.1: Schematic plot of the form factor K (7) and its approximation I?(T)
for a 3-star graph. The delta functions are denoted by arrows pointing up.

are clustered around the point k£/B. Then we can integrate K (7) against the
characteristic functions of the intervals of the size 1/B around these points
obtaining the staircase approximation to the form factor which we denote by
K (7). Bach step in K (7) collects in itself all contributions from orbits of the
same period. It is easy to see that K (7) and K (7) have the same weak limit
as B — oo, therefore it is enough to study the approximation I~((7') The
condition on the bonds lengths and the details of the integration are described
below.

We assume that the individual lengths of the edges are densely distributed
around their average, which, without loss of generality, we take to be unity.
Picking the lengths at random does not contradict our usual condition that
the lengths should be incommensurate. In fact, having commensurate lengths
is an event of zero probability.

For example, we can use the uniform distribution on the interval [1 —
1/(2B),1 +1/(2B)] in such a way that L = 2B. Note that the distribution

changes with the valency B. This is done in such a way that the orbits of period
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3.1. Expansion of the form factor

2k have their lengths distributed in the interval [2k — k/B,2k + k/B] and,

therefore, when k/B < 1 the corresponding delta functions are concentrated

in the interval

B 230 B am

ko ok ko k ko1 k1
] {B 55 3B (3.1.4)

Thus the contribution from orbits of different period will be confined to non-
intersecting intervals if £ < B. To approximate the form factor around k/B
we integrate it against the characteristic function of the corresponding interval
[% — %, % + %} and divide by the length 1/B of the interval. This contri-
bution is equal to

2

K(r) = g %:82 > Ap (3.1.5)

T
pEPZk ) lP:e P

fort € [£ — ;5 £ 4+ L] As mentioned above, K (7) and K (7) have the same
weak limit K™ (7) as B — oo in the sense of distributions. In what will follow,
to determine the value of the form factor K at a point 7 we will send both B
and k to infinity in such a way that limk/B = 7.

Under the above conditions on the distribution of the lengths, the form
factor K (k/B) is well approximated by another quantity, (|TrS?*|?)/(2L), the
periodic orbit expansion for which can be obtained from (3.1.5) by substituting
¢ = 2k. In what follows we make the approximation ¢ ~ 2k (i.e. consider
({|TrS?*|?)/(2L) instead of K(k/B)) but still refer to the resulting expression
as the form factor.

Since the star graphs are special we will have to change the conventions
we introduced in Chapter 2, in order to simplify notation. For each orbit the
number of traversals of a given bond is even so throughout this Chapter we will
count the traversals in one direction only, e.g. from the centre to periphery.
As before, each degeneracy class will be marked by a vector s. However now
the component s; of the vector s is the number of traversals of the bond 7 in

the outward direction. When we write a symbolic code for an orbit p, we also
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3.1. Expansion of the form factor

\ orbit: (1, 3, 4)

~— degeneracy class:
T l (1,0,1,1,0)

Figure 3.2: An example of simplified notation for the periodic orbit and the
corresponding degeneracy class.

list only traversals of a bond in the outward direction. For example to denote
the orbit passing through the bonds (0, 1), (1,0), (0, 3), (3,0), (0,4) and (4, 0)
successively, as depicted in Fig. 3.2, we will use the simplified notation (1, 3, 4).
Clearly this information is sufficient to identify the orbit.

We start by dividing all orbits into B groups, based on the number j of
different edges the orbit traverses. This number is an invariant of the degen-
eracy class; thus the sums over the degeneracy classes will remain intact. We
will be interested in the degeneracy classes with exactly j nonzero components
in their vector s and with |s| = Y., s; = k, the half-period. Thus, writing
the symbolic code for an orbit p from such a degeneracy class, we get a se-
quence of k symbols of j different types. When we calculate the weight A,
of the orbit, Eq. (2.3.15), each pair of different symbols standing next to each
other contributes the factor t = 2/B to A, and each pair of identical symbols
gives r = 2/B — 1. These contributions multiply together to produce A, for

example the orbit (1,1,2,2,1,3) gives

A, =th? = (%)4 <% - 1)2. (3.1.6)

Note that the transition between last 3 and first 1 is also contributing. A
very important feature of an orbit is the number of groups of identical symbols

standing next to each other. For example, the orbit (1,1,2,2,1,3) has two
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3.1. Expansion of the form factor

groups of “1”s, one group of “2”s and one of “3”s. On the other hand, due
to the cyclicity, the orbit (1,2,2,1) has only one group of “1”s. It is clear
that the number of transitions of the orbit through the central vertex (thus
contributing the factor t) is given by the total number of the groups!. Thus to
calculate the contribution from a degeneracy class, it is necessary to know the

number of orbits in this degeneracy class that have g; groups of the symbol

yeen

“ 79

in their representation, ¢ = 1,...,5. We denote such number by N

Then we can write for the contribution of a degeneracy class s

Z Z ZNSI:”',:tG k=G (3.1.7)

S(P):SO g1=1 g;=1

where G = Y>7_ g; is the total number of groups. In order for Eq. (3.1.7) to be

yees

’ should take into account the repetitions, i.e. count

exact, the number N 783,

an orbit which is a repetltion of another orbit not as 1 but as 1/r.
We now rewrite the contribution of the degeneracy class s in the form
S Aok Y Y NGO = DB (318
s(p)=s p g1=1 gj=1

and thus obtain from Eq. (3.1.5)

K'"(r) = lim K(r) = lim B Z(Qk)2r2k(t/r)2jD§(B)

B—o0 B—oo L2
BN, (B (B=2\*( 2 \¥
_K(HB@&E;(%) <j>< B ) (B—Q) H;(B)

> Ki(r), (3.1.9)

i=1

where
e the term for j = 1 is slightly different and has to be treated separately,
e [ = 2B is the total length of the graph,

e (2k)? is the approximate squared length of the orbits,

!The only exception to this rule are the orbits which have 1 group in total, that is the
orbits that are confined to one edge. Such orbits do not have factors ¢ in their coeflicient Ap
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3.1. Expansion of the form factor

e the binomial coefficient (l; ) is the number of ways to choose j traversed

edges out of the available B,

e and
H;(B) =Y D(B) (3.1.10)
|s|=Fk
is the sum over all degeneracy classes s € N with all j components

nonzero.

Taking the limit as B — oo in Eq. (3.1.9) termwise and with 7 = k/B
fixed, we find
lim : T = 47 2
K'"(7) = lim K(7) = K,(7) +Zﬁer exp(—47), (3.1.11)

B—oo -
J=2

where H; = limp_,o, B'™/H;(B) and the limit

B_9\2% 1\ 4B/2
Bliir;o (T) = Blgrolo (1 - B—/2> = exp(—47) (3.1.12)
was used.

3.1.2 Calculation of K;(7)

K, () is the contribution from the orbits which are confined to only one edge.
All factors in K;(7) are the same as for general j, with the exception that
the factor (%)2‘7 disappears altogether. Indeed, the weight of an orbit which
passes through only one bond is 7%, not 7*~'t. The number of orbits in a
degeneracy class is obvious for j = 1, it is ngll = 1/k for g; = 1 and 0 otherwise
(here s; = k). This number takes into account the repetitions: there is only

one orbit and it has rp, = k.

Adjusting the formula in Eq. (3.1.9) we obtain

%(%)23 <%>% (%)1 —exp(—4r),  (3.1.13)

where 7 = k/B was held fixed.

K;(r) = lim

B—oo
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3.1. Expansion of the form factor

As we shall see later this is the dominant contribution for small 7: the next
contribution coming form the orbits which traverse only 2 different bonds is of

order 73 as 7 — 0.

3.1.3 The j =2 contribution

The 5 = 2 contribution is relatively simple and can be considered separately
to illustrate our approach. It has the form
42
Ky(r) = P % exp(—47) Hy (3.1.14)

H>(B)
B

where Hy = limpg_. is the quantity we now want to calculate. Writing

out the formula for Hy(B) we arrive to

H, = lim = ZDM o) (3.1.15)

B—ox B
s1=1

with Dy, ,,)(B) being the contribution from orbits which traverses only two
edges s; and s, times respectively. Now we make use of the fact that as B — oo

the sum can be replaced by an integral, so that

H2 :/ DQ(ql,T—ql)dql, (3116)
0

where D(qi,q2) is the B — oo limit of D(,, 4,)(B), ¢; = s;/B and 7 = k/B, as
before. D(,, ,,)(B) can be expanded as

D(81,52)(B)

1t S 2 2) (=22} s mpienz) (22 )
— 9 51, 52, B_9 3 S1, 52, B_9

o0

9 29—2
Z (s1,9)b(s2,9) (ﬂ) , (3.1.17)

where 2/(B — 2) = —t/r and b(s,g) = (si) is the number of partitions of an
interval of length s into ¢ non-intersecting subintervals of integer length (see

Section A.2 for the derivation). The idea of the decomposition is based on the
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3.1. Expansion of the form factor

fact that a 7 = 2 orbit may be represented in general as

. ,_ﬁ;
(1,...,1,2,..,2,1,...,1,...,1,...,1,2,...,2), (3.1.18)
N—_—— N—_—— N—_——

al a2 g

corresponding to a; traversals of the first edge, then b, traversals of the second,
then another as of the first, and so on. Thus, as we see, g = g = ¢g. The
sum » ¢  a; is equal to s; and ».7_ b; = s,. In the general term in (3.1.17),
b(s1, g) is the number of ways to decompose s; into a sum of a;’s, b(s9, g) is the
number of ways to decompose s into a sum of b;’s multiplied by the weight
factor (t/r)9 %9277 and divided by g, which corresponds to the cyclic symmetry
and takes care of the repetitions at the same time (as will be explained in detail
in the next section). There is no approximation involved in (3.1.17).

Taking the limit B — oo of Dy, ,,)(B) termwise while keeping ¢; = s1/B,
¢ = s/ B fixed, we obtain?

1 11 ,1
Digy, @) = 1+ 5002+ ggquq@‘* +... (3.1.19)

i (4q1q2)? " _h (4@ @)
put gl(g—1)! 2/ 01¢2 ’

where [;(z) is a Bessel function, and so, using the substitution ¢; = (7 +

7 cos @) /2 we evaluate

TR a(r—q)), 1 [TI}(27sing)
H; /0 4 (T — 1) dar = 27 0 : sin ¢ d¢
= (I (47) — 27). (3.1.20)
Thus,
Ky(1) = 2exp (—47) (I, (41) — 27) . (3.1.21)

Since I1(47) = 27 + 47° + O(7°), Ky(7) is of order 7% as 7 — 0.

2In this particular case it is possible to justify the validity of the termwise limit: individ-
ual terms in Dy, 5,)(B) are increasing with B and the whole sum is bounded from above
byD(37,37).
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3.1. Expansion of the form factor

3.1.4 K,(r) for general j

We now proceed to calculate the degeneracy factor Ds(B) of (3.1.8) for general

j. Without loss of generality we assume that the edges numbered 1 to j are

]
R

traversed. We are looking for the number ngll of all orbits which pass

through the bond 7 s; times in such a way that these traversals grouped into
g; groups.

Let us consider a slightly different problem. We want to count the number
of all sequences of symbols, s; symbols of the type ¢ grouped into g; groups.
We require the sequences to start with a group of 1s and to end with a group
of symbols different from 1. The difference from the orbits is that we do not
identify the sequences obtained from one another by a shift. Each orbit p
will then correspond to g;/rp such sequences which is best illustrated with an

example.

Example 5. The orbit (1,2,1,1,3,3,1,4) corresponds to 3/1 = 3 sequences
[1,2,1,1,3,3,1,4], [1,1,3,3,1,4,1,2 and [1,4,1,2,1,1,3,3].  (3.1.22)

The orbit (1,2,1,1,3,1,2,1,1,3) with r, = 2 will correspond to 4/2 = 2

sequences
[1,2,1,1,3,1,2,1,1,3] and [1,1,3,1,2,1,1,3,1, 2. (3.1.23)

Thus if we divide the number of all sequences, characterised by si,... ,s;
and gi,...,g;, by g1 then we will obtain the number of all periodic orbits with
the repetitions already taken into account. In fact, this is what was done in
the previous section: we divided the number of all sequences, b(sy, g)b(s2,9),
by the number of groups g; = g.

To obtain all possible sequences we follow the following algorithm. First
we divide the symbols 7 into g; groups. Then we mix the groups in such a
way that: (a) the order of the groups of the same symbol is preserved, (b) the
first group of 1s comes first, (c¢) the last group is not a group of 1s and (d) no
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3.1. Expansion of the form factor

Initial setup.1 1111 222 3333
Step 1. 11-1-11 222 333-3

Step 2. 11 222 1 333 11 3
11 333 1 222 11 3
11 333 1 3 11 222

Figure 3.3: An example of producing sequences satisfying conditions (a)-(d)
for s; =5, 50 =3,53 =4, 91 =3, go =1 and g3 = 2.

two groups of the same symbols stand next to each other. This algorithm is
illustrated in Fig. (3.3).

The number of possible sequences of the given structure is thus given by
the product of the available choices at each step,

J S; — 1
=1

gi — 1

)

s;i—1

The first step produces the factors b(s;, g;) = (gi—l

), where b(s, g) is the number
of decompositions of the integer s into a sum of ¢ nonzero summands, see
Section A.2. The second step gives the factor Ry, . . g which is the number of
ways to mix g1, ... , g; groups in such a way that conditions (a)-(d) are satisfied
and which is discussed in detail in Section A.3. This factor, called the number
of permutation without liaisons is equal to

_1)k1+---+kj kiy+...+k; d gi — 1
R = (=1)¢ LS i ’ Z
gy = (=1)701 Z k1+...+/€j< ki, ...,k )H(ki_1)7

K1y ok

(3.1.25)

. 915995 . .
Thus the number we are looking for, IV, ', is given by
1y---555

ey —1)K K 7 gi—1\ (si—1
N, T =(=1)¢ ( ’ ’ 1.2
=t S S T () (D) e

i — 1
k1. ik 9i
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3.1. Expansion of the form factor

where we denoted K = ki + ... + k;.
Going back to Ds(B) we obtain with the aid of Eq. (3.1.26)

51 Sj R ¢ G—j
Di(B) = Y D Ny (;) (3.1.27)

g1=1 gj=1

s (e LK)

915---,9; kl:---ykj

! ot 9t g =1\ (s — 1
i1 r kz_]- gz_]-

where, as before, G = Y7, g, and K = Y7_ k. Now we take the limit

B — oo termwise keeping s;/B = ¢; fixed
" (si—1 2 \"7 (s -1 2¢;)%
—— ° = (- i L Qa5 9
r 9i — 1 B -2 gi—1 (g —1)!

We obtain
_ (D5 K\ 7wt (g1
Dlgn--vi)= 3, D, ~F (/{:1/{:]> ,1m<ki—1>’
(3.1.29)

915595 K1yee kg ¢

where the summation over g; goes from 1 to infinity, k; goes from 1 to ¢g; and
we dropped the factor (—1)7 because D(qi,...,q;) is going to be squared.
Interchanging the summation signs and rearranging the general term in the

product gives

_ (—1)K K J (24;)9 K (2g;)%i
D(q,- .. ,Qj)_ Z Z K <k1,___7kj>H — k)l (k; — 1)!

kl,...,kj g1yeee 595 1=1 (gl

. (—1)K K J (2qi)ki—1 J (2ql)-‘h_k’
B Z T(lﬁk])qm Z Hm (3.1.30)

kla"'akj i= 915---,9; i=1
where now the summation over k; goes from 1 to infinity and g; goes from k; to

infinity. Performing the summations over g;s we get H‘gzl exp (2¢;) and, since
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3.1. Expansion of the form factor

@i+...+q¢ =7and exp(q1 + ...+ q;) ®exp(q)+...+exp(g;), we arrive at

(_l)K ! 2%
D(qi,....q;) =exp(27) Y & ) (3.1.31)
ki,... .k o i=1

where the summation over k; goes from 1 to infinity.

