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Preface

Everybody talks about the weather, but nobody does anything
about it. Mark Twain

College mathematics instructors commonly complain that their students
are poorly prepared. It is often suggested that this is a corollary of the stu-
dents’ high school teachers being poorly prepared. International studies lend
credence to the notion that our hard-working American school teachers would
be more effective if their mathematical understanding and appreciation were
enhanced and if they were empowered with creative teaching tools.

At Texas A&M University, we decided to stop talking about the problem
and to start doing something about it. We have been developing a Master’s
program targeted at current and prospective teachers of mathematics at the
secondary school level or higher.

This course is a core part of the program. Our aim in the course is not
to impart any specific body of knowledge, but rather to foster the students’
understanding of what mathematics is all about. The goals are:

• to increase students’ mathematical knowledge and skills;

• to expose students to the breadth of mathematics and to many of its
interesting problems and applications;

• to encourage students to have fun with mathematics;

• to exhibit the unity of diverse mathematical fields;

• to promote students’ creativity;

• to increase students’ competence with open-ended questions, with ques-
tions whose answers are not known, and with ill-posed questions;
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iv PREFACE

• to teach students how to read and understand mathematics; and

• to give students confidence that, when their own students ask them ques-
tions, they will either know an answer or know where to look for an
answer.

We hope that after completing this course, students will have an expanded
perspective on the mathematical endeavor and a renewed enthusiasm for math-
ematics that they can convey to their own students in the future.

We emphasize to our students that learning mathematics is synonymous
with doing mathematics, in the sense of solving problems, making conjectures,
proving theorems, struggling with difficult concepts, searching for understand-
ing. We try to teach in a hands-on discovery style, typically by having the
students work on exercises in groups under our loose supervision.

The exercises range in difficulty from those that are easy for all students
to those that are challenging for the instructors. Many of the exercises can be
answered either at a naive, superficial level or at a deeper, more sophisticated
level, depending on the background and preparation of the students. We
deliberately have not flagged the “difficult” exercises, because we believe that
it is salutary for students to learn for themselves whether a solution is within
their grasp or whether they need hints.

We distribute the main body of this Guide to the students, reserving the
appendices for the use of the instructor. The material evolves each time we
teach the course. Suggestions, corrections, and comments are welcome. Please
email the authors at boas@math.tamu.edu and geller@math.tamu.edu.
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Chapter 1

Logical Reasoning

1.1 Goals

• Know the meanings of the standard terms of logic: converse, contrapos-
itive, necessary and sufficient conditions, implication, if and only if, and
so on.

• Be able to recognize valid and invalid logic.

• Be able to construct valid logical arguments and to solve logic problems.

• Be aware that foundational problems (paradoxes) exist.

• Be able to identify and to construct valid proofs by the method of math-
ematical induction.

1.2 Reading

1. René Descartes, Discourse on the Method of Rightly Conducting the Rea-
son, and Seeking Truth in the Sciences, excerpt from Part II; available
from gopher://wiretap.area.com:70/00/Library/Classic/reason.

txt.

2. René Descartes, Philosophical Essays, translated by Laurence J. Lafleur,
Bobbs-Merrill Company, Indianapolis, 1964, pages 156–162.
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2 CHAPTER 1. LOGICAL REASONING

3. Excerpt from Alice in Puzzleland by Raymond M. Smullyan, Penguin,
1984, pages 20–29.

4. Proofs without words from Mathematics Magazine 69 (1996), no. 1, 62–
63.

5. Stephen B. Maurer, The recursive paradigm: suppose we already knew,
School Science and Mathematics 95 (1995), no. 2 (February), 91–96.

6. Robert Louis Stevenson, “The Bottle Imp”, in Island Nights’ Enter-
tainments, Scribner’s, 1893; in the public domain and available on the
world-wide web at http://www.inform.umd.edu/EdRes/ReadingRoom/
Fiction/Stevenson/IslandNights/bottle-imp. (Compare the sur-
prise examination paradox.)

1.3 Classroom Discussion

1.3.1 Warm up

Exercise 1.1. The Starship Enterprise puts in for refueling at the Ether Ore
mines in the asteroid belt. There are two physically indistinguishable species of
miners of impeccable reasoning but of dubious veracity: one species tells only
truths, while the other tells only falsehoods.1 The Captain wishes to determine
the truth of a rumor that one of the miners has recently proved Goldbach’s
Conjecture.2 What single question—answerable by “Yes” or “No”—can the
Captain ask of an arbitrary miner in order to determine the truth?

1.3.2 The Liar Paradox

All Cretans are liars. Epimenides of Crete (attributed)

How are we to understand this statement? Apparently, it is true if and only
if it is false.

The paradox has a number of different guises, for example:

1Raymond Smullyan refers to such scenarios as “knights and knaves” and discusses many
such in his puzzle books.

2Goldbach’s Conjecture: every even integer greater than 2 can be expressed as the sum
of two prime numbers.
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Please ignore this sentence.

An even sharper form is:

This sentence is false.

Exercise 1.2. There is a non-paradoxical generalization of the preceding ex-
ample to more than one sentence. Let n be an integer greater than 1, and
consider the following list of sentences.

1. Exactly one statement on this list is false.

2. Exactly two statements on this list are false.

...

n. Exactly n statements on this list are false.

Determine the truth or falsity of each statement on the list.
(This problem was published by David L. Silverman in the Journal of

Recreational Mathematics (1969), page 29; cited in Martin Gardner, Knotted
Doughnuts and Other Mathematical Entertainments, Freeman, 1986, Chapter
Six.)

A version of the liar paradox attributed to P. E. B. Jourdain is a piece of
paper that says on one side “The sentence on the other side is true” and on
the other side “The sentence on the other side is false.”

A version due to Bertrand Russell is:

The village barber shaves those and only those villagers who do
not shave themselves. Who shaves the barber?

The mathematical formulation of Russell’s paradox is:

Let S be the set whose elements are those sets that are not elements
of themselves. Is S an element of itself?

G. G. Berry asked for a determination of “the least integer not nameable
in fewer than nineteen syllables” (the quoted phrase consisting of eighteen
syllables). Kurt Grelling asked if the adjective “heterological” is heterological
(that is, not describing itself).

Self-referential paradoxes have appeared in popular literature. For exam-
ple:
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“Can’t you ground someone who’s crazy?”

“Oh, sure. I have to. There’s a rule saying I have to ground
anyone who’s crazy.”

[ . . . ]

There was only one catch and that was Catch-22, which speci-
fied that a concern for one’s own safety in the face of dangers that
were real and immediate was the process of a rational mind. Orr
was crazy and could be grounded. All he had to do was ask; and
as soon as he did, he would no longer be crazy and would have to
fly more missions. Orr would be crazy to fly more missions and
sane if he didn’t, but if he was sane he had to fly them. If he flew
them he was crazy and didn’t have to; but if he didn’t want to he
was sane and had to. Yossarian was moved very deeply by the ab-
solute simplicity of this clause of Catch-22 and let out a respectful
whistle. Joseph Heller

Catch-22

Here is another example:

Well then, on this river there was a bridge, and at one end of it
a gallows, and a sort of tribunal, where four judges commonly sat
to administer the law which the lord of river, bridge and the lord-
ship had enacted, and which was to this effect, “If anyone crosses
by this bridge from one side to the other he shall declare on oath
where he is going to and with what object; and if he swears truly,
he shall be allowed to pass, but if falsely, he shall be put to death
for it by hanging on the gallows erected there, without any remis-
sion.” Though the law and its severe penalty were known, many
persons crossed, but in their declarations it was easy to see at once
they were telling the truth, and the judges let them pass free. It
happened, however, that one man, when they came to take his
declaration, swore and said that by the oath he took he was going
to die upon that gallows that stood there, and nothing else. The
judges held a consultation over the oath, and they said, “If we let
this man pass free he has sworn falsely, and by the law he ought
to die; but if we hang him, as he swore he was going to die on that
gallows, and therefore swore the truth, by the same law he ought
to go free.” Miguel de Cervantes
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Don Quixote
(John Ormsby, translator)

A common element of these paradoxes is their self-referential or circular
property. For a complete resolution of Russell’s paradox, we should have to
go into set theory rather deeply. Intuitively, we need to rule self-referential
statements out of bounds; or we need to accept that some apparently well-
formed sentences are meaningless: neither true nor false. What, for example,
are we to make of the following grammatical English sentence?

Colorless green ideas sleep furiously. Noam Chomsky

The lesson of the above discussion is that if we are not to build our math-
ematics on a foundation of quicksand, then we had better have some rules
about determining truth. We will return later to the axiomatic method. For
the moment, we will be content with reviewing some basic procedures of logical
analysis.

1.3.3 The Formalism of Logic

Exercise 1.3. Let P denote the statement “It is raining”; let Q denote the
statement “It is Saturday”; let R denote the statement “We are studying”; and
let S denote the statement “We are having a picnic.” Using the letters P , Q,
R, and S, and the symbols ∨ (disjunction), ∧ (conjunction), and ¬ (negation),
fill in as many lines as possible of the following table to be compatible with the
sentence: “We always study when it rains, but we have a picnic on Saturdays
when it is not raining.”

if

only if

is sufficient for

is necessary for

if and only if

⇒
⇐
⇔
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Exercise 1.4. Create your own examples similar to the one above.

Exercise 1.5. Demonstrate that the biconditional “⇔” is associative. This
can be accomplished by completing the following truth table and observing
that the last two columns are identical.

A B C A ⇔ B B ⇔ C (A ⇔ B) ⇔ C A ⇔ (B ⇔ C)

Exercise 1.6. Solve the problems from the “Who Is Mad?” chapter in Ray-
mond Smullyan’s Alice in Puzzle-Land.

Exercise 1.7. Negate the following statements.

1. ∀x ∃y (P (x, y) ⇒ Q(x, y)).

2. For all positive x and y, either x2 ≥ y or y2 ≥ x.

3. Neither a borrower nor a lender be. William Shakespeare
Hamlet I. iii. 75

4. Everything in the world is good for something. John Dryden

5. If God did not exist, it would be necessary to invent Him.
(Si Dieu n’existait pas, il faudrait l’inventer.) Voltaire

6. There is only one thing in the world worse than being talked about, and
that is not being talked about. Oscar Wilde

7. You can fool all the people some of the time, and some of the people all
the time, but you can not fool all the people all of the time.

Abraham Lincoln (attributed)

8. The House of Peers, throughout the war,
Did nothing in particular,

And did it very well. W. S. Gilbert
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1.3.4 Mathematical Induction

Exercise 1.8. Read aloud the following excerpt from Scenes VII–VIII of
Eugène Ionesco’s “anti-play” The Bald Soprano.3 There are five actors in-
volved: Mr. Smith, Mrs. Smith, Mr. Martin, Mrs. Martin, and the Fire Mar-
shall.

(The doorbell rings.)

Mr. Smith: Say, the doorbell is ringing.

Mrs. Smith: There must be somebody there. I’ll go see. (She goes
to see. She opens the door and returns.) Nobody. (She sits down
again.)

Mr. Martin: I’m going to give you another example . . . (The doorbell
rings.)

Mr. Smith: Say, the doorbell is ringing.

Mrs. Smith: It must be somebody. I’ll go see. (She goes to see. She
opens the door and returns.) Nobody. (She returns to her seat.)

Mr. Martin (who has forgotten where he was): Uh . . .

Mrs. Martin: You were saying that you were going to give another
example.

Mr. Martin: Oh, yes . . . (The doorbell rings.)

Mr. Smith: Say, the doorbell is ringing.

Mrs. Smith: I am not going to open the door again.

Mr. Smith: Well, but there must be somebody there!

Mrs. Smith: The first time, there was nobody. The second time, again
nobody. Why do you think there will be somebody now?

Mr. Smith: Because the doorbell rang!

Mrs. Martin: That’s not a reason.

Mr. Martin: What? When one hears the doorbell ring, it’s because
there is somebody at the door who is ringing to have the door
opened.

Mrs. Martin: Not always, as you have just seen!

Mr. Martin: But yes, most of the time.

Mr. Smith: Myself, when I go to someone’s house, I ring the bell to
get in. I think that everybody does the same, and each time the
doorbell rings it’s because there is somebody there.

3La cantatrice chauve, first performed May 11, 1950.
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Mrs. Smith: That is true in theory. But in reality things happen
differently. You have just seen so.

Mrs. Martin: Your wife is right.

Mr. Martin: Oh, you women! Always defending each other.

Mrs. Smith: All right, I’ll go see. You can’t say that I am stubborn,
but you will see that there is nobody there! (She goes to see. She
opens the door and shuts it again.) You see, there is nobody. (She
returns to her seat.)

Mrs. Smith: Oh, these men who always want to be right and who are
always wrong! (The doorbell rings again.)

Mr. Smith: Say, the doorbell is ringing. There must be somebody
there.

Mrs. Smith (in a fit of anger): Don’t send me to open the door again.
You have seen that it is useless. Experience shows us that when
the bell rings, it’s because there is never anybody there.

Mrs. Martin: Never.

Mr. Martin: That’s not certain.

Mr. Smith: It’s even false. Most of the time, when the bell rings, it’s
because there is somebody there.

Mrs. Smith: He won’t admit he’s wrong.

Mrs. Martin: My husband too is very stubborn.

Mr. Smith: There is somebody there.

Mr. Martin: It’s not impossible.

Mrs. Smith (to her husband): No.

Mr. Smith: Yes.

Mrs. Smith: I tell you no. At any rate, you are not going to bother
me again for nothing. If you want to go see, go yourself!

Mr. Smith: I’m going. (Mrs. Smith shrugs her shoulders. Mrs. Martin
tosses her head.)

Mr. Smith (opening the door): Oh! Comment allez vous? (He glances
at Mrs. Smith and at the Martins, who are all surprised.) It’s the
Fire Marshall!

Fire Marshall (he has, of course, an enormous shiny helmet and
a uniform): Good day, ladies and gentlemen. (They are still a
bit stupefied. Mrs. Smith, angry, averts her head and does not
respond.) Hello, Mrs. Smith. You seem to be angry.

Mrs. Smith: Oh!
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Mr. Smith: It’s like this, you see . . . my wife is a bit humiliated to
have been wrong.

Mr. Martin: There has been, Fire Marshall, an argument between
Mrs. and Mr. Smith.

Mrs. Smith (to Mr. Martin): It’s none of your business!
(To Mr. Smith): I beg you not to bring strangers into our family
quarrels.

Mr. Smith: Oh, darling, it’s not so serious. The Fire Marshall is an
old family friend. His mother courted me, and I knew his father.
He asked to marry my daughter if I ever had one. He died waiting.

Mr. Martin: It’s neither his fault nor yours.

Fire Marshall: So, what’s it all about?

Mrs. Smith: My husband was claiming . . .

Mr. Smith: No, it was you who was claiming.

Mr. Martin: Yes, it was her.

Mrs. Martin: No, it was him.

Fire Marshall: Don’t get excited. Tell me about it, Mrs. Smith.

Mrs. Smith: All right, then. It troubles me to speak openly to you,
but a Fire Marshall is also a confessor.

Fire Marshall: Well?

Mrs. Smith: We were arguing because my husband said that when
the doorbell rings, there is always somebody there.

Mr. Martin: It’s plausible.

Mrs. Smith: And I said that each time the doorbell rings, it is because
nobody is there.

Mrs. Martin: It might seem strange.

Mrs. Smith: But it is proven, not by theoretical demonstrations, but
by facts.

Mr. Smith: It’s false, because the Fire Marshal is there. He rang, I
opened the door, he was there.

Mrs. Martin: When?

Mr. Martin: Why, just now.

Mrs. Smith: Yes, but it was only after the bell rang a fourth time
that someone was there. And the fourth time doesn’t count.

Mrs. Martin: Always. Only the first three times count.

Mr. Smith: Fire Marshall, let me ask you a few questions.

Fire Marshall: Go ahead.



10 CHAPTER 1. LOGICAL REASONING

Mr. Smith: When I opened the door and saw you there, was it indeed
you who had rung?

Fire Marshall: Yes, it was me.

Mr. Martin: You were at the door? You rang to be let in?

Fire Marshall: I don’t deny it.

Mr. Smith (to his wife, victoriously): You see? I’m right. When the
bell rings, it is because somebody is there. You can’t say that the
Fire Marshall is not somebody.

Mrs. Smith: Certainly not. I repeat that I speak only of the first
three times, because the fourth time does not count.

Mrs. Martin: When the bell rang the first time, was it you?

Fire Marshall: No, it was not me.

Mrs. Martin: You see? The bell rang, and nobody was there.

Mr. Martin: Perhaps it was someone else?

Mr. Smith: Were you at the door a long time?

Fire Marshall: Three quarters of an hour.

Mr. Smith: And you saw nobody?

Fire Marshall: Nobody. I’m certain.

Mrs. Martin: Did you hear the bell ring the second time?

Fire Marshall: Yes, and again it was not me. And there was still
nobody.

Mrs. Smith: Victory! I was right.

Mr. Smith (to his wife): Not so fast. (To the Fire Marshall) And
what were you doing at the door?

Fire Marshall: Nothing. I was standing there. I was thinking about
a lot of things.

Mr. Martin (to the Fire Marshall): But the third time . . . it was
not you who rang?

Fire Marshall: Yes, it was me.

Mr. Smith: But when we opened the door, we did not see you.

Fire Marshall: That’s because I hid myself . . . as a joke.

Mrs. Smith: Don’t joke, Fire Marshall. The situation is too sad.

Mr. Martin: To sum up, we still don’t know, when the doorbell rings,
whether there is someone there or not!

Mrs. Smith: Never anybody.

Mr. Smith: Always somebody.
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Fire Marshall: I will reconcile you. You are both partly right. When
the doorbell rings, sometimes there is somebody, and other times
there is nobody.

Mr. Martin: That seems logical to me.
Mrs. Martin: I think so too.
Fire Marshall: Things are simple, really.

Exercise 1.9. Comment on the implications of the above scene for mathe-
matical logic.

Exercise 1.10. What is the next term in the sequence 2, 3, 5, 9, . . . ?

The principle of induction says, intuitively, that if you can take a first step,
and if you can always take another step—no matter how far you have gone
already—then you can travel an arbitrary distance. The “domino effect” is the
same phenomenon. The two common mistakes in creating an induction proof
are (i) neglecting to check the basis step, and (ii) failing to make a completely
general argument for the induction step.

The basis step is usually easy to confirm, but it is nonetheless a crucial
part of the argument.

A journey of a thousand miles begins with a single step.
Chinese Proverb

Who has begun, has half the job done.
(Dimidium facti qui coepit habet.) Horace

Epistles I. i. 40

An example of an inductive situation that founders for want of an initial step
is the parable in the New Testament of the woman who is to be stoned for
transgressing the Mosaic law; Jesus says:

Let he who is without sin among you cast the first stone.
John 8:7

The most familiar type of induction problem involves proving an equality.
Proving an inequality can be trickier, because it is not obvious how to relate
statement n to statement (n + 1).

Exercise 1.11. Prove that 2n > 2n + 1 when n is an integer greater than 2.
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In the next example, the induction statement is not a formula.

Exercise 1.12. In a round-robin tournament, each team plays every other
team exactly once. Show that if no games end in ties, then no matter what
the outcomes of the games, there will be some way to number the teams so
that team 1 beat team 2, and team 2 beat team 3, and team 3 beat team 4,
and so on.4

Here is an example of a formula with cases.

Exercise 1.13. 1. Find a formula for the nth positive integer that is di-
visible by neither 2 nor 3.

2. Show that the sum of the first n positive integers that are divisible by
neither 2 nor 3 is {

3
2
n2 − 1

2
if n is odd,

3
2
n2 if n is even.

Exercise 1.14. Find the mistake in the following “proof.”

Theorem. All horses are the same color.

“Proof” by induction. Let P (n) be the proposition that all members of an
arbitrary set of n horses are the same color.

Trivially P (1) is true.
Suppose that P (n) holds. If S is an arbitrary set of n + 1 horses, and

one is removed, the remaining n horses are the same color by the induction
hypothesis. Since it does not matter which horse is removed, it must be that
all n + 1 horses are the same color.

By induction, P (n) is true for every positive integer n, that is, all horses
are the same color.

Exercise 1.15. The previous example was a false “proof” of a false statement.
Here is a false proof of a true statement; where is the mistake?5

Theorem. The sum of the angles of a regular n-gon is 180(n− 2)◦.

4Problem paraphrased from Stephen B. Maurer and Anthony Ralston, Discrete Algorith-
mic Mathematics, Addison-Wesley, 1991, page 145.

5Example paraphrased from Stephen B. Maurer and Anthony Ralston, Discrete Algo-
rithmic Mathematics, Addison-Wesley, 1991, page 171.
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“Proof” by induction. The basis step (n = 3) is the well-known fact that the
angles of a triangle sum to 180◦. Now suppose that the statement has been
proved for a certain value of n (where n ≥ 3). Given a regular (n + 1)-gon,
take three consecutive vertices and cut off the triangle they determine. The
remaining n-gon has angle sum of 180(n − 2)◦ by the induction hypothesis.
Adding back the triangle increases the angle sum by 180◦ for a final total of
180(n− 1)◦ = 180((n + 1)− 2)◦.

In the next exercise, it may not be obvious what statement n should be.

Exercise 1.16. Construct an induction proof of the proposition that every
set (possibly infinite) of positive integers has a least element.

1.4 Problems

Problem 1.1. The philosopher Raymond Smullyan has written several puzzle
books6 featuring the island of knights and knaves, where knights speak only
truths, and knaves speak only falsehoods. Since the knights are physically in-
distinguishable from the knaves, the visitor must exercise ingenuity to extract
information from the inhabitants’ statements.

1. For instance, is a native who states,7 “This is not the first time I have
said what I am now saying” a knight or a knave? See the footnote for a
hint.8

2. Invent your own scenario of an encounter with the residents of the island
of knights and knaves.

Problem 1.2. Pattern recognition is an element of games, of art, of mathe-
matics. Much of modern science is an effort to find patterns in nature. Chil-
dren of all ages enjoy guessing patterns.

6Some of his books featuring logic puzzles are Satan, Cantor and Infinity, Knopf, 1992,
reprinted by Oxford University Press, 1993; The Lady or the Tiger?, Knopf, 1982, reprinted
by Times Books, 1992; Forever Undecided, Knopf, 1987; What Is the Name of This Book?,
Prentice Hall, 1978, reprinted by Penguin, 1981; This Book Needs No Title, Prentice Hall,
1980, reprinted by Simon & Schuster, 1986; Alice in Puzzle-Land: A Carrollian Tale for
Children Under Eighty, Morrow, 1982, reprinted by Penguin, 1984; To Mock a Mockingbird,
Knopf, 1985.

7Raymond Smullyan, To Mock a Mockingbird, Knopf, 1985, page 44.
8 Canaknaveoraknightmakethisstatementforthesecondtime?
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You can amuse any class by asking for the rule generating the following
sequence of letters:

O, T, T, F, F, S, S, E, N, T, E, T, . . . .

See the footnotes for a hint.9

The element of surprise often makes an amusing puzzle. Can you figure
out the missing entry in the following sequence?10

10, 11, 12, 13, 14, 15, 16, 17, 20, 22, 24, 31, 100, , 10000

Hint: the sequence terminates—there are no more terms. See the footnote for
a further hint.11

A great many special sequences of counting numbers may be found in
Simon Plouffe and N. J. A. Sloane, The Encyclopedia of Integer Sequences,
San Diego, Academic Press, 1995 (available online at http://www.research.
att.com/~njas/sequences/).

