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Abstract
It has been shown that for a certain special type of quantum graphs the random-
matrix form factor can be recovered to at least third order in the scaled time
τ using periodic-orbit theory. Two types of contributing pairs of orbits were
identified: those which require time-reversal symmetry and those which do not.
We present a new technique of dealing with contributions from the former type
of orbits.

The technique allows us to derive the third-order term of the expansion
for general graphs. Although the derivation is rather technical, the advantages
of the technique are obvious: it makes the derivation tractable, it identifies
explicitly the orbit configurations which give the correct contribution and it
is more algorithmic and more system-independent, making possible future
applications of the technique to systems other than quantum graphs.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

The Bohigas–Giannoni–Schmit conjecture [1] asserts that the spectral correlations in quantum
systems with chaotic classical analogues fall into several universality classes, depending on
the symmetries of the system. In particular, the spectral correlations of systems with time-
reversal (TR) symmetry coincide with the relevant expressions obtained in random matrix
theory for orthogonal ensembles of matrices. This claim was supported by a multitude of
numerical examples [2], but for a long time the only theoretical advance for individual systems
(i.e. without a disorder average) was Berry’s diagonal approximation [3]. The recent work of
Sieber and Richter [4] and Sieber [5] has renewed the hope that the universality of spectral
correlations can be explained within periodic-orbit (PO) theory.

One of the more convenient statistics is the Fourier transform of the spectral two-point
correlator, the form factor, whose universal expression for orthogonal ensembles is given by
the formula [6]

KGOE(τ ) = 2τ − τ log(1 + 2τ ) = 2τ − 2τ 2 + 2τ 3 + O(τ 4), (1)
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when τ is in the range 0 � τ � 1. For a quantum chaotic system the form factor can be written
in terms of a double sum over POs using the Gutzwiller trace formula [7]. This double sum is
the usual starting point for analysis, in which different classes of PO pairs are identified and
their contribution is evaluated to reproduce the small-τ expansion of the prediction (1).

Berry [3] calculated the leading contribution to the form factor by neglecting all
correlations between POs other than exact symmetries. Within this ‘diagonal approximation’,
he obtained the leading order term in the τ expansion. In [4, 5] it was shown, that for
uniformly hyperbolic and TR invariant billiards on surfaces with constant negative curvature
the second-order contribution −2τ 2 is related to correlations within pairs of orbits differing in
the orientation of one of the two loops resulting from a self-intersection of the orbit. The same
result, but without the restriction to uniformly hyperbolic dynamics, was derived for a large
family of quantum graphs [10]. In particular, some progress has been made in identifying
the exact requirements of the degree of ‘chaoticity’ of the graphs. The further step to third
order was performed in [11], where some of the classes of orbits were evaluated for general
graphs. However, for classes of orbits which explicitly required TR symmetry, the uniform
hyperbolicity had to be assumed. At this time it became clear that the method used in [10]
would become intractable for the third order in general graphs and deriving the fourth-order
term would be quite impossible, even for systems with uniformly hyperbolic dynamics.

The present paper presents a different method of dealing with various classes of orbits.
The underlying idea is the repeated application of the inclusion–exclusion principle to obtain
a decomposition of orbit pairs into sets of which only a relatively small proportion give a
nonzero contribution. This technique has several advantages: the derivation becomes tractable
for general graphs, the orbit classes giving the universal contributions are identified explicitly
and the application of the technique is a relatively mechanical process which decreases the
chance of missing a contribution and raises the hope of a general derivation of the expansion
to all orders. It is also worth mentioning that the technique is relatively system-independent
in that it does not use any features specific to quantum graphs, operating on rather abstract
diagrams.

This paper is organized as follows: in section 2 we define our model and explain how the
form factor can be expressed as a double sum over POs. In section 3 this sum is rewritten
in terms of diagrams, representing all orbits with a given number and topology of self-
intersections. Diagrams contributing to the first three orders are identified. In section 4
we explain our method by re-deriving the second-order contribution and then proceed to apply
it to obtain the third-order term.

2. Quantum graphs and periodic-orbit theory

We consider graphs with N vertices connected by B directed bonds. A bond leading from
vertex m to vertex l is denoted by (m, l). Since we are considering graphs with TR invariance,
it is necessary that for any bond (m, l) there exists also the reversed bond (l, m). We do not
rule out the possibility of loops, i.e. bonds of the form (m, m), which are TR-invariant.

The discrete quantum dynamics on a graph is defined in terms of a B × B unitary time-
evolution operator S(B) with matrix elements

S(B)
m′l′,lm = δl′l σ

(l)
m′meiφml (2)

describing the transition amplitudes from the directed bond (m, l) to (l ′, m ′). Here the
Kronecker delta ensures that a transition is possible only between joined bonds and σ

(l)
m′m

denotes the vertex-scattering matrixat vertex l. The phasesφml are random variables distributed
uniformly in [0, 2π] and, for a fixed B , they define an ensemble of matrices S(B) which is used
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below for averaging. The form factor is defined at integer times t = 0, 1, . . . by

K (B)(τ ) = B−1〈| tr St|2〉{φ}, (3)

where τ is the scaled time τ = t/B and 〈· · ·〉 denotes the averaging. We are interested in the
limit of large graphs B → ∞, keeping the scaled time τ fixed:

K (τ ) = lim
B→∞

K (B)(τ ), (4)

since this is equivalent to the semiclassical limit of chaotic systems [8, 9]. It is in this limit
that the form factor is expected to assume the corresponding universal form (1).