For convenience we shift the summation, n;, = k; — 1,

00 j n:

where N = 25:1 n;. Using the fact once again that as B — oo the summation

in (3.1.10) can be replaced by the integral

H / ql,... ,Qj)dql...de_l, (3133)

7, 19~
where the integration is performed over j — 1 variables. It is clear that to

perform the integration we need to do the integrals of the type

/ , ¢ g gy dgi. (3.1.34)
>

J J—
i=1 q;=T

For completeness we include the derivation of this integral for 7 = 3. We have

T T—q2
/ 01" ¢5? g5 dgrdgadgs = / g5 dgo / "7 — g — @)™ day.
q1tq2+q3=71 0 0

(3.1.35)

Thus first we need to evaluate the integral of the form

/0?/ 2% (y — x)’d, (3.1.36)

which is exactly (3.1.34) for j = 2. Repeatedly integrating by parts we obtain

Yy b Yy
/Ox“(y—x)bd:c:a+1/0 2y —2) e = ...
b! Y atb
— atb g
(a+1)---(a+b)/0 v
aldb!
_ a+b+1
~Garoro) B30
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3.1. Expansion of the form factor

Substituting this result into Eq. (3.1.35) produces

my1 . ma m3 ml!m3! ! mao mi1+ma+1
41 qy 2 g3 dqrdgadgs = I d; (T—CI2) dqy
q1+q2+q3=T (ml +m3 + 1)' 0

_ ml!mg! mg!(m1 + m3 + 1)' Tm1+m2+m3

(m1 +m3+1)' (m1 +m2+m3+1)!

_ ml!mQ!m3! 7_17’:,1+77'12+777'3_ (3138)
(m1 +m2 + ms + 1)'

It is straightforward to derive the formula for general j,

ms ml!"'mj! M+ji—1
m Mg da = T M 3.1.39
/Ez 19 (I1 qj o qj ' (M+] - ]‘)'7— , ( )

where M =37 m;.
Now we expand the square in Eq. (3.1.33) and apply Eq. (3.1.39) to obtain

N+K AN+K+j 1(N+J —1) (K+j—1)!
H; = exp(4r1) Z I NEK+j—1)

(n; + k;
XHm'k' i ()k o (3.1.40)

where K = Y7_ k; and N = 3>7_ n;. Therefore, the final result for K;(7) is

4 & .
=5 D Oy (3.1.41)
and so
K'™(r) = Z C TMAI+L (3.1.42)
Jj=2 M= 0
where

Cu = (—2) Z (K+j—1)!(N+j_1)!ﬁ(ni (nl:b-l Z)

i —1)! (k. !
kit..tkjtnit..+n;=M (M +j —1)! + D!k +1)!

(3.1.43)

with K = Zgzl ki, N = Zgzl n;, and the sum being performed over the 25 —1
variables k; and n; (i.e. 2j variables minus one constraint).
This is the main result of the chapter. It constitutes a general formula

for computing the coefficients in the expansion of K (7) (from now on we will
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3.1. Expansion of the form factor

always omit the overscrip lim when talking about K“"(7)) in powers of 7
around 7 = 0. Note that as 7 — 0, the sum in (3.1.42) tends to zero as 7,
and so it follows from (3.1.13) that K (7) — 1 in this limit. This is the same
as for the Poisson form factor, and unlike the random-matrix results, which all
approach zero linearly in 7. However, the Poisson form factor is independent
of 7, and K (7) here clearly is not: after an initial decrease as 7 increases, it
eventually rises to the limiting value of one[l1]. In this sense, the result is
intermediate between the Poisson and random-matrix forms.

The expression for C'y; can be written in another form that is more suitable

for numerical computation. Defining

(")
Fl ) = (N + DK +1)! (3.1.44)
and using
3 (K +j—1)! N+j_1|ﬁ (k)

ki otk 4n ot =M (M +j—1)! Pl (n; + D)!(k; + 1)!
SEILEE | e HE

KN (M+j—1)! s T i (ki + 1!

ni+.. +n

it follows that

Cy = (—2)M§: (K g - DUM — K +j - 1)!E,-(K,M—K), (3.1.46)

Z (M+j—1)
where
K N
Fj(K,N) =YY "Fi(k,n)Fj_(K - k,N —n), (3.1.47)
k=0 n=0

which is a form of convolution. The expression (3.1.46) for the coefficients Cy,
is computationally more convenient because there is a clear recursive relation
for the coefficients F;(K, N) which can be further facilitated using the discrete
Fourier transform. The results of numerical computations with the first few
coefficients of the expansion are shown in Fig. 3.4. Even few first terms of the

expansion give a reasonable agreement with the numerical data up to around
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Figure 3.4: The first 11 terms (solid line) and the first 7 terms (dashed line) in
the expansion for K (7), compared with data from the numerical simulation by

Kottos and Smilansky [20] for (|TrS?|?)/(4B), B = 50 (circles). The dotted
line corresponds to the diagonal approximation (3.2.3)

0.6. However it seems that after 0.6 the series might diverge. In Section 3.3

we will see that it is indeed the case and we will study the possible ways to

improve the convergence.

3.2 A summable approximation

One possible approximation to K (1) can be made by ignoring two contribu-
tions:

1. the off-diagonal terms in (3.1.1). We call a term in the summation in
(3.1.1) diagonal if it corresponds to p = q, otherwise we call it off-

diagonal. In symbolic form, the diagonal approximation is

K(7) ~ K%9(r) = % f: > (i—i)QAf,(S <T - l-") : (3.2.1)

L
n=2 peP,
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3.2. A summable approximation

2. all orbits for which the number of backscatterings is less than the maxi-
mum in their degeneracy class or, in other terms, orbits which have a g;
greater than one. For example, the orbits (1,1,4,6,6,6) and (1,1,6,4,6,6)
belong to the same degeneracy class. The first orbit gives the contri-
bution of #37® which, in the limit B — oo is more substantial than the
second orbit’s contribution of ¢*r2. It is not hard to see that out of each
degeneracy class only (j — 1)! orbits will survive this approximation,

where j, as before, is the number of distinct edges traversed by the orbit.
The result of the above approximations is that the contribution £} of the
degeneracy classes in (3.1.9) is reduced to a factor of (j —1)!, the contribution

of one degeneracy class, multiplied by the number of degeneracy classes, (’;j)

K"9(7) ~ Ky(7)

O () (3 (45 (). e

Jj=2

Taking the limit B — oo termwise, with 7 = k/B fixed, we arrive at

: > j—1
K%9(r) ~ Ky(r)+72Y 2% exp(—47')—Tj'
=2 '
= exp(—47) + T exp(—47) Z ( T')
— gl
j=2

= exp(—47) + Texp(—47)(exp(4r) — 1 — 47)

= 7 +exp(—47)(1 — 7 —471?), (3.2.3)

which, in the limit of large B with 7 = k/B fixed, is exactly equal to an
approximation to (|TrS%2)/(4B) obtained in [20] using a different approach
detailed below. Interestingly, the first four terms in the expansion of K%%9 in
powers of 7 agree with those of K computed in the last section. The rest do
not.

It is worth remarking that one can get exactly the same asymptotic formula

for K%9(7) using only assumption 1. Following [20], we obtain from (3.2.1)
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3.2. A summable approximation

(n = 2k)
. _ 4kB k
pPEPy P

where in the second line we have split K%%9(7) into K,(7) and “the rest”, as
before. The only difference between the second and the third line is in the
power of rp, i.e. in the third line we partly ignored the repetitions. We can
do that since the orbits without the repetitions are exponentially dominant (it
can be explicitly shown using M&bius inversion theorem). But to do it we first
have to separate a special class of orbits, the one restricted to one edge, out of
the sum.

Now we are going to evaluate “the rest” using a sum rule. We note that

> ﬁAIQ) = TrAF, where the B x B matrix A is given by

PEP2 Tp

9 2

Apypy = (E - 5b1,b2> ; (3.2.5)
where b; and by are nondirected bonds. To evaluate the trace of any power of
the matrix A we need to know its eigenvalues. First of all, 1 is an eigenvalue
which corresponds to the eigenvector consisting of all ones: the sum of elements
in any row of the matrix A is (2/B —1)* + 4(B — 1)/B% = 1. Let us now

consider the eigenvalue equation for B = 3

S N
S s—-A s | = E+x =3-x 0
4 R S4x 0 =3
RPN I
= (3/9+AN)°| 1 -1 0]=0, (3.2.6)
1 0 -1
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3.3. Numerical analysis of the series expansion

where the first line was subtracted from the rest and then the common factor
(3/9 + \)? was separated. From here it is obvious that 3/9 is an eigenvalue
with multiplicity 2. For general B the factor to separate would be of the form
2/B? — (2/B —1)” + X of the multiplicity B — 1. Thus the matrix A has the

eigenvalues {1, £z, ... =%} and, therefore,

TrA* =1+ (B —1) (%)k. (3.2.7)

Using this we write

K%9(r) ~ Ky(r) + lim 7 (1 +(B-1) (%) -7 <?>>

— 00

—Ky(r) + lim 7 (1 - (%)ZB{(%)’C ) <%>%})

=exp(—47) + 7 (1 — exp(—47) — 47 exp(—47)), (3.2.8)

where we have used the limit

, 1 1\ 1\"\  ee
imn((1+—+—) —(1+—) ) ="—. (3.2.9)
n—00 an  (an) an a

We note that Eq.(3.2.8) is exactly the same as Eq. (3.2.3). This means that the

orbits ignored in the second assumption above do not contribute to the diagonal
approximation in the limit B — oo. The fact that they do contribute to the

full expansion of K (7) shows the limitations of the diagonal approximation.

3.3 Numerical analysis of the series expansion

Before we actually proceed to analyse the power series (3.1.41)-(3.1.43) nu-
merically, we would like to prove that there is an interval on which the series

converge.

Proposition 4. The radius of convergence of the series (3.1.41)-(3.1.43) is

greater than zero.
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3.3. Numerical analysis of the series expansion

Proof. Let us first find an upper bound on the modulus of the coefficient C},
defined in Eq. (3.1.41). Starting off with Eq. (3.1.46) we write

(K 47— 1IN +j—1)

where we used the fact that (assuming, without loss of generality, that K > N)

(K+j—D(N+j -1 < (K+)H(N+5—2)!

SEAGHDIN+j =)< < (K+N+j-DIG -1 (33.2)
and thus
(K+j—-1D(N+j—-1)!
KN (M +j—1)! =@ -1 (3.3.3)

To find the maximum of the factor F;(K, N) we estimate

N) <> Fi(K,N), (3.3.4)

and apply the recursion relation (3.1.47) to obtain

Y F(EN) = Y Y N > Fi(k,n)F_ (K -k N —n) (3.3.5)
= Y F(kn)F(r,s) ZFl (k,n ZF, 1(k,m)

k,n,r,s
where
(k +n)!
F = F = . 3.
; L (k,n) = Zk'n,(kﬂ) i < (3.3.6)
Thus

|Car| < M2M (5 — 1)IF7, (3.3.7)

and substituting it into Eq. (3.1.42) we obtain

8
3

(3.3.8)

M=0 j=2

which implies that the radius of convergence is greater or equal to (4F)~t. [
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Figure 3.5: Determining the radius of convergence: (a, is plotted against
1/n. The radius of convergence is the lower limit of the plotted points as
1/n — 0. The line is to guide the eye only.

)71/n

Remark 3. The bound found above, (4F)~! = 0.061, is very far from being
exact, but the effort needed to derive a better one is, at the current stage,

exponentially greater than the importance of having an exact result.

The expressions for the coefficients of expansion of K(7), Egs. (3.1.46)-
(3.1.47), provide us with a clear numerical recipe for their computation and,
given enough computer resources, one can compute as many of the coefficients
as needed to get a fair idea of what the behaviour of the expansion is like. The
coefficients can be computed exactly, in the rational form.

Let us write

o0

K(7) = exp(—47) + Z a; 7. (3.3.9)

i=3
In our numerical study we computed coefficients up to agy. First of all we
can estimate the radius of convergence of the series by plotting the numbers
/@iy or the numbers (a,)~'/" as a function of n. In our case we have

oscillating coefficients with increasing amplitude of the oscillations thus the
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Figure 3.6: The result of Padé approximation of order M = N — 1 = 21
(thin line) and M = N = 23 (thick line) compared to the results of numerical
computation of K (7) [Kottos and Smilansky|. The approximation is good far
beyond the radius of convergence (= 0.64).

better quantity to look at is the second one. Looking at the plot, Fig. 3.5, and
estimating where the intersection with the y-axis would be, we can see that
the radius of convergence is approximately 0.64. Before we continue analysing
the coefficients of the series, let us try to approximate the form factor K (1)
by rational functions.

In other words, we are going to apply Padé approximation (see, for example,
[30]) to the partial series we have. The general idea behind Padé approximation
is the following. Let Sk (z) be the K-th partial sum of the power series for

some function S(x),

Sk =) aix’. (3.3.10)

We are trying to represent S(x) as a ratio of two polynomials Py(z) and

Qv (z), of order N and M correspondingly,

S(z) = SZ((?) + o(zM*N)

as x — 0. (3.3.11)

Y
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3.3. Numerical analysis of the series expansion

where by o (™) we understand the terms of order higher than M + N.
Rewriting Eq. (3.3.11) as

Py(z) = Qu(2)S(z) = o (zM*V) (3.3.12)

we obtain M + N + 1 linear equations — the first NV + M 4+ 1 coefficients of
the series on the left are equal to zero. There are M + N + 2 unknowns, the
coefficients of Py and @, but since we are looking at the ratio P/, we can
fix one of the coefficients, say put Q,,(0) = 1. In fact, to solve Eq. (3.3.12) we
do not need the whole of the series S(x), the partial sum Sy, y is enough.
As an example we consider the N = M = 1 approximation to our form

factor. It is convenient to take the factor 73 out:

K(r) = exp(—47) + * (8 -2y Py 0(72)> . (3.3.13)

Then the equation for the coefficients of () and P is taking the form

32 16
po+pim — (1+q7) (8 -5 + §T2> = o(7?), (3.3.14)
therefore
32 32 16

—-8=0 -8 — =0 —q —— =0 3.3.15
Do ) D1 q1 + 3 ) 3 a1 3 ) ( )

which leads to

20 1

P(r)=8-=1 Q) =1+57 (3.3.16)

Very often the approximation Py (x)/Qu (x) happens to be very good even
beyond the radius of convergence. To understand it heuristically, suppose S(x)
is an expansion of a function which has a pole at the distance R from the origin
somewhere in the complex plane, but not on the positive real line and we want
to plot S(z) for real x > 0. If lucky, the pole of S(z) will be represented by
a zero of the polynomial Q/(z) and then the divergence of the original series
will be absorbed into the rational function Py (z)/Qas(z) while the remaining

.Z‘M+N)

part o ( will be convergent and small. Then the approximating function
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Figure 3.7: Zeros of the polynomial @y (x) for N/M = 23/23 (circles) and
N/M = 24/23 (stars). Only the poles nearest to the origin are shown on the
plot. The conjectured positions of the singularities are marked by the crosses.

Py (z)/Qu(x) will follow S(x) closely even for the values of x greater than R.
However most often it is not possible to say whether Padé approximation is
going to work on a particular series before one actually tries it.

For our series the approximation happens to work best when M = N or
M = N — 1 with two examples plotted on Fig. 3.6. From comparison with the
numerical data it is clear that Padé approximation extends the convergence of
the series beyond the estimated radius of 0.64. The results for other choices of
M and N are not very different as long as |[M — N| is not too large.