Invent your own pattern recognition problem.

Problem 1.3. 1. Prove by induction that

√
2 +

√
2 +

√
2 + · · ·︸ ︷︷ ︸

n

is irra-

tional for each positive integer n.

2. Prove by induction that
2

√
2 +

3

√
3 + 4

√
4 + · · ·︸ ︷︷ ︸

n

is irrational for each pos-

itive integer n.

Problem 1.4. Find a formula for the sum of the first n positive integers that
are not divisible by 4, and prove it by induction.

Problem 1.5. What is wrong with the following “proof”?12

9 ThispuzzlewouldbedifferentinFrench.
10Martin Gardner, Mathematical Magic Show, Knopf, New York, 1977, revised edition

published by the Mathematical Association of America, 1989, page 137.
11 Themissingentryisinbasethree.
12Example paraphrased from Stephen B. Maurer and Anthony Ralston, Discrete Algo-

rithmic Mathematics, Addison-Wesley, 1991, page 172.
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Theorem (false). There are 2n sequences of 0’s and 1’s of length n with
the property that 1’s do not appear consecutively except possibly in the two
rightmost positions.

“Proof”. When n = 1, there two such sequences, so the theorem holds in the
base case. Suppose the theorem holds for a certain integer n, where n ≥ 1.
We can create sequences of length (n + 1) by appending either a 0 or a 1 to
the right-hand end of a sequence of length n; in the case of appending a 1, we
might produce a 11 at the right-hand end, but that is allowed. Hence there
twice as many sequences of length (n + 1) as there are of length n, so the
theorem is proved because 2 · 2n = 2n+1.

1.5 Additional Literature

• Jon Barwise and John Etchemendy, The Liar: An Essay on Truth and
Circularity, Oxford University Press, 1987. (BC199.P2 B37 1987)

• Bryan H. Bunch, Mathematical Fallacies and Paradoxes, Van Nostrand,
New York, 1982. (QA9 B847)

• Martin Gardner, Mathematical Magic Show, Knopf, New York, 1977,
updated and revised edition published by the Mathematical Association
of America, 1989.

• Joseph Heller, Catch-22, Simon and Schuster, New York, 1961. (PZ4
H47665 Cat)

• Patrick Hughes and George Brecht, Vicious Circles and Infinity: A
Panoply of Paradoxes, Doubleday, Garden City, NY, 1975. (BC199.P2
H83)

• J. L. Mackie, Truth, Probability and Paradox: Studies in Philosophical
Logic, Oxford University Press, 1973. (BC171.M24)

• Stephen B. Maurer and Anthony Ralston, Discrete Algorithmic Mathe-
matics, Addison-Wesley, 1991.

• Simon Plouffe and N. J. A. Sloane, The Encyclopedia of Integer Se-
quences, San Diego, Academic Press, 1995. (QA246.5.S66 1995)
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• W. V. Quine, The Ways of Paradox and Other Essays, revised and en-
larged edition, Harvard University Press, 1976. (B945.Q51 1976)

• R. M. Sainsbury, Paradoxes, Cambridge University Press, 1988. (BC199
P2 S25 1988)

• Raymond M. Smullyan, Alice in Puzzle-Land: A Carrollian Tale for
Children Under Eighty, Morrow, 1982, reprinted by Penguin, 1984.

• Raymond M. Smullyan, Forever Undecided: A Puzzle Guide to Gödel,
Knopf, New York, 1987. (QA9.65.S68 1987)

• Raymond M. Smullyan, Satan, Cantor and infinity, Knopf, 1992,
reprinted by Oxford University Press, 1993.

• Raymond M. Smullyan, The Lady or the Tiger?, Knopf, 1982, reprinted
by Times Books, 1992.

• Raymond M. Smullyan, This Book Needs No Title: A Budget of Liv-
ing Paradoxes, Prentice-Hall, Englewood Cliffs, NJ, 1980, reprinted by
Simon & Schuster, 1986. (PN6361.S6 1980)

• Raymond M. Smullyan, To Mock a Mocking Bird and Other Logic Puz-
zles, Knopf, New York, 1985. (GV1507.P43 S68 1985)

• Raymond M. Smullyan, What is the Name of This Book?, Prentice Hall,
1978, reprinted by Penguin, 1981.

• Richard H. Thaler, The Winner’s Curse: Paradoxes and Anomalies of
Economic Life, Free Press (Macmillan), New York, 1992. (HB199.T47
1992)



Chapter 2

Probability

If this were played upon a stage now, I could condemn it as an
improbable fiction. William Shakespeare

Twelfth Night
Act III, scene 4

2.1 Goals

• Understand the notion of discrete probability.

• Be able to count cases using permutations and combinations.

• Be able to calculate discrete probabilities.

• Be able to apply your knowledge of probability to unfamiliar situations.

2.2 Reading

1. “Chance and Chanceability”, Chapter VII, pages 223–264, of Mathemat-
ics and the Imagination by Edward Kasner and James Newman, Simon
and Schuster, 1940. This selection is an introduction to probability.

17
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2.3 Classroom Discussion

2.3.1 Warm up

Exercise 2.1. Either it will rain tomorrow, or it will not rain tomorrow.
Therefore the probability that it will rain tomorrow is 1/2. What is wrong
with this argument?

Exercise 2.2. The weather tomorrow is not a repeatable experiment, so what
does it mean when the weather forecast is “30% chance of rain tomorrow”?

Lest men suspect your tale untrue,
Keep probability in view. John Gay

1688–1732
The Painter who pleased Nobody and Everybody

2.3.2 Cards and coins

A typical sort of question in discrete probability is: “If two cards are dealt
from a standard deck,1 what is the probability that both are red?” Using the
principle that probability is computed as the number of favorable situations
divided by the number of all possible situations (assuming that all situations
are equally probable), you could compute this probability as the fraction(

26
2

)(
52
2

) =
25

102
≈ 0.245

(where
(

n
k

)
= n!

k!(n−k)!
is the number of combinations of n things taken k at a

time).

Exercise 2.3. Why—since half the cards are red—is the answer not just the
product 1

2
· 1

2
= 1

4
?

If he does really think that there is no distinction between virtue
and vice, why, sir, when he leaves our houses let us count our
spoons. Samuel Johnson

Life of Boswell, Vol. ii, Chap. v, 1763
1You need to know that a standard deck of playing cards consists of four suits (spades ♠,

hearts ♥, diamonds ♦, and clubs ♣), the spades and clubs being black and the hearts and
diamonds being red, and each suit has thirteen cards (ace, two, three, . . . , ten, jack, queen,
king).
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Since the mathematical theory of probability had its beginnings in gam-
bling games, it is historically appropriate to analyze a popular modern gam-
bling game: poker. In the simplest version of poker, five cards are dealt from
a standard deck.

Exercise 2.4. Begin determining the probabilities of being dealt the following
poker hands. (Keep in mind that aces can count as either high or low.) You
will finish this exercise for homework.

1. A royal flush consists of the five highest cards in one suit. Examples are
♠A ♠K ♠Q ♠J ♠10 and ♦A ♦K ♦Q ♦J ♦10.

2. A straight flush consists of five consecutive cards in the same suit (but
excluding a royal flush). Examples are ♥K ♥Q ♥J ♥10 ♥9 and ♣10 ♣9
♣8 ♣7 ♣6.

3. Four of a kind is all four cards of the same rank together with any other
card. Examples are ♠J ♥J ♦J ♣J ♥3 and ♠7 ♥7 ♦7 ♣7 ♣10.

4. A full house consists of three of a kind together with a pair. Examples
are ♠K ♦K ♣K ♦3 ♣3 and ♥5 ♦5 ♣5 ♥10 ♣10.

5. A flush is five cards all of the same suit (but excluding all of the previous
cases). Examples are ♣A ♣7 ♣5 ♣3 ♣2 and ♠K ♠Q ♠10 ♠9 ♠7.

6. A straight is a sequence of five cards in order in mixed suits. Examples
are ♠A ♥K ♥Q ♠J ♣10 and ♠5 ♥4 ♥3 ♣2 ♥A.

7. Three of a kind means three cards of the same rank and two extra cards
(but excluding all of the previous cases). Examples are ♠A ♥A ♦A ♥9
♣7 and ♠3 ♥3 ♦3 ♣K ♦10.

8. Two pairs means two separate pairs and an extra card (but excluding all
of the previous cases). Examples are ♦K ♣K ♥7 ♣7 ♠9 and ♠10 ♣10
♥6 ♦6 ♣4.

9. One pair means two cards of the same rank and three other cards (but
excluding all of the previous cases). Examples are ♠A ♥A ♠6 ♦5 ♣3
and ♦9 ♣9 ♣10 ♦8 ♣3.

10. Nothing is any other hand not previously enumerated.
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If a “fair coin” is tossed, it has probability 1
2

of landing heads up, and
probability 1

2
of landing tails up. Actual United States coins are not precisely

fair, because one side is slightly hollowed out to form a relief image. The
lighter side with the head is slightly more likely to land facing up. Similar
considerations apply to the dice accompanying children’s games: the side with
six pips hollowed out is more likely to land up than the opposite heavier side
with only one pip hollowed out. (This effect is noticeable in the third decimal
place.)

There are many probability problems dealing with coins (or dice) that have
been weighted, so that the probabilities are different from the ordinary uni-
form distribution. In such cases, computing the number of favorable outcomes
divided by the number of possible outcomes is no longer a valid way to find the
probability of an event (because the outcomes are not equally likely). Instead,
one has to add the probabilities of the individual outcomes.

Exercise 2.5. If one coin has been weighted so that it comes up heads with
probability 1

3
, and a second coin has been weighted so that it comes up heads

with probability 1
4
, what is the probability that when the two coins are tossed,

one of them comes up heads and the other one comes up tails?

Let the worst come to the worst. Miguel de Cervantes
1547–1616

Don Quixote, Part i, Book iii, Chap. v

2.4 Problems

Problem 2.1. The problem of computing probabilities of results of coin tosses
for coins weighted in a specified way can be difficult, but it is routine in the
sense that all such problems use the same principle. Mathematically more
challenging is the inverse problem of determining the weights needed to pro-
duce specified probabilities. Three solutions are conceivable: more than one
set of weights will work, exactly one set of weights will work, or no set of
weights will work.

1. Can you weight two coins in such a way that if the two coins are tossed,
the three possible outcomes (both heads, both tails, or one head and one
tail) all have probability 1

3
? The two coins do not have to be weighted

the same as each other.



2.4. PROBLEMS 21

2. What about three coins? Can you weight them so that the four possible
outcomes (all heads, two heads and one tail, one head and two tails, all
tails) are equally likely?

3. Can you generalize to an arbitrary number of coins?

Problem 2.2. This problem was discussed by Sir Arthur Eddington:2

If A, B, C, D each speak the truth once in three times (indepen-
dently), and A affirms that B denies that C declares that D is a
liar, what is the probability that D was speaking the truth?

Problem 2.3. This problem sometimes goes by the name of “the secretary
problem.”

A hat has 100 slips of paper in it with different real numbers written on
them. The numbers are all different, but they need not be integers: they could
be −17π, or 10

√
2, or −22/7.

You reach into the hat, pull out slips of paper one at a time, and look
at each number. At any point, you may choose to stop. (If you get to the
last slip, you stop automatically.) If the last slip you draw has the largest
number on it (largest of all 100 numbers, both the numbers you have drawn
and the numbers that are left in the hat), then you win $10. Otherwise you
win nothing.

1. What is a reasonable strategy to use for playing this game? How should
you decide when to stop?

2. What is a reasonable amount to pay for the privilege of playing this
game? Ten cents? Fifty cents? One dollar? Two dollars?

Remarks

1. You may want to get started by considering a similar problem in which
there are only a small number of slips of paper, say four.

2. It is rather difficult to find an exact solution to the problem, but you
should be able to make some estimate of the expected value that is in
the right ballpark.

2New Pathways in Science, MacMillan, New York, 1935, page 121; but his solution is
disputed by other authors.
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3. There is an extensive literature about this problem and its relatives. In
its traditional formulation, the problem concerns a business executive
who is interviewing 100 secretaries for a job and wants to hire the best
one. Hence the name of “the secretary problem.”

2.5 Additional Literature

• Richard Durrett, The Essentials of Probability, Duxbury Press, Belmont,
CA, 1994. This is an undergraduate textbook.

• Sir Arthur Eddington, New Pathways in Science, MacMillan, New York,
1935. This is the source for “Eddington’s problem.”

• Edward Kasner and James Newman, Mathematics and the Imagination,
Simon and Schuster, New York, 1940, chapter VII.

• T. H. O’Beirne, Puzzles and Paradoxes, Oxford University Press, 1965.
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Graph Theory

I see my way as birds their trackless way.
I shall arrive,—what time, what circuit first,
I ask not; but unless God send his hail
Or blinding fire-balls, sleet or stifling snow,
In some time, his good time, I shall arrive:
He guides me and the bird. In his good time. Robert Browning

1812–1890
Paracelsus, Part i

3.1 Goals

1. Understand the notions of Eulerian graph, Hamiltonian graph, planar
graph, and dual graph.

2. Learn about Euler’s formula, its proof, and its consequences.

3. Become familiar with some famous problems of mathematics, such as
the traveling salesman problem, the Königsberg bridge problem, and the
four-color problem.

4. Experience the fun of discovering and creating mathematics.

23
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3.2 Reading

1. Richard J. Trudeau, Dots and Lines, Kent State University Press, 1976,
pages ix–27. This introduces the notion of a graph and gives some ex-
amples.

2. William Dunham, The Mathematical Universe, Wiley, New York, 1994,
pages 51–63. This is a biographical piece about Euler.

3. James R. Newman, The World of Mathematics, Volume One, Simon and
Schuster, New York, 1956, pages 570–580. This is a commentary on and
a translation of Euler’s original paper on the seven bridges of Königsberg.

4. Sir Edmund Whittaker, “William Rowan Hamilton,” Scientific Ameri-
can, May 1954, reprinted in Mathematics in the Modern World, Freeman,
San Francisco, 1968, pages 49–52. This is a biographical piece about
Hamilton.

5. Alan Tucker, The parallel climbers puzzle, Math Horizons, Mathematical
Association of America, November 1995, pages 22–24.

6. Frank Harary, Graph Theory, Addison-Wesley, 1969, chapter 1, pages
1–7.

7. Richard J. Trudeau, Dots and Lines, Kent State University Press, 1976,
chapter 4, pages 97–116.

8. The Traveling Salesman Problem, edited by E. L. Lawler, J. K. Lenstra,
A. H. G. Rinnooy Kan, and D. B. Shmoys, Wiley, New York, 1985, pages
1–15. This is a historical piece by A. J. Hoffman and P. Wolfe on the
traveling salesman problem.

9. Norman L. Biggs, E. Keith Lloyd, and Robin J. Wilson, Graph Theory
1736–1936, Oxford University Press, 1976, chapter 6, pages 90–108. This
is a historical piece including Kempe’s famous false proof of the four-color
theorem and Heawood’s correction.

10. Ralph P. Boas, Möbius shorts, Mathematics Magazine 68 (1995), no. 2,
127.
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3.3 Classroom Discussion

How sweet a thing it is to wear a crown,
Within whose circuit is Elysium
And all that poets feign of bliss and joy! William Shakespeare

King Henry VI
Part III, Act i, scene 2

3.3.1 Examples of graphs

cyclic The cyclic (or circuit) graph Cn is a connected graph having n vertices
each incident to exactly two edges.

complete The complete graph Kn has n vertices each of which is adjacent to
all the other vertices. The graph Kn has n(n− 1)/2 edges.

bipartite A bipartite graph has two sets of vertices, say red and blue, and
every edge of the graph has one red vertex and one blue vertex. The
complete bipartite graph Km,n has m red vertices, n blue vertices, and
an edge for each of the mn red-blue pairs of vertices.

utilities The utilities graph is the complete bipartite graph K3,3.

Platonic The Platonic graphs are formed by the vertices and edges of the
five regular Platonic solids: the tetrahedron, the cube (hexahedron), the
octahedron, the dodecahedron, and the icosahedron.

3.3.2 Eulerian graphs

Happy is the person who finds wisdom, and the person who gets
understanding, for the gain from it is better than gain from silver
and its profit better than gold. She is more precious than jewels,
and nothing you desire can compare with her. Long life is in her
right had; in her left hand are riches and honor. Her ways are ways
of pleasantness, and all her paths are peace. Proverbs 3:13-17

A graph is called Eulerian if there is a closed path in the graph that
traverses each edge once and only once. Finding such a path is sometimes
called the highway inspector problem. It is also the problem of tracing a graph
without backtracking and without lifting the pencil from the paper.
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C    or   K3 3 C    or  K4 2,2

K5
Utilities     K3,3
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tetrahedron cube

octahedron dodecahedron
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icosahedron
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Platonic Solids

tetrahedron hexahedron

octahedron dodecahedron

icosahedron
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Exercise 3.1. Which of the examples of graphs in section 3.3.1 are Eulerian?
For those that are, find Eulerian paths.

Euler’s seminal paper on the problem of the Königsberg bridges gives a
necessary condition for a graph to be Eulerian: each vertex should have even
degree. Euler implies, but does not prove, that the condition is also sufficient.

Exercise 3.2. Show that Euler’s condition is sufficient by finding an algorithm
for constructing Eulerian paths.

Hint: if you start anywhere and begin traversing edges at random, what
could go wrong?

A map is a special kind of connected planar graph: one which cannot be
broken into two pieces by removal of a single edge. (Such an edge is a bridge.)
In particular, a map cannot have a dangling edge. The faces of a map are
the connected components of its complement. The surrounding “ocean” (the
unbounded component of the complement) is ordinarily counted as a face.

The famous four-color theorem states that the faces of an arbitrary map
can be colored with (at most) four colors in such a way that no two faces
sharing an edge have the same color. It is an interesting problem to determine
which maps can be colored with fewer than four colors.

Evidently there are no interesting maps that can be colored with one color
(for such maps are all ocean).

Exercise 3.3. Which maps can be colored with two colors?

3.3.3 Hamiltonian graphs

While fancy, like the finger of a clock,
Runs the great circuit, and is still at home. William Cowper

1731–1800
The Task, Book iv

The Winter Evening, line 118.

A graph is called Hamiltonian if there is a closed path in the graph that
includes each vertex (other than the vertex that is the common start and end
of the path) once and only once.

Exercise 3.4. Which of the examples of graphs in section 3.3.1 are Hamilto-
nian? For those that are, find Hamiltonian paths.
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It is noteworthy that finding a characterization of Hamiltonian graphs
(analogous to Euler’s theorem for Eulerian graphs) is an unsolved problem.1

Many theorems about Hamiltonian graphs say, roughly speaking, that if a
graph has “enough” edges, then it is Hamiltonian.

Exercise 3.5. Show that a complete graph is Hamiltonian.

Exercise 3.6. If new edges are added to a Hamiltonian graph (without chang-
ing the set of vertices), then the resulting graph is still Hamiltonian.

Exercise 3.7. Prove Dirac’s theorem: if the degree of each vertex in a graph
is at least half the total number of vertices, then the graph is Hamiltonian. (It
is assumed that there are at least three vertices, and that there are no multiple
edges or loop edges).

Hint: Proof by contradiction. If the graph is not Hamiltonian, add edges
until it is “just barely” non-Hamiltonian. Take a non-closed path through all
the vertices and examine the collections of vertices adjacent to the beginning
and the end of the path.

3.3.4 Euler’s formula

Exercise 3.8. For those examples of graphs in section 3.3.1 that happen to be
planar, count the number v of vertices, the number e of edges, the number f
of faces, and then compute the quantity v − e + f .

Exercise 3.9. Euler’s formula says that v − e + f = 2 for every connected
planar graph.

1. Find a proof of Euler’s formula by induction on the number of faces.

2. Find a proof of Euler’s formula by induction on the number of edges.

Exercise 3.10. Deduce the following facts from Euler’s formula.

1. e ≤ 3v − 6 for every simple, connected, planar graph with at least three
vertices.

2. The complete graph K5 on five vertices is not planar.

3. Every simple planar graph has a vertex of degree at most five.

1It is known that the problem of determining whether or not a given graph contains a
Hamiltonian cycle is an NP-complete problem.
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3.3.5 Coloring graphs

As geographers, Sosius, crowd into the edges of their maps parts
of the world which they do not know about, adding notes in the
margin to the effect that beyond this lies nothing but sandy deserts
full of wild beasts, and unapproachable bogs. Plutarch

Life of Theseus

If G is a planar graph, we form the dual graph by placing a vertex in each
face of G, and for each edge of G that is incident to two faces, we make an
edge in the dual graph that joins the vertices inside the two incident faces.
For bridge edges of G, we get a loop edge in the dual graph.

Exercise 3.11. Determine the duals of the five Platonic graphs. (They turn
out to be Platonic graphs again.)

Since maps have no bridge edges (by definition), the dual of a map is partic-
ularly simple to write down. It is clear that face colorings of maps correspond
to vertex colorings of their dual graphs, so it is enough to study vertex coloring
problems (which are technically simpler than face coloring problems).

Exercise 3.12. For each Platonic graph, determine the number of colors
needed to color its faces so that adjacent faces are different colors; also de-
termine the number of colors needed to color its vertices so that adjacent
vertices are different colors.

Exercise 3.13. Prove by induction on the number of vertices that every planar
graph is (vertex) six-colorable.

3.4 Problems

It is a melancholy of mine own, compounded of many simples,
extracted from many objects, and indeed the sundry contemplation
of my travels, in which my often rumination wraps me in a most
humorous sadness. William Shakespeare

As You Like It, Act iv, scene 1

Problem 3.1. The complete tripartite graph Kr,s,t consists of three sets of
vertices (of sizes r, s, and t), with an edge joining two vertices if and only if
the vertices lie in different sets.
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1. How many edges does Kr,s,t have?

2. Under what conditions on r, s, and t is Kr,s,t an Eulerian graph?

Problem 3.2. Turán’s extremal theorem: If a graph (with no loops and no
multiple edges) has 2k vertices, but contains no triangles, then the graph has
at most k2 edges. Give a proof by induction, and show by example that this
upper bound is attained.

Problem 3.3. In any gathering of six people, there must be either three people
who all know each other, or three people who are all strangers to each other.
Prove this, and reformulate it as a statement about graphs.

Problem 3.4. Let G be a graph (with no loops or multiple edges). Define
the line graph L(G) to be the graph having one vertex for each edge of G, two
vertices of L(G) being joined by an edge if and only if the corresponding edges
of G have a common vertex.

1. Prove that if G is Eulerian, then so is L(G).

2. Is the converse true? Prove or give a counterexample.

3. Characterize the graphs that are isomorphic to their line graphs.

Problem 3.5. Show that the line graph of an Eulerian graph is Hamiltonian.

Problem 3.6. The mail carrier problem asks for necessary and sufficient con-
ditions on a graph for the existence of a closed path that includes each edge
of the graph exactly twice. (A mail carrier must traverse both sides of each
street.) Solve the problem.