The classical analogue of the quantum graph [8, 9, 12] is represented by a Markov chain
on the graph, specified by the doubly stochastic matrix M of transition probabilities:

Mm′l,lm = |S(B)

m′l,lm |2 = |σ (l)
m′m|2. (5)

Matrix elements of powers of M give the classical probability to get from bond (m, l) to bond
(k, n) in t steps:

P(t)
(m,l)→(k,n) = [M t ]nk,lm . (6)

Under very general assumptions it can be shown that the dynamics generated by M is ergodic
and mixing [13], i.e. for fixed B and t → ∞ all transition probabilities become equal:

P(t)
(m,l)→(k,n) → B−1 as t → ∞ ∀(m, l), (k, n). (7)

However, since in (4) the limits B → ∞ and t → ∞ are connected by fixing τ , we need a
stronger condition such as

P(τ B)

(m,l)→(k,n) → B−1 as B → ∞ ∀(m, l), (k, n). (8)

The requirements on the speed of convergencedepend on the order to which agreement with (1)
is required. To avoid unpleasant estimates we will restrict ourselves to graphs for which the
convergence is faster than any power of B .

Another, somewhat related, condition is that the probability of following a self-retracing
orbit of length O(B) is negligible. More rigorously, define a matrix R by squaring the elements
of the matrix M:

Rm′l,lm = |S(B)
m′l,lm |4 = |σ (l)

m′m|4. (9)

We require that for any γ∑
n,k,l,m

[Rγ B ]nk,lm → 0 as B → ∞ (10)

faster than any power of B .
The above conditions are in agreement with what is known about various special classes of

graphs. The conditions are satisfied, for example, by complete graphs with either Neumann or
Fourier vertices [11] where numerical evidence strongly supports the BGS conjecture [9, 14]
and are not satisfied by graphs with Dirichlet vertices and Neumann star graphs [15], which
are known to produce non-RMT statistics.

A connection between the quantum form factor (3) and the classical dynamics given by (5)
can be established by representing the form factor as a sum over (classical) POs. A PO is a
sequence of vertices P = [p1, . . . , pt ] defined up to a cyclic shift and such that (pi , pi+1) is a
bond of the graph for every i = 1, . . . , t .

By expanding the matrix powers of S in (3) and averaging over phases φ one arrives at
the PO expansion of the form factor [9, 11]

K (B)
TR (τ ) = t2

B

∑
P,Q

AP A∗
Q, (11)
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Figure 1. A schematic representation of an orbit with a self-intersection at a vertex α and its partner
orbit (a). There are orbits, however, for which the position of the intersection point α is ambiguous.
The pair of orbits shown in (b) can be fitted into the pattern (a) with either c or d playing the role
of the intersection vertex.

where AP is the product of σ matrices along the orbit P: AP = σ
(p2)
p1 p3σ

(p3)
p2 p4 · · · σ (p1)

pn p2 , the star
denotes the complex conjugation and, most importantly, the sum is taken over only those pairs
of orbits that visit the same set of bonds, or their time-reversed equivalents, the same number
of times.

3. The expansion in self-intersections of the periodic orbits

3.1. From orbits to diagrams

The calculation of the form factor is now reduced to a combinatorial problem: ensure that P
and Q pass through the same non-directed bonds. This can be done by composing P and Q
from the same segments, or arcs, which would appear in P and Q in different order and/or
orientation. We classify the pairs of orbits in the following manner. We fix a transformation:
a permutation of arcs followed by the TR of selected arcs and then sum over all orbits P, Q
related by this transformation. The clearest way to represent a transformation is graphical,
hence we refer to them as diagrams. The sum over all diagrams finally gives the form factor.

The main problem with this approach is to ensure that each orbit pair P, Q is counted
once and only once. This is difficult because for a given pair P, Q the identification of the arcs
and their permutation, transforming P into Q, is not necessarily unique. As a simple example
consider the diagrams in figure 1. Part (a) gives a schematic representation of the pair P, Q,
where Q is obtained from P by reversal of arc 2. Such orbits were considered in [10] and were
shown to give the contribution −2τ 2. One of the difficult points of the derivation was correctly
counting the orbits which do not merely cross but follow themselves for at least one bond.
An example of such an orbit is given in part (b), where the orbit crosses itself along the bond
(c, d). For such an orbit, there are two possibilities to identify arc 1: either as → a → b →
or as → c → a → b → c →, thus taking either c or d as the intersection point.

To avoid this double-counting, [10] imposed a restriction on arc 1. Denoting the first
vertex of the arc by s1 and the last one by f1, it was demanded that s1 �= f1. This ensured the
unique choice of the arcs and the intersection point. In the example above, the valid choice is
→ a → b →.

Unfortunately, even with this restriction, there were orbits that should not be counted:
those exceptions had self-retracing arc 2. The self-retracing arc did not change under TR and,
as a result, the orbit Q was identical to the orbit P , forming a pair which was already counted
in the diagonal approximation. The contribution of such orbits had to be subtracted explicitly.
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Figure 2. Topology of orbits contributing to the form factor at first and second orders. Evaluating
the NTR1 orbits we recover the diagonal approximation to the form factor.

In this paper we present a different counting technique, which is easily extendable to more
complicated diagrams, avoids the introduction of exceptions and explicitly identifies the orbits
which give the generic contribution. We will first illustrate our approach by re-deriving the
−2τ 2 contribution and then proceed to calculate the third-order correction. But before we can
do it, we need to introduce the notation and discuss some preliminary matters.

3.2. Notation

If we consider P as a single arc with no intersections, Q = P and P̄ are the only options.
Here the bar denotes the operation of TR. The corresponding diagram has a simple circular
shape (the first diagram of figure 2). Summation over these orbit pairs is nothing other than
the diagonal approximation. It produces K1 = 2τ . In [10] orbit P was treated as two arcs,
1 and 2, joined at a single intersection α, corresponding to an figure-eight-shaped diagram,
figure 2. The contributions of such orbits were found to give rise to the second-order term
in (1), K2 = −2τ 2. In this paper we calculate the τ 3 contribution by assuming that P contains
three or four arcs connected at intersections.