As mentioned earlier, one of the properties of Padé method is that the
approximants P/(@ try to represent the singularities of the original series with
the poles, i.e. zeroes of the polynomial Q(z). Some of the zeroes will not
correspond to any properties of the approximated function, these “spurious”
zeroes usually disappear or change their position when we change the order NV
of the approximating polynomials P(x) and Q(z). Those zeroes which persist

when we change N are likely to correspond to the real singularities of S(z).
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Figure 3.8: The quantity (nan)fl/” is plotted against 1/n. Again, the radius

of convergence is given by the lower limit of the data as 1/n — 0. The line is
to guide the eye only.

If a singularity of S(x) is not a pole, it is often represented by a sequence
of poles of the approximant. Looking at the pattern of the zeroes of the
polynomial Q(z) in our case, Fig. 3.7 we can see that there are two sequences
converging approximately to z = 0.464 + 0.42: and z = 0.464 — 0.42:. This
sequence is persistent and contains more zeroes larger N we take. This is a
strong indication that z corresponds to an essential singularity of K(7), the
one which limits the convergence of the series, since |z| &~ 0.626.

Let us now go back to the coefficients of the expansion of K (7). It is not
unnatural to assume that the singularity at z is logarithmic. This would mean
that the coefficients are well approximated by the formula a, = R (2"/n). To
check it we plot the quantity (nan)_l/n against 1/n, see Fig. 3.8. Indeed, the
convergence now is much more “linear” than on Fig. 3.5. The estimated radius
of convergence is now 0.625.

The further support to the claim that a, = R (2"/n) will be presented in
Chapter 5.
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Chapter 4

Quantum return probability for

trees

In this chapter we discuss an analogue of the form-factor for infinite trees, the
quantum return probability. The work on trees was inspired by the paper by
Schanz and Smilansky [21] who performed the analysis in the case of infinite
chain (valency of every vertex is 2). We follow their work closely and derive the
recursion relation for the return probability for a general infinite regular tree.
Our main result is a general formula for the local contribution of a degeneracy
class. This made possible a numerical investigation, since the complexity of
the formulae do not encourage attempts to analyse the limiting behaviour of
the return probability analytically. We also show a way to obtain a power

series expansion of the return probability in the limit of large branching.

4.1 Definitions

We have defined tree is a connected graph without any cycles. We here consider
mainly a special type of trees, the infinite one-sided regular tree, although most
of the results can be easily extended to any trees.

An example of infinite one-sided regular tree is shown on Fig. 4.1. The

one-sided tree has an origin, the vertex O of valency 1. All other vertices have
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4.1. Definitions

Figure 4.1: The one-sided infinite tree with B = 3. The upper subtree is shown
with the thicker lines.
the same valency! B; B is equal to 3 for the graph on Fig. 4.1.

As described in Section 2.4, we associate a unitary matrix S® to each
vertex v of the infinite tree. To simplify matters we require that the matrices

have the form

T’U t’U t’U
te To ... Uy

s =" o, (4.1.1)
t’U t’U T’U

i.e. all diagonal elements are equal to r, while the non-diagonal elements
are equal to t,. Thus we have two types of “amplitudes”: the amplitude
r, associated to the reflection (going from a bond b to the bond b) and the
amplitude ¢, associated to the transmission. The matrix Sy corresponding to
the origin is 1 x 1 and we fix rop = 1.

The quantum return probability (also called the survival probability), which

gives the probability to find the quantum particle at time ¢ in its initial state

1Since the tree is infinite, the number of bonds is infinite thus we re-use B to denote the
branching of the tree. However its role is very similar to the role of B for the star graphs.

62



4.1. Definitions

1, taken from the corresponding Hilbert space, is given by

| (0| U*[¢ho) ’, (4.1.2)

where U is the time evolution operator. Its Cesaro average

T
7| ool a, (413)
is called the mean return probability over time T'. In our case (see Section 2.4)
the evolution is discrete and the evolution operator is the matrix DS, now of
infinite size; the state vector 1 is the ¢ vector of the amplitudes Az of the
wave travelling from vertex ¢ to vertex j. Thus the mean return probability in

our case is given by

N 2 0] )" 1) = 3 Pt (114

where by Pg(n) we denoted the quantum return probability (not mean).

We will take 1y to be the wave leaving the vertex O in the direction 11,
i.e. we take the component A ;) = 1 and A(; ;) = 0 for all other choices of

the vertices ¢ and j. Then one can expand
Pp(n) = |(vo] (D(k)S)" [vo)[*

= Z (D(k)s)il,i2 (D(k)s)iz,ig T (D(k)s)in,il

[11=(0,1) iz, yin]

= | > Ayt (4.1.5)

pEPA(0)

where the second sum is taken over all periodic sequences of bonds (see (2.1.5)
and subsequent explanations) which start from the vertex O. The factor A, is,
as usual, the product of the elements of the matrix S over the sequence p. We
remind that the sequences are not identified with respect to the shift, in the
sense that, for example, [1,2,3,1,4] and [1,4,1,2, 3] are different sequences,

unlike the situation we had with the orbits from P.
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4.1. Definitions

a
O

Sequence:
[a, b, c a]

[@, b, c,a

Figure 4.2: Step-by-step reconstruction of the sequence denoted by [a, b, ¢, a].
In the top left corner the subtree covered by the sequence is drawn (the bonds
are relabelled for convenience). The bonds which are missed in the shortened
notation are shown in dashed lines.

Due to the special structure of the tree all periodic sequences have even
period. If a sequence left a vertex v along the bond b = (v,v’), it will later
come back to v along the bond b = (v',v) and not along any other bond. This
fact is crucial to our derivation and is specific to the trees. It is easy to see
that when writing the code for a sequence on the tree, we can mention only
the traversal of a bond in the outward direction; basing on this information we
can always reconstruct the whole description of the orbit, see Fig. 4.2. Also,
when we write the vector s for a degeneracy class, the element s, (the staying
rate on the bond b) counts the number of traversals of the bond b in outward
direction only. The vectors s are now infinite dimensional but they have only
finite number of nonzero components since we demand |s| =), s, = M.

We now return to our definition of the quantum return probability. To the
operations performed in Eq. (4.1.2) we add an averaging, either over a range
of k or over individual lengths of the bonds of the tree GG. It is easy to see that
squaring the expression on the right-hand side of Eq. (4.1.5) and then applying

64



4.1. Definitions

the averaging will lead to the expression for the quantum return probability

after n steps,

Ps(n)= Y ApAgd, i, (4.1.6)
P,4€P,(0)
where ;. is, as before, equal to 1 if [, = Iq and is 0 otherwise. Since

all periodic sequences on a tree have even period, we put n = 2M. Rewriting
Eq. (4.1.6) in the terms of degeneracy classes we arrive to the expression which

we will use as the definition.

Definition 8. The quantum return probability after 2M steps is defined by

2

Ps(2M)= > | Y Ay, (4.1.7)

s: [s|=M |p: s(p)=s
where the sum is over all degeneracy classes of the sequences that start from

the vertex O.

Besides being an interesting quantity in its own right, the quantum return
probability is closely related to the existence of localised eigenstates of the
evolution operator DS. Such states correspond to the pure point spectrum of
DS. Since the underlying graph is no longer compact, the spectrum of DS can
now contain both pure point and continuous (including singular continuous)
parts. To see whether there is a pure point component we formally substitute

the spectral decomposition
DS — / )i (a|dE, (4.1.8)

into the definition of the mean return probability
N

i 2ol i

n=1

://leéoﬁzel”a [(w]a)|® [(]a")])? dEad Ey

= / ()| O, 1, dEQd By, (4.1.9)

2

[ el a.
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where we used the identity

N
lim ; e = 5. (4.1.10)

N—0

It is not hard to see that the last integral in Eq. (4.1.9) is equal to zero if
the measure dE, has only continuous part (for more rigorous statements and
results we refer to [36]). Thus a nonzero limit of the mean return probability
would signify the presence of the pure point spectrum, hence the localised
states.

This was exactly the situation revealed by Schanz and Smilansky in [21]
for the infinite chain graphs (an infinite chain is a tree with B = 2). It was
found that the quantum return probability saturates to a finite value while its
diagonal approximation decays diffusively. Thus the coherent (i.e. taking care
of the degeneracy classes) summation of the contributions of different orbits
really makes a difference. The aim of the following sections is to use the ideas
from the previous Chapter to treat the contributions of the degeneracy classes
in an exact way for B > 2.

But before doing so we give a brief summary of the related research. The
localised eigenstates of the discrete Hamiltonian on infinite trees (called Bethe
lattice in the literature) is a much studied topic, first introduced by Anderson
[37]. We refer to the paper by Klein[38] for a review of the results in this
area. Our model, however, is one step removed from the specification of the
Hamiltonian. Instead, we start with the time evolution operator. In this
respect our model is similar to the one considered by Chalker and Siak in [31],
although in the model of [31] there is no time-reversal symmetry. Among other
results, Chalker and Siak report the existence of normalizable localised states
for a certain range of the parameter of the model.

For our model we also find a strong numerical evidence that the quantum
return probability tends to a nonzero limit for certain values of the parameter.
This implies that the mean return probability also tends to the same limit

and, therefore, there are localised eigenstates. We also find that the transi-
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4.2. Recursion for the return probability

tion between delocalisation and localisation occurs approximately at the same

parameter value as in [31].

4.2 Recursion for the return probability

Consider the contribution Zp: s(p)=s Ap from one degeneracy class s. For a
given vertex v we define m;(v) to be the staying rate on the bond leading to v
from the direction of the origin. We also denote by ms(v) the staying rate on
the first bond leading out of v and so on up to mg(v), thus ms(v),... ,mg(v)
provide the local information about the bond staying rates around the vertex v.
It turns out that the contribution of the degeneracy class s can be decomposed

into a product,

Y a4, =[] (ml(v),mg(v), . ,mB(v)), (4.2.1)

where the factor U, (ml(v), ma(v), ... ,mB(v)> is the local contribution of the
degeneracy class s which depends only on the matrix S(*) and the local infor-
mation about the degeneracy class, the numbers mq(v), ... ;mpg(v). To explain
why this happens we consider an example.

In the top left corner of Fig. 4.3 the subtree covered by a degeneracy class
is shown. In the bottom left corner the corresponding elements of the vector s
are listed next to the bonds. To the right, all six different sequences belonging
to such degeneracy class are shown together with their codes in terms of the
bonds. We write the number of the bond in the code only when it is traversed
in the outward (up) direction. It is important to note that the sequences in
the same row have the same structure around the vertex 2 while the sequences
in the same column share the structure around the vertex 1. One can say that
a sequence is made out of building blocks, each representing the structure in
the vicinity of a vertex.

This idea is illustrated by Fig. 4.4. In the rounded boxes the possible

blocks, or realisations of the local structure of the degeneracy class, are listed.
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4.2. Recursion for the return probability

YYY

abbcde abcdeb acdebb
abbced abcedb acedbb

Figure 4.3: An example of degeneracy class. In the top left corner the subtree
covered by the degeneracy class is relabelled for convenience. In the bottom left
corner the nonzero elements of the vector s are written next to their bonds. To
illustrate the notation introduced in the text, the numbers m; for the vertex
1 are m;y = 1, me = 2 and m3 = 1. To the right, all sequences from the
degeneracy class are listed together with their symbolic codes.

To the right from the boxes their local contributions towards A, are added
up. It is not hard to see that if we multiply these sums together we obtain the

contribution of the whole degeneracy class, in this case
(2t3r1 + 1) X 75 X 263 X 1y X 15 = Arstiritirars + 2r5titarars (4.2.2)

The reason for this factorization is that the behaviour of the sequence on
the vertex 2, for example, and the behaviour of the sequence on the vertex 1
are completely independent. The only information that the vertex 1 has about
the vertex 2 is that the sequence leaves 1 in the direction of 2 and then comes
back. Similarly, all that 1 knows about 3 is the number of times the sequence

must leave 1 in the direction 3. This would not be the case if a sequence
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4.2. Recursion for the return probability

N '

Figure 4.4: Constructing the sequences which belong to the degeneracy class
of Fig. (4.3). We make up the sequences using various blocks corresponding to
the vertices of the subgraph. The blocks chosen at each vertex are independent:
we can use any of the 3 blocks at the vertex 1 together with any of the 2 blocks
at the vertex 2. Next to the boxes with the blocks their local contributions
are listed. The contribution of the degeneracy class is given by the product of
the local ones.

could leave the vertex 1 along the bond b and then come back along the bond
c. Fortunately there are no cycles on trees and therefore the factorisation of
Eq. (4.2.1) holds.

Now we define another quantity. We will denote

Up(m) = ) S A, (4.2.3)

s: m1(l)=m1 \s(p)=s

the return probability given that the sequence traverses the first bond m; times

(or conditional return probability). Obviously the full probability Pg(2M) is
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4.2. Recursion for the return probability

equal to the sum of Uy;(my) over my,

M

Pp(2M) = > Up(m). (4.2.4)

mi=1

It is possible to derive a recursion [21] for the conditional probability
Upr(my). We restrict ourselves to the case B = 3, the generalisation to B > 3
will be obvious. We define the upper subtree of the tree G, GG,, to be the tree
based on the vertices 1, 2, 4, 5, 8, 9, 10, 11 etc, see Fig. 4.1. The lower subtree
(5, contains, correspondingly, the vertices 1, 3, 6, 7 etc. The first bond, leading
from O to 1 does not belong to either of the subtrees. We are going to use the
fact that the subtrees are isomorphic to the original trees.

Given a degeneracy class vector s, we denote by s, (s;) the part of s which
corresponds to the bonds from the upper (correspondingly lower) subtree.
Then s can be expressed as the direct sum s = m; & s; ® s,, where m, is
the number of traversals of the first bond (the bond leading from O to 1). Let
us fix the parameters my (1) = my, ma(1) = mo, ma(1) = ma3, [sy| = My > msy
and |s;| = M;3 > mg such that m; + My + M3 = M. Then the contribution of

all degeneracy classes with these parameters fixed can be written as

> 1w = fhtnmema" (30 11 W) | X2 11 @

s veV(G) su veEV(Gy) si veV(Gr)

= ‘Lﬁ(ml,mg,mg)‘QUMZ(mg)UMs(mg), (425)

where with U2 we abbreviate the squared local contribution of the degeneracy

class at the vertex v, |U, (m1(v), ma(v), ms(v)) ‘2. Here we used the fact that

D s, HUeV(Gu)L{f is exactly the conditional return probability on the upper
subtree and, since it is isomorphic to the whole tree, their return probabili-
ties are equal. Now we can sum this contribution over all possible choices of

previously fixed parameters my, mg, My and Mj to obtain Uy, (m):

My M3

Un(mi) = ) oD | ma,ma, ms) U, (ma) Un, (ms)

Ms+Mz=M—m; ma=1m3z=1

(4.2.6)
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4.3. Local contribution of the degeneracy class

or, for general B,

UM(ml): Z Z Z ‘L{(ml,mg,...,mB)‘2HUMi(mZ~).

Mo+..+Mp=M—mj1 ma=1 mp=1
(4.2.7)
Here the summations over M; are starting from 0 and the summations for m;
are starting from 1 unless the corresponding M; is equal to 0. If for some ¢ we
have M; = 0, the summation over m; is dropped and the factor Uy, (m;) is

taken to be 1.

4.3 Local contribution of the degeneracy class

In the previous Section we have shown that to determine the return probability
we need to calculate the local contribution of degeneracy classes. The local
configuration of the tree is the B-star graph and the local information about
the degeneracy class is the number of traversals of the bonds of this star. It
is clear that calculating the local contribution should be similar to deriving
the contribution of the degeneracy classes for star graphs, the feat which was
accomplished in Section 3.1.4.