Problem 3.7. At a dinner party, there are 2n guests to be seated at a round
table. Each guest knows n of the other guests. Show that it is possible to seat
the guests so that each is between two acquaintances.

Problem 3.8. Characterize the graphs admitting a path that is simultane-
ously Eulerian and Hamiltonian. Exhibit, on the other hand, a graph not of
this type that is nonetheless simultaneously Eulerian and Hamiltonian.

Problem 3.9. Apply Euler’s formula v − e + f = 2 to prove that the only
regular polyhedra are the tetrahedron, the cube, the octahedron, the dodec-
ahedron, and the icosahedron. (A regular polyhedron has congruent regular
polygons for faces, and all of its vertex angles are equal.)
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Problem 3.10. 1. Show that the (nonplanar) utilities graph K3,3 can be
drawn on the surface of a torus (donut) in such a way that no edges
cross.

2. Show that the (nonplanar) complete graph K5 on five vertices can be
drawn on the surface of a torus in such a way that no edges cross.

Problem 3.11. Prove by induction on the number of vertices that every
planar graph is (vertex) five-colorable. This can be done by adapting Kempe’s
false proof of the four-color theorem, or by using the fact (Exercise 3.10) that
a planar graph cannot contain K5.

3.5 Additional Literature

1. Martin Aigner, Turán’s graph theorem, American Mathematical Monthly
102 (1995), 808–816.

2. Fred J. Rispoli, Applications of subgraph enumeration, in Applications
of Discrete Mathematics, edited by John G. Michaels and Kenneth
H. Rosen, McGraw-Hill, 1991, chapter 14, pages 241–262.



Chapter 4

Number Theory

In numbers warmly pure and sweetly strong. William Collins
1720–1756

Ode to Simplicity

4.1 Goals

1. Recall or learn basic facts about the integers.

2. Appreciate the breadth of easily stated, unsolved problems that exist in
number theory, especially problems about the integers.

3. Learn about Fermat’s Little Theorem, Euler’s φ function, and Euler’s
generalization of Fermat’s Little Theorem.

4. Learn about and know how to use the Chinese Remainder Theorem to
solve systems of equations exactly.

4.2 Reading

Then feed on thoughts, that voluntarie move
Harmonious numbers. John Milton

1608-1674
Paradise Lost, Book III, lines 37–38

35
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Mathematical Mystery Cruise, pages 152–161, Freeman, 1990.

3. Victor Klee and Stan Wagon, Old and New Unsolved Problems in
Plane Geometry and Number Theory, Dolciani Mathematical Exposi-
tions, No. 11, Mathematical Association of America, 1991, pages 173–181
and 203–214.

4. Robert Gray, “Georg Cantor and transcendental numbers,” American
Mathematical Monthly 101 (1994), no. 9, 819–832.

5. David M. Bloom, “A one-sentence proof that
√

2 is irrational,” Mathe-
matics Magazine 68 (1995), no. 4, 286.

6. Vincent P. Schielack, Jr., “Math Bite: A quick counting proof of the
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√
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7. Ivan Niven, “A simple proof that π is irrational,” Bulletin of the Amer-
ican Mathematical Society, 53 (1947), 509.

8. Excerpts from Ivan Niven, Irrational Numbers, Mathematical Associa-
tion of America, 1967, pages 16–27, 117–118, and 131–133.

9. Excerpt on Fermat theorems, in A source book in mathematics, 1200-
1800, edited by Dirk Jan Struik, Harvard University Press, 1969, 1987,
reprinted by Princeton University Press, pages 26–29.

10. Kenneth H. Rosen, Elementary Number Theory and Its Applications,
third edition, Addison-Wesley, 1992, pages 166–170 (the perpetual cal-
endar).

11. Sue Geller, “Exact Solutions to Linear Systems,” 1997.
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4.3 Classroom Discussion

4.3.1 Basic Number Theory

As yet a child, nor yet a fool to fame,
I lisp’d in numbers, for the numbers came. Alexander Pope

1688-1744
Epistle to Dr. Arbuthnot, Prologue to the Satires, line 127

Theorem (Fundamental Theorem of Arithmetic). Suppose x is an in-
teger larger than 1. Then x can be written uniquely in the form

x = pn1
1 pn2

2 . . . pnm
m ,

where the pi are prime numbers ordered so that p1 < p2 < · · · < pm, and the ni

are positive integers.

Exercise 4.1. Prove the Fundamental Theorem of Arithmetic by induction.

You are familiar with various classes of numbers: the integers Z, the ra-
tional numbers Q, the real numbers R, and the complex numbers C. We
know that Z ⊂ Q ⊂ R ⊂ C. Often we separate the real numbers into the
rational numbers and the irrational numbers, but there are two other common
designations for real (and complex) numbers: algebraic and transcendental.

Definition. A (complex) number is called algebraic if it is a root of some
polynomial with integer coefficients.

For example, 2,
√

2 and i =
√−1 are algebraic since they are roots of the

polynomials x− 2, x2 − 2, and x2 + 1 respectively. Notice that if a number α
is a root of a polynomial p(x) = anxn +an−1x

n−1 + · · ·+a1x+a0 with rational
coefficients, then α is also the root of a polynomial with integer coefficients:
namely d · p(x), where d is the least common multiple of the denominators of
a0, a1, . . . , an.

Definition. A (complex) number is called transcendental if it is not algebraic.

Showing that a number is transcendental is the same as showing that it
is not the root of any polynomial with integer coefficients. Since it is time
consuming (not to say impossibly long!) to check every polynomial, one uses
a proof by contradiction to show that a number α is transcendental. Suppose
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that α is algebraic: then . . . ? The trick is to find a contradiction. These
proofs are generally not easy.

You are probably aware that e and π are transcendental numbers. It is
somewhat easier to prove the weaker statement that e and π are irrational
numbers. You will explore this in the reading.

Take care of Number One. Modern saying

Exercise 4.2. The first expedition to Mars found only the ruins of a civiliza-
tion. The explorers were able to translate a Martian equation as follows:

5x2 − 50x + 125 = 0 ) x = 5 or x = 8.

This is strange mathematics! The value x = 5 seems legitimate enough, but
x = 8 requires explanation. If the Martian number system developed in a
manner similar to ours, how many fingers did the Martians have?

Exercise 4.3. If Annebase 8−Annebase 5 = Annebase 7, then what digits do the
letters A, n, and e represent?

4.3.2 Unsolved Problems

Why is it that we entertain the belief that for every purpose odd
numbers are the most effectual? Pliny the Elder

23–79 a.d.
Natural History, Book xxviii, sec. 23.

The god delights in odd numbers.
(Numero deus impare gaudet.) Virgil

70–19 b.c.
Eclogue VIII.75

Pierre de Fermat (1601–1665) wrote the following claim in the margin of a
book by Diophantus and added that the margin was too small to contain the
proof.

Theorem (Fermat’s Last Theorem). If n is an integer greater than 2, then
there are no positive integers x, y, and z such that xn + yn = zn.
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For more than three centuries mathematicians tried to prove this claim,
and recently Wiles and Taylor succeeded in completing a proof.1 The claim,
though curious in its own right, doesn’t seem to have any use other than being
pretty (excuse enough). Actually the following mathematics was developed in
the attempts to prove Fermat’s Last Theorem.

• Noetherian Rings

• Elliptic Curves

• Projective Plane

• Cyclotomic Extensions

• Modular forms

• Shimura and Taniyama-Weil Conjectures

One of our resident number theorists, Doug Hensley, who loves problems,
was asked for some unsolved problems that he particularly likes and that are
easy to state. The following is his reply.

Unsolved Problem 4.1. If the second difference of a sequence (a, b, c, d, e)
of squares of positive integers in ascending order is (2, 2, 2), does it follow that
there exists an n so that a = n2, b = (n + 1)2, c = (n + 2)2, d = (n + 3)2,
e = (n + 4)2?

(The difference of a sequence in ascending order (a, b, c, d, e) is the sequence
(b−a, c−b, d−c, e−d). The difference of the difference is the second difference:
(c− 2b + a, d− 2c + b, e− 2d + c). An example of such a sequence of squares
is (4, 9, 16, 25, 36).)

The betting is that the answer is “yes,” and if so it would have interesting
consequences for Diophantine equations and formal logic.

Unsolved Problem 4.2. Let π(x) denote the number of primes from 2 to x,
counting 2, and counting x if it is prime. Do there exist positive integers x
and y (both larger than 2 to avoid trivial counterexamples) so that π(x+y) >
π(x) + π(y)?

1Andrew Wiles, Modular elliptic curves and Fermat’s last theorem, Annals of Mathemat-
ics (2), 141 (1995), number 3, 443–551; Andrew Wiles and Richard Taylor, Ring-theoretic
properties of certain Hecke algebras, Annals of Mathematics (2), 141 (1995), number 3,
553–572.
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Again, the betting is that the answer is “yes,” but the prospects of hitting
upon x and y in a random search are slim. The first example probably involves
very large x or y.

Round numbers are always false. Samuel Johnson
1709–1784

Boswell’s Life of Johnson, vol. iii, p. 226 (30 March 1778)

Here are some books of unsolved problems; one of your readings is taken
from the second one.

• Unsolved Problems in Number Theory, by Richard K. Guy, Problem
Books in Mathematics, Volume 1, Springer-Verlag, 1981.

• Old and New Unsolved Problems in Plane Geometry and Number The-
ory, Victor Klee and Stan Wagon, Dolciani Mathematical Expositions,
No. 11, Mathematical Association of America, 1991.

4.3.3 Fermat’s Little Theorem and Euler’s Generaliza-

tion

Knowledge is more than equivalent to force. Samuel Johnson
1709–1784

The History of Rasselas, Prince of Abissinia, Chapter 13

Definition. We say a ≡ b (mod n) if and only if b − a is divisible by n. For
example, 27 ≡ 13 (mod 7).

Exercise 4.4. Prove that congruence (mod n) is an equivalence relation on
the integers.

Definition. The set of equivalence classes (mod n) is denoted by Zn.

Exercise 4.5. Prove that addition and multiplication are well defined in Zn.
What are the units (elements with multiplicative inverses) in Zn?

But what minutes! Count them by sensation, and not by calendars,
and each moment is a day, and the race a life.

Benjamin Disraeli, Earl Beaconsfield
(1805–1881)

Sybil, Book i, Chapter ii
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Exercise 4.6 (The perpetual calendar). Derive a formula that gives the
day of the week of any day of any year in the Gregorian calendar. (The
calendar in current use is called the Gregorian calendar because Pope Gregory
set it up in 1582.) Care must be used in dealing with historical dates because
different countries adopted the Gregorian calendar at different times. Britain
and its colonies did not adopt the Gregorian Calendar until 1752. We were
not the last to convert: Greece did not change over until 1923.

Proceed as follows. For days of the week, work modulo 7: Sunday = 0,
Monday = 1, . . . , Saturday = 6. For months, work modulo 12; since the extra
day in leap year is in February, it is convenient to start in March: March = 1,
April = 2, . . . , February = 12. Thus, January and February are viewed as
part of the previous year. For example, February 1984 is the 12th month of
1983 in this system. Use the following notation.

• W is the day of the week (0, 1, 2, 3, 4, 5, 6).

• k is the day of the month (1, 2, . . . , 31).

• m is the month (1, . . . , 12).

• C is the century.

• Y is the particular year of the century (0, 1, . . . , 99).

• N = 100C + Y is the year (for example, 1996 = N = 100C + Y where
C = 19 and Y = 96).

• dN is the day of the week of March 1 in year N .

The year Y is a leap year if Y 6= 0 and Y is divisible by 4 (notice that Y is
divisible by 4 if and only if N is divisible by 4), or if Y = 0 and N is divisible
by 400. For example, the years 1996 and 2000 are leap years, but the year
1900 is not a leap year.

1. Find dN . Since dN ≡ dN−1 + ε (mod 7), where ε equals 2 in a leap
year and 1 otherwise, you can find dN by counting leap years from some
reference date (say 1600). In 1995, March 1 was a Wednesday.

2. Next find the first day of month m in year N . You can do this by finding
a function f(m) that matches the shift in the day of the week from
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March to month m. Hint: What is the average shift? You can express
the function f by using the function bxc that represents the greatest
integer less than or equal to x.

3. Adjust for the kth day of the month and gather the final formula for
W ≡ dN + f(m) + k − 1 (mod 7).

Theorem (Fermat’s Little Theorem). Suppose a is a positive integer, and
p is a prime number that does not divide a. Then ap−1 ≡ 1 (mod p).

Soft is the Strain when Zephyr gently blows,
And the smooth Stream in smoother Numbers flows;
But when loud Surges lash the sounding Shore,
The hoarse, rough Verse shou’d like the Torrent roar.

Alexander Pope
(1688–1744)

An Essay on Criticism, Part II

Exercise 4.7. Use induction to prove Fermat’s Little Theorem.

Fermat’s Little Theorem is quite useful in computing (mod n). Here is an
example mod 7:

(12)53 = ((12)6)8 · (12)5

≡ 18 · 55 (mod 7)

= (25)2 · 5
≡ 42 · 5 (mod 7)

≡ 10 (mod 7)

≡ 3 (mod 7).

However, to use Fermat’s Little Theorem one must have a prime modulus, a
luxury that does not always arise. Euler noticed that p− 1 is the number of
units in Zp when p is prime, so he made the following definition.

Definition (Euler’s φ Function). When n is a positive integer, φ(n) is the
number of integers between 1 and n (inclusive) that are relatively prime to n.

For example, φ(12) = 4 because the four numbers 1, 5, 7, 11 are relatively
prime to 12.
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Exercise 4.8. Find a formula for φ(n) as follows.

1. Find φ(pr) when p is a prime.

2. Prove that φ(st) = φ(s)φ(t) when s and t are relatively prime. (You
may want to start with the case that s and t are primes.)

Exercise 4.9. Compute φ(54) by applying the result of the previous exercise.

Theorem (Euler’s generalization of Fermat’s little theorem). If x
and n are positive integers that are relatively prime, then xφ(n) ≡ 1 (mod n).

Exercise 4.10. Compute 2586 (mod 21) by applying the previous theorem.

Exercise 4.11. Use induction to prove Euler’s generalization of Fermat’s little
theorem.

4.3.4 Chinese Remainder Theorem

And wisely tell what hour o’ the day
The clock does strike, by algebra. Samuel Butler

(1612–1680)
Hudibras, Part I, Canto i, line 125

Suppose we want to solve the pair of congruences x ≡ 4 (mod 7) and
x ≡ 14 (mod 30) for x. (This could be asking to find a day of the week and a
time of the month in terms of the entire year.) Is there a solution? What is
a good way to find it? The ancient Chinese worked out a method that is still
computationally viable.

Theorem (Chinese Remainder Theorem). Every system of congruences

x ≡ a1 (mod m1)

x ≡ a2 (mod m2)

...

x ≡ ak (mod mk),

where the mi are pairwise relatively prime, has a solution. Furthermore, every
two solutions are congruent mod M , where M = m1m2 . . .mk.
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Exercise 4.12. Prove the Chinese Remainder Theorem constructively as fol-
lows.

1. If Mi = M/mi, then what is gcd(Mi, mi)?

2. Find a way to determine ci so that ciMi ≡ 1 (mod mi).

3. Use the ai, ci, and Mi to get a formula for a solution x0.

4. Show that if x1 ≡ ai (mod mi) for all i, then x1 ≡ x0 (mod M).

Exercise 4.13. Use the Chinese Remainder Theorem to solve the following
pair of congruences for x.

x ≡ 4 (mod 7)

x ≡ 14 (mod 30)

4.3.5 Exact Solutions to Systems of Equations

Now noisy, noxious numbers notice nought,
Of outward obstacles o’ercoming ought;
Poor patriots perish, persecution’s pest!
Quite quiet Quakers “Quarter, quarter” quest;
Reason returns, religion, right, redounds,
Suwarrow stop such sanguinary sounds!

Alliteration, or the Siege of Belgrade: a Rondeau

In this age of computers, round-off errors can be a major problem. Con-
sequently, it is to our advantage to solve systems of equations using integer
arithmetic. A method for doing this was in the reading.

Exercise 4.14. Solve the following system of equations, first by picking a large
enough prime and using the procedure of the reading, and then by picking a
large enough composite of small primes and using the procedure of the reading
and the Chinese Remainder Theorem.

5x1 − 3x2 = 3

4x1 − x2 = 6
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4.4 Problems

For words are wise men’s counters; they do but reckon by them:
but they are the money of fools. Thomas Hobbes

(1588–1679)
Leviathan, Part I, Chapter IV

Problem 4.1. So that we may start with a common vocabulary, please review
the following concepts that are often used in number theory.

• a divides b or a | b (for integers a and b)

• prime number

• relatively prime

• gcd or greatest common divisor

• lcm or least common multiple

• division algorithm

• Euclidean algorithm

• linear combination

Number theory has intrigued many people, non-mathematicians and math-
ematicians alike. Problems in number theory come in many varieties at various
levels of complexities. The following are some fun ones for you to solve. (Have
fun. That is an order!)

4.4.1 Cryptoanalysis

Problem 4.2. The depression was no joke, but this joke came out of the
depression. The different letters represent different digits. Find them.

USA + FDR = NRA
USA + NRA = TAX
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Problem 4.3. Our good friend and eminent numerologist, Professor Euclide
Paracelso Umbugio, has been busily engaged testing on his calculator the
81 · 109 possible solutions to the problem of reconstructing the following exact
long division problem in which digits indiscriminately were each replaced by x.

Deflate the Professor! That is, reduce the possibilities to (81 · 109)0.

x x 8 x x
x x x x x x x x x x x

x x x
x x x x

x x x
x x x x
x x x x

(This problem is at least half a century old, but the original source is unknown.
The problem appeared, for example, as problem E 1111 in the American Math-
ematical Monthly in 1954.)

Problem 4.4. Each letter represents a distinct digit in the decimal scale.
Identify the digits.

7 · (FRY HAM) = 6 · (HAMFRY )

Problem 4.5. Each letter represents a distinct digit in the decimal scale.
Identify the digits.2

(NAUGHT )3 = (ZERO)4

Problem 4.6. After making an ordinary arithmetic multiplication, a student
replaced every even digit with E and every odd digit with O. The result is
shown below. What was the multiplication?

O E E
E E

E O E E
E O E
O O E E

2Alan Wayne, Journal of Recreational Mathematics 12 (1980), 288.
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4.4.2 Other types of number puzzles

Problem 4.7. On April 1, 1946, the Erewhon Daily Howler carried the fol-
lowing item: “The famous astrologer and numerologist of Guayazuela, the
Professor Euclide Paracelso Bombasto Umbugio, predicts the end of the world
for the year 2141. His prediction is based on profound mathematical and his-
torical investigations. Professor Umbugio computed the value of the formula

1492n − 1770n − 1863n + 2141n

for n = 0, 1, 2, 3, and so on, up to 1945, and found that all the numbers
which he obtained in many months of laborious computation are divisible by
1946. Now, the numbers 1492, 1770, and 1863 represent memorable dates:
the Discovery of the New World, the Boston Massacre, and the Gettysburg
Address. What important date may 2141 be? That of the end of the world,
obviously.”

Deflate the professor! Obtain his result with little computation.

Problem 4.8. Not all large numbers are hard to factor. Find all the prime
factors of 1, 000, 027 by hand, without much work.

This is the third time; I hope good luck lies in odd numbers. Away
I go. They say there is divinity in odd numbers, either in nativity,
chance, or death. William Shakespeare

The Merry Wives of Windsor, Act V, Scene i

What I tell you three times is true. Lewis Carroll
The Hunting of the Snark: an Agony in Eight Fits

Problem 4.9. If p1 and p2 are consecutive odd primes (that is, p2 − p1 = 2),
then p1 + p2 is even, and so can be written in the form 2q. Show that q is
composite.

Problem 4.10. Does there exist a positive integer whose prime factors include
at most the primes 2, 3, 5, 7, and which ends in the digits 11? If so, find the
smallest such positive integer; if not, show why none exists.

Problem 4.11. In which bases b are 35base b and 58base b relatively prime?

Problem 4.12. Show that an integer in an odd base system is odd in the
base 10 system if and only if it has an odd number of odd digits. (For example,
111base 3 is 9 + 3 + 1 = 13 in base 10 and is odd.)
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The above puzzles were taken from

• 150 Puzzles in Crypt-Arithmetic, by Maxey Brooke, 2nd rev. ed., Dover,
New York, 1969.

• Mathematical Quickies, by Charles W. Trigg, Dover, New York, 1985.

• The Wohascum County Problem Book, by George T. Gelbert, Mark
I. Krusemeyer, and Loren C. Larson, Dolciani Mathematical Exposi-
tions, No. 14, Mathematical Association of America, 1993.

Problem 4.13 (Fractals with Moduli). For the first 10 lines of Pascal’s
Triangle, replace the odd numbers by black squares and the even numbers by
white squares. Conjecture a formula for which rows are all black. See if you
can prove your formula.

Problem 4.14 (Perpetual Calendar). 1. Is the probability that Christ-
mas falls on a Wednesday equal to 1/7? Prove or disprove.

2. True or False: The 13th of the month falls on Friday more often than
any other day. How might you go about justifying your answer? If the
method is long or tedious, just give a method.

Problem 4.15. Use Fermat’s Little Theorem and modular arithmetic to com-
pute the following by hand (not computer).

1. (3100)76 (mod 17). Give an answer between 0 and 16.

2. (200)37 (mod 21). Give an answer between 0 and 20.

3. Prove that n33 − n is divisible by 15 for every positive integer n.

Problem 4.16. Use the Chinese Remainder Theorem and both the techniques
(taking M prime or composite) from the reading “Exact Solutions to Systems
of Equations” to solve the following system.

3x1 + x2 = 1

2x1 + 3x2 = 2
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Priestley was the first (unless it was Beccaria) who taught my lips
to pronounce this sacred truth, that the greatest happiness of the
greatest number is the foundation of morals and legislation.

Jeremy Bentham
(1748–1832)

The Commonplace Book (Works, volume x, page 142)

That action is best, which procures the greatest happiness for the
greatest numbers. Francis Hutcheson

(1694–1746)
Treatise II. Concerning Moral Good and Evil, section 3, line 8





Chapter 5

Codes

Mastering the lawless science of our law,—
That codeless myriad of precedent,
That wilderness of single instances. Alfred, Lord Tennyson

(1809–1892)
Aylmer’s Field

5.1 Goals

1. Learn some cryptography, especially what RSA codes are and how to
use them.

2. Learn about error-correcting codes and their uses.

3. Gain an appreciation of the usefulness of some mathematics that was
originally studied for its beauty, not its utility.

5.2 Reading

Such graves as his are pilgrim shrines,
Shrines to no code or creed confined,—
The Delphian vales, the Palestines,
The Meccas of the mind. Fitz-Greene Halleck

(1790–1867)
Burns
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1. Kenneth H. Rosen, Elementary Number Theory and Its Applications,
third edition, Addison-Wesley, 1992, 234–245.

2. Joseph Gallian, “Math on Money,” Math Horizons, Mathematical Asso-
ciation of America, November, 1995, 10–11.

3. R. L. Rivest, A. Shamir, and L. Adleman, “A Method for Obtain-
ing Digital Signatures and Public-Key Cryptosystems,” Communica-
tions of the ACM 21 (1978), 120–126. Available as LATEX source and
as PostScript on Rivest’s home page at http://theory.lcs.mit.edu/

~rivest/publications.html.