We denote arcs by numbers 1, 2, . . . and the intersection points by Greek letters α, β, . . ..
An arc can be identified by a sequence of vertices, which does not include the intersection
vertices, or, alternatively, by a sequence of bonds, which includes the bonds from and to the
intersection points. The length of the i th arc is denoted by ti and is defined as the number of
bonds in the arc (which is one more than the number of vertices in the arc). The sum of the
lengths of all arcs gives t , the length of the orbit. The length of an arc is at least one. Given an
arc i leading from α to β we denote the first vertex following α by si and the last vertex before
β by fi . In the degenerate case when the arc going from α to β is the single bond (α, β) and
does not contain any vertices (ti = 1) our definition implies si = β and fi = α.

The diagrams contributing at the third order are shown in figure 3. For a discussion of
why only these particular diagrams contribute at third order in τ we refer the reader to [11].
In any diagram, the arcs forming the orbit P and its partner Q are identical, but the way they
are connected at the intersections differs. The orbit P is given by the connections drawn as
continuous lines, while its partner orbit Q is given by connections drawn as dotted lines. The
orbits P and Q are also written as a symbolic code to the right of each diagram: a path that
goes from the beginning of arc 1 to vertex α then on arc 2 to vertex β and so on is denoted as
1α2β . . .. The diagrams divide into two classes, NTR and TR. In the NTR diagrams all the
arcs of Q have the same orientation as the corresponding arcs in P , while in the TR diagrams
some of the arcs of Q are time-reversed. For a system with no TR symmetry, only the NTR
diagrams are possible. In our case, diagrams in both classes contribute and τ 3 contributions
to the form factor is a sum of five terms:
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Figure 3. Topology of NTR3a, NTR3b, TR3a, TR3b and TR3c. In each case a pair of orbits is
shown: one follows the full curve throughout, while the second follows the full curve except at the
intersections (denoted by circles) where it follows the dotted line. Each circle represents a single
vertex where a self-intersection of the orbit occurs. Next to each topology we give the symbolic
code for the pair and the corresponding weight factor (section 3.3).

K3 = 2(KNTR3a + KNTR3b + KTR3a + KTR3b + KTR3c). (12)

The factor of 2 is due to the fact that, for every diagram in figure 3, there is another one with
Q replaced by its complete TR, Q̄, which gives an identical contribution.

The NTR diagrams were treated in the general case in [11] and it was shown that
KNTR3a + KNTR3b = 0. In this paper we derive the contribution of TR diagrams using a
slightly different method.

3.3. Avoiding double-counting

There are degeneracies in the diagrams which can be accounted for by simple prefactors
multiplying the contributions such as the factor of two in (12). These factors were derived
in [11] and are listed in figure 3 next to the diagrams.
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Another potential source for double-counting of orbits are tangential intersections, already
mentioned in section 3.1. Double-counting can be avoided using a method outlined in [10]
and followed in [11]: the intersection point is uniquely defined by ruling that if there is an
ambiguity then the intersection is as far to one side as possible. As an example we refer to the
ambiguous intersections in figure 1(b) and insist the intersection is as far to the left as possible.
That is, we demand that the vertices a and b are distinct.

Contrary to what was done in [11], we will not fix the restrictions for the TR diagrams.
The restrictions we choose will depend on the lengths of individual arcs, as will be shown in
section 4.

It should be emphasized that the orbits with tangential self-intersections are responsible
for non-zero contributions to the form factor and their correct treatment is absolutely crucial
to the derivation.

3.4. Orbit amplitudes

Before we can attempt the summation over all orbit pairs P, Q within a given diagram, we need
to understand the structure of the product AP A∗

Q appearing in (11). We consider the diagram
TR2 as an example. Let arc 1 be of length t1, consisting of the vertices [s1, x2, x3, . . . , xt1−2, f1].

Then both AP and AQ will contain factors σ (s1)
x2 α , σ (x2)

x3 x1
, σ (x3)

x4 x2
· · ·σ (xt1−2)

α xt1−3 . Thus when we evaluate
the product AP A∗

Q , the contribution of arc 1 will come in the form

|σ (x1)
x2 α σ (x2)

x3 x1
σ (x3)

x4 x2
· · · σ (xt1−2)

α xt1−3 |2 = P(α,x1)→(x1,x2)→(x2,x3)→···→( f1,α) ≡ P1, (13)

which is the classical probability of following arc 1 from bond (α, s1) to bond ( f1, α)1.
Analogous construction leads to the probability P2 of following arc 2: here we need to
remember that the matrices σ are symmetric. The factors not yet accounted for in P1 and
P2 are the transition amplitudes picked up at the intersection vertex α:

AP A∗
Q = P1 × P2 × σ

(α)

f2s1
σ

(α)

f1s2
× (

σ (α)
s2s1

σ
(α)

f1 f2

)∗
. (14)

To evaluate the contribution of the diagram, (14) must be summed over all free parameters,
namely all intersection points and all possible arcs connecting these points. The latter
summation includes a sum over the lengths ti of these arcs, with the restriction that the total
length of the orbit is t .