The local numbering of the bonds is arbitrary with the exception of the
first bond which points to the origin. We are given B numbers m; and the
question is to find all possible local sequences of bonds where ith bond occurs
m; times. Each sequence is given a weight which is determined according
to the usual rules: the weight of the sequence is the product of the weights
of the individual transitions with the reflection collecting the factor r and
transmission collecting the factor ¢; the transition between the last bond and
the first should also be taken into account. The local contribution is then the
sum of these weights over all possible sequences.

Each sequence is characterised by the number of groups of different sym-
bols. If we denote the number of groups of the bond with the local number ¢ by

gi then the weight of the sequence characterised by my, ... ,mp and gy, ... ,g5
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4.3. Local contribution of the degeneracy class

is given by tr™®)=G where we introduced the notation G = g1 + ...+ g, and
M(v) =my + ...+ mg. Thus the main question here is how many sequences
with the above characteristics are there. To count such sequences we try to

yees

relate the number of sequences to the number of sequences ngll ', derived
in Section 3.1.4.

First of all, while an orbit is a cycle, without a beginning or an end, the se-
quence is a linear object, with both a beginning and an end. We are interested
in all sequences which start with a 1, but we do not demand that it does not
end with a 1 (compare to condition (c), Section 3.1.4). Further, if a sequence
ends with a group of 1s, we count the last and the first group of 1 as one group.
Thus each orbit corresponds to m; sequences: we can cut an orbit before each
occurrence of 1, obtaining with each such cut a new sequence. For example,
the orbit (1, 1,2, 1, 3) corresponds to 3 sequences starting with a 1: [1,1,2,1, 3],
[1,2,1,3,1] and [1,3,1,1,2]. If, however, the orbit was a repetition of another

orbit, with the repetition number r,, we obtain each sequence r, times. But

,---,9]‘

then such an orbit was counted as 1/rp, in the total number of orbits N ey

thus multiplying by m; works with the repetitions too. Therefore the number

of all possible sequences characterised by my, ... ;mp and ¢y, ... ,gp is given
by mlNgl’m g;n]
. —1)K a gi—1
Ngl 9j — _1 G ( )
m Ly 1M ml( ) Z K kl) cee ’U H g’L - 1 kz - ]_ ’
k1,e.. ko =1
(4.3.1)

where K = ki1 +...+kpand G = g; + ...+ ¢gg.. Now if we sum the above

expression over all possible choices of g;, multiplying them by t&rM®=C the
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4.3. Local contribution of the degeneracy class

result is the local contribution of a degeneracy class,

U (ml,mg, Ce ,mB)
—1)K K B mi—1\ (g — 1
— —t G, M(v)-G ( i z
my Z( )T Z K kh___’kB | gl_l kl_]_
915---,9B k1i,...,kB i=1
_mlkz::l K kl;-..;kB Z:HI kl_]- g§4 r r gl_kl )

(4.3.2)

where the first sum is in fact a B-tuple sum over all k;. Here we have used the

Go)Go) =000 (43)

Now, performing the innermost summation

> () ) = G )
Z — ] = | — 1—--
T gi — k; r T

9i=ki

identity

we finally obtain

M(ml,mQ,... ,mB)

m;

=y (r— MO S % (kl, KkB> (r ! t>Kﬁ (’Z__ll) (4.3.5)

kiil =1

This expression together with the recursion (4.2.7) and Eq. (4.2.4) gives the
complete set of exact formulae to determine the return probability.
One can also derive an alternative expression for U (my, ms,... ,mg). To

do so, we represent the factorial (K — 1)! as an integral,

(K —-1)! = /OOO X exp(—2)dz (4.3.6)

and notice that the summations over different indices k; become uncoupled. It
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4.3. Local contribution of the degeneracy class

leads to the expression

U(ml,mg,... ,mB)

B m; ki
o <1 tz “fm; — 1\ dz
— _ #\M(v) _ I I _ ¢ -
m1(7“ t) /0 eXP( Z) el kz' (7,, _ t> (kz . 1) P

B
> d
=my(r — t)M® / exp(—z2) H L;ﬁ (—az) ?Z, (4.3.7)
0 i=1

where o = t/(r — t) and

_ i (_]j)k (7;:;) (4.3.8)

k=1

is the generalised Laguerre polynomial.

4.3.1 The case B =2

When B = 2 the tree is reduced to the line and we should recover the formulae

from [21]. To do so we use the combinatorial identity

Sl P)()-crn)

J

to simplify the summation

=y (_zl()K (kl, Kk3> ﬁl (i B 1) (4.3.10)

ki,....kp

in the second line of Eq. (4.3.2) in the case B = 2. For this summation,
denoted Ry, 4, (see Appendix A.3), one has

B ii )tk (ke + ko (g1 — 1Y (g2 — 1
B0 = ky + ko ko ki —1) \ky—1

ko=1ki=1
g2 ko+1 g1
—]_)2 gg—]_ _ k2+k1—1 gl—l
<>g; () e () (D)
g2 k
(_1)2<92_1>< ko )
=(—1)% , (4.3.11
( )kzzl ko ko —1 ky — g1 ( )
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4.4. Extending results to the complete tree

where we applied identity (4.3.9) with the parameters j = k; — 1, a = ko,
b=ky—1, m= g, — 1. Now using that

1 ks ) 1 <k2 — 1)
— = — 4.3.12
ko <k2 -0 g1 \g1 — 1 ( )

and applying identity (4.3.9) once again, now with the parameters j = k; — 1,
a=0,b=g, —1, m =gy, — 1, we obtain

(_1)92+1 S ka—1 (kz - 1) (92 - 1)
Rypgy = —— 3 (-1)"
91,92 gl 1( ) gl _ 1 k2 _ 1

ky=
1

0 1
= — (1) (-1 921< ) = —04,.0, (4.3.13
LN Ene T ) = e (4313)

Substituting this result back into the second line of Eq. (4.3.2) we obtain

—1 —1\1
Uu (mla m2) = m Z e Mw-e (ml > <m2 >_591,92

91,92 g L 92 . g
_ Zt2g1TM(v)—2gl <m1> <m2 - 1)) (4.3.14)
g1 g1 —1

g1

which is exactly the corresponding expression from [21].

4.4 Extending results to the complete tree

A natural question to ask is how one can extend the results obtained above
to the case of the complete tree, i.e. a tree where all vertices, including the
origin, are of valency B. The initial conditions are the same as before: a wave
leaving the origin in one chosen direction, see Fig. 4.5.

It turns out that the return probability of such wave packet on the complete
tree is related to the quantity we already described, the one-sided conditional
return probability Ups(m). Indeed, due to our initial condition, the first bond
(the bond (O, 11)) is traversed at least once. We denote the number of traver-
sals of this bond by m,. Now we can introduce an auxiliary vertex (3, of valency
2, in the middle of the first bond. We set the amplitudes t = 1 and r = 0 on

this vertex thus the trajectory will never be reflected at the vertex .

75



4.4. Extending results to the complete tree

Figure 4.5: Complete infinite tree with B = 3. The arrow from the origin
indicates the initial wave-packet. Inset: Introducing the auxiliary vertex [
which separates the tree into upper and lower parts.

Assume that the sum of all traversals of the bonds in the upper part of the
tree, as pictured on Fig. 4.5, is given by My, m; < M; < M. Then the total
number of traversals of the bonds in the lower part is M — M; + m,, where
we add m; because the first bond is now split into two. Using the argument
similar to the one used to prove Eq. (4.2.5) one can see that the contribution

of the sequences characterised by the numbers m; and M, is given by

Unm, (m1)UM7M1+m1 (ml)u(mla ml); (4-4-1)

where Uy, (my) is the one-sided conditional return probability to the vertex
[ from the upper part, Upr s, 4m, (m1) is return probability from the lower
part and U(my,my) is the local contribution at the vertex (. It is easy to
see that with our choice of the scattering matrix at 3, the local contribution
is U(my,m;) = 1. Performing the summation of Eq. (4.4.1) over all possible
choices of m; and M; we obtain the expression for the return probability for
the complete tree,

M

PE2M) = Y > Uny(m1)Uni sty 4, (m1). (4.4.2)

mi1=1 Mi=m
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It is interesting to note that the form of the expression is independent of the

parameter B.

4.5 Numerical evaluation

4.5.1 Parameters ¢t and r

Before we present the results of the numerical evaluation of Eqgs. (4.2.7) and
(4.3.5), we discuss the possible values of the amplitudes ¢ and r. These prob-
abilities are the elements of the matrix (4.1.1) which is required to be unitary.
Without loss of generality we can assume that r is real: otherwise we can
multiply the whole matrix by 7/|r|. If we write ¢ as t = —[t|e!?, the unitarity

condition implies

P+ (B-Dt} = 1, (4.5.1)

2rcos¢p — (B —2)Jt|] = 0, (4.5.2)

where ¢ € [0, /2] which leads to

4B -1 172 2
r=— (1 + ﬁ cos’ qﬁ) t= ;ioij exp(ig). (4.5.3)

Note that the reflection amplitude r varies from (B — 2)/B (for ¢ = 0) to 1
(¢ = 7/2) thus the range of possible values of r shrinks as B tends to infinity.

One can consider the matrix S® of a more general form, in fact any unitary
matrix would generate consistent dynamics on the tree and thus the diagonal
(off-diagonal) elements do not have to be equal. However, taking the elements
to be different significantly complicates the expression in Eq. (4.3.5) for B =
3 and makes the derivation of such an expression using the same methods
impossible for B > 3.

An alternative description of r and ¢ can be given in terms of ¢ = |t|/|r],

a parameter which has more physical meaning to it than the phase ¢. If we
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4.5. Numerical evaluation

assume that ¢ is real then

4q

t = AT (4.5.4)
~(B-2qt /(B-2PF 1
r 2+ 22(B—1) : (4.5.5)

where ¢ varies from 0 to 2/(B — 2) and the connection between ¢ and ¢ is

1 = 2cos(#)/(B - 2).

4.5.2 Computing U (mq,ma,... ,mp)

The aim of this Subsection is to simplify the computation of the local contri-
bution U (my, mg, ... ,mpg). As given by Eq. (4.3.5), it is a B-fold summation
which requires a lot of machine time to evaluate for large m;. Instead we are
going to derive a recursion relation satisfied by U.

First of all we notice that |r—t|?> = 1, which can be easily verified by adding
together Eqgs. (4.5.1) and (4.5.2). Therefore the factor (r — ¢)™ in front of the
expression for U (mq, ms, ... ,mp) can be dropped.

Next we introduce the quantity
Vinrmsomp = U (M1, ma, ... ,mp) /my (4.5.6)

which is symmetric with respect to its argument m;. We have

o0 dz
Vit = / exp(—2) L, (—2) Ly (—02) Ly (—a2) &, (4.5.7)
0

z

where we took B = 3 as this case will be of the most interest to us. We
also omit the superscript —1 over L. It is well-known [39] that the Laguerre
polynomials satisfy the recursion relation (the superscript —1 is omitted!)

2n —x n—1

Lin(@) = 227 Lal@) = 05

L1 (z), (4.5.8)

which can be easily proved using the techniques described in [40]. However, if
we put the recursion (4.5.8) straight into Eq. (4.5.7) it will do us no good be-

cause of the non-numerical factor = multiplying L,,(x). Instead we reformulate
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4.5. Numerical evaluation

the above recursion in the form
xLy(z) = —(n+ 1)Ly (x) + 2nL,(x) — (n — 1)Ly (2), (4.5.9)

and apply it twice to the product Ly, 11(x) Ly, (), first as (4.5.8) with n = m,
and then as (4.5.9) with n = my,

(m1 + 1) Lin, 11(2) Ly (%)
= 2m1Lm1 (x)Lmz (x) - ‘TLml (x)Lmz (33) - (ml - I)Lmlfl(‘r)Lmz (x)
= 2"nlel (x)Lmz (33) + (m2 + ]‘)Lml (‘T)Lm2+1(x) - 2m2Lm1 (‘T)Lmz (33)

+ (12 — 1) Lyny (2) Lyny -1 () — (1 — 1) Lyny—1 () Ly (). (4.5.10)

Substituting the above recursion in the integral definition of Vj,,, m,.m, we find

that it satisfies a similar relation,

(ml + l)Vm1+1,m27m3 = (m2 + l)vml,m2+1,m3 + 2(’/77,1 - m2)vm1,m2,m3

+ (m2 — 1)Vm1,m271,m3 — (m1 — 1)Vm171,m2,m3- (4511)

4.5.3 Results of the simulations

In our simulations we computed the conditional return probability Uy, (m)
for the branching number B = 3 and then performed the summation either
according to Eq. (4.2.4) to get the return probability Ps(2M), or according
to Eq. (4.4.2) to obtain the return probability for the complete tree, P§(2M).
We assumed the matrices S to be the same for all vertices v, apart form O,
which is clearly special. Thus the probabilities ¢ and r were taken to be the
same throughout the tree.

First of all we would like to compare the quantum return probability to
its classical analogue. We turn our tree into the probabilistic system with the
rules similar to the quantum ones. The state is specified by the bond and the
direction; the reflection (i.e. change of the direction) has probability |r|? and

the transmission to one of the 2 adjacent bonds happens with probability |¢]2.
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Figure 4.6: Linear-log plot of the quantum (diamonds) and classical (circles)
return probabilities for the complete trees with the branching B = 3. Here we
take the value of ¢ = 7/3 which corresponds to [¢t|*> = |r|> = 1/3. The line
fitted to the quantum return probability is given by exp{—1.36M/%37},

Since the classical return probability is not really crucial to our exposition, we
will only give an upper bound for it in the case when |r|*> = |t|> = 1/3 and the
tree is complete,

N\M oM —1 s\M 1
P,2M) < (= ~ 2 M — oco.  (4.5.12
3 )—<9> ( M ) <9> oMr o (45.12)

The corresponding quantum case is given by ¢ = 7/3 and the result of the com-
parison is presented on Fig. 4.6. As is clear from the plot, the quantum return
probability decays to zero but does it at a slower rate than the corresponding
classical quantity.

If we are to look for the localisation, however, the natural candidate would
be the region of ¢ close to /2. For ¢ = 7/2 the answer is trivial: the reflection
amplitude r is equal to one and ¢ = 0 so that the trajectory is confined to the
first bond and therefore Pg(2M) = 1 for any integer M. Thus we automatically
get localisation. The real question is whether we get the localisation for any

value of ¢ other than w/2. The return probability for several values of ¢ close

80



0.8— —

0.4 —

1 I 1 I 1 I 1
0 0.1 0.2 0.3 0.4

1/M
Figure 4.7: Plot of the quantum return probability P;(2M) for several values

of the parameter ¢, as indicated, versus the inverse number of steps 1/M.
In all cases the value of P3(2M) was computed up to Mp.x = 80 (except
¢ = 0.48m where My, = 140). The limiting value of P3(2M) corresponds to
the projected intersection with the y-axis. However the lower three curves are
not likely to have a nonzero limiting value as they bend down while approaching
the y-axis.

to /2 is plotted on Fig. 4.7. It can be seen from the plot that for bigger ¢
the return probability P;(2M) tends to a nonzero limit as 1/M — 0 but for
¢ < 0.457 the plots of P;(2M) bend down considerably.

An enlarged plot of P;(2M) for the larger values of ¢ is shown on Fig. 4.8.
It seems plausible that all three curves have a nonzero limit. On the contrary,
the plots for other 3 values of ¢ seem to decay as M“ which is illustrated by
the corresponding fit on Fig. 4.9.

We also tried to fit the curves for ¢ = 0.46m and ¢ = 0.477 to a function
of the form SM®. The resulting « is less than zero but it is inevitable for any
decreasing function. The exponents « for different values of ¢ are plotted on
Fig. 4.10. The drastic change of behaviour of o at ¢ = 0.467 is remarkable.