4. Sue Geller, An Introduction to Error-Correcting Codes, 1997.

5. Daniel Pedoe, The Gentle Art of Mathematics, Macmillan, 1959 (Collier,
1963; Dover, 1973), pages 18–21 (excerpt on Nim).

5.3 Classroom Discussion

5.3.1 Cryptography

When cryptography is outlawed, bayl bhgynjf jvyy unir cevinpl.
Anonymous

In the reading, you learned about Caesar ciphers and shift transformations.
A product cipher is simply the composition of two (or more) ciphers.

Exercise 5.1. 1. Find the product cipher obtained by using the transfor-
mation C1 ≡ 5P + 13 (mod 26) followed by the transformation C2 ≡
17P + 3 (mod 26). (Rosen, exercise 15 on page 243)

2. Find the product cipher obtained by using the transformation C1 ≡
aP + b (mod 26) followed by the transformation C2 ≡ cP +d (mod 26),
where gcd(a, 26) = gcd(c, 26) = 1. (Rosen, exercise 16 on page 243)

Instead of enciphering each letter of a plaintext message in the same way,
we can vary how we encipher letters. For example, a Vigenère cipher operates
in the following way. A sequence of letters `1, `2, . . . , `n, with numerical
equivalents k1, k2, . . . , kn, serves as the key. Plaintext messages are split into
blocks of length n. To encipher a plaintext block of letters with numerical
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equivalents p1, . . . , pn to obtain a ciphertext block of letters with numerical
equivalents c1, . . . , cn, we use a sequence of shift ciphers with ci ≡ pi + ki

(mod 26) for each i.

Exercise 5.2. (Rosen, exercises 17 and 18, page 243.) Using a Vigenère cipher
with key SECRET and setting A = 0,

1. encipher the message DO NOT OPEN THIS ENVELOPE;

2. decipher the message WBRCSL AZGJMG KMFV.

5.3.2 RSA Code

Exercise 5.3. Given that n = 65 and d = 11 in an RSA code, find e.

Exercise 5.4. Does RSA encryption guarantee that the message is obscured?
Suppose that n = 15, and the block size is 2. How many of the allowable code
blocks are encoded to themselves when e = 3? when e = 5? That is, how
many X are there such that 0 ≤ X ≤ 14 and Xe ≡ X (mod n) when e = 3?
when e = 5?

Exercise 5.5. Use the square and multiply method to decode the message
28717160 when n = 77 and d = 13. (For the letter/number correspondence,
set A = 1.)

Exercise 5.6. The Evil Empire thinks it is clever. Their cryptographers tell
the world to send them messages in an RSA code with n = 10573 and e = 2531
and claim that this is a secure method. They know that education in Goodguy-
land has deteriorated, so that people know theorems such as the Fundamental
Theorem of Arithmetic, but have forgotten how to factor numbers as large
as n. A clever agent from Goodguyland steals the information (bribery is sus-
pected) that φ(n) = 10368. How can the Spooks of Goodguyland now decode
all the messages that the Evil Empire receives?

5.3.3 Error-Correcting Codes

Truth crushed to earth shall rise again,—
The eternal years of God are hers;
But Error, wounded, writhes with pain,
And dies among his worshippers. William Cullen Bryant

(1794–1878)
The Battle-Field
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Exercise 5.7. Prove that the distance function on code words is a metric;
that is, the distance function satisfies the following three properties.

1. d(u, v) = 0 if and only if u = v.

2. d(u, v) = d(v, u).

3. d(u, w) ≤ d(u, v) + d(v, w).

Exercise 5.8. Prove that the minimum distance between two code words in
a code C is d if and only if C can correct b(d − 1)/2c or fewer errors via
maximum-likelihood decoding.

Exercise 5.9. Let C be the binary code whose generator matrix is
 1 0 0 0 1 1

0 1 1 0 0 1
0 0 1 1 1 0


 .

1. Find a parity check matrix for C.

2. Determine the syndromes for C.

3. Construct the standard array for C.

4. Make a syndrome and coset leader table.

5. Use the table you constructed to decode 101111 and 111111.

6. Calculate the probability of decoding correctly assuming that the proba-
bility of correct transmission of a bit is p = 0.9. What is the probability
of receiving a message correctly if no coding is used?

Exercise 5.10. Construct a standard array for the ternary Hamming (4, 2, 3)
code. (Here q = 3 and r = 2.)

5.3.4 Nim

The game of Nim can be solved by using number theory or by using an area
of mathematics called game theory. We are going to discuss the game of Nim
as a bridge between the two areas. Nim is a two-person game that can be
played with any small objects, such as matches, tokens, poker chips, m&m’s,



5.4. PROBLEMS 55

chocolate chips. We will assume the use of matches. To start the game, some
piles of matches (it doesn’t matter how many piles, but three is typical), each
with an arbitrary number of matches, are placed on a flat surface. Each player
in turn can take as many matches as desired, but at least one, from any one
pile. The person who takes the last match wins. (In an alternate version of
the game, the person who takes the last match loses.)

For example, suppose there are 2, 7, 6 matches in the initial piles. If
Player A chooses to take three matches from the second pile, then there are
2, 4, 6 matches in the piles. If Player B takes all 6 matches of the third pile
(leaving 2, 4, 0 matches in the piles), then Player A should take two matches
from the second pile (leaving 2, 2, 0). If Player B takes both matches from one
pile, Player A can take both matches from the other pile and win. If Player B
takes one match from a pile, then Player A should take one match from the
other pile so that, whatever pile Player B chooses, Player A takes the last
match and wins.

Exercise 5.11. Devise a winning strategy for Nim in each of its versions. You
might want to try a few games first.

5.4 Problems

Errors, like straws, upon the surface flow;
He who would search for pearls must dive below. John Dryden

(1631–1701)
All for Love. Prologue

Problem 5.1. An affine transformation C ≡ aP +b (mod 26) was used to en-
cipher the message PJXFJ SWJNX JMRTJ FVSUJ OOJWF OVAJR WHEOF JRWJO

DJFFZ BJF. Use frequencies of letters to determine a and b and to recover
the plaintext.

Problem 5.2. Another type of cipher or cryptosystem is a replacement cipher:
let τ be a permutation of the alphabet, and apply τ to each letter of the
message. Frequency analysis is useful for breaking this type of code, just as
it was in the shift cipher. Decode the following, which was encoded using a
replacement cipher.
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MIZVN KXXHA XRRTK NXYEX QIZVI

IZXWM NXYGT JWVHC YTOXX QNHTI

JYTWV NMHUR XOYLN ZTJTE XYAZX

RWMHU XEMRK LIJYT WNWVR REXPV

IMTHN OTHIM HLVRR GYXCX VIXQ

--- NVWLX RBTZH NTH

Problem 5.3. Pick n, d, and e to use in your own public key cryptosystem,
and encrypt a message. Turn in the answer in two parts: first give the public
information and the encrypted message, and then give your decryption key
and the original message.

Problem 5.4. If the probability of a digit being received correctly is 0.9, what
is the probability of having a correct message after decoding the send-it-three-
times code with three information digits? How does this compare with the
probability of receiving a three-digit message correctly without any coding?

Problem 5.5. Find eight binary vectors of length 6 such that d(u, v) ≥ 3 for
every pair (u, v) of the vectors.

Problem 5.6. Is it possible to find nine binary vectors of length 6 such that
d(u, v) ≥ 3 for every pair (u, v) of the vectors?

Problem 5.7. Give generator and parity check matrices for the binary code
consisting of all even weight vectors of length 8.

Problem 5.8. If C is an (n, k, d) code with n > 1, prove that any vector of
weight b(d− 1)/2c or less is a unique coset leader.

Problem 5.9. Show that if d is the minimum weight of a code C, this weight d
is even, and t = b(d−1)/2c, then there are two vectors of weight t+ 1 in some
coset of C.

Problem 5.10. A generator matrix G = (I A) for the ternary (12, 6) Golay
code has

A =




0 1 1 1 1 1
1 0 1 2 2 1
1 1 0 1 2 2
1 2 1 0 1 2
1 2 2 1 0 1
1 1 2 2 1 0


 .

Show that this code has minimum weight 6.
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Problem 5.11. Let C be a perfect binary code with minimum weight 7. Show
that n = 7 or n = 23.





Chapter 6

Constructibility

It ’s wiser being good than bad;
It ’s safer being meek than fierce;
It ’s fitter being sane than mad.
My own hope is, a sun will pierce
The thickest cloud earth ever stretched;
That after Last returns the First,
Though a wide compass round be fetched;
That what began best can’t end worst,
Nor what God blessed once prove accurst. Robert Browning

(1812–1890)
Apparent Failure, vii

6.1 Goals

The measure of a man’s life is the well spending of it, and not the
length. Plutarch

(circa 46–circa 120 a.d.)
Consolation to Apollonius

1. Understand what the Greeks meant by a number being constructible.

2. Understand what the Greeks meant by a figure being constructible.

3. Learn the algebra of polynomial rings.

4. Learn about extension fields.

59
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5. Be able to determine whether or not a given real number is constructible.

6.2 Reading

1. Sue Geller, Algebra for Constructibility, 1998.

2. Sue Geller, Factoring Polynomials, 1997.

6.3 Classroom Discussion

6.3.1 Classical Constructions

There ’s no art to find the mind’s construction in the face.
William Shakespeare

Macbeth, Act I, scene 4

The ancient Greeks knew about rulers, but only the kind that govern a
country. They did not have rulers for measurement, nor even an idea of stan-
dardized measurement—nor did the rest of the world. In fact, one of the
“standard” units of measurement, the cubit, was the length of the ruler’s
(e.g., king’s) right arm from the elbow to the end of the middle finger. An-
other standard measure was the “foot” which was the length of the ruler’s
right foot. So when the ruler changed, so did the length of the cubit and the
foot. It was even worse when the ruler was a growing child! Think about what
it meant to the economy to have a changing unit of length.

But the Greeks still wanted to create lengths and figures in a repeatable
way. They did have a straight-edge with which to draw lines and a compass
with which to draw circles. Their compasses would not stay open like ours do,
so they couldn’t just put the points at the ends of a line segment and copy
that segment elsewhere, but they did have a procedure to produce a reliable
copy. For our purposes, we will use the modern compass that can easily copy
a line segment.

A narrow compass! and yet there
Dwelt all that ’s good, and all that ’s fair;
Give me but what this riband bound,
Take all the rest the sun goes round. Edmund Waller

(1605–1687)
On a Girdle
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What the Greek mathematicians did was to start with a given unit of
length and to work from there. Their idea was that a number ` (a length)
is constructible if, starting with a given unit length, one can construct a line
segment of length |`| units in a finite number of steps using only a straight-edge
and a compass. By putting such line segments together (again with straight-
edge and compass), they could make various geometric figures. For example,
they could construct an equilateral triangle, a square, a regular pentagon, a
regular hexagon, an angle bisector, a perpendicular bisector, a perpendicular
from a point to a line, a line through a given point parallel to a given line,
and, of course, a circle. However, they could not figure out how to construct
a regular heptagon (a seven-sided figure), how to trisect every angle, or how
to construct a square with the same area as a given circle.

According to legend, the oracle at Delos told the Athenians that a plague
would end if they constructed a new altar to Apollo in the shape of a cube,
but with double the volume of the existing one. However, they found no way
to “double a cube” using straight-edge and compass constructions. The story
recorded by Eratosthenes, as it comes to us through Theon of Smyrna, shows
that public relations is an old art. When Plato was consulted, he declared the
meaning of the oracle to be not that Apollo required a new altar, but that the
Greeks needed to pay more attention to mathematics.

Double, double toil and trouble;
Fire burn, and cauldron bubble. William Shakespeare

Macbeth, Act iv, scene 1

The straight-edge and compass constructions at which the Greeks failed
were worked on for over two millennia until Gauss, Wantzel, Lindemann, and
others showed in the 1800s that these constructions are impossible. In this
chapter, you too will show the non-constructibility of the classical Greek ob-
jects. We start by looking at what lengths can be constructed.

Exercise 6.1. Suppose that α and β are constructible numbers. Show that
α + β, α− β, αβ, α/β (if β 6= 0), and

√
α (if α > 0) are constructible.

Recall that a field is a set that is closed under two binary operations, called
addition and multiplication, such that both operations are commutative and
associative, both have identities, the distributive laws hold, every element has
an additive inverse, and every non-zero element has a multiplicative inverse.
In Exercise 6.1 you proved that the set of constructible numbers is a subfield
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of the real numbers that is closed under taking square roots. The constructible
numbers are sometimes called the “surds”, although in keeping with the cog-
nate word “absurd”, a surd is strictly speaking an irrational number.

Yet what are all such gaieties to me
Whose thoughts are full of indices and surds? Lewis Carroll

Phantasmagoria

We can build the surds one step at a time. If F is a subset of K, and both
F and K are fields under the same operations, then we say that F is a subfield
of K and that K is an extension field of F .

Exercise 6.2. Let Q[
√

2 ] = {a + b
√

2 : a, b ∈ Q}. Show that this set is a
subfield of the field of real numbers.

We can continue to build the surds by finding an extension field of Q[
√

2 ]
that is also contained in the surds. Precisely how we do this will have to wait
for later.

Now we have a list of procedures for constructing new surds from old ones.
Is this list complete, or are there other ways to obtain constructible numbers?

For any subfield F of the real numbers we can think of the plane of F as the
set of points in the real plane that have both coordinates in F . Thus a line in F
has an equation ax+by+c = 0, where a, b, and c are elements of F . Likewise, a
circle in F has an equation of the form x2+y2+ax+by+c = 0, where a, b, and c
are elements of F . Since all our straight-edge and compass constructions are
done with lines and circles, all numbers that can be constructed from numbers
in F can be obtained from a sequence of intersections of lines and circles in F .
To prove the converse of Exercise 6.1, you must show that intersections of
two lines, a line and a circle, and two circles can be obtained using only field
operations and extraction of square roots.

Though pleased to see the dolphins play,
I mind my compass and my way. Matthew Green

(1696–1737)
The Spleen

Exercise 6.3. Show that the surds consist precisely of those real numbers
that can be obtained from the rational numbers by applying field operations
and taking square roots in some order a finite number of times.
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In order to double a cube, we need to be able to construct 3
√

2, which
doesn’t look like it can be done by a sequence of the operations of addition,
subtraction, multiplication, division, and extraction of square roots; but how
do you know that it can’t? To prove the impossibility, we need to take a side
path into the area of algebra called field extensions.

6.3.2 Polynomials and Field Extensions

Consider the lilies of the field, how they grow; they toil not, neither
do they spin. Matthew 6:28

We start with some material on polynomial rings as defined in the reading.

Exercise 6.4. Prove the following theorem and corollaries from the reading.

Theorem (Division Algorithm). Let f, g ∈ F [x], where F is a field and
g 6= 0 (or F is a ring and g is monic). Then there exist unique polynomials
q, r ∈ F [x] such that f = qg + r, where either r = 0 or deg(r) < deg(g).

Corollary 1 (Remainder Theorem). Let R be a ring, a ∈ R, and f ∈ R[x].
Then there exists a polynomial q ∈ R[x] such that f(x) = (x− a)q(x) + f(a).

Corollary 2 (Factor Theorem). The number a is a root of the polynomial f
(that is, f(a) = 0) if and only if the first-degree polynomial x − a is a factor
of f .

Corollary 3. A polynomial of degree n with coefficients in a field F (or in Z)
has at most n roots in F (or in Z).

For out of the old fieldes, as men saithe,
Cometh al this new corne fro yere to yere;
And out of old bookes, in good faithe,
Cometh al this new science that men lere. Geoffrey Chaucer

(1328–1400)
The Assembly of Fowles, line 22

Exercise 6.5. Use the first isomorphism theorem and the evaluation homo-
morphism to show that C ∼= R[x]/(x2 + 1).

Exercise 6.6. Prove the following result.
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Theorem. Suppose that F is a subfield of K, and α is an element of K
that is algebraic over F . If m is the minimal polynomial of α over F , then
F [α] ∼= F [x]/(m).

Exercise 6.7. Use the preceding theorem to prove the following corollary.

Corollary 4. If f ∈ F [x] is irreducible, then there is an extension field of F
that contains a root of f .

Exercise 6.8. Prove that if F ⊆ E ⊆ K is a tower of finite field extensions,
then [K : F ] = [K : E] [E : F ]. (Hint: Let {α1, . . . , αm} be a basis for E over
F , and let {β1, . . . , βn} be a basis for K over E. Can you construct a basis for
K over F ?)

6.3.3 Constructibility

If you choose to represent the various parts in life by holes upon
a table, of different shapes,—some circular, some triangular, some
square, some oblong,—and the persons acting these parts by bits of
wood of similar shapes, we shall generally find that the triangular
person has got into the square hole, the oblong into the triangular,
and a square person has squeezed himself into the round hole. The
officer and the office, the doer and the thing done, seldom fit so
exactly that we can say they were almost made for each other.

Sydney Smith
(1769–1845)

Sketches of Moral Philosophy

Now that we have the algebra machinery at hand, we can prove a theorem
that will allow us to test when a number is constructible.

Theorem. Let α ∈ R. Then α is constructible =⇒ [Q[α] : Q] = 2n for some
non-negative integer n. Equivalently, α is constructible =⇒ deg(irr(α,Q)) =
2n, where irr(α,Q) is the minimal polynomial of α over Q.

Actually the implication in the above theorem is an equivalence (if and
only if), but we need only the direction stated above and the proof of the
other direction uses material we have not studied.

Exercise 6.9. Prove the above theorem.
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Now it is easy to tell if a number is constructible. For example, consider
the case of doubling a cube. We want to know if 3

√
2 is constructible. We know

that 3
√

2 is a root of x3 − 2, and the other two roots are complex numbers.
Since none of the roots is rational, x3 − 2 is irreducible over Q. Therefore
[Q[ 3
√

2] : Q] = 3, which is not a power of 2. Thus 3
√

2 is not constructible, and
so we cannot double a cube using only straight-edge and compass.

Exercise 6.10. Show that a square with the same area as a circle of unit
radius is not constructible with straight-edge and compass.

In the next exercise you will see what angles are constructible by show-
ing that an angle θ is constructible if and only if cos θ is constructible. The
question then arises of how to find a minimal polynomial for cos θ. A com-
mon way to do this is to choose a positive integer n for which we know that
cos nθ is constructible, and to relate cos θ to cos nθ by De Moivre’s Theo-
rem. Since cos nθ + i sin nθ = (cos θ + i sin θ)n, we have in particular that
cos nθ = Re((cos θ + i sin θ)n).

For example, the binomial expansion implies that cos 3θ = Re((cos θ +
i sin θ)3) = cos3 θ−3 cos θ sin2 θ = cos3 θ−3 cos θ(1−cos2 θ) = 4 cos3 θ−3 cos θ.
If θ = 10◦, then cos 3θ = cos 30◦ =

√
3/2, so cos 10◦ satisfies the polynomial

equation
√

3/2 = 4x3 − 3x. Since
√

3/2 is not a rational number, we do not
yet have a candidate for a minimal polynomial for cos 10◦ over Q. However,
squaring both sides shows that cos 10◦ satisfies the polynomial equation 3/4 =
16x6 − 24x4 + 9x2. (Alternatively, one could directly express cos 6θ in terms
of cos θ.) An equivalent equation is 0 = 64x6 − 96x4 + 36x2 − 3, and since
64x6 − 96x4 + 36x2 − 3 is irreducible by Eisenstein’s criterion, it follows that
cos 10◦ is not constructible.

Exercise 6.11. 1. Show that the following are equivalent: the length cos θ
is constructible, the length sin θ is constructible, the angle θ is con-
structible.

2. Show that there is at least one angle that cannot be trisected using
straight-edge and compass.

3. Show that a regular pentagon is constructible using straight-edge and
compass.
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6.4 Problems

In arguing too, the parson own’d his skill,
For e’en though vanquish’d he could argue still;
While words of learned length and thundering sound
Amaz’d the gazing rustics rang’d around;
And still they gaz’d, and still the wonder grew
That one small head could carry all he knew. Oliver Goldsmith

(1728–1774)
The Deserted Village

Problem 6.1. Use the theorems from the handout on factoring to factor the
following polynomials over the rationals. Then factor them over the complex
numbers.

1. x4 − 9x3 − 8x + 72

2. 12x5 + 80x4 + 79x3 − 135x2 − 158x− 40

3. x4 − x3 − x2 − 5x− 30

4. x5 + x4 + x3 + x2 + x + 1

5. 20x6 + 28x5 + 23x4 − 35x3 − 55x2 + 7x + 12

Problem 6.2. Use Eisenstein’s Irreducibility Criterion to prove that 2x17 −
18x12 + 24x9 + 243x6 − 30x3 − 6 is irreducible over Q.

Problem 6.3. Let fp(x) = xp−1 + xp−2 + · · ·+ x + 1.

1. Show that when p is odd, the polynomial fp has no linear factors over
the rational numbers.

2. Use Eisenstein’s Irreducibility Criterion and a change of variables (say
x → y + 1) to prove that f5 is irreducible over the rational numbers.

3. Use Eisenstein’s Irreducibility Criterion to prove that for every prime
number p, the polynomial fp is irreducible over the rational numbers.
Hint: xp − 1 = (x− 1)fp(x).

Problem 6.4. Show that a regular 9-gon is not constructible using straight-
edge and compass.
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Problem 6.5. Show that a regular heptagon (7-gon) is not constructible using
straight-edge and compass.

Problem 6.6. Show that a regular 10-gon is constructible using straight-edge
and compass.

Problem 6.7. Show that a regular 20-gon is constructible using straight-edge
and compass.

Problem 6.8. Show that a regular 30-gon is constructible using straight-edge
and compass.

Problem 6.9. Show that an angle of 72◦ is constructible using straight-edge
and compass.

Problem 6.10. Show that a regular 15-gon is constructible using straight-
edge and compass.

Problem 6.11. Conjecture and prove what you can about the values of n
for which a regular n-gon is constructible using straight-edge and compass.
(For example, if a regular n-gon is constructible, is a regular 2n-gon, a regular
n/2-gon (for n even), a regular 3n-gon?)





Chapter 7

Game Theory

The game is up. William Shakespeare
Cymbeline, Act iii, scene 2

7.1 Goals

1. Learn the basic principles of the mathematical theory of games.

2. Be able to apply the principles of game theory to analyze both abstract
games and real-life situations.

3. Realize that mathematics does not prescribe a best “solution” for all
games.

7.2 Reading

1. Philip D. Straffin, Game Theory and Strategy, Mathematical Association
of America, 1993, Part I, pages 3–61.

2. John G. Kemeny and J. Laurie Snell, “Game-theoretic solution of bac-
carat,” American Mathematical Monthly 64 (1957), 465–469.

7.3 Classroom Discussion

A clear fire, a clean hearth, and the rigour of the game.
Charles Lamb
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(1775–1834)
Mrs. Battle’s Opinions on Whist

7.3.1 Warm up

The reading introduced the following concepts from the mathematical theory
of games.

• two-person game

• zero-sum game

• perfect information

Exercise 7.1. List some familiar games. To which of them do the above terms
apply?