The summation over all the intermediate vertices x2, x3, . . . , xt1−2 along arc 1 can be
performed immediately, since it is unaffected by the restrictions discussed in the previous
subsection. This summation adds the classical probabilities of all possible paths leading from
bond (α, s1) to bond ( f1, α) in t1 − 1 steps and results in the classical transition probability
P(t1−1)

(α,s1)→( f1,α) given by (6). Analogous summation over the other arc produces P(t2−1)

(α,s2)→( f2,α).
The remaining summation is over the lengths ti of all arcs, the first and the last vertex si

and fi of all arcs i with ti > 1 and the intersection points like α. Here we try to use the fact
that for sufficiently long arcs the transition probabilities can be replaced by B−1 according
to (8). Then the sum over vertices decouples into a product of sums associated with the
intersection vertices, which can finally be evaluated using the unitarity of the vertex-scattering
matrices σ .

1 P1 = 1 if arc 1 contains no vertices, i.e. if t1 = 1.
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4. Summation of TR diagrams

4.1. TR2

As was mentioned earlier, we develop a slightly different technique to deal with the TR
diagrams. We will illustrate it by first considering the TR2 contribution. In [10] we dealt
with the intersection point ambiguity by imposing a restriction s2 �= f2. The summation
would then take the form

KTR2(τ ) = 1

2

t2

B

∑
{ti }

δ

[
t −

2∑
i=1

ti

] ∑
α

∑
{si , fi }

	TR2 × PTR2 × 
TR2, (15)

where

	TR2 = σα
f2s1

σα
f1s2

σα∗
s2s1

σα∗
f1 f2

(16)

PTR2 = Pt1−1
(α,s1)→( f1,α) Pt2−1

(α,s2)→( f2,α) (17)


TR2 = (1 − δs2 f2). (18)

Since at least one of the arcs must be long, we can approximate the corresponding
Pti −1

(α,si )→( fi ,α) by its ergodic limit 1/B . If arc 1 is long, we can perform the summation over s1

(or f1):

(1 − δs2 f2)
∑

s1

σα
f2 s1

σα∗
s2s1

= (1 − δs2 f2)δs2 f2 ≡ 0 (19)

to show that the contribution of such orbits is zero. However, the case when arc 2 is long is
not nearly as easy. We can still sum over s2 or f2, but the restriction, which helped us in the
first part, now stands in the way (see [10] for details).

The idea that we are going to use is as follows: we can change the restrictions depending
on the arc lengths. In the TR2 case, if arc 1 is long, we stick with the restriction s2 �= f2,
and if arc 2 is long, we switch to the restriction s1 �= f1. In the first case the result of the
summation is 0, as was shown above. In the second case we approximate Pt2−1

(α,s2)→( f2,α) by 1/B
and perform the summation over s2 to obtain

(1 − δs1 f1)
∑

s1

σα
f1s2

σα∗
s2s1

= (1 − δs1 f1)δs1 f1 ≡ 0. (20)

This is not what we should be getting: the overall result should be −2τ 2, not 0. The reason
for getting 0 is that there are orbits which were counted in both sums. To explain this, we need
to define more carefully what is meant by ‘arc i is long’.

We split the set of all TR2 orbit pairs into two sets. The set A will contain orbits satisfying
t1 � t/2 and s2 �= f2. The set B will contain orbits satisfying t1 < t/2 and s1 �= f1. The
sum of contributions coming from each set is zero, as was shown in the previous paragraph.
However, these sets are not disjoint. Figure 4 illustrates both sets, denoted by A and B , and
the shape of the orbits belonging to their intersection A ∩ B . These are orbits with a tangential
intersection which is roughly in the middle of them: t1 < t/2 but t1 + 2a � t/2, where a is
the length of the intersection and t1 is now counted from the end of the tangential intersection
(i.e. from vertex α0). We need to subtract the contribution of such orbits to recover the full
term KTR2(τ ).

To calculate the contribution of the orbits in A ∩ B , we notice (see the appendix) that
we get the same contribution if we modify the set A ∩ B by setting a = 1 and dropping the
constraints. Thus we can write for this contribution

|A ∩ B| = t2

2B

∑
t1,t2

∑
α0,α1

Pt1+1
(α1,α0)→(α0,α1)

Pt2+1
(α0,α1)→(α1,α0)

(21)
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Figure 4. The TR2 diagram and its partition into two sets of orbits. The total contribution of
the orbits in each set is easily shown to be zero. The result comes from the orbits lying in the
intersection of the two sets, A ∩ B .

where t = t1 + t2 + 2 and, because of the tangential intersection, the unitary factors at the
intersection point were squared and absorbed into the classical probability. In fact, the whole
expression is purely classical now. The length of arc 1 must satisfy t1 < t/2 and t1 + 2 � t/2.
Thus there are only two possible values that t1 can take: t/2 −1 and t/2 −2. The length of arc
2 satisfies t2 = t − 2 − t1 and therefore both arcs are long and the corresponding probabilities
can be approximated by 1/B:

|A ∩ B| = t2

2B3

∑
t1,t2

∑
α0,α1

1 = t2

2B3
2

∑
α0,α1

1 = t2

B2
→ τ 2, (22)

where the last sum is taken over all connected pairs of vertices α0 and α1 and the factor of 2
appeared because there are only two possible choices of the lengths {t1, t2}. To get the final
result for KTR2(τ ), we need to multiply (22) by two once more, to account for the TR symmetry,
and subtract it from the previous result (zero) since these orbits were double-counted when
we calculated the contributions of the sets A and B . Hence we obtain the sought-after result
KTR2(τ ) = −2τ 2. It is important to note that in the above derivation we could have used any
O(t) value instead of t/2.

Now our strategy of dealing with the diagrams of higher order is clear. We will strive
to partition the orbits belonging to each diagram into several sets, such that the contribution
of each set is easily seen to be zero. The intersections of these set will provide the true
contributions to the form factor. Hopefully, the arcs of the orbits in the intersections will be
long and thus the ergodic approximation can be employed to simplify the calculations.