Basing on this plot we conjecture that the transition between localisation and
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Figure 4.8: Enlargement of the top three plots from Fig. 4.7.
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Figure 4.9: Enlargement of the bottom three plots from Fig. 4.7 together

with the fitted functions of the form SM®*. The corresponding values of the
exponent « are indicated on the plot.
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Figure 4.10: The exponent a obtained from by fitting SM® to the tail of
P3(2M) for various ¢.

delocalisation occurs around ¢ = 0.467.

Since our model and the model of [31] are not identical, one cannot draw
exact analogies between the two. But there is a rough correspondence between
¢ and the parameter 0 of [31], it is 2cos ¢ = |t|/|r| = 1/sinh @. The localisation
in [31] was predicted in the range 6 € [1.88,00) which corresponds to ¢ €

[0.457, 0.57], showing a good agreement between the two results.

4.6 Large B limit

In this section we show a way to get an expansion of the return probability in
the limit B — oo. The idea of the expansion is similar to what was done in

Chapter 3. First, we conjecture that the limit

P(r) = lim Pg(BT) (4.6.1)

B—o0

exists and is analytic in some neighbourhood of zero. This rescaled return

probability P(7) is the function we are going to expand.
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We set the parameters ¢ and r to be
t=2/B r=2/B—1. (4.6.2)

This selection simplifies Eq. (4.3.5) since r — ¢t = —1. Besides we do not loose
generality with such selection. Indeed, from Eq. (4.5.3) (or Eq. (4.5.4)) it
follows that any selection of |¢z| would go to zero at least as B~1. If it decreases
faster than B!, the expansion below would become trivial and therefore non-
interesting. Thus we should fix |tg| oc B~! which is adequately reflected in
Eq. (4.6.2).

This selection makes the sequences with the least number of transitions ¢
more significant in the limit B — oo. The largest contribution (as in Chap-
ter 3) comes from the sequence which is confined to the first bond®. The
sequence undergoes M = Bt rebounds and the corresponding A, is therefore
given by A, = (1 —2/B)”". Thus the contribution of the sequence to the

return probability is

Ki(7) = lim (1 —2/B)*" = exp(—4r). (4.6.3)

B—o0

The next most significant class of sequences consists of the sequences which
visit only two bonds because such sequence can have as few as 2 transitions .
Let us consider the contribution made by such sequences in detail.

The first bond in such sequences is fixed while there are B — 1 choices
for the second bond. We denote the number of traversals (in one chosen
direction) of the first bond by m; and number of traversals of the second bond
by my with the condition m; + my = B7. To calculate A, we notice that the
sequence picks up ms rebounds at the end of the second bond and picks up
the contribution U (my, my) at the vertex where first and second bonds meet.

Thus the contribution is

K(r) = lim (B~ 1) i U (Br —my,my) [F(1 = 2/B)*™.  (4.6.4)

2If we took |tg| to be decreasing faster than B!, i.e. if |[tg|B — 0 as B — oo, this
contribution would be equal to 1 while all other contributions would be 0
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4.6. Large B limit

Denoting my/B by ¢, expanding U? (BT — msy, my) according to Eq. (4.3.5),
taking the limit B — oo termwise and approximating the summation by an

integral we obtain

KQ(T)
Br—1 K 2 2m
_ (K-1)! (=2 my1\ (me — 1 2 2
= lim B L 1-=
B 2 ];; (ki — D)ks! \ B AN B
ma2= 1,R2

:/OT <(_2)k1+k2(T,;!ZLEZ;;Y;;(;I?1_)!1)!> exp(_dg)dg, (465

where m; = BT —my and K = ky + ky, and we have made the approximations

1 my — 1 gkt I (my (T —q)"
— —_— d D 4.6.
BF2—1 <k2 — ].) — (I{IQ — ].)' an Bk kl - kl' ( 0 6)

Next we expand the square and do the integration term by term using the rule

/OT ¢"(r — @) exp(—dg)dg = ) (_z—?)l /OT ¢“(r—q)’dg  (4.6.7)

=0
B i (—4)lr L gl(b + )]
 =(at+b+i+DE N

(4.6.8)

We arrive to
0 X X —r) KN (| + g ) (ko + ng 4+ 1 — 2)!
K o 2N+K+2l( ) (ky 1)-(K2 2
2(7) > 2.2 K+ N+ 1- DUl

1=0 k;i=1n;=1

(K — 1)(N = 1)! 1;[1 ChT _11)!(nj i (4.6.9)

where K = ki + ky and N = ny + ny. Since the minimum values for K and N

are 2, the expansion of K,(7) starts with 7.
The expression for Ky(7) is already very complicated, involving summa-
tions over five indices. To give a further example, the contribution from the

sequence sketched on the inset of Fig. 4.11 can be expressed in the form

2<B2_ 1) <B2_ 1) B! (4.6.10)

2 2
% / V (qla q2, Q3) V (q37 44, (I5) 74(q2+q4+q5)dq
q1+...+q5=T7

K33 (T) ~ lim

B—o0

B B+ ¢

/ V2(‘]17 g2, Q3)V2 (q37 4, q5)ef4(42+q4+q5)dq,
qi+..+gs=T

DN =
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4.6. Large B limit

N S N
%7 1
I I 2% 245
o\/o o\/ PN x2+5-1
7 o
T" 1 1
. O\/Z s
L R

Figure 4.11: The shapes of the periodic sequences whose contribution’s expan-
sion starts with the term of order 8 or lower. Thicker circle corresponds to the
origin. Inset: calculating the lowest power in the expansion for a sequence.
The lowest power is given by twice the number of vertices of valency 2 or
greater (shaded circles) plus number of all bonds minus 1.

where ¢; = m;/B,

Vi ae) = Jim [BUBG, Be, Bo)] (4.6.11)
3 ki—1
= (=2)* K q;"
- qlk kzk:>1 K ki, k2, ks H(ki—l)!
1,k2,k3> i

and the integral is taken over Zle q¢; = T, i.e. the integration is over four
variables ¢s, g3, q4, and g5, with ¢ = 7 — ¢o — q3 — q4 — ¢5. Although it is
possible to perform the integration to obtain an explicit expression for the
coefficients of the 7 expansion, the expression is incredibly bulky. It is clear,
though, that the expansion starts from the power 75.

Fig. 4.11 lists the shapes of periodic sequences whose contribution starts

from the term of order 8 or below.
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4.6. Large B limit

Proposition 5. For a general shape (subtree), the lowest power in the expan-
sion of the corresponding contribution to P(T) is given by twice the number of
the vertices in the subtree with valency greater than 1 plus the number of bonds

of the subtree minus one.

Indeed, each vertex of the valency greater than 1 will produce the factor
V2(gi, ... ,qj) whose expansion starts with the term of order ¢? (it corresponds
to taking the parameters k; = ... = k; = 0 in the sum of Eq. (4.6.11)). Then
the integration will add the power equal to the number of the bonds of the

subtree minus one — the number of free variables in the integration.
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Chapter 5

Integral Representation

In this Chapter we return to the star graphs. But now we will approach
the problem of deriving the statistics not through the trace formula and the
periodic orbits but by using the secular equation (2.2.12) directly. One can
evaluate the determinant and obtain a (transcendental) equation on k£ for any

given graph, but for star graphs it takes an especially simple form,

B
> tanLjk = 0. (5.0.1)
7j=1

Our aim is to derive an expression for the two point correlation function in
the limit B — oo and to compare it with the expansion of the form factor we
obtained in Chapter 3. The derivation is based on the method developed in
[32] for statistics of the Seba billiard [33, 34].

5.1 Statement of the problem

Here we consider an alternative approach to the question of calculating the
spectral statistics. Instead of averaging over a large spectral interval we apply
the averaging with respect to the lengths of the individual bonds. That is
we assume that the lengths L; are independent random variables distributed

uniformly on the interval [Ly, Ly + AL| and redefine the two-point correlation
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5.1. Statement of the problem

function as

Ro(z) = lim % (e (1 +5) >{L].} , (5.1.1)

k—o0

where d(x), as before, is the spectral density. The averaging is defined by

/Lo—I—AL /Lo-}-AL dLl dLB (5 . 2)
Jes) = L AL AL" o

We argue that definition (5.1.1) produces an equivalent result to the one con-
sidered in Section 2.6.2. Indeed, imaging applying the averaging to a term
of the form cos ((lq — lp)k + [q%~), see Eq. (2.6.21). We can write [, as
sipl1 + ... + sppLlp, where the vector s, is the vector of the bond stay-
ing rates of the orbit p. Similarly lq = s1 L1 + ...+ SpqLp and if for some j
the corresponding staying rates s;, and s; 4 are not equal then after averaging
with respect to L, the cosine term will acquire a factor of order 1/k. Thus
all contributions from the pairs of orbits of different length will disappear in
the limit £ — oo, recovering Eq. (2.6.22). Unfortunately it is hard to put this
argument into a more rigorous form.

In this section we make the following assumptions

e we are interested in the limits AL — 0 and B — oo.

e when the limits AL — 0 and k£ — oo are to be taken together we assume

that kAL — oo.

In what follows we will not concern ourselves with the periodic orbits. On the
contrary, we will derive a formula for Ry(x) from the “first principles”.

The general solution of Eq. (2.1.22) on a star graph can be written in
the form W, ;(x) = Ajcos(k(x + ¢;)), j = 1,...,B. Applying the current
conservation condition, (2.1.21), on the outer vertices (z = L;), we obtain
¢; = —L;. Condition (2.1.20) on the central vertex implies A, cos(L;k) =
const. Finally, applying condition (2.1.21) and dividing by Aj;cos(L;k) we

obtain

B
> tan Ljk = 0. (5.1.3)
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5.2. Average density

Thus k is an eigenlevel if and only if it is a zero of the function

B
= tan L;k. (5.1.4)
7=1
Now we remember that for any function F'(k) the density
= 6(k = kn), (5.1.5)
of the zeros {k,} of F' can be expressed as

d(k) = |F'(k)|5(F /|F’ ok (5.1.6)

where the integral is taken over the whole real line. In our case F(k) =

Zle tan L;k and thus
B
1 Ly ; .
SE ol D D SRS (5.1.7)
s=1 5

5.2 Average density

First of all we would like to calculate the average density d now defined as

d= lim <d(k)>{Lj} (5.2.1)

AL—0,k—o00

and compare it to the result we derived in Subsection 2.6.1. Applying the
averaging (5.1.2) to Eq. (5.1.7) we obtain

1 L0+AL R S B tankL; dL dL
<d(k)> - L dzZ/ / e L
{L;} Lo cos?kL, AL AL
B oo p /LO+ALiztankL dL B-1 /L0+AzeiztankL dL
= — z e - -
2 J_ o Lo AL Lo cos? kL AL
B [ -
= o . P H2)a(2) dz. (5.2.2)

Here the function g(z) is

Lo+AL iz tan kL dL L Lo+AL o0t kL
(2’) _/L & ~ 0 zztankLL dL, (5_2_3)

cos? kL AL~ ALk J,, © oL

0
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5.2. Average density

Figure 5.1: Illustration to the transition from Eq.(5.2.3) to Eq. (5.2.4): the
interval [Lg, Ly + AL| contains approximately kAL/7m periods of tan kL. The
incomplete bits of the period on the left and right give the O(1) contribution.

where we were able to approximate L by Ly because it is slowly varying,
comparing to tan kL, and ultimately we will take the limit AL — 0. Now,
since tan kL is a periodic function with the period of 7/k and the integration
is performed over the interval containing approximately ALk/m periods, see

Fig. 5.1, we can further approximate

Lo ALk [™CH . OtankL
g = — vranit ——  dL 4+ O(1 5.2.4
i) ALk( e s e ) CER
@ o0

&

e *da = 2Lo0(2),

T J-x

where O(1) is a quantity which is bounded as ALk — oo and a = tankL.
Similarly for the function f(z),

flz) = /LO+AL eiztande_L _ Lo /LO+AL eiztankLM
Lo AL ALk Ji, 1+ tan® kL

1 00 eiza L
%/ 1+aﬂaze”, (5.2.5)

Q
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5.3. T'wo-point correlation function

20

Re a

Figure 5.2: Closing the contour in the integral of Eq. (5.2.5) in the case z > 0.
Along the arc the integral is bounded by 1/R. The residue at the pole is equal
to me'?.

where the last integral was evaluated by closing the contour in either the upper
(z > 0, see Fig. 5.2) or lower (z < 0) half-plane.
Substituting the results into Eq. (5.2.2) we obtain for the average density

B o0 LoB
d = —2L0/ e~ BV () dz = 2=, (5.2.6)

2m o T

which coincides with the expression of Eq.(2.6.5).

5.3 Two-point correlation function

5.3.1 The recipe

To shorten the notation we introduce the function

Rk, k) = (d(k (k2)> (5.3.1)

L L elzJ 1(z1tank1Lj+z2 tanka L;) dz
- / cos? ki L, cos? koL, 472 ’
{L;}

0 ps=1

where z = (21, 22). Then the two-point correlation function is given by

1
Ro(z) = lim =R (k k+ 2) , (5.3.2)

k— o0 d2

where d is the mean density.
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5.3. T'wo-point correlation function

Applying the averaging, as was done in Eq. (5.2.2), to the integral in
Eq. (5.3.1) we reduce it to

> _ - dz
Ritk) = [ {By(a)f" (@) + (B = Bou(2)ia(a)f* *(2)} 15.(533)
where
L e (k1))
fz) = el tan(ia L4 tan(ka L) g (5.3.4)
AL/,
1 Lotal L2 i(z1 tan (k1 L)+z2 tan(ko L))
— - (21 tan(kKy z9 tan(kKa dL .3.
9(2) AL /Lo cos? kL cos? kQLe (5.3.5)
L[5 L i tanhan) o tan(ho)
— - (21 tan 1 z9 tan(ka L 3.
#1(2) AL J;, cos? lee d (53.6)
1 Lotal L i(z1 tan(k1 L)+z2 tan(ka2 L))
e — (21 tan(k1 zo tan(ko
bie) = A7 /L eI dL. (5.3.7)

5.3.2 The ingredients

Substituting ky = k, ko = k + mx/(BLy) for fixed x and taking the limits
k — oo, AL — 0 (while kAL — oo) we obtain for the first integral

f(z) _ ﬁ /L0+AL ei (zl tan(kL)+z2 tan (kL+ giﬁ )) dL

Lo
71'/2 . T
~ l / el(zl tan¢+22tan(¢+f))d¢, (538)
™ —7/2

where we put L/Ly ~ 1 because it is slowly varying and, as in transition from
Eq. (5.2.3) to Eq. (5.2.4), we approximated f by the integral over one period
length. We write

3, (5.3.9)

T\ tan¢+tan(%) - 1+ B2
tan<¢+§>_1—tan¢tan(“—g)_ﬁ—tanqb_
(

where 8 = (tan(rx/B))™" o« B/(nxz) (we are interested in B — oo limit).