Exercise 7.2. The minimax theorem of John von Neumann says that every
m× n matrix game has a solution.

1. What does this theorem say about the games you listed in the previous
exercise?

2. Does this mean that some of these games are uninteresting to play?

Exercise 7.3. Review the definitions of the following concepts.

• dominance

• saddle point

• mixed strategy

• value of a game

7.3.2 Examples of games

Whose game was empires and whose stakes were thrones,
Whose table earth, whose dice were human bones. Lord Byron

(1788–1824)
Age of Bronze, Stanza 3
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Exercise 7.4. Solve the following 4× 5 matrix game.1

A B C D E
A 1 1 1 2 2
B 2 1 1 1 2
C 2 2 1 1 1
D 2 2 2 1 0

Exercise 7.5. In the Monty Hall game, the host of a game show offers the
contestant the choice of three doors, two of which conceal goats, and one of
which conceals a new automobile. After the contestant chooses a door, the
host does not open it, but instead opens one of the other doors, displaying
a goat. The contestant now is offered the choice either of taking whatever
is behind the originally chosen door, or of switching and taking whatever is
behind the third door. Should the contestant switch or not, or does it matter?

7.3.3 Generalizations

In a zero-sum game, it suffices to write the payoffs to the row player, since the
payoffs to the column player are the negatives of the payoffs to the row player.
In a non-zero-sum game, it is necessary to write the payoffs to both players.
Here is an example of a 3× 3 non-zero-sum two-person game.2

A B C
A (0, 1) (0, 1) (2, 4)
B (5, 1) (4, 2) (1, 0)
C (4, 3) (1, 4) (1, 0)

For instance, if both players use pure strategy A, the payoffs are 0 to the row
player and 1 to the column player. Since both players want to maximize their
payoffs, this strategy would not be optimal for either player.

Exercise 7.6. Find what you think is a reasonable solution to the above game.
You may not find the solution satisfactory in all respects, since non-zero-sum
games admit puzzling phenomena such as the prisoner’s dilemma.

1Problem 2, page 11, from Philip D. Straffin, Game Theory and Strategy, Mathematical
Association of America, 1993.

2Problem 4, page 72, from Philip D. Straffin, Game Theory and Strategy, Mathematical
Association of America, 1993.
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As there are three of us come on purpose for the game, you won’t
be so cantankerous as to spoil the party by sitting out.

Richard Brinsley Sheridan
(1751–1816)

The Rivals, Act v, scene 3

Exercise 7.7. 1. What would be a reasonable strategy for playing the
three-person zero-sum game shown in Figure 7.1?3

2. If two players could form a coalition to play in concert against the third
player, which two players would most likely team up?

7.4 Problems

Our hopes, like towering falcons, aim
At objects in an airy height;
The little pleasure of the game
Is from afar to view the flight. Matthew Prior

(1664–1721)
To the Hon. Charles Montague

Problem 7.1. Solve the following 4× 3 matrix game.4

A B C
A 5 2 1
B 4 1 3
C 3 4 3
D 1 6 2

Problem 7.2. Rose holds a double-faced playing card made by gluing the ♠A
back-to-back with the ♥8. Colin has a similar card made by gluing the ♦2
back-to-back with the ♣7.

Rose and Colin play a game in which they simultaneously display one side
or the other of their cards. Rose wins if the colors match; Colin wins otherwise.
In either case, the payoff to the winner is the face value of the winner’s card.
(Here the value of an ace is 1.)

3Example taken from Philip D. Straffin, Game Theory and Strategy, Mathematical As-
sociation of America, 1993, page 127.

4Problem 5b, page 22, from Philip D. Straffin, Game Theory and Strategy, Mathematical
Association of America, 1993.
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(2,−4, 2) (−5,−5, 10)

(2, 2,−4) (−2, 3,−1)

(1, 1,−2) (−4, 3, 1)

(3,−2,−1) (−6,−6, 12)
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Figure 7.1: A three-person game



74 CHAPTER 7. GAME THEORY

1. Does 1 + 8 = 2 + 7 mean that the game is fair?

2. Solve the game: find optimal strategies for both players and determine
the value of the game.

Problem 7.3. Solve the following 4× 4 matrix game.5

A B C D
A 1 2 2 2
B 2 1 2 2
C 2 2 1 2
D 2 2 2 0

7.5 Additional Literature

1. Leonard Gillman, The car and the goats, American Mathematical
Monthly 99 (1992), number 1, 3–7.

2. R. R. Kadesch, Problem Solving Across the Disciplines, Prentice-Hall,
1997, chapter IV.

5Problem 8, page 22, from Philip D. Straffin, Game Theory and Strategy, Mathematical
Association of America, 1993.



Chapter 8

Set Theory and Foundations

8.1 Goals

1. Understand the notions of axiomatic systems, consistency, and indepen-
dence.

2. Be aware that mathematics is open-ended, even at the most basic level.

3. Understand the fundamental theorems of Cantor and Gödel about set
theory.

8.2 Reading

1. Stanis law Lem, “The extraordinary hotel, or the thousand and first jour-
ney of Ion the quiet”, in Stories about Sets by N. Ya. Vilenkin, Academic
Press, 1968.

2. Robert Gray, Georg Cantor and transcendental numbers, American
Mathematical Monthly 101 (1994), no. 9, 819–832.

8.3 Classroom Discussion

8.3.1 The axiomatic method

A formal approach to mathematics consists in specifying some undefined terms
and some axioms. Theorems in a formal axiomatic system are statements
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about the undefined terms that can be deduced logically from the axioms.
The axiomatic method is especially associated with the name of David

Hilbert, who viewed mathematics as a particularly elaborate game, like chess,
with no intrinsic meaning: “Mathematics is a game played according to certain
simple rules with meaningless marks on paper.” His Grundlagen der Geometrie
presented an axiomatic development of Euclidean geometry.

A model for a formal axiomatic system is a concrete realization of the
undefined terms that satisfies all the axioms. An axiomatic system is consistent
if it admits at least one model. In a consistent system, an axiom is independent
of the other axioms if it is false in some model that satisfies the remaining
axioms.

Exercise 8.1. Consider the following formal axiomatic system.

Undefined terms ag, kow, trad

Axiom 1 Every ag kows at least two trads.

Axiom 2 There is at least one trad that every ag kows.

Axiom 3 For each trad, at least one ag kows it.

Axiom 4 The set of trads is non-empty.

1. Construct a model showing that this axiomatic system is consistent.

2. Is each axiom independent of the other axioms?

Exercise 8.2. Prove that there are at least two trads.

8.3.2 Peano’s axioms

Giuseppe Peano formalized arithmetic as an axiomatic system. He showed how
the basic principles of arithmetic, such as the commutative, associative, and
distributive laws, can be derived as theorems from a small set of fundamental
principles. Peano’s five axioms for the natural numbers are the following.1

1Peano’s original work is a booklet Arithmetices principia nova methodo exposita, Turin,
Bocca, 1889. For an English translation, see “The principles of arithmetic, presented by
a new method” in Selected Works of Giuseppe Peano, translated and edited by Hubert C.
Kennedy, University of Toronto Press, 1973, pages 101–134.



8.3. CLASSROOM DISCUSSION 77

Peano 1 There is a natural number denoted by 1.

Peano 2 Every natural number a has a successor, a natural number denoted
by a′.

Peano 3 If a and b are natural numbers, then a = b if and only if a′ = b′.

Peano 4 The natural number 1 is not a successor: for every natural number a,
we have a′ 6= 1.

Peano 5 Axiom of Induction. Let S be a set of natural numbers. If 1 ∈ S,
and if for every natural number a, the condition a ∈ S implies that
a′ ∈ S, then S is the set of all natural numbers.

Exercise 8.3. Using only Peano’s axioms, prove that no natural number is
its own successor, and every natural number other than 1 is a successor.

Using the induction axiom, Peano defined addition of natural numbers by
the following properties.

• a + 1 = a′ for every natural number a;

• a + b′ = (a + b)′ for all natural numbers a and b.

Exercise 8.4. Prove the associative law of addition: (a + b) + c = a + (b + c)
for all natural numbers a, b, and c.

8.3.3 Cantor’s theorems

Georg Cantor was the first one to understand the notion of cardinality of
infinite sets. Two sets have the same cardinality if they can be put into one-
to-one-correspondence with each other. (According to the Schroeder-Bernstein
theorem, two sets have the same cardinality if each can be put into one-to-one
correspondence with a subset of the other.)

Cantor showed in particular that there is no one-to-one correspondence
between the rational numbers and the real numbers.

Theorem (Cantor). No sequence of real numbers exhausts an interval.
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Cantor’s first proof is based on the proposition that a sequence of nested
closed intervals has a nonvoid intersection. Then, Cantor says, the first two
elements of the sequence determine an interval. The next two elements of the
sequence that are in the first interval determine a second interval, and so on.
The intersection of the nested intervals contains a number that is not in the
sequence.

Cantor’s second proof is his famous diagonal argument. Write the numbers
of the sequence as a list of decimals. Read down the diagonal, changing each
digit to a different one. If done with a little care, this procedure creates a
number that is not in the list.

Exercise 8.5. Enumerate the rational numbers in the interval (0, 1) as 1/2,
1/3, 2/3, 1/4, 3/4, 1/5, 2/5, 3/5, 4/5, . . . . Construct the first few digits of an
irrational number:

1. by Cantor’s nested set procedure;

2. by Cantor’s diagonal procedure.

Cantor’s power set theorem says that the power set P (S) (the set of all
subsets of S) has larger cardinality than the set S itself. That is, P (S) cannot
be put into one-to-one correspondence with S, but S can be put into one-to-one
correspondence with a subset of P (S).

Exercise 8.6. Show that the power set of the positive integers has the same
cardinality as the set of real numbers.

8.3.4 The continuum hypothesis

Cantor’s continuum hypothesis is the statement that every infinite set of real
numbers can be put into one-to-one correspondence with either the integers
or the whole set of real numbers. In other words, there is no set of cardinality
strictly between the cardinality of the integers and the cardinality of the real
numbers. Cantor was able to prove neither the continuum hypothesis nor the
generalized continuum hypothesis: For every set S, there is no set of cardinality
between the cardinality of S and the cardinality of the power set of S.

It turns out that there is a good reason for Cantor’s failure.

Theorem (Kurt Gödel (1940)). Both the continuum hypothesis and the
generalized continuum hypothesis are consistent with the usual axioms of set
theory.
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Theorem (Paul Cohen (1963)). Both the continuum hypothesis and the
generalized continuum hypothesis are independent of the usual axioms of set
theory.

Exercise 8.7. What do the preceding two theorems say about the existence
of certain models for set theory?

8.3.5 Gödel’s incompleteness theorems

Hilbert’s program of axiomatizing all of mathematics failed, and for a good
reason. In 1931, Kurt Gödel showed that any interesting formal axiomatic
system must contain undecidable propositions: statements that cannot be
either proved or disproved within the system.

Theorem (Gödel’s first incompleteness theorem). Any axiomatic sys-
tem that is consistent and that contains elementary logic and arithmetic must
contain undecidable propositions.

Exercise 8.8. Does Gödel’s theorem mean that it is pointless to study math-
ematics?

Gödel’s proof is based on formalizing the liar paradox. (“This sentence
is false.”) Namely, Gödel assigns to each symbol an integer. A statement
or formula is a string of symbols, so each statement within a formal system
gets a number assigned to it; similarly, each proof within the system has an
assigned Gödel number. Essentially, Gödel uses a diagonal argument to show
the existence of a number n that is assigned to the statement: “Sentence
number n is not provable in the system.” This statement is true, but neither
it nor its negative can be proved within the formal axiomatic system.

Exercise 8.9. Why?

Theorem (Gödel’s second incompleteness theorem). A consistent ax-
iomatic system that contains elementary logic and arithmetic cannot prove its
own consistency.

Indeed, if the system is consistent, then we know that it cannot prove the
above undecidable proposition n (which asserts its own unprovability). If the
system can prove its own consistency, then it can prove that it cannot prove
proposition n. But this is just what proposition n states, that it is unprovable;
so the system has proved proposition n after all. Contradiction.
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For nothing worthy proving can be proven,
Nor yet disproven: wherefore thou be wise,
Cleave ever to the sunnier side of doubt. Alfred, Lord Tennyson

(1809–1892)
The Ancient Sage

8.4 Problems

Problem 8.1. Formulate a proposition that is undecidable in the axiomatic
system of Exercise 8.1. How do you know that the proposition cannot be
proved and cannot be disproved?

Problem 8.2. Use Peano’s axioms to prove the validity of the commutative
law a + b = b + a for all natural numbers a and b.

Problem 8.3. Formulate a definition of multiplication of natural numbers
based on Peano’s axioms and use it to prove the distributive law (a + b)× c =
(a× c) + (b× c).

8.5 Additional Literature

1. Donald M. Davis, The Nature and Power of Mathematics, Princeton
University Press, 1993, section 2.1.

2. William Dunham, Journey Through Genius, Wiley, 1990, Chapters 11–
12.

3. Howard Eves, Great Moments in Mathematics (After 1650), Mathemat-
ical Association of America, 1981, sections 37–41.

4. Edmund Landau, Foundations of Analysis: The Arithmetic of Whole,
Rational, Irrational and Complex Numbers, translated from the German
by F. Steinhardt, third edition, Chelsea, New York, 1966.

5. Rudy Rucker, Infinity and the Mind, Birkhäuser, 1982.



Chapter 9

Limits

9.1 Goals

1. Renew your acquaintance with the notion of a limit.

2. Be able to apply your knowledge to new situations.

9.2 Reading

1. Edward B. Burger and Thomas Struppeck, Does
∑∞

n=0
1
n!

really con-
verge? Infinite series and p-adic analysis, American Mathematical
Monthly 103 (1996), number 7, 565–577.

9.3 Classroom Discussion

Human life was once like a zero-sum game. Humankind lived near
its ecological limit and tribe fought tribe for living space. Where
pastures, farmland, and hunting grounds were concerned, more
for one group meant less for another. Because one’s gain roughly
equaled the other’s loss, net benefits summed to zero. Still, people
who cooperated on other matters prospered, and so our ancestors
learned not just to grab, but to cooperate and build.

K. Eric Drexler, Engines of Creation

The notion of a limit is a fundamental concept in the realm of continu-
ous mathematics (calculus and analysis). According to the Humpty Dumpty

81



82 CHAPTER 9. LIMITS

principle,1 the correspondence between concepts and words is not a one-to-one
correspondence; the word “limit” has more than one mathematical meaning.
For example, the expression lima→0

∫ 1

a
x−1/2 dx might be expressed in words as

“the limit of the integral as the lower limit tends to zero.”
In ordinary discourse, the word “limit” most often conveys the idea of a

boundary or a restriction. Here are some examples of this usage.

• A pun is not bound by the laws which limit nicer wit. Charles Lamb
Last Essays of Elia

• There is a limit to a mother’s patience. Sir Arthur Conan Doyle
Sussex Vampire

• Human thought has no limit. Victor Hugo
Les Misérables

• For stony limits cannot hold love out. William Shakespeare
Romeo and Juliet, II. ii. 67

This is the sense in which mathematicians use the word “limit” in the phrase
“limit of integration.”

However, we shall be dealing with the notion of “limit” as a value to which
one approaches arbitrarily closely. This second notion is not disjoint from the
first one: it may happen that a limiting value is also an extreme point.

Here at the quiet limit of the world. Alfred, Lord Tennyson
Tithonus, l. 7

9.3.1 Intuitive limits

To define is to limit. Oscar Wilde
Picture of Dorian Gray

The sequence of rational numbers 1/2, 2/3, 3/4, 4/5, . . . evidently ap-
proaches the limit 1. Indeed, the nth term of the sequence equals n/(n + 1),
or equivalently 1− (n+ 1)−1, so we can be sure that the terms are within, say,
10−k of 1 when n > 10k.

1“When I use a word,” Humpty Dumpty said, in rather a scornful tone, “it means just
what I choose it to mean—neither more nor less.” Through the Looking-Glass
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It is often said that the sequence {n/(n + 1)}∞n=1 has limit 1 because the
terms get “closer and closer” to 1. This is good intuition, but suspiciously
imprecise.

Exercise 9.1. Aren’t the terms of the sequence {n/(n + 1)}∞n=1 also getting
“closer and closer” to π?

“Oh, don’t you see, Marilla? There must be a limit to the mistakes
one person can make, and when I get to the end of them, then I’ll
be through with them. That’s a very comforting thought.”

L. M. Montgomery
Anne of Green Gables

Exercise 9.2. In what sense do the numbers n−1 cos(πn/2) get “closer and
closer” to 0 as the integer n increases?

The repeating decimal 0.171717 . . . implicitly defines a limit: namely, the
sum of the infinite series

1

10
+

7

100
+

1

1000
+

7

10000
+ · · · .

It is evident, even without computation, that the limit exists. Indeed, each
partial sum is certainly less than 1, and the sequence of partial sums is mono-
tonically increasing, so we can invoke the fundamental property of the real
numbers that a bounded increasing sequence converges (in fact, converges to
its least upper bound). We say that this repeating decimal equals 17/99 be-
cause the value of the limit is 17/99.

Exercise 9.3. 1. Verify the value of the repeating decimal 0.171717 . . ..

2. Suppose that 0.171717 . . . is reinterpreted as an expansion in base 8.
What would its value be, expressed as an ordinary rational number?

3. How would you answer the question: “Does it ever get there?”

Understanding the definition of the limit concept does not necessarily mean
being able to compute numerical values of limits. For example, the verification
that

lim
n→∞

nne−n
√

2πn

n!
= 1
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is sufficiently subtle that the equality bears the name Stirling’s formula. The
formula is indeed a beautiful one, as it ties together properties of the natural
numbers (represented by the factorial function) with the special numbers e
and π.

Exercise 9.4. Show that lim
n→∞

n∑
k=1

n

n2 + k2
=

π

4
.

The von Koch fractal snowflake curve is defined by an iterative process,
starting from an equilateral triangle with sides of length 1. At each stage of
the construction, every straight line segment is subdivided into three equal
parts, an outward-pointing equilateral triangle is erected on the middle piece,
and that middle segment is deleted. The first four stages of the construction
are shown in Figure 9.1.

Exercise 9.5. 1. In what sense does the snowflake construction converge
to a limiting curve?

2. What is the area enclosed by the limiting curve?

3. What is the perimeter of the limiting curve?

It is therefore evident that, ascend as high as we may, we cannot,
literally speaking, arrive at a limit beyond which no atmosphere is
to be found. It must exist, I argued; although it may exist in a
state of infinite rarefaction. Edgar Allan Poe

Hans Phaall

9.3.2 Continued fractions

I will then limit my assertion to pure mathematics, the very con-
ception of which implies that it consists of knowledge altogether
non-empirical and a priori. Immanuel Kant

Critique of Pure Reason

The most familiar way to represent real numbers is via decimal expan-
sions, which (as observed above) are limits of sums. For many purposes, it is
advantageous instead to represent real numbers as limits of quotients.
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Figure 9.1: Four stages in the construction of the von Koch snowflake
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For example, consider the rational number 17/99, which we saw above
has the repeating decimal expansion 0.171717 . . . (implicitly involving a lim-
iting operation). We could alternatively express the same rational number as
follows:

17

99
=

1

5 +
1

1 +
1

4 +
1

1 +
1

2

.

Exercise 9.6. Verify the preceding equality.

For typographical simplicity, it will be convenient to abbreviate the above
continued fraction as [0, 5, 1, 4, 1, 2], the initial 0 indicating that there is no
integer part. The numbers appearing in the denominators are closely related
to the Euclidean algorithm. Recall that to find the greatest common divisor
of 99 and 17, you would iteratively apply the division algorithm as follows.

99 = 5 · 17 + 14

17 = 1 · 14 + 3

14 = 4 · 3 + 2

3 = 1 · 2 + 1

2 = 2 · 1 + 0.

The penultimate line shows that gcd(99, 17) = 1. Now the first line shows that

99

17
= 5 +

14

17
, so

17

99
=

1

5 +
14

17

.

The second line in the Euclidean algorithm shows that

17

14
= 1 +

3

14
, so

17

99
=

1

5 +
1

1 +
3

14

.
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The third line in the Euclidean algorithm shows that

14

3
= 4 +

2

3
, so

17

99
=

1

5 +
1

1 +
1

4 +
2

3

.

The fourth line in the Euclidean algorithm shows that

3

2
= 1 +

1

2
, so

17

99
=

1

5 +
1

1 +
1

4 +
1

1 +
1

2

.

Thus the numbers in the continued fraction expansion [0, 5, 1, 4, 1, 2] of 17/99
are just the quotients obtained by applying the Euclidean algorithm to the
numbers 99 and 17.

Exercise 9.7. Show that 99/17 = [5, 1, 4, 1, 2].

Exercise 9.8. Find a continued fraction expansion for the negative number
−17/99 = −1 + 82/99.

Exercise 9.9. Evidently, the above procedure makes it possible to represent
every rational number as a continued fraction [a1, a2, . . . , an], where the aj are
integers, all positive except perhaps the first one. Is the representation unique?

What are we to make of an unending continued fraction? Consider, for
example

1 +
1

2 +
1

2 +
1

2 +
1

2 + · · ·

.
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Some truncated versions of this fraction are

1 +
1

2
= 1.5,

1 +
1

2 +
1

2

= 1.4,

1 +
1

2 +
1

2 +
1

2

= 1.4166̄.

It would be reasonable to assign to the unending continued fraction the value
of the limit of the truncated fractions, if the limit exists.

Exercise 9.10. Show that the limit exists in the above example, and find its
value, as follows.

1. Assuming that the limit exists, determine what its value must be.

2. More generally, assuming that the even-order truncations have a limit,
determine what its value must be; similarly for the odd-order trunca-
tions.

3. Show that the even-order truncations form a monotonic sequence; simi-
larly for the odd-order truncations.

4. Use the fundamental property of the real numbers that a bounded mono-
tonic sequence converges.

Continued fractions play a minor role in one of the most romantic stories
in the history of mathematics. In 1913, Srinivasa Ramanujan, a poor Indian
clerk who had flunked out of college, wrote down some mathematical formulas
that he had discovered and sent them to the famous G. H. Hardy in England.
One of these formulas was a closed-form expression for a certain continued
fraction:

1

1 +
e−2π

1 +
e−4π

1 +
e−6π

1 + · · ·

=




√
5 +

√
5

2
−
√

5 + 1

2


 e2π/5.
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Hardy, wondering what to make of this communication from an unknown
Indian, tried to prove Ramanujan’s formulas, with mixed success. Of this
continued fraction and two related ones, Hardy later said2 that they

defeated me completely; I had never seen anything in the least like
them before. A single look at them is enough to show that they
could only be written down by a mathematician of the highest
class. They must be true because, if they were not true, no one
would have had the imagination to invent them.

Hardy immediately brought Ramanujan to England to work with him. Tragi-
cally, Ramanujan’s health failed in 1917, and he died three years later.

Exercise 9.11. If x has the continued fraction expansion [a1, a2, . . .], let sn(x)
and tn(x) denote the numerator and denominator of the nth approximant
[a1, . . . , an] (written as a fraction in lowest terms with positive denominator).
Guess recursive formulas for sn(x) and tn(x), and prove your formulas by
induction.