4.2. Partition of TR3a

Before we start making partitions of the diagrams, we stress that there is no unique ‘right’ way
to partition. The partition that we are presenting here is only one of those that we considered.
All partitions produce the same results, as they should, but the present one seemed to be the
least difficult.

The suggested partition for the diagram TR3a is given by figure 5 (upper part). Each of
the four subsets of TR3a is equipped with its own set of constraints, which are shown by the
arrows. For example, the set A has constraints f1 �= f3 and s3 �= f4. The constraints are
chosen in such a way that the contributions of each set evaluate to zero: for example, the arc 1
is long in the set A, so we can approximate the contribution of the arc by its ergodic limit and
subsequently sum over s1 to obtain zero. The constraints also take into account the symmetry
of the diagram: under the permutation of arcs 1 ↔ 3 and 2 ↔ 4, the set A is interchanged
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Figure 5. The TR3a diagram and its partition into four sets of orbits. The orbits of the sets A
and B have identical structure but different lengths. The same applies to the sets C and D. A
consequence of this is that A ∩ B = C ∩ D = ∅, which implies that all three-way intersections are
empty. The contribution of the orbits in each set can be easily shown to be zero. Also drawn in the
figure are three of the four two-way intersections among the partition sets of the TR3a diagram.
The contribution of each is zero.

with C and B is interchanged with D. Also, it is immediately obvious that the sets A and
B are disjoint; so are the sets C and D. Therefore we do not have to worry about three-way
intersections of the partition sets.

Three of the two-way intersections are straightforward to evaluate, see figure 5. The
intersection A ∩ D has t1 + t2 ≈ t/2 and therefore t3 + t4 ≈ t/2 but t3 + b < t/4. Therefore
the arc 4 is long and we can sum over s4, obtaining zero. The intersections B ∩ C and B ∩ D
can be considered together, as B ∩ (C ∪ D). For this set we again have t1 + t2 ≈ t/2 and t1 is
small, thus enabling us to sum over s2.

The last intersection, A ∩ C ≡ E , is the hardest, see figure 6. Arcs 2 and 4 are potentially
short and summation over any other arc is obstructed by the constraints. To overcome this, we
change the constraint f1 �= f3 to s2 �= s4, thus producing the set E1. There are certain orbits,
however, that belong to E and do not belong to E1 and vice versa. These are put into the
sets E2 and E3, correspondingly. The orbits from the set E1 can be easily shown to produce
zero contribution. The contribution of the sets E2 and E3 are not zero and will be evaluated
separately.

4.3. Partition of TR3b

Diagram TR3b is split into three sets, figure 7. Here r is a large number, of order t/4. The
reason we do not just put it equal to t/4 is to highlight the interaction of diagram TR3b with
TR3c.
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Figure 6. The last of the two-way intersections among the partition sets of the TR3a diagram. To
evaluate it we represent it as the set E1 plus the orbits in the set E2 minus the orbits of the set E3.
The contribution of the set E1 is zero.

To show that the contribution of the sets A and B is zero, simply sum over s1 and s3

correspondingly. In set C , at least one of arcs 2 and 4 is long, thus enabling us to sum over s2

or s4. It is easy to see that the sets A and B are disjoint.
The intersection A ∩ C is also shown in figure 7. One of arcs 2 and 4 must be long. To be

able to sum, we need to drop the restriction f2 �= s4, producing the set F1. By summing either
over f2 or s4 (depending on which arc is longer), we show that the contribution of F1 is zero.
However, the set F1 is larger than A ∩ C: it includes the orbits sketched in the sets F2, those
can be obtained if, say, arc 4 is one bond long and f2 = s4. The set F2 provides a non-zero
contribution and will be evaluated separately.

In a similar fashion we treat the intersection B ∩ C , which has to be split into the sets
F3, F4 and F5. The contribution of the set F3 is zero and the sets F4 and F5 will be treated
separately.

4.4. Partition of TR3c

Diagram TR3c is very special as the orbits belonging to it can also be obtained as orbits from
TR3a and/or TR3b when one of the ti is equal to zero. Our job is to synchronize the partition
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Figure 7. The TR3b diagram and its partition into three sets of orbits. The contribution of the
orbits in each set can be easily shown to be zero. Below the line we sketch the intersection of the
sets A and C , re-partitioned as F1 minus F2 and the sets B and C , re-partitioned as F3 minus F4
and F5.

of TR3c with the partitions we chose for TR3a and TR3b. The relations between TR3c and
the other diagrams are summarized in table 1.

An immediate consequence is that all TR3c orbits with f1 = f2 were already counted in
TR3a: no set in TR3a has the restriction s2 �= s4. Also some of the orbits from TR3c with
s2 = f3 are counted in the sets A and C of TR3a. To understand precisely which orbits were
counted, we notice that a TR3c orbit with s2 = f3 corresponds to a TR3a orbit with s1 = f2
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Figure 8. The TR3c diagram and its partition into five sets of orbits. In the upper right corner we
illustrate the transitions through the intersection vertex undertaken by the original (full lines) and
the partner (broken lines) orbits. The contribution of all sets except D can be easily shown to be
zero. The set D is re-partitioned separately in figure 10.

Table 1. Summary of conversions between degenerate orbits of TR3c and two other diagrams.
Here ti denotes the length of the ith arc in diagram TR3c and t ′i denotes the same but for diagrams
TR3a and TR3b; an ‘R’ denotes that the diagram is reversed. For example, the TR3c orbit with
f1 = f2 can also be considered as a TR3a orbit with s2 = s4 and lengths of the arcs given by
t ′1 = t1 − 1, t ′2 = 1, t ′3 = t2 − 1 and t ′4 = t3 + 1.