Performing the change of variables o = tan ¢ — (3, we arrive to

e (5.3.10)

J(z,2) ~ . (a+p)2+1

etBlz1=2) /°° 6241 do

™

Note that f(z) is invariant under exchange 2, <> 2, and f — —/, which can

be verified by the change of variables o = (8% 4+ 1)/y in Eq. (5.3.10).
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5.3. T'wo-point correlation function

To evaluate the integral of Eq. (5.3.10) we differentiate it with respect to
z1 and 29 to get

of  of eflzr—z2) oo 2+ B2 +1 do
- - — - wZ10— lzg 2
dz1 0z _ /_006 fra+ o} (a+p)?+1

if(z1—22) [0 d ;
_ 267/ piria— 12y 8241 +1_a _ _ezﬂ(m—zz)q)(zsz), (5.3.11)
T . o

where we denoted
1 [ 8241 41 da
d = —— tza—iz — 5.3.12
) = = [ ¢ ‘ (6312

= 2sign(z)H(—2122)Jo (2 —(B? + 1)2122) ;

where Jy(x) is the Bessel function of the first kind and H(z) is the Heaviside
function (characteristic function of the half axis [0, 00)).
Now to find the function f(z) we need to solve the partial differential

equation

af af o if(z1—22)
Il e D (21, 29). (5.3.13)

We are going to use the method of characteristics, a general method of solving

first order PDEs of the form

of
82’1

of

P(z) >~ D

+Q(2)=L = R(2). (5.3.14)

The idea behind the method is to find the foliation of the plane into set of
curves z; = z1(t), zo = 25(t) such that the left hand side of the equation is
the differential of f with respect to t. It leads to a set of ordinary differential

equations, usually written as

dy  dx  df
Q) ~ P~ R@) (5:8.15)

Inour case P =1, Q = 1 and R = —¢’(*1=2)®(z) , and, applying the method,

we obtain the solution in the form

f(z) =C(z1 + 22) + /Zl R(y,z1+ 22 — y)dy, (5.3.16)
0
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5.3. T'wo-point correlation function

where the function C'( - ) is to be found from the boundary condition(s). Fixing

z1 = 0 we have

C(z) = f(0,2) = fss—p(22,0)

g a2 oo do
- - L e ——— ] 5.3.17
s /OO ¢ (a—p)2+1 c ( )

which fixes the function C(-). Thus from Egs. (5.3.11), (5.3.16) and (5.3.17),

21 .
f(z) = e lartal _ / eP2y—21-22) (y, 21 + 20 — y) dy. (5.3.18)
0

We treat the integral for g(z) (see Eq. (5.3.5)) in a fashion similar to the
one used to obtain Eq. (5.3.10). This leads us to

do (5.3.19)

L% w/2 ez’(zl tan(¢)+z2 tan(p+mz/B))
9(31; Zg) ~ _/

T J_z 2 cos?(p) cos?(¢ + ma/B)

iB(z1—22) oo L2 1 2 2
S 7 S / gimoin gt (1 + ( P +[3> ) da,
T o Q

where we made the change of variable a = tan ¢ —  and used the identity

1 B B 1+ 32 2
cos?(¢ +mafv) L tan(6 4 mafv) = (1 ! (tan¢ - B +ﬂ> ) '

(5.3.20)

Comparing the integral above to the definition of the function ®(z1, 25),

Eq. (5.3.12), we note that

1 2 2 2.1 24
1+< +F +ﬂ> _ <a+ﬂ+5+ +[3> (5.3.21)
« « «
and therefore represent ¢(z) as
g(z) = LQ(B2 +1) i _ i [eiﬁ(z1—z2)q)(zl 22)] (5.3.22)
0 821 822 ’ ’

which can be verified by simple differentiation.

One can derive a similar expression for the functions ¢,(z),

iBzi=z2) oo g , 0
b1(z) ~ Loei/ gima—in da:Lgelﬂ(zl’zz)a—é(zl,zg), (5.3.23)

™ 0o 21
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5.3. T'wo-point correlation function

and ¢,(z),

eiBlz1—22) oo g2 1+ BZ 2 do
L - 1Z2100—122 o 1 -
b2(2) L /_ooe " ( « +B> (a+B)2+1

eiﬂ(zlizz) /oo izm_izzﬁw

Q

= L @
o - ‘ a?
. 0
= —LoeP72) T (2, 2), (5.3.24)
822

which again can be easily verified by the differentiation of the expression for

O (2, 22), Eq. (5.3.12).

5.3.3 The result

Now we have all necessary ingredients for evaluating the integral in Eq. (5.3.3).
Substituting the expression for ¢(z), Eq. (5.3.22), into the first half of the

integral and integrating it by parts we obtain

4z g1, 2/£ B-1(42 O 0 s
[i5Brm e = BL [ S5 @0 (o - ) [0 )

0 0

d .
= —BL§/4—:2([32 +1)efe2)g <8—z1 - 8—,22> [f7(2)]

d A
= B(B—1)L(2)/4—7TZQ(62+l)fB_QeM(“‘”)(I)Q, (5.3.25)

and, gathering everything together,

B(B-1)L? [ dz 0P 9

_ BB = Uy [ 97 .2 2if(z1—2) 2 9 0@ 09
Ro(2) - / T [(5 + 1)@ - 2 azz]' (5.3.26)

Now we need to take the limit B — oo. To do so we write f#72(z) = ¢(F=2)In/
and rescale f(z)

u1

ei(nyul71142)\I;(y7 up + Uy — y)dy (5327)

_ lugtus| 1

fu/B)=¢ "7 “ 3,

Thus, to the leading order in 1/ = mx/B, we have

up
(B—=2)Inf(u) ~ —7mx <|u1 + us| + / el(Zy_ul_“)\If(y, Uy + ug — y)dy)
0

—mrQ (5.3.28)
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5.3. T'wo-point correlation function

where W is the rescaled function &,

U(u) = & (%) = 2sign(uy) H(—uyuz) Jo (2v/—t103) (5.3.2)

and we have taken the limit B — oo (8 — o0).
Renormalising the rest of the Eq. (5.3.26) and taking the limit B — oo we

obtain

1 ~ ov ov
R - —mxQ ,2i(u1 —u2) 2
2(2) 4 /due ¢ {\Ij Ouy 811,2] ' (5.3.30)

For the derivatives of the function W one has

g—i = 2 <J0(0)5(u1) +sign(u1)H(—ulu2)u2J%?)> (5.3.31)
g—i = 2 <—J0(0)5(U2) + sign(ul)H(—mm)ulJ%?)>(,5.3.32)

therefore, using Jy(0) = 1 and Ji(x) = —Jy(x),

oV OV

Ouy Ouy

—4 (6(u1)d(u2) + H(—wyuz)Jy (2v/—u1us)) . (5.3.33)
Thus

Ry(z) =1+ / e M 2lu ) T I8 (0 /—uqug) + J7(2/—uruz)] H(—uyus)du.
(5.3.34)

Now we perform the change of variables uy — —uy arriving to the integral

representation of the two-point correlation function,

Ry(z) =1+ / M2t tu) [ 729 furug) + JE(2¢/urus)] du,  (5.3.35)
D

where the domain of integration D includes first and third quarters of the R?

and M (u) is given by

M(u) = M(uy,us) = |ug — ug| +/ Bt () — uy — y)dy.
0

(5.3.36)
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5.3. T'wo-point correlation function

5.3.4 Properties of the function M (u)

In the subsequent material the function M (u) plays an important role. We
holds the key to both the asymptotic expansion of the two-point correlation
function and the study of the singularities of the form factor. We begin by
deriving the power series representation of M (u).

We only need to consider the function M (u) in the region ujus > 0. Let

us start with w,, us > 0. Then

M(u) = [u; — us]

ur
+2 / SR T (4 — iy + up)) Ty (2\/y(y —u + u2)) dy. (5.3.37)
0

Due to the presence of the Heaviside function H we need to consider two cases.

If ug > uy then y(y — uy + ug) > 0 for any y: 0 <y < uy and therefore

ur
M(u) = ug — uy + 2/ (i2y—uitue) j (2\/y(y —up + u2)> dy.  (5.3.38)
0

In the case u; > uy, however, the lower limit of the integration changes,

w1

M(u) = u; —uy + 2/ e!Cymute) gy (2\/y(y —uy + U2)) dy. (5.3.39)

ul—u2

To find an expression which is valid for both regions, we calculate the integral

/ ei(2y7u1+u2)J0 (2\/y(y —u; + u2)) dy (5340)
0

For simplicity we denote u; — us = b and write

¢iu-b) 1 (2 (Y — b)) = O(y,y —b), (5.3.41)
where
. S L RYLR R 'y s a"y"
0 = @) g2 /mg) = Y LY (V _1)m
(z,y)=e 0 (2y/7y) ijO (G +k)! j ;:%( ) nin!
00 min(r,s) . _9 00 00
- (_1)nlr+s n 'H_sxrys (T) (8)
NS> -
Ky — nInl(r —n)!(s — n)! Ky rls! = \n/\n
=3 e (r N 3) LY (5.3.42)
— r rls!
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5.3. T'wo-point correlation function

Here we used the identity

S(()-(7) 348

Now we substitute x = y — b and integrate the series, remembering that
b
/ (y —0)"y’dy = (—1)"
0

see also Eq. (4.6.7). We obtain

rls!

—__prrstt 5.3.44
(r+s-+1)! ’ ( )

o0 Z’r-l—sbr-i-s-i-l r+s
!
Ky (r+s+1)! r

b
/@(y,y—b)d@/ =
0

o0 Z‘r—l—sbr-i-s-i-l

- 50 =b. (5.3.45)
T;:O (r+s+1) "

Thus, adding and subtracting 2b from Eq. (5.3.39), we can show that (5.3.38)
is valid for both uy > u; and uy > us.

We remember that the function f(u) which gave rise to M (u) in our cal-
culation in the previous Section satisfied a linear partial differential equation

of the first order. Calculating partial derivatives of M (u),

oM “oo
oM “o
= o= 142 = - d
au2 + /0 aUQ@(yay uy —|—7J,2) Y
ul a
= 1- 2/ —O(y,y — uy + ug)dy, (5.3.47)
0 8U1
we see that M (u) also satisfies a PDE,
oM oM
— t+— =2 . 3.4
8u1 8u2 @(Ul, Ug) (5 3 8)

The initial condition can be easily supplied by substituting u; = 0:

Now we can find the series expansion of M (u) by solving Eq. (5.3.48) with the
initial condition (5.3.49). Writing

M(u) =Y Ajpuiuf, (5.3.50)

J,k=0
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5.3. T'wo-point correlation function

and denoting by Bj, the coefficients of the expansion of 20(uy, us), as given

by Eq. (5.3.42), we arrive to the recursion

1

j4+1 (Bjp = (k+1)Ajp11) Aok = o (5.3.51)

Ajire =

This recursion is satisfied by A; o = Ap; =1 and

otk G+ E=2)!
Aje = =20 e (5.3.52)

Indeed,

it = g (00 - (7))

—2i0tkt2 ik — 1
Sk = A1 (5.3
(G + 1)k! ( j ) rige (5:353)

Thus for uy, us > 0

(tup)" (iug)®(r + s — 2)!
rlsl(r — 1)I(s — 1)!

M(u )_u1+u2—2@z

T'Si

(5.3.54)

Comparing the expansions for the functions M (u) and ©(u) we notice that
they are quite similar. In fact,

0?M
8u1 8u2

(u) = 2i0(u). (5.3.55)

An analysis, similar to the one presented in the pages above, of the function

M (u) in the region uy, us < 0 yields the PDE

oM oM

8’(1,1 + 8’(/,2 @(Ul, Ug), (0, Ug) U9 (5 3 56)

Solving this PDE using the same methods we arrive to the general formula for

M (),

(iul)r(im)s(r + 5 — 2)

M(w) = ] + fual = 2isign(un) 37 =

r,s=

(5.3.57)

While we are at it, we might as well derive an expansion for the second

factor in the integrand of representation (5.3.35) of the two-point correlation
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5.4. Expansion for large x

function, the sum of the Bessel functions, JZ(2/—uyus) + J(2/—uius). To

derive it we use the standard formula (see, e.g. [41])

2yt - (—D*C(v + p+ 2k + 1) (2/2)%*
2 Fv+k+0)(p+k+ 1)+ p+k+ 1)k

(5.3.58)

Jo(2)Ju(2) = (

Applying this formula to our case, with v =y =0 and v = . = 1, we obtain

J3 (2v/—urug) + J7(2v/—uiuy)
 (CDFER)ufug o~ (=1 (2k)luful
REkE 2 KUk + 1)!(k — 1)!

k=0 k=1

L (—1)R2k) bk (1 1
+kz KR (k!k! - (k+1)!(k—1)!>

1

—_

- (SDR@R) g ug
= KRNk + 1) (5.3.59)

5.4 Expansion for large z

To derive an expansion of the two point correlation function Ry (z) for large x
we notice that since M (—u) = M(u), the integral over the third quarter-plane
in Eq. (5.3.35) is equal to the complex conjugate of the integral over second

quarter-plane, i.e.

Ry(x) =1+ 2R //00 e M H2iluntuz) 7 (y)du, (5.4.1)
where
_ 72 2 _ . (=1)"ujuz (2n)!
J(u) = J§ (2y/uruz) + J7 (2y/urtz) = ) CESVTIE (5.4.2)

Now we can use the expansion of M (u), Eq. (5.3.57), to expand Ra(z) in the
powers of 1/x. We substitute u; = v;/(z7) and obtain

: //OO dpdype |1 4 200 T2 7 )
x?w? | Jo xm

(57172 + 297 + 295 — 57173 — 598 + 29173) ( 1 >]
- 2.2 R
Tem T

- 1+2§R[ L, 1 } (5.4.3)

x2n? 3w xipt
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5.4. Expansion for large x

To compare it to the expansion of the form factor K(7) we remember that the
expansion of Ry(x) in powers of 1/x and the expansion of K (7) in powers of
7 are connected through the Fourier transform: if K(7) = 14 > .~ ai7" for
7> 0 and K(—7) = K(7) then

Ry(z) —1 = 4(x) +2Rlim (K (7) — 1)e~2r@=iarg,

e—0 0

— : >~ k —i2mw(x—i€e)T
§(x) +2%£%;ak/0 e dr

> —i kt1 akk'
= 6(z) +2R) (%> T (5.4.4)
k=1

Applying this rule to
2 8 3 4
K(r)=1—47 487" — 37 +O(77), (5.4.5)

we see that the first few coefficients of the both expansions agree.! In fact, it is

possible to prove a much more general result, due to Bogomolny (also reported

in [42])

Theorem 2. Asymptotic expansion (5.4.1) of the two-point correlation func-

tion and expansion (3.1.42) for the form factor agree under Fourier transform,

/ / e mEM(W2ilutu2) 7 (y)dy = / (K(7") — 1) e 2" gy (5.4.6)
0 0

Proof. When taking the Fourier transform in Eq. (5.4.6), we give z a small
imaginary part and then take limit as done in Eq.(5.4.4). This establishes the

correspondence between the terms in the asymptotic expansion of

Ry(x) :// e~ M2l ) 7 () dy (5.4.7)
0

and the terms of the small 7 expansion of K (7). This correspondence is

1 k-1

Qrin)t (k=1

(5.4.8)

1§(x) is not present in the expansion Eq. (5.4.3), since the large  expansion “does not
know” about the localised delta function.
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5.4. Expansion for large x

Our plan is to modify the integrand in the definition of ﬁ;(az), getting rid
of the factor e?("1+%2) J(u), expand the integral in the inverse powers of 2 and
apply the correspondence rule (5.4.8) recovering expansion (3.1.42).