9.3.3 The p-adic numbers

‘Yes, I have a pair of eyes,’ replied Sam, ‘and that’s just it. If they
wos a pair o’ patent double million magnifyin’ gas microscopes of
hextra power, p’raps I might be able to see through a flight o’ stairs
and a deal door; but bein’ only eyes, you see my wision’s limited.’

Charles Dickens
Pickwick Papers, ch. 34

In order to talk about limits, we need to be able to say when two quantities
are close to each other. Formally, we need a distance function or metric. Recall
the following defining properties of a metric d.

1. d(x, y) ≥ 0 for all x and y (with equality if and only if x = y).

2. Symmetry: d(x, y) = d(y, x) for all x and y.

2Lecture delivered at the Harvard Tercentenary Conference of Arts and Sciences on Au-
gust 31, 1936, published as The Indian mathematician Ramanujan, American Mathematical
Monthly 44 (1937), 137–155, and reprinted in Hardy’s book Ramanujan, Cambridge Uni-
versity Press, 1940.
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3. Triangle inequality: d(x, y) ≤ d(x, z) + d(z, y) for all x, y, and z.

So far we have been dealing only with the usual metric on the real numbers:
d(x, y) = |x − y|. It is useful to isolate the properties of the absolute value
function that enable us to define a metric in this way. These properties are
the following.

1. |x| ≥ 0 (with equality if and only if x = 0).

2. |x · y| = |x| · |y| for all x and y.

3. Triangle inequality: |x + y| ≤ |x|+ |y| for all x and y.

A function with these properties is often called a norm in the context of vector
spaces and a valuation in the context of fields.

Exercise 9.12. Show that the three properties of a metric d given by d(x, y) =
|x− y| are consequences of the three properties of an absolute value.

A standard example of a nonstandard metric is the discrete metric defined
by d(x, y) = 1 if x 6= y.

Exercise 9.13. 1. Verify that the discrete metric on the real numbers does
satisfy the three properties of a metric.

2. What valuation on the real numbers induces the discrete metric?

3. What are the convergent sequences of real numbers in the discrete met-
ric?

It is worthwhile to keep in mind that the familiar real numbers are actually
a quite abstract notion. On a calculator or a computer, you will see only
rational numbers. There is no explicit way to display a non-terminating, non-
repeating decimal in numerical form without resorting to a limiting operation.3

We normally exhibit irrational real numbers as limits of convergent sequences
of rational numbers.

If we change the metric on the rational numbers, then we may have a
different set of convergent sequences, and their limits will define a new number
system. This process of generating new numbers by taking limits of convergent
sequences is known as completion.4

3You might be able to display an irrational number geometrically:
√

2 is the length of
the diagonal of a unit square.

4More precisely, the elements of the completion are equivalence classes of convergent
sequences, two sequences being equivalent if their difference tends to zero.
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Exercise 9.14. Completing the rational numbers when they are equipped
with the discrete metric is uninteresting. Why?

We can create an interesting new number system by using a non-trivial,
non-standard valuation on the rational numbers. For example, we can define
a valuation | · |2 (which we might call the dyadic valuation) on the rational
numbers in the following way. A rational number r can be factored as a
product of primes (some powers being negative). Extract from the product
the power of 2, say 2k, and define |r|2 to be the reciprocal 1/2k. For example,
|4|2 = 1/4, |5|2 = 1, |6|2 = 1/2, |25/96|2 = 32.

Exercise 9.15. Verify that | · |2 is a valuation on the rational numbers. More-
over, | · |2 satisfies the strong triangle inequality : |x + y|2 ≤ max(|x|2, |y|2).
Exercise 9.16. When does equality hold in the strong triangle inequality?
That is, for which rational numbers x and y is |x + y|2 = max(|x|2, |y|2)?

The rational numbers with the dyadic valuation appear strange at first
sight. For example, they fail the axiom of Archimedes5 that if a positive
quantity is added to itself a sufficient number of times, its value becomes
bigger than any specified value.

Exercise 9.17. If n is an integer, then |n|2 ≤ 1.

Convergence with respect to the dyadic valuation |·|2 is dramatically differ-
ent from convergence with respect to the ordinary absolute value. For example,
consider the infinite series

1 + 2 + 4 + 8 + 16 + · · ·+ 2n + · · · .

This series converges dyadically! Indeed, the difference between the nth partial
sum and the (n + k)th partial sum has dyadic absolute value no more than
1/2n, which tends to zero as n increases without bound.

Exercise 9.18. The series 1 + 2 + 4 + 8 + · · ·+ 2n + · · · converges dyadically
to an integer: which integer?

5This is the Greek philosopher of “Eureka” fame. As related by Plutarch in his biography
of Marcellus, Archimedes was killed by a Roman soldier during the sack of Syracuse in
212 b.c. For a modern retelling of this legend by Karel Čapek (inventor of the word
“robot”), see “The Death of Archimedes” in his Apocryphal Stories, Penguin Books, 1975,
pages 38–41.
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On the other hand, the series

1 +
1

2
+

1

4
+ · · ·+ 1

2n
+ · · ·

diverges dyadically since |1/2n|2 = 2n. Indeed, a series of the form
∑∞

j=−∞ aj2
j,

where each aj is either 0 or 1, converges dyadically if and only if there are only
a finite number of non-zero coefficients aj with negative indices. Such series
may converge to rational numbers, but in general they converge to elements
of the dyadic completion of the rational numbers.

Exercise 9.19. 1. Find the dyadic expansion of 1997.

2. Find the dyadic expansion of 2/3.

A non-Archimedean valuation | · |p can be defined similarly for every prime
number p. For example, |17/99|3 = 9 and |100/33|5 = 1/25. The p-adic
numbers are the completion of the rational numbers with respect to | · |p.
Thus a p-adic number can be represented as a series

a−k

pk
+ · · ·+ a−1

p
+ a0 + a1p + a2p

2 + · · ·

where each coefficient aj is an integer between 0 and (p− 1) inclusive.

Exercise 9.20. The quotient

1 · 30 + 1 · 31 + 1 · 32 + 1 · 33 + 1 · 34 + 1 · 35 + · · ·
1 · 30 + 2 · 31 + 1 · 32 + 2 · 33 + 1 · 34 + 2 · 35 + · · ·

of 3-adic expansions can itself be expressed as a 3-adic expansion. Use long
division to find this expansion.

Evidently, therefore, ‘limit’ has as many senses as ‘beginning’, and
yet more; for the beginning is a limit, but not every limit is a
beginning. Aristotle

Metaphysics
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9.4 Problems

For the rest of it, the last and greatest art is to limit and isolate
oneself.6 Goethe

Conversations with Eckermann

Problem 9.1. What can you say about the limiting behavior of the sequence
of numbers sin n as n runs through the natural numbers? Does it matter if
the argument is measured in degrees or in radians?

Problem 9.2. For which values of x larger than 1 does the sequence xx, xxx
,

xxxx

, . . . converge to a (finite) limit?

Problem 9.3. Consider the iterative construction shown in Figure 9.2. The
first stage shows an isosceles right triangle whose hypotenuse is a horizontal
line segment of length 1. (The other two sides each have length 1/

√
2, so the

two slanted sides together have length
√

2.) At each subsequent stage, every
isosceles right triangle is replaced by two isosceles right triangles whose sides
have half the length. Consequently, the total length of the slanted sides at
each stage is always

√
2. Since the seesaw curves approach the horizontal line

of length 1 as their limit, we deduce that
√

2 = 1. What went wrong?

Figure 9.2:
√

2 = 1

Problem 9.4 (The limits of computers7).

6Im übrigen ist es zuletzt die größte Kunst, sich zu beschränken und zu isolieren.
7This problem was suggested by a note of Allen J. Schwenk: “Introduction to limits, or

why can’t we just trust the table?”, College Mathematics Journal 28 (1997), number 1, 51.
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Beginning calculus students often think that their instructors’ discussions
of limits are pedantic, for it seems perfectly obvious from numerical evidence
what the value of a limit like limx→0(sin x2/5)/x2/5 must be (see Table 9.1).

x ±0.1 ±0.01 ±0.001 ±0.0001 ±0.00001

(sin x2/5)/x2/5 0.97379 0.99584 0.99934 0.99989 0.99998

Table 9.1: A table of values for (sin x2/5)/x2/5

1. Using a calculator or computer, make a similar table of values for the
function f defined for x 6= 0 by

f(x) = cos

(
1

x
· tan−1

(
1

x

))
.

What does this table suggest for the value of limx→0 f(x)?

2. Make analogous tables of values of f(x) when x = 0.3, 0.03, 0.003, . . . ;
when x = 0.6, 0.06, 0.006, . . . ; and when x = 0.9, 0.09, 0.009, . . . . What
do these tables suggest for the value of limx→0 f(x)?

3. Make sense out of the numbers that the computer generated.

4. What is the true value of limx→0 f(x)?

Problem 9.5. In the reading handouts is “Chapter 47, Bentley’s theorems,” a
“proof” done by a group of entering freshman in a special enrichment program
the summer before they started. They purportedly prove that π = 47. Did
they? If not, where did their argument go wrong. (Find ALL errors.)

Problem 9.6. Circumscribe an equilateral triangle around a unit circle; then
circumscribe a circle around the triangle and a square around the new circle;
then circumscribe a circle around the square and a regular pentagon around
the new circle; and so on. See Figure 9.3. Edward Kasner and James Newman
state8 that the construction converges to a limit circle whose radius is about 12.
They are wrong. What really happens in the limit?

8Mathematics and the Imagination, Simon and Schuster, 1940, page 312.
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Figure 9.3: What happens in the limit?

Problem 9.7. 1. By considering Riemann sums, show that the limit

lim
n→∞

( n∑
k=1

1

k
−

∫ n

1

1

t
dt

)
exists. This limit, usually denoted by the Greek letter γ, is known as
Euler’s constant. The numerical value of γ is about 0.577, but nobody
knows if γ is a rational number or an irrational number.

2. By using the preceding part twice, show that

1− 1

2
+

1

3
− 1

4
+

1

5
− 1

6
+

1

7
− 1

8
+ . . . = log 2.

This series is often called the alternating harmonic series.

3. Rearrange the preceding conditionally convergent series so that each pos-
itive term is followed by the next four negative terms. Show that the
rearranged series converges to zero:

1− 1

2
− 1

4
− 1

6
− 1

8
+

1

3
− 1

10
− 1

12
− 1

14
− 1

16
+

1

5
− . . . = 0.
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Problem 9.8. Find the continued fraction expansion of
√

3.

Problem 9.9. Prove that every unending continued fraction [a1, a2, . . . ] con-
verges, whatever the values of the positive integers aj . (This amounts to show-
ing that the limits of the even-order truncations and the odd-order truncations
are the same.)

Problem 9.10. Show that if x is an eventually periodic continued fraction
(that is, x = [a1, a2, . . . , an, b1, . . . , bk ], where the bar denotes a repeating
block), then x is a quadratic surd: an irrational number that is the root of a
quadratic equation with integral coefficients. (The converse is also true, but
harder to prove.)

Problem 9.11. Show that if | · | is a valuation that satisfies the strong triangle
inequality, then every triangle is isosceles with respect to | · |. In other words,
for all x and y, at least two of the numbers |x|, |y|, and |x− y| are equal.

Consequently, the strong triangle inequality might equally well be called
the isosceles triangle inequality.

Problem 9.12. Show that−1 is not a 3-adic square, but −1 is a 5-adic square.

Problem 9.13. Does every rational number have a p-adic expansion whose
coefficients are eventually periodic?

9.5 Additional Literature

1. Claude Brezinski, History of Continued Fractions and Padé Approxi-
mants, Springer, 1991.

2. A. Ya. Khinchin, Continued Fractions, University of Chicago Press, 1964.

3. Neal Koblitz, p-adic Numbers, p-adic Analysis, and Zeta-Functions, sec-
ond edition, Springer, 1984.

4. Kurt Mahler, Introduction to p-adic Numbers and Their Functions, Cam-
bridge University Press, 1973.

5. C. D. Olds, Continued Fractions, Random House, 1963.

6. W. H. Schikhof, Ultrametric Calculus, Cambridge University Press, 1984.



Chapter 10

Functions

10.1 Goals

1. Solidify your understanding of functions, especially transcendental func-
tions: the different ways in which they arose and their various definitions.

2. Learn some of the history and applications of special functions.

10.2 Reading

1. Zeev Barel, “A mnemonic for e,” Mathematics Magazine 68 (1995), num-
ber 4, 253.

2. Wayne Barrett, “It had to be e”, Mathematics Magazine 68 (1995),
number 1, 15.

3. Chapter 47, “bentley’s theorems”, Pomona group (provided by one of
the original members of the group).

4. B. C. Carlson, Special Functions of Applied Mathematics, Academic
Press, 1977, pages 1–6.

5. John Fauvel, “Revisiting the history of logarithms,” Learn from the Mas-
ters, Frank Swetz et al., eds., Mathematical Association of America,
1995, pages 39–48.
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6. Victor J. Katz, “Napier’s logarithms adapted for today’s classroom,”
Learn from the Masters, Frank Swetz et al., eds., Mathematical Associ-
ation of America, 1995, pages 49–55.

7. David Shelupsky, “Limitless integrals and a new definition of the loga-
rithm,” Mathematics Magazine, 68 (1995), number 4, 294–295.

8. Victor J. Katz, “Ideas of calculus in Islam and India,” Mathematics
Magazine 68 (1995), number 3, 163–174.

9. Jacques Redway Hammond, Concise Spherical Trigonometry, Houghton
Mifflin Co., (1943), pages 29–37 and 98–101.

10.3 Classroom Discussion

10.3.1 The function concept

Still glides the Stream, and shall for ever glide;
The Form remains, the Function never dies.

William Wordsworth
The River Duddon, xxxiv

Gottfried Wilhelm Leibniz1 introduced the term “function,” but histori-
cally, there was considerable uncertainty about its meaning. The uncertainty
persists today among undergraduate students who wonder if a piecewise-
defined function is really one function or two.

Exercise 10.1. What is a function? Is it a formula? a rule? a set? all of the
above? none of the above? Formulate a definition of “function” that satisfies
you.

Exercise 10.2. Make up a strange function that illustrates a subtlety of your
definition.

Our federal income tax law defines the tax y to be paid in terms
of the income x; it does so in a clumsy enough way by pasting
several linear functions together, each valid in another interval or
bracket of income. An archeologist who, five thousand years from

1Co-inventor with Newton of the calculus, Leibniz lived 1646–1716.
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now, shall unearth some of our income tax returns together with
relics of engineering works and mathematical books, will probably
date them a couple of centuries earlier, certainly before Galileo and
Vieta. Hermann Weyl, 1940

10.3.2 Transcendental functions

In their nomination to office, they will not appoint to the exercise
of authority as to a pitiful job, but as to a holy function.

Edmund Burke
Reflections on the Revolution in France, Vol. III

The simplest functions that come to mind are polynomials. Just as the
rational numbers are defined to be ratios of integers, the rational functions are
defined to be ratios of polynomials. For example, the function f defined by
f(x) = (x2 − 1)/(x2 + 1) is a rational function.

The algebraic numbers are the numbers that satisfy polynomial equations
with integral coefficients. Similarly, the algebraic functions are the functions
that satisfy polynomial equations with polynomial coefficients. That is, a
function f is algebraic if there are polynomials p0, p1, . . . , pn such that the
function

pn(x)f(x)n + pn−1(x)f(x)n−1 + · · ·+ p1(x)f(x) + p0(x)

is identically zero.

Exercise 10.3. The function

√
x2 − 1

x2 + 1
is algebraic. What polynomial equa-

tion does it satisfy?

Functions that are not algebraic are called transcendental. Some exam-
ples of transcendental functions are the trigonometric functions, the logarithm
function, and the exponential function.

Exercise 10.4. By considering growth rates as x →∞, show that the expo-
nential function ex is transcendental.

How can one define a transcendental function, given that it does not sat-
isfy any algebraic equation? There are several common ways to define such
functions:
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• geometrically;

• via power series;

• as solutions of differential equations;

• as solutions of functional equations.

For example, the trigonometric functions may be defined as lengths (see Fig-
ure 10.1). The exponential function 2x may be defined as the unique continuous

tan x

x

1

cos x

sin x

Figure 10.1: Geometric definition of the trigonometric functions

solution of the functional equation f(x + y) = f(x)f(y) satisfying f(1) = 2.

Exercise 10.5 (Trigonometric functions). 1. Of the six trigonometric
functions, how many need to be defined before all six are determined
through functional relationships?

2. What power series expansions are there for trigonometric functions?

3. What differential equations do the trigonometric functions satisfy?

4. In calculus class, you viewed the sine and cosine functions as the “basic”
trigonometric functions. Was there a good reason for this, or could you
just as well have viewed the tangent and cosecant (for example) as the
“basic” functions?
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5. Show that the geometric definition of the trigonometric functions agrees
with the power series and differential equation definitions.

Exercise 10.6 (ex and log x). 1. What power series expansions are there
for the exponential and logarithm functions?

2. What differential equations do the exponential and logarithm functions
satisfy?

3. What functional equations characterize the exponential and logarithm
functions?

4. What geometric characterizations are there for these functions?

But love, first learned in a lady’s eyes,
Lives not alone immured in the brain;
But, with the motion of all elements,
Courses as swift as thought in every power,
And gives to every power a double power,
Above their functions and their offices. William Shakespeare

Love’s Labour’s Lost, IV. iii. 327–332

The identity cos2 t + sin2 t = 1 shows that the trigonometric functions are
connected with the unit circle x2 + y2 = 1. The hyperbola x2 − y2 = 1 is
connected with the hyperbolic functions cosh t = 1

2
(et + e−t) and sinh t =

1
2
(et − e−t). Vincenzo Riccati studied the hyperbolic functions in the middle

of the eighteenth century. Subsequently, these functions were popularized and
given their modern names by Johann Heinrich Lambert (a modest man who
is supposed to have replied “All” to Frederick the Great’s inquiry of which
science he knew best2).

Exercise 10.7 (Hyperbolic functions). 1. Draw a diagram analogous
to Figure 10.1, and identify cosh t, sinh t, and tanh t as lengths of certain
line segments related to the graph of the hyperbola x2 − y2 = 1.

2. Find the area bounded by the hyperbola, the x-axis, and the line joining
the origin to the point (cosh t, sinh t). Compare with the area of a sector
of a unit circle with central angle t.

2Carl B. Boyer, A History of Mathematics, Princeton University Press, 1985, page 504.
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10.3.3 Mercator’s map and rhumb lines

The one function TV news performs very well is that when there is
no news we give it to you with the same emphasis as if there were.

attributed to David Brinkley

Since antiquity, it has been important to know where on Earth you are,
how to get somewhere else, and how to draw illustrative maps of regions of
the Earth’s surface. To a first approximation, the surface of the Earth is a
sphere, and a location on this two-dimensional surface can be specified by two
coordinates, most commonly by two angles.

In geography, the two coordinates are latitude, which is the angle of ele-
vation above the plane of the equator, and longitude, which is the azimuthal
angle, that is, the polar angle measured in the plane of the equator. Cir-
cles where the latitude is constant are parallels of latitude, and circles where
the longitude is constant are meridians. Normally latitude ranges from 0◦ to
90◦, with an additional designation of North (for angles of elevation above the
equator) and South (for angles below the equator). Longitude ranges from
0◦ to 180◦, either East or West of the zero meridian or prime meridian that
passes through Greenwich, England.

Mathematicians ordinarily use the angle complementary to the latitude, the
co-latitude, which is measured down from the North Pole instead of up from the
equator. Unfortunately, there is no standard convention for the designation
of the spherical angles. At one time, mathematics textbooks denoted the
azimuthal angle by φ and the co-latitude by θ, and this is still the most common
convention in physics books, but most college mathematics texts have now
switched to using φ for the co-latitude and θ for the azimuthal angle.3

A standard unit for measuring distance on the surface of the Earth is the
nautical mile, which is the length of one minute of arc (1/60th of a degree)
along a great circle. This works out to be about 1,852 meters or 6,076 feet
(compared to the statute mile of 5,280 feet).

Since the equatorial radius and the polar radius of the Earth differ by about
1 part in 300, there is some ambiguity about the precise value of the nautical
mile. The U.S. nautical mile was 1853.25 meters or 6080 feet, but this has
been replaced by the standard international nautical mile of 1852 meters.4

3The notation is now a hopeless muddle that will be resolved only when the topic of
spherical coordinates goes out of fashion in the undergraduate curriculum.

4See http://physics.nist.gov/cuu/Units/outside.html.
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The meter itself was originally intended to be 10−7 times the distance from
the Equator to the North Pole along a meridian through Paris. Due to its
rotation, the Earth would not be a perfect sphere even if its surface were
devoid of geographical irregularities such as mountains and valleys, and the
first standard meter was slightly short because of a miscalculation. The Earth
is not a satisfactory standard for very precise measurements, so for many
years, the standard meter was defined by a platinum-iridium bar in Paris.
Currently, the meter is defined to be 1/299, 792, 458 times the distance that
light travels in one second in a vacuum.5 The National Institute of Standards
and Technology provides definitive information about the International System
of Units (abbreviated SI from the French Système International d’Unites).6

Exercise 10.8. Suppose that a Martian nautical mile is defined to be the
length of one minute of arc along a great circle on the surface of Mars, and
a Martian meter is defined to be 10−7 times the distance from the equator of
Mars to a pole. How many Martian meters are there in a Martian nautical
mile?

In steering a ship at sea, it is most convenient to follow a fixed compass
bearing, in other words, a course that makes a fixed angle with each meridian
of longitude. Such a course is a rhumb line7 or loxodrome.8 It is important to
know how to choose the course to navigate between two locations of prescribed
latitude and longitude, and how to determine the loxodromic distance between
two points.

Exercise 10.9. It is easy to determine the loxodromic distance (in nautical
miles) between two points on the globe if you know the difference in lati-
tudes and the angle that the loxodromic path between them makes with the
meridians. Find a formula.

Drawing a planar map of the spherical surface of the Earth is problem-
atical: there is no way to do it without distorting either distances, areas, or
shapes. There are various techniques in use for projecting the round Earth

5See http://physics.nist.gov/cuu/Units/meter.html.
6See the online references at http://physics.nist.gov/cuu/Units/bibliography.

html.
7The word “rhumb” comes from the same Greek root that gives us “rhombus”.
8The “loxo” is a Greek root meaning “oblique” or “slanting”, and the “drome” is a Greek

root referring to running, as in “hippodrome”.
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onto a flat map. A glance at a modern atlas reveals a multitude of meth-
ods, with names such as azimuthal equal-area projection, azimuthal equidis-
tant polar projection, bipolar oblique conic conformal projection, Bonne pro-
jection, Briesemeister elliptical equal-area projection, conic projection, conic
equal-area projection, cylindrical projection, cylindrical equal-area projection,
Lambert azimuthal equal-area projection, Lambert conformal conic projection,
Mercator projection, oblique conic conformal projection, oblique cylindrical
projection, polar projection, polyconic projection, and sinusoidal projection.

The most famous method for drawing a flat map of the Earth is the Mer-
cator projection, named for the Flemish surveyor Gerhard Kremer.9 In the
Mercator map, the meridians of longitude appear as evenly spaced vertical
straight lines. The parallels of latitude appear as horizontal straight lines, but
not evenly spaced: the Mercator map badly distorts distances in the Arctic
and in the Antarctic.