TR3c TR3a Lengths

f2 = f1 s2 = s4 (t ′2 = 1) t ′1 = t1 − 1, t ′2 = 1, t ′3 = t2 − 1, t ′4 = t3 + 1
s2 = f3 s1 = f2 (t ′2 = 1) t ′1 = t1 + 1, t ′2 = 1, t ′3 = t2 − 1, t ′4 = t3 − 1
s1 = f2 s3 = f4 (t ′3 = 1) t ′1 = t1 − 1, t ′2 = t2 − 1, t ′3 = 1, t ′4 = t3 + 1
s2 = s3 f1 = f3 (t ′3 = 1) t ′1 = t1 + 1, t ′2 = t2 − 1, t ′3 = 1, t ′4 = t3 − 1
s1 = f2 R s1 = f2 (t ′1 = 1) t ′1 = 1 t ′2 = t3 + 1 t ′3 = t1 − 1 t ′4 = t2 − 1
s2 = s3 R f1 = f3 (t ′1 = 1) t ′1 = 1 t ′2 = t3 − 1 t ′3 = t1 + 1 t ′4 = t2 − 1
s2 = f3 R s3 = f4 (t ′4 = 1) t ′1 = t2 − 1 t ′2 = t3 − 1 t ′3 = t1 + 1 t ′4 = 1
f1 = f2 R s2 = s4 (t ′4 = 1) t ′1 = t2 − 1 t ′2 = t3 + 1 t ′3 = t1 − 1 t ′4 = 1

TR3c TR3b Lengths

s1 = f1 s2 = f4 t ′1 = t1 − 2 t ′2 = t2 + 1 t ′3 = t3 t ′4 = 1
s4 = f2 t ′1 = t3 t ′2 = 1 t ′3 = t1 − 2 t ′4 = t2 + 1

s3 = f3 s4 = f2 t ′1 = t1 t ′2 = t2 + 1 t ′3 = t3 − 2 t ′4 = 1
s2 = f4 t ′1 = t3 − 2 t ′2 = 1 t ′3 = t1 t ′4 = t2 + 1

and t ′
2 = 1. Such an orbit can only belong to the set A, requiring t ′

1 + t ′
2 � t/2 and t ′

1 � t/4,
which is equivalent to t1 � t/2 − 2 (see the ‘Lengths’ column of the table). The same applies
to the reversed orbits from TR3c with s2 = f3 which were counted in TR3a set C . Thus orbits
from TR3c with t1 � t/2 − 2 must have the restriction s2 �= f3 (the set A of figure 8). We also
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Figure 9. The set of orbits belonging to both set D of TR3c and set C of TR3b is re-partitioned as
the set G1 plus G2 minus G3. The contribution of the set G1 is zero.

note that orbits from TR3c with s1 = f2 and t3 � t/2 − 2 were already counted in TR3a sets
B and D, warranting the use of the corresponding restriction for set B of figure 8.

The relation between TR3c and TR3b is simpler: if the lengths of an orbit from TR3c
satisfy t1 < r and t3 < r , then we must impose restrictions s1 �= f1 and s3 �= f3, which is
reflected in the set E of figure 8.

Bringing the above information together we fix the partition of diagram TR3c, figure 8.
All five partition sets are disjoint and the contributions of the sets A, B , C and E evaluate to
zero by summing with respect to s1, s3 and s3 and s2 correspondingly. The set A is slightly
special since, when t3 � t/2 − 2, there is an additional restriction s1 �= f2, but in this case one
can sum over s3 to obtain the zero result.

Despite the length restriction on the sets C and D, there are still orbits belonging to these
sets and the set C of TR3b. These orbits are sketched in figure 9. When considering the
intersection of C and TR3b, we assume a > 0 since, when a = 0, we can sum over s2 to get
zero. The contributions of this set will be evaluated separately.

The intersection of D and TR3b can be re-partitioned as G1 plus G2 minus G3 with the
set G1 giving zero contribution (sum over f2). We will show that the contributions of the sets
G2 and G3 cancel each other exactly.

The last set to be decomposed is the set D of TR3c, see figure 10. Two dashed restrictions
are denoting the situation when s3 = f3 and s2 = f3 cannot be satisfied simultaneously. Out
of five partition sets, the sets D1 and D5 are immediately evaluated to zero, the contributions
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Figure 10. Re-partitioned set D of the TR3c diagram. Two broken restrictions denote the situation
when s3 = f3 and s2 = f3 cannot be satisfied simultaneously. The sets D1 and D5 give zero
contribution and the sets D2 and D3 produce contributions that cancel each other.

of the sets D2 and D3 clearly cancel each other, and thus only the contribution of the set D4

survives.

4.5. Evaluating significant diagrams

If we denote the contribution of a set A by |A|, the total contribution to the τ 3 term of the form
factor expansion takes the form

2(KTR3a(τ ) + KTR3b(τ ) + KTR3c(τ ))

= t2

B
(|F2| + |F4| + |F5| − |E2| + |E3| − 2|H | − 2|D4| − 2|G2| + 2|G3|). (23)

The sign of each contribution is the sign displayed next to it on the corresponding diagram
inverted if this diagram is from a two-way intersection of some sets (this is true for all sets but
D4). The overall factor of 2 is due to the TR symmetry and, in the case of the sets F and E , it
is cancelled by the diagram symmetry factor of 1/2, see figure 3.

When evaluating the contributions we use the following rules of thumb: (1) the length of
the tangential intersections, denoted in the diagrams by letters a and/or b, can be set to 1 and
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Figure 11. First four of the sets giving non-zero contributions.

(2) the restrictions can be ignored (see the appendix for a discussion of such approximations).
We also notice that all orbits belonging to the above diagrams give a positive contribution
(i.e. no more unitary factors left), which shows we are on the right track.