First of all, let us derive a series expansion for

O1(u) = ~2iy/uruzJy (2y/uruz) €2, (5.4.9)

One way to do it is to relate ©; (u) to the function O(u) = e(“12) J (2, /u1us),

expansion for which we know, see Eq. (5.3.42). We have

a - (T
o O, iy) = i(a + )0, py) — 2/ wPayy (2pu/Ty) € we+y)

00 00
= xa—ul(w, 1y) + ya—m(/w, ny), (5.4.10)

where 00 /0u; denotes the derivative of © with respect to ith argument. Hence

we have for ©4(u)

O1(u) = Z<u18iu1@( )+u28iug@( )) (u1 + u2)O(u). (5.4.11)

Substituting the series expansion of the function ©(u) into the above equation

we obtain for the coefficient of the uju$ term of the function ©(u),

s (FES)rs) ks (T+3_ 1!
! rlslrls! ' m ' (ri(s —1)!)?
_green__(rHs—1)! (5.4.12)

rlsl(r — 1)I(s — 1)
for r,s > 0. Now we notice that the general terms of the expansions of the
functions M (u) and ©(u) are very similar, the only difference being the factor
—(r +s — 1) in the expansion of O;(u). One of the ways to relate M(u) to
©1(u) is to write

('%(xM (O; 0;2)) o, (?%) (5.4.13)

This is the first of the identities we will need. The second one is a modification

of Eq. (5.3.48),
<a%1 + a%) (oM (% %)) =20 (% %) . (5.4.14)
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5.4. Expansion for large x

Applying the first of the above identities we calculate

82 —mr:M(a—l 2)_ —mxM 2 a ? 82
T %) ~em (w2 (L))~ (ai)

oo 2mi
o mM <_47r2%¢]12@2¢ 3 (QJOe o + iJie? Vojas(ag + ag))> ,
(5.4.15)
where ¢ = i(a; + az)/x and the argument (ay/x,ay/x) of the functions M,

Jo, and J; is omitted.

Similarly using identity (5.4.14), we derive

0 9 ’ —Wa:M(a—l ﬁ) —mxM 202 0 9
(@‘F@)e =€ (W@—W(TM—FT.Q)@)

ori
= eiWIM <47r2J362¢ — ik (2J06¢061062 + iJle(b\/OélOég(Oll + O!g)))

10T

(5.4.16)
Noticing the similarities of Eqgs. (5.4.15) and (5.4.16) we subtract the first from

the second, with the appropriate factors, to obtain

1 |1/8 o\ 1 | (e
R J— N + - — _ e ™ ( zx )
472 | 22 \ Doy Oay o oy 02

1
== [Jo+ J7] e, (5.4.17)

where, as before, ¢ = i(a; + a2)/x and the argument (ay/x, as/x) is omitted
after M, Jy and J;. The right hand side of Eq. (5.4.17) is exactly the integrand

of Eq. (5.4.1) if we perform the change of variables u; = «;/z and therefore,

// dordovs 0 0 R —ce
472 Oda;  Oas o 02

(5.4.18)

The first summand in the integral can be evaluated as follows,

o0 2
// dOé12dOé22< 0 + 0 ) oM (5L,52)

0 4y 8051 (0%}

dOéldOég 0 Ry
2 @ T
( 7r// 472x? <8a1+82> ¢
— (- / doz g, mar)> / A1 g e (5.4.19)
0 2ma? a=0 [ 22 ax=0 J = AT
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5.4. Expansion for large x

Since

[@ (ﬂ, %) e—mM(%,%)] T o _giefrg ez (5.4.20)

T a1 =0

we obtain for the contribution of the first summand

00 2
. )
0 e 8&1 8a2
— > &emz/x—ﬂaz + * dOé1 eia1/a:—7ra1
o 2ma? 0 2ma?

12
C 2maim—i/x’

(5.4.21)

Now we can expand the answer in the inverse powers of x and apply the

correspondence rule, Eq. (5.4.4). We obtain

11 < /g \
mx_ﬁ—z<a>

k=0
- ( 2)k+2 - 27— il —27

_Z(me 4 22 o =2(e —1). (5.4.22)
k=0 k=0

Now we need to expand the second part of the integrand of Eq. (5.4.18),

o0

2 2 Y r+1(, s+1
a_efﬂ'mM(O%,%) — a_efw(aﬁ»ag) exp (27_” Z (7/0[1) (ZCYQ) (T + 8) )

artstirlsl(r 4+ 1)!(s 4+ 1)!

r,5=0

_ e—w(a1+a2)3_22 [i (2mi)? (f: (i) (i)t (r + 5)! )J] (5.4.23)

arrstielsl(r + 1)1(s 4+ 1)! J

r,s=0

Following notation (3.1.44) we expand the power j,

o (i0n) M (i) T (r + 5)! : [ = (o) () ! i
(Z artstiplsl(r + 1)1(s 4+ 1)! ) - <Z e Fi(r, 8))

r,6=0 r,s=0
2. (ia)* i)
- Z L RSt F;(R,S), (5.4.24)
R,5=0

where, as in Chapter 3,

Fj(R,S) = Z Z H rils;! rlrl . SZ)S + 1) (5.4.25)

r1+..4ri=R s1+...+s;=5 i=1
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5.5. Singularities of the form factor

i.e. Fj(R,S) is the jth convolution of the infinite matrix Fi (R, S) with itself.
Continuing Eq. (5.4.23) we obtain

82 ML 22 (27Ti)j
= mmaM(—,—2) . —7w(a1taz)
8x26 ( ) =¢ Z 4!
j=1
io: (R4S + 7 — D)!(icy) B (i )51
(R+ S+ j+ 1) gh+s5ti+2

Fi(R,S). (5.4.26)

R,5=0
Finally we integrate against daydas/(4m%aian) to arrive at

) //°° S ———
0 47r2a1a2 ox?

o0

——Z (2mi)? Z (R+S+j+DI(R+j—DIS+j—1)!

Ayt (R4 S+ j — D)I(—im) RS2 g RES+j+2 Fj(R,S)
_Z(—Q)j o0 (R+S+j+ )!(R+j_1)!(5+]’_1)!F.(R 5
LTa A (RS 4 - D (im0

Fy(R, S)

T(R+S+j—1)

(A7) = (—2n)ES(R+ - DS+ —1)!
(R+S+j-1)

o S 1)

Fi(R,S). (5.4.27)

This is exactly the same as the j sum in Eq. (3.1.42) with the exception of the

extra j = 1 term in the summation above. For j = 1 we have

= (=27)RFSRIS! - (—27)B+5+2
47? Z Fi(R,S)= >
o (R+9)! R,SZO(R+1)!(S+1)!

o0 —27) R+1 o0 (_27.)5+1 B o
(z% R+1)! )(SZ% (S+1)!)_(1_e )

=1-2* +e ", (5.4.28)

which together with the terms 1 and 2(e~2" — 1) gives the correct contribution

e 47, ]

5.5 Singularities of the form factor

It turns out that one can obtain some information about the singularities of

K(7) by studying integral representation (5.4.1). We are going to apply the
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5.5. Singularities of the form factor

Fourier transform to the integral in Eq. (5.4.1) to recover the expansion of the
form factor. There is, however, a subtle problem associated with this. The
form factor is by definition an even function defined on the real line. What
we want to get from transforming Eq. (5.4.1) is an analytic function which
coincides with the form factor for real 7 > 0.

As we saw above,

R, x) = // e meM(WH2i(ute) 7y dy = / (K(r') — 1)6’2””'d7’,
0 0
(5.5.1)

2mixT

Integrating (5.5.1) against e on the real line (and thus effectively inverting

the Fourier transform) we obtain

/ Ry(z)e ™ dz = K (1) — 1, 7> 0. (5.5.2)
The left hand side can be viewed as the analytic continuation of the form factor
restricted to 7 > 0 into the complex plane. Now we use ﬁ;(—x) = ﬁ;(aj) to

write

/ eZWixTE(x)dx :/ <€2ﬂix7?z;(x) _|_€—27rixTR\;(x)) dx
— 0

The only factor in the integral for Ry(z) which depends on z is e ™M™ and
/00 eZﬂia:Tefﬂa:M(u)daj — 1 , (553)
0 w(M(u) — 2ir)

thus we have for the form factor

2i(u1+u2) 672i(u1+’u2)
=1+ - // + == J(u)du. (5.5.4)
— 2t M(u) + 2ir

The representation (5.5.4) presents us with a way to find the singularities

of the form factor K (7). They are given by the condition 7 = M (uy)/(2¢) and
T = M (uy)/(2i), where the point uy is such that

oM oM
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5.5. Singularities of the form factor

The derivative with respect to us is

U1 - -
o 1-— 2/ [el(y“)Jl (2\/52) Vy/z — i€’V gy (2/y2) | dy,  (5.5.6)
2 0

where z = y — u; + us and we assumed that w; > us > 0. It is obvious
from the expansion (5.3.57), however, that the function M (u) is continuously
differentiable if ujuy > 0 and that the expression (5.5.6) is valid for all u; > 0
and uy > 0. The expression in Eq. (5.5.6) is not easy to analyse and to simplify

it we reduce our search to the values uy = uy,

oM

a—(ug =u)=1- 2/ e J, (2y)dy + 22’/ e Jy (2y)dy
U9 0 0

Integrating the second integral by parts,

ur 2iyJ 2 u1 ) ur
/ e Jo(2y)dy = 670,(1/) +—,/ e J, (2y)dy, (5.5.7)
0 21 0 2t J,
we obtain, after simplification,
oM :
a—uz(UQ = Ul) == €2m1 J0(2U,1) (558)
Since g—fg(ug = wu) = g—fg(ug = uy), the zeros of the derivatives of M (u)

on the line uy = wu; are given by the zeros of the Bessel function Jy. The
nearest zero is at us &~ 1.202. Then one of the poles of K(7) is given by
T, = M(1.202,1.202)/(2i) = 0.462 — 0.420¢ which is in a very good agreement
with the results of the numerical analysis. Although the numerical analysis is
in favour of the claim that 7, is the singularity nearest to the origin, we can

prove it only partly.

Proposition 6. Among the singularities arising from the values us = uq, the

singularity at 7, = M (1.202,1.202)/(27) is the nearest to the origin.

Proof. To show that the statement is true we need to prove that the function

| M (u,u)| is growing with u. Indeed, on the line u; = uy the functionM is

M(u,u) = /0 " e go () dy = 2620 (Jo(2u) — iy (20)) . (5.5.9)
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Figure 5.3: The coefficients of the power series expansion of K (7) normalised
by p" (crosses) are compared to the prediction of Eq. (5.5.15). The fit gets
better as n increases.

Then |M(z/2,2/2)| = z* (JE(x) + JZ(z)) and its derivative is (see [41])

M (/2,2
=2z (J§ () + JP(z)) + 2*( = 2Jo(x) Ji(z) + 2J1(z) (Jo(z) — Ji(x)/z))
=2xJ3(z) >0 (5.5.10)

O

Further, one can approximate the behaviour of K (7) near the singularities.

Denoting a stationary point of M(u) by us; = (us, us), we expand
10°M 10°M
M(u) ~ M(us) + ia—u%(us)(ul — U2)2 + 58—1@
0*M
é’Ulé}UQ
= M(uy) + s (w1 — us)? + (u2 — uy)?), (5.5.11)

(u,) (ug — US)2

+ () (ur — ug)(ug — us)

where, as we saw in Eq. (5.3.55), 222 (u,) = €% Jy(2u,)/(2i) and is equal

ou10us2

to zero since g—i\/{ is equal to zero at us. For the singularity associated with the
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5.6. Small = limit of Ry(x)

first Bessel zero, a; = .385 — .349:. Then the form factor

~ ra, o (u1 —ug)? + (ug — ug)? + (M(uy) — 2i7) /s o

(5.5.12)

where the complex conjugate (c.c.) was taken pretending that 7 is real. The
main contribution to the integral comes from around the point u,. The
integral near a singularity can be approximated by the value of the factor

J(u)et?initu2) / (1) at the singularity multiplied by

d 27 d d2
//%:// i :7r/ L = rho,  (55.13)
oUi +us+o o Jor?+o 0o +o

where the absence of the upper limit indicates that the integral is taken in the

vicinity of the lower limit. Thus we conclude that the leading order approx-

imation of the form factor in the vicinity of the singularities (i.e. where o,

which corresponds to M (u,) — 2iT or M (u,) + 2i7, is small) is given by

2T — 24T
K(1) x =C'ln <1 — M(us)> —Cln (1 + M(us)> ; (5.5.14)

where C' = J(u,)e*™ /a,. Expanding the contribution of Eq. (5.5.14) into the

series around 7 = 0 we get

e'n &

K(7) x 2R (C;ﬁ‘#ﬂ”) = 2A cos(¢n + 1/))%7”, (5.5.15)
where A = [J(u,)e*™s /ay,| =~ 0.519, ¢ = arg (J(u,)e*™ /a,) =~ —0.737, p =
|2i/M (uy)| =~ 1.602 and ¢ = arg (2i/M(u,)) ~ 0.737. By Darboux Principle,
the coefficients of expansion (5.5.15) should comprise the leading contribution
to the exact coefficients given by Egs. (3.1.42)-(3.1.43). To compare them
we plot the exact coefficients na,/p" against the approximated coefficients

2A cos(¢n + 1b). The result is shown on Fig. 5.3.

5.6 Small z limit of Ry(z)

To derive an expression for Ry(x) which is convenient in the limit of small x

we return to Eq. (5.3.30). There we want to reexpress the term in the square
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5.6. Small = limit of Ry(x)

brackets in such a way that it is possible to do the integration by parts.
First of all, we notice that the properties of the Bessel functions imply that

the function W(u) satisfies

0?v
= U(u). 5.6.1
a0, u) (u) ( )
Then, looking at the identities
o . N | ov
T (eFlmmu)\p2) e —un) 2 y 9o 2i(ur—u2) gy 7 5.6.2
aUI (@ ) e + Ze aula ( )
D sites s . (it DU
v i(u1—u2)\y = _9 i(uy “2)\112 2 2i(uy u2)\11— 5.6.3
au2 (e ) e + Ze au27 ( )
and
0? 9
z(ul—uz)\lﬂ
OulﬁuQ (6 )

- ov ov ov oV 0>
= =) (42 4 4i T _— — 44T 2 20—
¢ ( e 8u2 ! 8'&1 + 8u1 8'&2 8u18u2

. ov ov ov ov
— 2i(u1—u2) 6\112 4 —— — 440 2 5.6.4
¢ ( T 8’(/,2 ‘ 8'&1 + 8'&1 8'&2 ’ ( )

we notice that

o2 o 9 .
- _ Z(ul—’LLQ)\IIQ
|:28U18U2 e (8'&1 8u2 >:| (6 )

Substituting it into Eq. (5.3.30) and integrating by parts we obtain

1 0? %) 0 :
- __ -rxQ | ___ < N 2i(u1—u2) s 2
Ry(x) 1 /due [2811,1811,2 +1 <8u1 61@)] (e U (ug, us))

_ d_u 2i(ur—u2)\y2 | 5 0 . 0 . 82 -z Q
_/ 4 ¢ \II ! aul 811,2 2811,1811,2 (e ) (566)

Now, using the identities (compare to Egs.(5.3.48) and (5.3.55))

0Q _ 9Q _ iu-uyy 920

8'&1 8'&2 ’ 28“181//2

= —iei(ul_w)\lf, (567)
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5.7. Comparing star graphs and Seba billiards

we write

0 0 0?
. o o —mzQ
|:Z <8u1 8U2> 28U18U2:| (e )

e (i (02 0Q)  mr Q_ (ma) 9 0Q
—° e 8u1 8u2 2 8u18u2 2 8u1 8u2

; 2
= ™0 <—3mxei(“1“2)\lf L () a_cga_cg) . (56.8)

2 2 8u1 8u2

Thus we finally obtain

d . 20 0 |
Ry(z) = — / gue*”%%(“ﬁm)\p? {#ﬂa—ia—i + 3i7rx\Ifel(”1“2)] . (5.6.9)

From Eq. (5.6.9) one can see that the two-point correlation function Ry(z) is
linear in x for small  and the corresponding numerical factor was computed

in [32],
3i7r/e3i(“1“2)\1’3du = 3i7r/ sign (u)e® 72 I8 (2y/—uruy) du
D

00 0
= 3i7r/ / e3i(“1_“2)J3 (2\/—u1u2) duyduy + c.c.
0 —00
s

= —T‘/g, (5.6.10)

producing

Rg(l‘) =

”T‘/gx +0(z?). (5.6.11)

5.7 Comparing star graphs and Seba billiards

The original Seba billiard, which is a rectangular billiard quantized and per-
turbed by a delta function, see Fig. 5.4, was introduced in [33] as an example
of a system whose classical counterpart is integrable (the delta function affects
only measure zero set of the orbits) but which nonetheless exhibits features of
quantum chaos. This construction was later generalized to quantized versions
of any integrable system [34] which retained the aforementioned properties.