The Mercator map is constructed to be conformal, meaning that locally it
preserves shapes (angles), even though it distorts distances. What is needed
for a map to be conformal is that near every point, the distance distortion is
the same in all directions.

Exercise 10.10 (The Mercator projection). 1. On the globe, meridi-
ans converge at the poles, but on Mercator’s map, the meridians are
spread apart to be parallel lines. To achieve this effect, how should you
choose the length magnification factor along a parallel at latitude x?

2. Conformality demands that the length magnification be the same in the
direction of a meridian as in the direction of a parallel. Integrate and
use trigonometric identities to show that a point at positive latitude
x radians has distance from the equator on Mercator’s map equal to

ln tan
(π

4
+

x

2

)
,

where the unit of length is the radius of the globe on which the map is
based. (This quantity is also gd−1(x), where gd is the Gudermannian
function of Problem 10.6 below.)

9Kremer’s Latinized name was Mercator. He lived 1512–1594 and should not be confused
with Nicolaus Mercator, who was born in Denmark and lived 1620–1687. This second
Mercator is the one who found an infinite series expansion for the logarithm function.
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On Mercator’s map, the meridians are parallel straight lines, so loxodromic
curves are also straight lines. Mercator’s map makes it straightforward to
determine the proper course heading for a rhumb line between two specified
points.

Exercise 10.11. Find the loxodromic distance between Miami Beach, Florida
(25◦ 47′ 25′′ N, 80◦ 7′ 49′′ W) and Lisbon, Portugal (38◦ 42′ 0′′ N, 9◦ 5′ 0′′ W).

My thought, whose murder yet is but fantastical,
Shakes so my single state of man that function
Is smother’d in surmise, and nothing is
But what is not. William Shakespeare

Macbeth, I. iii. 139–142

10.4 Problems

Form follows function—that has been misunderstood. Form and
function should be one, joined in a spiritual union.

Frank Lloyd Wright

Problem 10.1. The following is purportedly a proof of Taylor’s Theorem of
order two with remainder.

We want to show that

f(x) = f(a) + f ′(a)(x− a) +
f ′′(a)

2
(x− a)2 +

f (3)(c)

3!
(x− a)3

for some point c between a and x. Start with the mean-value theorem applied
to the function f ′′: namely, f ′′(x) = f ′′(a) + f (3)(c)(x − a) for some c. Take
the antiderivative of this formula with an appropriate integration constant to
get

f ′(x) = f ′(a) + f ′′(a)(x− a) + f (3)(c)
(x− a)2

2
.

Now repeat the antiderivative process to get

f(x) = f(a) + f ′(a)(x− a) + f ′′(a)
(x− a)2

2
+ f (3)(c)

(x− a)3

3!
.

Find all the errors in this alleged proof, and construct appropriate counterex-
amples to show that the errors you identified are indeed errors.
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Problem 10.2. Show that the Maclaurin series expansions of tan x and sec x
have coefficients that are all non-negative rational numbers.

Problem 10.3. Robinson Crusoe, shipwrecked on a desert island, wants to
compute the product 48, 480, 962× 258, 819, 045. He has salvaged a table of
values of the cosine function (Table 10.1). How can he evaluate this product
(to nine significant figures) without much work?

Problem 10.4. 1. Show that the geometric, infinite series, and differential
equation definitions for the logarithm function are equivalent.

2. Show that the infinite series and differential equation definitions for the
exponential function are equivalent.

Problem 10.5. 1. Show that the logarithm function is transcendental.

2. Show that the trigonometric functions are transcendental.

Problem 10.6 (The Gudermannian). The trigonometric functions are re-
lated to the hyperbolic functions via cos(ix) = cosh(x), where i =

√−1.
Christoph Gudermann10 discovered that it is possible to relate the trigonomet-
ric functions and the hyperbolic functions without employing complex num-
bers. The Gudermannian function gd(x) is defined implicitly via sinh x =
tan gd, with −π/2 < gd < π/2.

1. Express each of the six hyperbolic functions of x in terms of the six
trigonometric functions of gd.

2. Show that tanh(x/2) = tan(gd /2).

3. Find the derivative d gd /dx.

4. Show that gd(x) = 2 tan−1(ex)− π/2.

5. Show that x = ln tan

(
π

4
+

gd(x)

2

)
. This quantity appeared in Exer-

cise 10.10.

Problem 10.7. Calculate the shortest distance on the globe (great circle
route) between Miami Beach, Florida and Lisbon, Portugal.

Problem 10.8. Historical Challenge: Why was Gudermann interested in the
Gudermannian function?

10Gudermann lived 1798–1852 and is mainly remembered as a teacher of the great Karl
Weierstrass.
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x cos(x◦) x cos(x◦) x cos(x◦)
1 0.9998476952 31 0.8571673007 61 0.4848096202
2 0.9993908270 32 0.8480480962 62 0.4694715628
3 0.9986295348 33 0.8386705679 63 0.4539904997
4 0.9975640503 34 0.8290375726 64 0.4383711468
5 0.9961946981 35 0.8191520443 65 0.4226182617
6 0.9945218954 36 0.8090169944 66 0.4067366431
7 0.9925461516 37 0.7986355100 67 0.3907311285
8 0.9902680687 38 0.7880107536 68 0.3746065934
9 0.9876883406 39 0.7771459615 69 0.3583679495
10 0.9848077530 40 0.7660444431 70 0.3420201433
11 0.9816271834 41 0.7547095802 71 0.3255681545
12 0.9781476007 42 0.7431448255 72 0.3090169944
13 0.9743700648 43 0.7313537016 73 0.2923717047
14 0.9702957263 44 0.7193398003 74 0.2756373558
15 0.9659258263 45 0.7071067812 75 0.2588190451
16 0.9612616959 46 0.6946583705 76 0.2419218956
17 0.9563047560 47 0.6819983601 77 0.2249510543
18 0.9510565163 48 0.6691306064 78 0.2079116908
19 0.9455185756 49 0.6560590290 79 0.1908089954
20 0.9396926208 50 0.6427876097 80 0.1736481777
21 0.9335804265 51 0.6293203910 81 0.1564344650
22 0.9271838546 52 0.6156614753 82 0.1391731010
23 0.9205048535 53 0.6018150232 83 0.1218693434
24 0.9135454576 54 0.5877852523 84 0.1045284633
25 0.9063077870 55 0.5735764364 85 0.0871557427
26 0.8987940463 56 0.5591929035 86 0.0697564737
27 0.8910065242 57 0.5446390350 87 0.0523359562
28 0.8829475929 58 0.5299192642 88 0.0348994967
29 0.8746197071 59 0.5150380749 89 0.0174524064
30 0.8660254038 60 0.5000000000

Table 10.1: Values of the cosine function
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10.5 Additional Literature

1. Man-Keung Siu, “Concept of function—its history and teaching,” Learn
from the Masters, Frank Swetz et al., eds., Mathematical Association of
America, 1995, pages 105–121.

2. John Nord and Edward Miller, “Mercator’s rhumb lines: A multivariable
application of arc length,” The College Mathematics Journal 27 (1996),
number 5, 384–387.

3. I. S. Gradshteyn and I. M. Ryzhik, Table of Integrals, Series, and Prod-
ucts, fifth edition, edited by Alan Jeffrey, Academic Press, 1994; Library
of Congress call number QA55 .G6613 1994. Information about the Gu-
dermannian, for example, is on pages 51–52.



Chapter 11

Plane geometry

Geometry is the art of correct reasoning on incorrect figures.
G. Polya

How To Solve It

11.1 Goals

1. Renew and deepen your acquaintance with linear, quadratic, and cubic
equations and their geometric significance.

2. Appreciate the interplay between analytic and algebraic geometry.

3. Learn about non-Euclidean geometries.

11.2 Classroom Discussion

11.2.1 Algebraic geometry

There is no royal road to geometry. Euclid
(to Ptolemy I)

You are familiar with two ways to describe a curve in the two-dimensional
plane: you can specify the curve either geometrically, or by a formula. For
example, a circle is the locus of points at fixed distance from a specified cen-
ter point (geometric definition), or the set of points with coordinates (x, y)
satisfying an equation of the form (x−a)2 +(y−b)2 = r2 (analytic definition).

109
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The idea of connecting the two descriptions is due to René Descartes,1 for
whom Cartesian coordinates are named. The interplay between the geometry
of curves and their analytic descriptions is the subject of analytic geometry.
In the case that the formulas are given by polynomial equations, the subject
is algebraic geometry.

The simplest plane curve is a straight line, which is given by a polynomial
equation of first degree: Ax + By + C = 0.

Caesar said to me ‘Darest thou, Cassius, now
Leap in with me into this angry flood,
And swim to yonder point?’ William Shakespeare

Julius Caesar, I ii

Exercise 11.1. Since a line is uniquely determined by two points in the plane,
and each point has two coordinates, why are there three parameters A, B,
and C in the general equation of a line?

Everything an Indian does is in a circle, and that is because the
poser of the world always works in circles, and everything tries to
be round. Black Elk

The most familiar way to parametrize the unit circle x2 +y2 = 1 is by using
trigonometric functions: x = cos t and y = sin t. However, it may seem a bit
odd to parametrize an algebraic curve with transcendental functions. There is
a way to parametrize the circle with rational functions, indeed, with quotients
of polynomials of degrees 1 and 2.

Exercise 11.2. Taking as the parameter t the negative of the slope of the line
joining (0, 1) to a point on the circle x2 + y2 = 1, derive the parametrization

x =
2t

1 + t2
and y =

1− t2

1 + t2
.

The rational parametrization of the circle has interesting applications.
For example, you are familiar with Pythagorean triples such as (3, 4, 5) and
(5, 12, 13), which correspond to the equalities 32 + 42 = 52 and 52 + 122 = 132.
There are infinitely many essentially distinct such triples, and it is possible to
describe all of them.

1Lived 1596–1650.



11.2. CLASSROOM DISCUSSION 111

Exercise 11.3. Use the rational parametrization of the circle to find all triples
(a, b, c) of positive integers such that a2 + b2 = c2.

The recent proof of Fermat’s last theorem2 confirmed that when n is an
integer larger than 2, there are no positive integers a, b, and c such that
an + bn = cn. Evidently, one cannot expect in general to find a rational
parametrization of a plane curve given by a polynomial equation of degree
larger than 2.

A topic that is falling out of fashion in the second-semester calculus course
is a substitution that converts the integral of a rational function of cos x and
sin x into the integral of a rational function of a new variable t. If this substi-
tution is presented at all, it is given as a magical formula without motivation.
In fact, the substitution is nothing more than the rational parametrization of
the circle.

Take a circle, caress it, and it will turn vicious.3 Eugène Ionesco
The Bald Soprano

Exercise 11.4. Convert the integral

∫
dx

1 + cos x
into the integral of a rational

function of t by using the rational parametrization of the circle. Evaluate the
integral, and reconstitute your answer as a function of x. Can you reconcile
your result with the answer tan(x/2) that Maple gives?

The most general polynomial equation of degree two in variables x and y
has the form

ax2 + bxy + cy2 + dx + ey + f = 0.

Such an equation describes a conic curve, so called because the ellipse, hyper-
bola, and parabola can be obtained by slicing a cone with a plane at different
angles. In degenerate cases, a conic can reduce to a line (for instance, x = 0),
a pair of parallel lines (for instance, x2 − 1 = 0), a pair of intersecting lines
(for instance, xy = 0), a single point (for instance, x2 + y2 = 0), or the empty
set (for instance, x2 + y2 + 1 = 0).

2Andrew Wiles, Modular elliptic curves and Fermat’s last theorem, Annals of Mathemat-
ics (2) 141 (1995), number 3, 443–551; Andrew Wiles and Richard Taylor, Ring-theoretic
properties of certain Hecke algebras, ibid., 553–572.

3Prenez un cercle, caressez-le, il deviendra vicieux! The meaning of vicious circle is the
same in French as in English.
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Exercise 11.5. Under what conditions on a, b, c, d, e, and f does the above
equation describe an ellipse? a hyperbola? a parabola?

Two points determine a line. Three points determine a circle (Prob-
lem 11.1). Four points, however, do not determine a general conic curve.

The billiard sharp whom any one catches,
His doom’s extremely hard—
He’s made to dwell—
In a dungeon cell
On a spot that’s always barred.
And there he plays extravagant matches
In fitless finger-stalls
On a cloth untrue
With a twisted cue
And elliptical billiard balls. W. S. Gilbert

The Mikado

Exercise 11.6. Find two different ellipses passing through the four points
(1, 1), (−1, 1), (−1,−1), and (1,−1).

On the other hand, six points will not lie on a conic unless the points are
in special positions.

Exercise 11.7. Show that no conic contains the six points (1, 1), (−1, 1),
(−1,−1), (1,−1), (0, 0), and (1, 0).

Five points in general position determine a conic, but in degenerate cases
the conic may not be uniquely determined.

Exercise 11.8. 1. Show that if five points are specified in the plane, then
there is at least one conic (possibly a degenerate one) passing through
all five points.

2. Find two distinct (degenerate) conics passing through the five points
(0, 0), (0, 1), (1, 0), (2, 0), (3, 0).

A cubic curve is specified by a polynomial in x and y of degree 3. Such
curves begin to have sufficient complexity that it becomes tedious to sketch
their graphs by hand, but you can easily display pictures of such curves using
a graphing calculator or computer (Problem 11.4).
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QP

P+Q

Figure 11.1: The cubic curve 4y2 = (x + 4)(x2 + 1)

Exercise 11.9. How many points would you expect to need to specify in order
to determine a cubic curve?

Nondegenerate cubic curves have the remarkable property that their points
carry a natural group structure. This is illustrated for the specific cubic 4y2 =
(x+ 4)(x2 + 1) in Figure 11.1. The addition law is determined in the following
way. If P and Q are points on the cubic, draw the line through them. It
intersects the cubic at a third point. The reflection of this point with respect
to the x-axis is defined to be the sum P + Q.

A group is supposed to have an identity element E with the property that
P + E = P for every P . There is no such point on the cubic, but we can
supplement the cubic with an idealized point “at infinity” that will serve as
the identity element if we agree that all vertical lines pass through the point
at infinity.

Exercise 11.10. For the cubic 4y2 = (x + 4)(x2 + 1) shown in Figure 11.1,
use the group law to find the sum of the two points (−4, 0) and (0, 1).

Till that Bellona’s bridegroom, lapp’d in proof,
Confronted him with self-comparisons,
Point against point, rebellious arm ’gainst arm,
Curbing his lavish spirit: and, to conclude,
The victory fell on us. William Shakespeare

Macbeth, I ii
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Exercise 11.11. Verify that the addition law described above does provide
the cubic curve with the structure of a commutative group.

1. The rule specifying the addition law needs to be modified for the case
P = Q. How should P + P be defined?

2. The rule needs to be modified when the line joining P and Q is tangent
to the curve at P . How should P + Q be defined in this case?

3. Check that the addition is commutative.

4. Check that the point at infinity does act as an identity element.

5. What is the additive inverse of a point P ?

6. A group law is supposed to be associative. The (not so easy) verification
of associativity is left for Problem 11.6.

11.2.2 Non-Euclidean geometry

The eye is the first circle; the horizon which it forms is the sec-
ond; and throughout nature this primary figure is repeated without
end. It is the highest emblem in the cipher of the world. St. Au-
gustine described the nature of God as a circle whose centre was
everywhere, and its circumference nowhere. We are all our life-
time reading the copious sense of this first of forms. One moral we
have already deduced, in considering the circular or compensatory
character of every human action. Another analogy we shall now
trace; that every action admits of being outdone. Our life is an
apprenticeship to the truth, that around every circle another can
be drawn; that there is no end in nature, but every end is a be-
ginning; that there is always another dawn risen on mid-noon, and
under every deep a lower deep opens. Ralph Waldo Emerson

Essays, x. Circles

You probably saw in high school some basic notions from Euclidean ge-
ometry such as the principle of similar triangles and the construction of a
perpendicular bisector of a line segment. The next exercise is a typical exam-
ple of that kind of reasoning.
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Exercise 11.12. 1. By considering a circle circumscribed around a trian-
gle, show that the perpendicular bisectors of the three sides of a triangle
meet at a common point.

2. By considering a circle inscribed in a triangle, show that the lines bisect-
ing the three angles of a triangle meet at a common point.

3. By making a copy of a triangle four times as big as the original, show
that the three altitudes of a triangle meet at a common point.

Euclid’s Elements builds up the theory of ordinary planar geometry from
a few basic assumptions and “common notions.” Euclid’s axioms are the
following.

1. A straight line segment can be drawn from any point to any other point.

2. A straight line segment can be extended continuously to a straight line.

3. A circle can be drawn with any center and any radius.

4. All right angles are equal.

5. Parallel postulate: through a given point not on a given line can be
drawn exactly one line parallel to the given line.

As Lines so Loves Oblique may well
Themselves in every Angle greet:
But ours so truly Parallel,
Though infinite can never meet. Andrew Marvell

The Definition of Love

Euclid’s fifth axiom—the parallel postulate—was a source of controversy
for centuries. Many people tried to prove it from the other axioms, and some
thought that they succeeded. In fact, however, the fifth axiom is independent
of the others. In other words, it is possible to construct a geometric model that
satisfies the first four axioms but not the fifth. One such model is hyperbolic
geometry in the unit disk. Figure 11.2 shows a picture of some lines in the
“Poincaré unit disk.”

In the hyperbolic disk, “lines” are arcs of circles that are orthogonal to the
boundary unit circle at both intersection points. Diameters of the unit circle
also count as “lines.” Notice in Figure 11.2 the two intersecting lines that are
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Figure 11.2: The Poincaré unit disk

disjoint from (that is, “parallel to”) the other two lines. Thus Euclid’s fifth
axiom does not hold in the hyperbolic disk.

What! will the line stretch out to the crack of doom?
William Shakespeare

Macbeth, IV i

Exercise 11.13. Verify Euclid’s first axiom for the hyperbolic disk.

The distance between points in the hyperbolic disk is obtained by integrat-

ing
ds

1− x2 − y2
along the “line” joining the points. Distances become very

large near the boundary of the disk. The boundary circle is not included as
part of the hyperbolic disk. Indeed, the boundary is at infinite distance from
any point of the disk, so Euclid’s second axiom is satisfied. Angles are com-
puted in the usual way: the angle of intersection of two curves is the angle
between their tangent lines.

For precept must be upon precept, precept upon precept; line upon
line, line upon line; here a little, and there a little. Isaiah, 28:10

Exercise 11.14. Compute the sum of the angles of the hyperbolic triangle
with vertices at (0, 0), (0, 1/2), and (1/2, 0). See Figure 11.3.
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Figure 11.3: A hyperbolic triangle

“If you were sensible of your own good, you would not wish to quit
the sphere in which you have been brought up.” Jane Austen

Pride and Prejudice
(Lady Catherine de Bourgh, to Elizabeth Bennet)

One can also put a “spherical geometry” on the plane by using stereo-
graphic projection (Problem 11.10). It is more convenient, however, to think
of this geometry on the sphere itself. The “lines” are great circles on the
sphere (circles whose radius is the same as the radius of the sphere). In spher-
ical geometry, Euclid’s fifth postulate fails not because there are too many
parallel lines, but because there are none! In hyperbolic geometry, the angles
of a triangle sum to less than 180◦, while in spherical geometry, the angles of
a triangle sum to more than 180◦.

Exercise 11.15. Find a spherical triangle with three right angles.

He has many friends, laymen and clerical.
Old Foss is the name of his cat:
His body is perfectly spherical,
He weareth a runcible hat. Edward Lear

Nonsense Songs

Exercise 11.16. A photographer for National Geographic sets out to capture
a bear on film. She walks one mile due south from base camp, then one mile
due east, takes a picture of a bear, turns due north, walks one mile and is back
at camp. What color was the bear?
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The wheel is come full circle; I am here. William Shakespeare
King Lear, V iii

11.3 Problems

Let no one enter who does not know geometry.
inscription on Plato’s door

Problem 11.1. Show that if three points in the plane are not all on the same
line, then there is one and only one circle passing through them.

Problem 11.2. Show that if five points are specified in the plane, and if no
four of the points are on the same line, then there is a unique conic (possibly
degenerate) passing through the five points.

Problem 11.3. Suppose given an infinite sequence of points in the plane with
the property that for every pair of points, the distance separating them is an
integer. Prove that the points must all lie on a line.4

Hint: what sort of curve is the locus of points whose distances from two
specified locations have a fixed difference?

Problem 11.4. Produce pictures (by computer, if you like) of the graphs of
the three cubics defined by the equations y2 = x3 + x2 + 2x + 1, y2 = x3 + x2,
and y2 = x3 + x2 − 2x− 1. Observe that the three graphs look very different
from each other.

Problem 11.5. Show that if two points P and Q on the cubic shown in
Figure 11.1 have coordinates that are rational numbers, then the coordinates
of the sum point P + Q are again rational numbers.

Problem 11.6. Prove that the addition law for points on the cubic curve
shown in Figure 11.1 is associative.

4In February 1958, this problem was posed as part of the eighteenth William Lowell
Putnam mathematical competition. The result first appeared in a paper by Norman H.
Anning and Paul Erdős, Integral distances, Bulletin of the American Mathematical Society
51 (1945), 598–600. According to legend, a follow-up paper giving a simpler solution was
ghost-written for Erdős by the reviewer Irving Kaplansky, and the review of that paper was
ghost-written for Kaplansky by the editor of Mathematical Reviews. (See Lion Hunting and
Other Mathematical Pursuits, edited by Gerald L. Alexanderson and Dale H. Mugler, Math-
ematical Association of America, 1995, pages 33–34.) However, a different story appeared
in the Mathematical Intelligencer 14 (1992), number 1, 56–57.
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Problem 11.7. Verify Euclid’s third axiom for the hyperbolic disk.

Problem 11.8. Knowing how to compute length in the hyperbolic disk, how
might you define area in the hyperbolic disk?

Problem 11.9. Show that the (hyperbolic) area of the hyperbolic triangle
shown in Figure 11.3 equals 1

2
arctan(1/4).

Problem 11.10. The planar model of spherical geometry is obtained from the
spherical model by stereographic projection. Imagine a sphere resting on the
plane with its south pole at the origin5 and a light source at the north pole. A
point on the sphere casts a shadow on the plane. The “straight lines” in the
plane are defined to be the shadows of great circles. Prove the remarkable fact
that these “straight lines” in the plane are actually ordinary circles (unless
the great circle passes through the poles, in which case its projection is an
ordinary straight line).

Problem 11.11. Show that the area of a spherical triangle on a sphere of
radius 1 is ∆−π, where ∆ is the sum of the angles (in radians) of the triangle.

11.4 Additional Literature

1. H. S. M. Coxeter, Non-Euclidean Geometry, University of Toronto Press,
1942. (QA 685 C7.8)

2. Arlan Ramsay and Robert D. Richtmyer, Introduction to Hyperbolic Ge-
ometry, Springer-Verlag, 1995. (QA 685 R18 1995)

3. Jeffrey R. Weeks, The Shape of Space, Marcel Dekker, 1985. (QA 612.2
W44 1985)

5An alternate version of stereographic projection places the center of the sphere at the
origin.