We begin by showing that the contributions of the sets G2 and G3 cancel each other. In
figure 11 we introduced some extra notation necessary for the calculation. The contribution
of the set G2 can be written as

|G2| = 2
∑
t3<r

∑
αi

Pt1+1
(α,α1)→(α1,α) Pt2+1

(α1,α)→(α,α2)
Pt3+1

(α,α2)→(α2,α) P1
(α2,α)→(α,α1)

, (24)

where the summation is taken over αs such that there exist bonds (α, α1) and (α, α2) over the
ranges of ti s outlined in the diagram. The two possible choices of t1 are expressed as the factor
of 2 and thus, due to the sum t1 + t2 + t3 + 4 being fixed, the sum is essentially over t3 < r . The
arcs 1 and 2 are (relatively) long and therefore the corresponding transition probabilities can
be approximated by their ergodic limit of 1/B . We further sum over α1 to obtain

|G2| = 2

B2

∑
t3<r

∑
αi

Pt3+1
(α,α2)→(α2,α) P1

(α2,α)→(α,α1)
= 2

B2

∑
t3<r

∑
α,α2

Pt3+1
(α,α2)→(α2,α). (25)

We evaluate the contribution of G3 is a similar way:

|G3| = 2
∑
t3<r

∑
α1,α2

Pt1+1
(α2,α1)→(α1,α2)

Pt2+1
(α1,α2)→(α1,α2)

Pt3+1
(α1,α2)→(α2,α1)

= 2

B2

∑
t3<r

∑
α1,α2

Pt3+1
(α1,α2)→(α2,α1)

(26)

and notice that the final expressions for |G2| and |G3| are identical and thus cancel each other.
The sets H and F5, figure 11, on the other hand, are identical themselves. The factor of 2

before the contribution of H is compensated by the factor of 2 in the diagram F5 itself. Thus
the total contribution |F5| − 2|H | = 0.
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Figure 12. Sets E2, E3, F2, D4 and F4 giving non-zero contributions. The diagram of E2 was
‘symmetrized’ to highlight its similarity with F2.

The contributions of the sets E2, E3 and F2 are best grouped together. We start with E3

(evaluating only one of the two cases and multiplying it by 2), figure 12. To simplify the
notation when dealing with numbers of order t , such as t/2 and r , we ignore the constant
corrections as they do not influence the limiting behaviour. The constraints imply t1 = r − 2
and t1 + t2 = t/2 ± constant. Therefore the summation is over t3 (or t4). The summation is
limited by the constraint t3 > r on the one side and by t3 < t − t1 − t2 ≈ t/2 on the other:

|E3| = 4
∑

r<t3<
t
2

∑
α,α1,β,β1

Pt1+1
(β,β1)→(α1,α) Pt2+1

(α1,α)→(β1,β) Pt3+1
(β1,β)→(α1,α) Pt4+1

(α1,α)→(β,β1)

= 4

B3

∑
r<t3<

t
2

∑
α,α1,β,β1

Pt4+1
(α1,α)→(β,β1)

= 4

B3

∑
r<t3<

t
2

∑
α,α1

1 = 4

B2

(
t

2
− r

)
, (27)

where to perform the summation over all possible bonds (β, β1) we invoke the probability
conservation. The summation over all possible bonds (α, α1) is just the number of bonds.
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For E2 the situation is very similar, but we choose to sum over t4:

|E2| = 4
∑

t4<
t
2 −r

∑
α,α1,β

Pt1+1
(β,α)→(α1,α) Pt3+1

(α,β)→(α1,α) Pt4+1
(α1,α)→(β,α) P1

(α1,α)→(α,β)

= 4

B2

∑
t4<

t
2 −r

∑
α,α1,β

Pt4+1
(α1,α)→(β,α) P1

(α1,α)→(α,β)

= 4

B2

∑
t4<

t
2 −r

∑
α,α1

Pt4+2
(α1,α)→(α,α1)

, (28)

where, to get to the last line, we used the symmetry of the TR invariance, P(α1,α)→(α,β) =
P(β,α)→(α,α1), and the Markov property of the probabilities. Unfortunately, the contribution
of E2 depends on the particular structure of short orbits of the graph. Hopefully, the other
contributions will help:

|F2| = 4
∑
t3<r

∑
α,α1,β

Pt1+1
(α,α1)→(α1,α) Pt2+1

(α1,α)→(α,β) Pt3+1
(α,β)→(β,α) P1

(β,α)→(α,α1)

= 4

B2

∑
t3<r

∑
α,α1,β

Pt3+1
(α,β)→(β,α) P1

(β,α)→(α,α1)
= 4

B2

∑
t3<r

∑
α,β

Pt3+1
(α,β)→(β,α), (29)

where to get the final result we summed over α1 and invoked the probability conservation. We
notice that the sums in (29) and (28) are identical, up to a variable change, apart from the upper
limit of the sum. Assuming, without loss of generality, that r > t

2 − r , we obtain

|F2| − |E2| = 4

B2

∑
t
2 −r�t3<r

∑
α,β

Pt3+1
(α,β)→(β,α), (30)

but now the sum is over large values of t3. Thus

|F2| − |E2| = 4

B3

∑
t
2 −r�t3<r

∑
α,β

1 = 4

B2

(
r −

(
t

2
− r

))
. (31)

Bringing it together with |E3|, we obtain

|F2| − |E2| + |E3| = 4r

B2
. (32)

The next set to evaluate is D4, figure 12. All arcs are long in this case, leading to the
contribution

|D4| = 2
∑

r�t1<
t
2

∑
α1,α2

Pt1+1
(α2,α1)→(α1,α2)

Pt2+1
(α1,α2)→(α1,α2)

Pt3+1
(α1,α2)→(α2,α1)