We will refer to any system in this class as a “Seba billiard”.
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5.7. Comparing star graphs and Seba billiards

(@) (b)

Figure 5.4: A star graph with v edges (a) and a Seba billiard (b): different
systems with the same statistics.

The energy levels of a Seba billiard can be found by solving an explicit
equation which depends on the levels of the original unperturbed system and
on the boundary conditions imposed at the singularity. This equation takes
the general form £(z) = 0, where £(2) is a meromorphic function; for example,
for one particular choice of boundary condition [33, 34]

€)=Y (Enl_ — - E%Ei 1) , (5.7.1)

n

where {E;} are the eigenlevels of the unperturbed system. Using this explicit
expression and assuming that {E;} are given by a Poisson process, one can
derive the associated functions such as the joint distribution of the levels of
the Seba billiard, asymptotics of the level spacing distribution [34] and the
two-point spectral correlation function [32]. The results show the presence of
the spectral correlations but are substantially different from RMT results.
The derivation presented above in the Sections 5.2, 5.3 and 5.6 is the re-
sult of the application of the methods developed in [32] to calculating Ry(x)
for the star graphs. Although concerning statistics of zeroes of two different
functions, (5.1.3) and (5.7.1), both derivation follow the same route and, most

importantly, produce exactly the same result.
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Chapter 5. Integral Representation

The heuristic reasons for this somewhat surprising result are the follow-
ing. First, the dynamics in both systems is centered around the single point
scatterer. In the star graphs it is the central vertex and in the Seba billiards
it is the delta function. Furthermore, in between scatterings the dynamics is
integrable in both cases.

The second reason is given by an application of the Mittag-Leffler theorem

to the meromorphic function tan z:

. 1 1
t = — . 5.7.2
ans Z <n7r+7r/2—z mr—|—7r/2> ( )

n—=-—oo

Thus we can rewrite Eq. (5.1.3) in the form similar to (5.7.1) and since the
poles of the function in Eq. (5.1.3) in the limit B — oo have properties similar
to the ones of a Poisson sequence, it is less surprising that the two point
correlation functions are the same.

Finally, we remark that the results of this Chapter demonstrate that, at
least in the special case considered here, graphs are able to reproduce fea-
tures of other, experimentally realizable, quantum systems, and also that they
provide further confirmation that spectral statistics can be computed exactly

using the trace formula as we have done in Chapter 3.
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Appendix A

Combinatorial results

A.1 General properties of degeneracy classes

Theorem 3 (The number of the degeneracy classes). Let G be a graph
with V' vertices and B (non-directed) bonds. Denote by D(m) the number of
the degeneracy classes of the period m. Then D(2n)+D(2n+1) is a polynomial

i n of order B — 1 with the leading term
gmvir M (A1)
(B-1)!
Proof. First we recall that the degeneracy classes can be labelled by the vectors
s € NI (c.f. Eq. (2.1.15) and Def. 6). However not all such vectors correspond

to degeneracy classes. There are two restrictions. First, the “Euler condition”,

is
Z 5(i,j) is even for any i € V, (A.2)

where s(; ;) is the component of the vector s corresponding to the non-directed
bond (i, 7). The above condition arises from the fact that passing through the
vertex ¢ adds 2 to the sum in Eq. (A.2) and if the sum was odd it would mean
that the orbits in the degeneracy class would “get stuck” at the vertex i.

The second restriction is the connectivity of the degeneracy class. For this

restriction there is no convenient description in terms of the vector s. However,
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Appendix A. Combinatorial results

Figure A.1: On the left: an example of a graph. On the right: addition of two
skeletons. The dotted bond disappears after the addition.

as we shall see, the number of disconnected degeneracy classes is sub-dominant
to the number of connected ones.

First we count all degeneracy classes, both connected and disconnected.
That is, we count all vectors s satisfying Eq. (A.2). For a degeneracy class,
the skeleton is the set of all bonds b such that s, is odd. It is clear that the
skeleton of a degeneracy class will satisfy Eq. (A.2) itself and will have the
associated vector sy, € NI with the components equal to 1 corresponding to
the bonds that are in the skeleton and zeros corresponding to the bonds that

are not. Thus we decompose each vector s satisfying Eq. (A.2) into the sum
S = Ssc + Sy, (A.3)

where the “flesh component” sy has only even components. Such a decompo-
sition is clearly unique.

Now we want to count the number of all possible skeletons on our graph.
Let Zg denote the cycle space of the graph and let {zl}?;nllZG be a basis of
the cycle space (see, e.g., [43]). For example, the dimension of the cycle space

of the graph on Fig. A.1 is four and one of the possible choices of the basis
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consists of the cycles {(1,3,6),(1,2,4),(2,3,5),(6,7,8)}. We define the sum

of two cycles as a set which consists of all the bonds which belong to one of the

summands but not to both (logical excluding OR). For example, the addition
(1,3,6) + (6,7,8) = (1, 3,8,7) (A.4)

is illustrated on Fig. A.1. Sum of more than two summands is defined by

induction, like in
(1,3,6) + (1,2,4) + (2,3,5) = (2,3,6,4) + (2,3,5) = (4,5,6) (A.5)

One can check that this operation is associative and that the result is always a
skeleton. It is also true that any skeleton can be represented as a sum of some
of the basis cycles with coefficients 0 or 1 in a unique way. Thus the number
of all possible skeletons is equal to 24™%¢ with the empty skeleton being one
of them. It is a well-known result that the dimension of the cycle space is
dim Zg = B —V +1 (see, for example, [43]).

Now if we have a skeleton s,. with [s;.| “bones”, we have to count all
possible “flesh components” with the sum of the vector elements equal to
2n — |ssc|(+1), where 1 is added if |ss| is odd. It is the same as the number
of ways to distribute n — [|s,|] couples of objects between B distinguishable
bins. Here [z] stands for the integer part of x. The answer to our question is
the binomial coefficient

(-1 "

which is a polynomial in n with the leading term given by nZ L independent of

(B=1)’
|ssc|. Multiplying the leading term by the number of all skeletons we obtain the
leading order approximation to the number of all degeneracy classes, connected
and disconnected.
We can estimate from above the number of disconnected degeneracy classes

by the number of all disconnected subgraphs of G' multiplied by the number
of all degeneracy classes that belong to the subgraph. But the number of the
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subgraphs does not depend on n and the number of the degeneracy classes in
a subgraph must have order less than B — 1 since the subgraph has less bonds
than the original graph. Thus the number of disconnected degeneracy classes

is sub-dominant. O

Remark. If S, is the number of all skeletons with even number of bones

and S, is the number of odd ones then

nB—l

D(2n) Sem (A7)
D@n+1) S"h (A.8)

However it is better to consider the sum D(2n)+D(2n+1) as it might happen
that S, = 0 (e.g. for star graphs). There is always at least one even skeleton

— the empty one.

Theorem 4 (Upper bound on a degeneracy class contribution).

Given a degeneracy class s, its contribution is bounded by

> A < 2B, (A.9)
s(p)=s P

where B is the number of bonds of the graph.

Proof. We remind ourselves that the contribution of the degeneracy class s is
the coefficient of e** in the expansion of Tr(DS)", Eq. (2.3.16), where ¢ =
Zf;l siL;.

Form the 2B x 2B diagonal matrix Z with the elements Z;, = z,, where
2 are complex variables, and identify the variables 2, and z;. Then if we put
z; = e*Li we will recover the matrix D, Eq. (2.2.10).

The trace Tr(ZS)™ is a polynomial of degree n in B complex variables. The

S1 .52

contribution of the degeneracy class s is given by the coefficient of zj*23% - - - 23F.

The upper bound for such coefficient is given by the Cauchy inequality,

> Ap < max |Tr(ZS)"|, (A.10)

s(p)=s P
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where the maximum is taken over the variables z; taking values on the unit
circle, z; = €', However for such values of the variables the matrix Z is unitary

thus (ZS)" is also unitary of dimension 2B x 2B thus max |Tr(ZS)"| < 2B. O

A.2 Partitions of an integer into a sum of non-
zero summands

The number of partitions of the integer n into k£ non-zero summands is a
well known combinatorial quantity. Rigorously speaking, it is the number of

solutions in N = {1,2,3,...} of the equation
T+ 2o+ =m0, z; € N (A1)

We denote such number by b(n, k).
Let (ai,...,a;) be such a solution. Then the set {ai,a; + ag,...,a; +
-+ ag_1} consists of k — 1 numbers which are distinct, ordered, greater

than 0 and less than n. In fact, the solutions of Eq. (A.1) are in one-to-one

correspondence with such subsets of the set {1,... ,n — 1}: given an ordered
subset {cy,¢a, ...,k 1} we obtain a solution of Eq. (A.1) by setting a; = ¢y,
(g = Cy — Cly «ony Qg1 = Cp_1 — Cp_2, A = N — Cp_1. Thus the number of the

solutions to Eq. (A.1) is equal to the number of all £ — 1-element subsets of

{1,...,n—1},
b(n, k) = (Z: i) (A.2)

This number is extensively used in the present work which was the reason for

the inclusion of its derivation.

A.3 Permutations without liaisons.

In this section we address one of the most important underlying questions of

the present work. Given g; ordered objects of type 1, go ordered objects of type
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Not allowed: A @ Q @ /301
NGOy V-NE)
/1 (1) /2(2) 1] A

Figure A.2: Permutations that are allowed and not allowed. Different shapes
correspond to the different types of objects: there are 3 types with ¢g; = 3,
go = 1 and g3 = 2. The three examples of the permutations that are not
allowed violate conditions 2, 3 and 4 correspondingly. The offending objects
are shaded.

2, ..., gj ordered objects of type j, count the permutations of these objects

which satisfy the following conditions,

—_

. First object of the type 1 comes first.

2. Order of the objects is preserved in the permutation.

3. No objects of the same type may stand next to each other.
4. The last object cannot be of the type 1.

We denote the answer to our question by R, .. This question is purely
combinatorial and throughout this section we forget about the nature of the

objects as groups of bonds.

Remark 4. Condition 4 may be considered to be a special case of condition 3,

if we adopt the cyclic vision of the permutation.
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For an example of permutations satisfying and not satisfying the above
conditions, see Fig. A.2. Following the solution of a similar problem in [24],
we address this problem using an inclusion-exclusion principle. Temporarily
we forget about conditions 3 and 4 and consider all permutation satisfying the
remaining conditions. If two objects of the same type stand next to each other
we say that they form a liaison. Our ultimate goal is to count all permutation
without liaisons.

Since condition 2 remains in force, only two consecutive objects of the same
type can form a liaison. Thus there is maximum of ¢g; — 1 liaisons to be formed
by the objects of the type ¢ and G — v possible liaisons altogether, where
G = Z‘Z:l 9i-

To count all permutation without liaisons we use the following inclusion-
exclusion principle. Let X be a finite set and P be a finite set of boolean

functions (properties) on X:
VpeP p: X — {0,1}. (A.1)

If p is a property then we denote by X, the set of all x for which the property
p holds, i.e. p(x) = 1. If P is a subset of P, by Xp we denote the subset of X

Xp = {x eX: (Vpe P)plx) = 1]} =N X (A.2)

peP

We also put Xy = X.

Proposition 7. The number of elements in X which do not satisfy any prop-

erties from P is given by

= > (-1)PNXp], (A.3)

pPcCP

‘X\UX,,

peP

where the modulus sign stands for the number of elements in the set and the

sum is taken over all subsets of P, including the empty set and the set P itself.

Proof. Eq. (A.3) is a slightly altered version of the more traditional inclusion-
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exclusion principle

U

peEP

=D X =D IXNNX [+ ) X NX,NX |-, (A4)

pEP p,q€P p,q,TEP

which is obtained by iterating the formula

|JAUB| =|A|+ |B| — |AN Bj. (A.5)

If the properties P are such that |Xp| depends only on |P|,
[ Xp| = f(IP]) (A-6)

then

P

=> (-1) <|7;|>f(i). (A7)

1=0

\X\pr

peEP

We now generalise Proposition 7 to j sets of properties

Proposition 8. If there are j sets of properties, P;, 1 =1,...,7, and

J
Xp.py,...p; = mXP,- (A.8)
i=1
are such that
|XP1,P2,~~~,P]‘| :f(|P1|=|P2|7"' 7|Pj|) (AQ)

then the number of elements in X which do not satisfy any of the properties is

given by

‘X\ (U U Xp)‘ = > (=D)L, ,@)H('Z”). (A.10)

i=1peP; AP i=1

To apply Proposition 8 to our problem we define a set of properties on all
possible permutation of object as follows: to each of the possible liaisons we
associate a function which is equal to one on the permutations that contain

such liaison and is zero otherwise. We group the properties by the type of the
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liaison they are associated with. Thus we obtain j sets of properties, G — j
properties in total. The quantity we are seeking, the number of permutations
without liaisons, is exactly the left-hand side of Eq. (A.10).

To make use of Eq. (A.10) we need to know the number f(ly,...,l,). The
meaning of this number is as follows: fix [, liaisons of the first type, /5 liaisons
of the second type etc; how many permutations are there containing those fixed
liaisons and, possibly, other liaisons as well. If [; = 0 for all i (the situation
with no restrictions) then it is not hard to see that f(0,0,...,0) is equal to
the number of all permutations of G —1 = g — 1+ g2 + ... + g; objects of
J types with any two objects of the same type being indistinguishable. The
minus one contribution is there because the position of one object of the first
type is fixed, it must come first. The indistinguishability comes from the need
to preserve the order of the objects of the same type: being ordered and being
indistinguishable is equivalent in terms of combinatorics. Thus the answer for
f(0,0,...,0) is
(G -1)!

f0,..,0) = (91 — Dlga!--- g0

(A.11)

Let us now select [; liaisons among the objects of the type 1, [, liaisons
among the objects of the type 2 and so forth, 0 <[; < ¢g; — 1. We can consider
two or more objects bound together by liaison(s) to be a single object, its

position in the ordering within its type being obvious. Now, by analogy with

Eq. (A.11), we derive

G-l —...—1,—1)!
fll,... L) = o —1(1 — 1)!(92_12)!._.(9)”_10)!. (A.12)

Applying Proposition 8 we obtain the number of permutations without liaisons

to be equal to

A G—=li—...= 1, —1)! (g —1
Z (—1) (g — 1 — D gs — o) (go — 1,)! H ( L ) (A.13)

Iy lo

There is one last detail to be fixed: nothing in our derivation prevents condi-

tion 4 from being violated. To mend it we consider the situation when this
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condition is violated to be a special form of liaison, between the last group and

the first group of “1”. This way there are g, liaisons of type 1 to choose from

and we should write (fl’ll) instead of (glll_l). The rest of formula (A.13) remains

unchanged. Performing change of variables k; = ¢g; — [; we finally arrive to
k1t tky v
P O e A ) 1 (]

Kty ko i=1

(A.14)

where G =3Y"._, g;.
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List of notations

()
la, b, ]
(a,b,c)

{a,b,c}

binomial (for n < k or k < 0 defined to be 0)
sequence

orbit

set

Kronecker delta (1 whenever x =y, 0 otherwise)
Dirac delta function

if s is a vector

number of elements in § if § is a set

set of non-negative integers

real part of 2z

imaginary part of z

end of proof (QED)
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