= 2

B3

∑
r�t1<

t
2

∑
α1,α2

1 = 2

B2

(
t

2
− r

)
. (33)

In the final contribution, coming from the set F4 of figure 12, the summation is over
t2 + t4 ≈ t − 2r . Arcs 1 and 3 are both long and of fixed length r − 1 or r − 2. This freedom
of choice gives rise to the factor of 4 in front of the sum:

|F4| = 4

B2

∑
t2+t4=t−2r

∑
α,α1,β,β1

Pt2+1
(α1,α)→(β,β1)

Pt4+1
(β1,β)→(α,α1)

, (34)

where the terms corresponding to arcs 1 and 3 have already being approximated by 1/B . At
least one of the arcs, 2 or 4, is long. Assuming, without loss of generality, that 2 is long, we
have for the inner sum∑
α,α1,β,β1

Pt2+1
(α1,α)→(β,β1)

Pt4+1
(β1,β)→(α,α1)

= 1

B

∑
α,α1,β,β1

Pt4+1
(β1,β)→(α,α1)

= 1

B

∑
β,β1

1 = 1. (35)
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Thus the result for the set F4 is

|F4| = 4

B2

∑
t2+t4=t−2r

1 = 4(t − r − r)

B2
. (36)

The overall result is

2(KTR3a(τ ) + KTR3b(τ ) + KTR3c(τ )) = t2

B
(|F4| + |F2| − |E2| + |E3| − 2|D4|)

= t2

B

(
4

B2
(t − r − r) +

4

B2
r − 4

B2

(
t

2
− r

))
= 2t3

B3
→ 2τ 3. (37)

Taking into account that KNTR3a(τ ) + KNTR3b(τ ) = 0 [11], we obtain the final result
KTR3(τ ) = 2τ 3, QED.

5. Conclusions

The results of this paper complement those of [11] to form the derivation of the form factor of
generic quantum graphs to third order.

While the derivation presented above is quite technical, the underlying idea is beautiful
in its simplicity: the set of all orbits can be partitioned in such a way that the contribution
of each partition set can be easily shown to be zero. This can be done without evaluating
the contributions of individual orbits! The nonzero ‘correct’ result then arises from the
intersections of the partition sets. The orbits in such intersections have generic properties:
most of their arcs are long, making direct evaluation possible.

Here we presented one of the possible partitions and obtained the expected RMT result.
The partition is based upon three basic diagrams, each being separately partitioned. It is very
possible that there exists a ‘unified’ diagram with a simple partition. If such a diagram is found,
it might make possible the derivation to all orders. Alas, it has so far evaded all attempts to
find it.

The derivation is done for sequences of graphs satisfying two conditions: (a) graphs must
be ‘uniformly ergodic’, as expressed by equation (8) and (b) the contribution of long self-
retracing orbits must be negligible, equation (10). These conditions exclude such cases as
Neumann star graphs, which are known to possess statistics different from RMT predictions.
The families of graphs numerically found to satisfy the RMT hypothesis, such as Neumann
complete graphs and Fourier star graphs, satisfy the above conditions.
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Figure A.1. In the first set, the tangential intersection must be of length a > 0. In the second set,
the length of the intersection is not explicitly specified. It turns out that both sets contain exactly
the same orbits.

α0 α1 αa–1 αa

2s

2f1f

1s

Figure A.2. Detailed view of the tangential intersection of length a, together with the adjacent
vertices si and fi .

Appendix. Setting a = 1 in the TR2 diagram

When we evaluated the contribution of the TR2 orbits, we dropped the constraints and set the
length of the tangential intersection a to 1 (figure A.1). Here we discuss various aspects of
this approximation.

For a given value of a, there are 2a choices of the length t1 satisfying the inequalities
of part (a) of figure A.1. For small a, the length of both arcs (α0, s1) → ( f1, α0) and
(αa, s2) → ( f2, αa) are long and their contributions can be approximated by 1/B . Thus
the contribution of the TR2 diagram is

t2

B3

a′∑
a=1

2aTa, (A.1)

where Ta is the contribution of the structure depicted in figure A.2, the tangential intersection
of the length a. This contribution can be written as

Ta =
∑

|σs1,α1 |2|σ f1,α1 |2
a−2∏
k=0

|σαk ,αk+2 |4|σs2,αa−2 |2|σ f2,αa−2 |2(1 − δs1, f1)(1 − δs2, f2), (A.2)

where the summation is taken over all indices si , fi and αk . Our aim is to show that the sum of
2aTa is equal to the corresponding contribution from part (b) of figure A.1, given by 2

∑
α0,α1

1.
Opening up the brackets in (A.2) and performing a summation, where possible, over si and fi ,
we get

Ta =
∑ a−2∏

k=0

|σαk ,αk+2 |4 −
∑

|σs1,α1 |4
a−2∏
k=0

|σαk ,αk+2 |4 −
∑ a−2∏

k=0

|σαk ,αk+2 |4|σs2,αa−2 |4 (A.3)

+
∑

|σs1,α1 |4
a−2∏
k=0

|σαk ,αk+2 |4|σs2,αa−2 |4 (A.4)

= Ra − 2Ra+1 + Ra+2, (A.5)
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where Ra is

Ra =
∑ a−2∏

k=0

|σαk ,αk+2 |4. (A.6)

The sum in (A.1) now folds to

a′∑
a=1

2aTa = 2R0 + 2a′ Ra′+2 − (2a′ + 2)Ra′+1. (A.7)

Since R0 is nothing other than
∑

α0,α1
1, to finish the proof we need to ensure that (i) the

remainder of (A.7) is negligible and (ii) we can ignore orbits with a > a′. To this end we take
a′ to be of order t and refer to condition (10) which is obviously sufficient.
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