Chapter 12

Beyond the real numbers

Hence, horrible shadow!
Unreal mockery, hence! William Shakespeare

Macbeth, Act III, Scene iv

12.1 Goals

1. Learn some of the history, properties, and applications of the complex
numbers.

2. Learn some of the history, properties, and applications of the quater-
nions.

3. Prove the Fundamental Theorem of Algebra and appreciate its beauty.

12.2 Reading

1. B. L. van der Waerden, A History of Algebra, Springer-Verlag, 1985,
pages 52–62, 94–102, and 177–186.

2. William Dunham, Journey through Genius: The Great Theorems of
Mathematics, Wiley, 1990, Chapter 6: Cardano and the Solution of the
Cubic, pages 133–154.

3. Uwe F. Mayer, “A Proof that Polynomials have Roots,” The College
Math Journal, 28, (1997), number 1, page 58.
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4. David Eugene Smith, A source book in Mathematics, Dover, 1959,
“Gauss”, pages 292–306.

12.3 Classroom Discussion

12.3.1 The complex numbers

Exercise 12.1 (Warm up). A high school student says, “When I enter the
number −1 on my calculator and push the square-root key, I get an error
message. Therefore the equation x2 + 1 = 0 has no solution.” How would you
respond?

What are the complex numbers? There are several ways to think about
them. The most familiar description is that the complex numbers consist of
all expressions a + bi, where a and b are ordinary real numbers, and the imag-
inary unit i has the property that i2 = −1. Such expressions are added and
multiplied by following the usual rules of “high school algebra”, with the addi-
tional rule that all occurrences of i2 should be replaced by −1. Consequently,
it is easy to see that the operations of addition and multiplication of complex
numbers satisfy the usual commutative, associative, and distributive laws.

Friendship is only a reciprocal conciliation of interests, and an ex-
change of good offices; it is a species of commerce out of which
self-love always expects to gain something.

Francis, Duc de La Rochefoucauld
(1613–1680)

Reflections, or Sentences and Moral Maxims
Maxim 83

Exercise 12.2. Show that if a and b are not both zero, then the reciprocal
1

a + bi
of a complex number is again a complex number: it can be rewritten

in the form A + Bi for suitable real numbers A and B.

In more abstract language, we can say that the complex numbers are a
field, in fact, an extension of the field of real numbers.

Exercise 12.3. In the field of complex numbers, what is the additive identity?
the multiplicative identity?
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An alternative definition of the complex numbers—first made explicit by
the nineteenth-century Irish mathematician William Rowan Hamilton—is the
set of all ordered pairs (a, b) of real numbers subject to the addition law (a, b)+
(c, d) = (a+c, b+d) and the multiplication law (a, b) ·(c, d) = (ac−bd, ad+bc).

Exercise 12.4. In what sense is this definition the same as the usual one?

The identification of a complex number a+bi with a vector (a, b) means that
the complex numbers can be viewed geometrically as points in the ordinary
Euclidean plane. Consequently, a complex number a + bi has an associated
length

√
a2 + b2, called its modulus and often written |a+bi|, and an associated

angle arctan b/a, called its argument and often written arg(a + bi). (Just
like the angle in polar coordinates, the argument of a complex number is
determined only up to integral multiples of 2π.)

The truth is always the strongest argument. Sophocles
496–406 b.c.

Exercise 12.5. Find the modulus and the argument of the following complex
numbers: 1; i; 1 + i; −2/(1 +

√
3 i); i/(−2− 2i).

Exercise 12.6. What familiar geometric object is the set of complex num-
bers z with the property that |z − i| = 4?

Exercise 12.7. The triangle inequality says that |z + w| ≤ |z| + |w| for all
complex numbers z and w. Prove the triangle inequality, and interpret it
geometrically by representing complex numbers as vectors in the plane.

The complex numbers can also be represented as the set of all 2 × 2 ma-
trices

(
a b

−b a

)
, where a and b are real numbers, the addition and multiplication

operations being the usual ones for matrices.

Exercise 12.8. 1. In what sense is this definition the same as the previous
ones?

2. Matrix multiplication is a basic example of a noncommutative operation.
However, multiplication of complex numbers is a commutative operation.
Explain why there is not a conflict with your preceding answer.
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One motivation for introducing the complex numbers is to force the “un-
solvable” quadratic equation x2 + 1 = 0 to have a solution. This idea can be
used to give the complex numbers an algebraic definition. Namely, define an
equivalence relation on the set of polynomials with real coefficients by declaring
polynomials p and q to be equivalent if and only if there exists a polynomial r
(which could be a constant, or even 0) such that p(x) − q(x) = (x2 + 1)r(x)
for all x.

Exercise 12.9. Verify that this is an equivalence relation.

Now define the complex numbers to be the set of all equivalence classes.
The operations of addition and multiplication are inherited from the corre-
sponding operations on polynomials. (In the notation of abstract algebra, this
definition says that the complex numbers are the quotient ring R[x]/(x2 + 1).)

Exercise 12.10. Confirm that this definition makes sense and is compatible
with the other definitions of the complex numbers. Which equivalence class
corresponds to the complex number i?

We know what i2 means (namely, i× i, or −1), but what might 2i mean?
We are free to give this symbol whatever meaning seems reasonably consistent
with the notion of exponentiation of real numbers. One way to characterize
the usual real exponential function is that ekx is the unique solution of the
differential equation f ′(x) = kf(x) satisfying the initial condition f(0) = 1. If
there is going to be a reasonable generalization of the exponential function to
complex numbers, we would expect eix to be a function whose derivative is ieix

and whose second derivative is −eix. On the other hand, we know that two
linearly independent solutions of the differential equation g′′(x) = −g(x) are
cos(x) and sin(x). Consequently, we expect there to be (complex) constants
c1 and c2 such that eix = c1 cos(x) + c2 sin(x).

Exercise 12.11. Assuming that the complex exponential function suggested
by the preceding heuristic argument does exist, deduce Euler’s formula

eix = cos(x) + i sin(x).

Exercise 12.12. Observing that 2 = elog 2, express 2i in the form a+bi, where
a and b are real numbers.
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Specializing Euler’s formula to x = π gives a formula regarded by many as
one of the most beautiful in mathematics:

eiπ = −1.

Here we see in one formula the base of the natural logarithms, the imaginary
unit, and the ratio of the circumference of a circle to its diameter.

Exercise 12.13. Use Euler’s formula to show that every nonzero complex
number can be written in the form reiθ, where r equals the modulus and θ
equals the argument.

Exercise 12.14. 1. Write (1 + i)99 in the form a + bi, where a and b are
real numbers.

2. The complex number 1−√3 i has two square roots. Find them.

The real logarithm function is often defined as the inverse of the real ex-
ponential function: namely, elog x = x and log ex = x for every real number x.
This definition makes sense because the real exponential function is strictly
increasing and hence one-to-one. The complex exponential function, however,
is very far from being one-to-one: every point of its image has infinitely many
pre-images.

Exercise 12.15. Show that the complex exponential function z 7→ ez is peri-
odic with period 2πi.

To define a complex logarithm function as an inverse of the complex expo-
nential function, we need to restrict the domain of the exponential function to
a set on which the function is one-to-one. Different choices of domain lead to
different branches of the logarithm function. In view of the periodicity of the
complex exponential function, the most natural restricted domain is a hori-
zontal strip of height 2π in the complex plane. The principal branch of the
logarithm corresponds to taking this strip to be centered on the real axis, so
that the imaginary part of z lies between −π and π.

Those green-robed senators of mighty woods,
Tall oaks, branch-charmed by the earnest stars,
Dream, and so dream all night without a stir. John Keats

1795–1821
Hyperion, Book I

Exercise 12.16. Determine the principal value of ii. What are the other
possible values of ii (corresponding to different branches of the logarithm)?
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12.3.2 The solution of cubic and quartic equations

The shortest path between two truths in the real domain passes
through the complex domain. Jacques Hadamard

1865–1963
(attributed)

It is a remarkable phenomenon that complex numbers arise naturally in
problems about real numbers. This phenomenon was first observed in the
Renaissance, when solving cubic and quartic equations was a hot research
topic. It turns out that there are formulas for the solutions of cubic and
quartic equations, but the formulas may involve complex numbers even when
the solutions turn out to be real numbers.

Exercise 12.17. It is not obvious how to simplify complicated expressions

involving roots. For example, how does
4
√

97 +
√

9408 simplify? If you are
stuck, look at the answer in the footnote for a clue.1

The key to solving a cubic equation is to use some trickery to reduce the
problem to solving an associated quadratic equation. A first step is to eliminate
the quadratic term in a cubic equation.

Exercise 12.18. Show how to choose d so that the change of variable x = y−d
transforms the general cubic equation y3 +Ay2 +By +C = 0 to the “reduced”
cubic equation x3 − 3ax− 2b = 0.

The formula due to Tartaglia and Cardano is that a solution of the reduced
cubic equation x3 − 3ax− 2b = 0 is given by

x =
3

√
b +

√
b2 − a3 +

3

√
b−

√
b2 − a3. (12.1)

The insane root
That takes the reason prisoner. William Shakespeare

Macbeth, Act I, Scene iii

Exercise 12.19. Verify that formula (12.1) gives a correct real-valued solution
of the reduced cubic equation x3 − 3x− 2 = 0.

1 Itequals2+
√

3.
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One way to derive the formula is to introduce two auxiliary variables u
and v such that u+v = x. Substituting into the cubic equation and simplifying
gives u3 + v3 − 2b + (u + v)(3uv − 3a) = 0, which will certainly be true if u
and v satisfy the simultaneous equations

u3 + v3 = 2b

uv = a.

Exercise 12.20. Solve the simultaneous equations by eliminating v and solv-
ing a quadratic equation for u3. Deduce formula (12.1).

Exercise 12.21. Use (12.1) to find the three real solutions of the cubic equa-
tion x3 − 6x− 4 = 0. Observe that although (12.1) initially produces answers
involving complex numbers, simplification leads to real answers.

Just as one can solve a cubic equation by reducing it to an associated
quadratic equation, one can solve a quartic equation by reducing it to an
associated cubic equation. A first step is to eliminate the cubic term in a
quartic equation.

Exercise 12.22. Show how to choose d so that the change of variable x = y−d
transforms the general quartic equation y4 + Ay3 + By2 + Cy + D = 0 to the
reduced quartic equation x4 + ax2 + bx + c = 0.

François Viète had the following idea for solving a reduced quartic equation
x4 +ax2 + bx+ c = 0: introduce a second variable z and add 2x2z + z2 to both
sides of the equation to create a perfect square on the left-hand side. This
manipulation yields the new equation

(x2 + z)2 = (2z − a)x2 − bx + z2 − c. (12.2)

The right-hand side will also be a perfect square if z is chosen appropriately.

Read not my blemishes in the world’s report;
I have not kept my square, but that to come
Shall all be done by the rule. William Shakespeare

Antony and Cleopatra, Act II, Scene iii

Exercise 12.23. Show that the condition for the right-hand side of equa-
tion (12.2) to be a perfect square is a certain cubic equation in z.
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Since we already know how to solve a cubic equation, we can determine a
suitable value for z. Then by taking square roots in (12.2), we get a quadratic
equation for x, which we can solve too.

Exercise 12.24. Solve x4 − 2x2 − 16x + 1 = 0.
Hint: the associated cubic equation has an integer solution that is easier to
find without using formula (12.1).

12.3.3 The fundamental theorem of algebra

In the previous section, you derived formula (12.1) for solving a cubic equa-
tion. The procedure for solving a quartic equation can also be codified into
a formula, but the formula is too complicated to be of practical use. It is a
surprising theorem of Niels Abel2 that there is no general formula for writing
down the solution of every fifth degree polynomial equation in terms of radi-
cals. A characterization of when a polynomial equation is solvable by radicals
was found by Évariste Galois, a political revolutionary who was arrested for
threatening the life of king Louis Philippe.3

A radical is a man with both feet firmly planted in the air.
Franklin D. Roosevelt

(1882–1945)

Of course, to say that the general quintic equation cannot be solved by
radicals is not to say that every quintic equation is unsolvable. There actually
is a formula for solving those quintics that can be solved by a formula.4 For
example, the quintic equation x5 + 15x + 12 = 0 has a unique real root.

Exercise 12.25. Why?

2A Norwegian mathematician, Abel lived 1802–1829. He died tragically young, a victim
of tuberculosis.

3In his short life (1811–1832), Galois made revolutionary contributions to algebra, but he
failed to express himself in a way that his contemporaries could understand. He introduced
the word “group” in its modern algebraic sense. Galois died in a duel—the circumstances
of which are still under dispute by historians—before reaching his twenty-first birthday.

4Although this statement sounds tautological, it has nontrivial content! See D. S. Dum-
mit, Solving solvable quintics, Mathematics of Computation 57 (1991), 387–401, from which
the example is taken.
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The real root of this quintic equation is given by the following expression
involving square roots and fifth roots:

− 1

5

(
5

√
1875 + 525

√
10 +

5

√
1875− 525

√
10

+
5

√
−5625 + 1800

√
10− 5

√
5625 + 1800

√
10

)

(where the real fifth root is taken in each term).
Evidently, the problem of explicitly finding roots of polynomial equations

is a difficult one. It is therefore useful to have an existence theorem.
According to the fundamental theorem of algebra, every polynomial equa-

tion with real or complex coefficients does have a solution in the complex
numbers (unless, of course, the polynomial is a constant). Thus, not only does
the equation x2 + 1 = 0 have a solution in the complex numbers, but so do
the equations x28 + 37x14 + 92x6 + 13 = 0 and x4 + (2 + 3i)x2 + (9− 2i) = 0.
In other words, the complex numbers form an algebraically closed field.

There are many proofs of the fundamental theorem of algebra. The goal
of this section is to work through a short one based on ideas from advanced
calculus. The following exercise says that if we are looking for a point in the
complex plane where a polynomial is equal to zero, then we should look close
to home.

Exercise 12.26. If p is a nonconstant polynomial, then lim|z|→∞ |p(z)| = ∞.
Here |z| → ∞ means that z escapes from every disk centered at the origin.

Exercise 12.27. Deduce that since a continuous, real-valued function on a
closed, bounded subset of the plane attains a minimum on the set, there is a
point a in the plane such that |p(a)| ≤ |p(z)| for every complex number z.

Evidently our candidate for a solution to the equation p(z) = 0 should
be the point z = a where |p(z)| attains a minimum. To confirm that this
candidate works, we need to analyze the local behavior of the polynomial p
near a. There exist a positive integer k, a nonzero complex number b, and a
polynomial q such that

p(z) = p(a) + b(z − a)k + (z − a)k+1q(z)

for all z.
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Exercise 12.28. Why can the polynomial p be represented in this way?

Suppose, seeking a contradiction, that p(a) 6= 0. Let θ denote the difference
between the argument of p(a) and the argument of b.

Nor knowest thou what argument
Thy life to thy neighbor’s creed has lent.
All are needed by each one;
Nothing is fair or good alone. Ralph Waldo Emerson

(1803–1882)
Each and All

Exercise 12.29. Show that if ε is a sufficiently small positive real number,
then |p(a + εei(θ−π)/k)| < |p(a)|.

Since |p(z)| was supposed to have a global minimum at z = a, we have
a contradiction. This shows that p(a) must be zero after all, and so the
fundamental theorem of algebra is proved.

12.3.4 Reflections and rotations

But with the morning cool reflection came. Sir Walter Scott
(1771–1832)

Chronicles of the Canongate, Chapter iv

Complex numbers provide a convenient notation to describe transformations
of the Euclidean plane. For example, taking the complex conjugate (that is,
transforming x+ iy into x + iy = x− iy) corresponds to reflection with respect
to the x-axis. From the representation of a complex number in the form reiθ, it
follows that multiplication by eiϕ corresponds to rotation by the angle ϕ in the
positive (counterclockwise) direction. If w = a+ bi is a fixed complex number,
then the transformation z 7→ z + w is a translation of the plane a units to the
right and b units vertically.

Exercise 12.30. Using the notation of complex numbers, write a formula
describing reflection with respect to a line making an angle ϕ with the x-axis.

Suppose we view the complex plane as a sheet of newspaper spread out on a
desk. We can transform the plane into itself by sliding the paper around on the
desk. Evidently the set of all sliding motions forms a group. An element of this
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group can be viewed as the composition of some finite sequence of translations
and rotations. If we admit the possibility of picking the sheet of paper up and
flipping it over, then we obtain a larger group of rigid motions: namely, the
group of isometries (distance-preserving transformations) of the plane. It is
remarkable that every sliding motion can be obtained as the composition of
just two reflections, and every isometry can be obtained as the composition of
three reflections.

To see this, pick any two points p and q in the plane. Denote their images
under an isometric transformation T by Tp and Tq. A reflection across the
perpendicular bisector of the line segment joining p and Tp maps p to Tp and
q to some new point q′. Because both T and reflection preserve distances, the
line segment joining Tp to Tq has the same length as the line segment joining
Tp to q′. Consequently, the perpendicular bisector of the line segment joining
Tq and q′ is also the angle bisector of the angle determined by Tq, Tp, and q′.
A reflection across this perpendicular bisector therefore takes q′ to Tq while
keeping Tp fixed. Now consider any third point r in the domain plane. A
distance-preserving transformation that takes p to Tp and q to Tq can take r
to one of only two locations, since there are only two triangles congruent to
the triangle pqr and having Tp and Tq as vertices; moreover, the two possible
locations for the image of r are reflections of each other across the line through
Tp and Tq. Therefore T is the composition of either two or three reflections.

Exercise 12.31. Show that if a rigid motion of the plane is the composi-
tion of two reflections, then it preserves the sense of angles, while if it is the
composition of three reflections, then it reverses the sense of angles.

Remembrance and reflection how allied!
What thin partitions sense from thought divide!

Alexander Pope
(1688–1744)

Essay on Man, Epistle i, line 225

A rotation is a rigid motion, and so every rotation can be realized as the
composition of two reflections. It is illuminating to see which two reflections
generate a rotation by angle θ. A rotation by angle θ about the origin is
described by z 7→ eiθz. By rewriting eiθz as e−iθ/2z̄eiθ/2, we find from Exer-
cise 12.30 that the rotation is the composition of reflections in two lines making
an angle of θ/2 with each other.
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Exercise 12.32. Show that a rotation by angle θ about an axis in three-
dimensional space can be realized as the composition of two reflections in
planes whose line of intersection is the rotation axis and whose normal lines
make an angle of θ/2 with each other.

12.3.5 Quaternions

The complex numbers arise from the real numbers by adjoining a quantity i
with the property that i2 = −1. It is natural to consider the possibility
of extending the complex numbers by adjoining another quantity j to form
objects of the form a + bi + cj. However, there is no reasonable way to make
such an extension.

Exercise 12.33. Show that there is no consistent way to define multiplication
on objects of the form a + bi + cj, where a, b, and c are real numbers, if all of
the following properties are to hold:

• closure under multiplication;

• the usual associative and distributive laws;

• i2 = −1;

• a + bi + cj = 0 if and only if a, b, and c are all 0.

A famous story from the history of mathematics relates that William
Rowan Hamilton spent years looking for a way to multiply and divide triples of
real numbers. He failed, because no such operation exists. One of his attempts
was what we now call the cross product. Recall that the cross product of two
vectors in three-dimensional space is a vector perpendicular to both and with
length equal to the product of the lengths of the two vectors times the sine of
the angle between them.

A man I am, cross’d with adversity. William Shakespeare
The Two Gentlemen of Verona, Act iv, Scene 1

Exercise 12.34. Three-dimensional vectors equipped with the usual addition
and with the cross product fail to form a field. Which properties of a field are
lacking?
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Each cursed his fate that thus their project crossed;
How hard their lot who neither won nor lost! Richard Graves

(1715–1804)
The Festoon

Reportedly, a game in the Hamilton household was for the children to ask
at mealtimes, “Papa, have you found a way to divide triples?” In response,
Hamilton would say in lugubrious tones, “No, I can only multiply them.”

The story continues that on the morning of Monday, October 16, 1843,
Hamilton had a flash of insight while strolling with his wife along the Royal
Canal: he suddenly realized that the problem of multiplying and dividing
vectors could be solved in four -dimensional space. He was so taken with his
discovery that he carved it into the stones of Brougham Bridge, an action that
historians seem to consider romantic, although nowadays it would bring a fine
for defacing public property. Hamilton had discovered the quaternions: the
set of objects a+ bi+ cj +dk, where a, b, c, and d are real numbers, multiplied
according to the usual rules of high school algebra, but with the additional
rules that i2 = j2 = k2 = ijk = −1. One of the revolutionary aspects of
Hamilton’s work was the noncommutativity of the multiplication law.

Exercise 12.35. Show that the rules i2 = j2 = k2 = ijk = −1 imply the
properties ij = k = −ji, jk = i = −kj, and ki = j = −ik.

In analogy with the complex numbers, quaternions have a conjugation
operation. If Q = a + bi + cj + dk, where a, b, c, and d are real numbers, then
Q̄ is defined to be a−bi−cj−dk. It is easy to see that QQ̄ = a2 +b2 +c2 +d2,
so

√
QQ̄ is the length of Q. According to the next exercise, the operations of

conjugation and multiplication interact with a twist.

Exercise 12.36. Show that if Q1 and Q2 are quaternions, then Q̄1Q̄2 = Q2Q1.

Exercise 12.37. Show that if a, b, c, and d are not all zero, then the reciprocal
1

a + bi + cj + dk
of a quaternion is again a quaternion: it can be written in

the form A + Bi + Cj + Dk for suitable real numbers A, B, C, and D.

You are probably familiar with the idea of representing vectors in three-
dimensional space as linear combinations of orthogonal basis vectors i, j, and k.
This idea comes directly from Hamilton’s work. He viewed a quaternion a +
bi + cj + dk as consisting of a scalar part a and a “pure quaternion” part
bi + cj + dk, which he termed a “vector”. Thus, quaternions can be used as a
tool for the analysis of three-dimensional vectors.
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Exercise 12.38. Show that if V and W are pure quaternions, then

V W = −V ·W + V ×W. (12.3)

The multiplication on the left-hand side is quaternionic multiplication, while
the multiplication operations on the right-hand side are the scalar product
(“dot product”) and vector product (“cross product”) of the associated vec-
tors.

An interesting application of quaternions is to describe motions of three-
dimensional space. For example, suppose V is a fixed unit vector, and consider
the transformation that sends a variable vector W into V WV . According to
the preceding exercise,

V WV = −(V ·W )V + (V ×W )V

= −(V ·W )V − (V ×W ) · V + (V ×W )× V

= −(V ·W )V + (V ×W )× V,

(12.4)

the last step following because the vector V ×W is orthogonal to the vector V .
In particular, the quaternionic product V WV of vectors (pure quaternions) is
again a pure quaternion. We can now investigate how the transformed vector
V WV compares to W .

Exercise 12.39. Show that if the vector W is orthogonal to the unit vector V ,
then V WV = W .

On the other hand, (12.4) implies that V V V = −V . Since every vector
can be decomposed into the sum of a vector orthogonal to V and a vector
parallel to V , it follows that the transformation W 7→ V WV is reflection in
the plane perpendicular to the unit vector V .

According to Exercise 12.32, the composition of reflections in two different
planes making an angle θ/2 is a rotation of angle θ about the line of inter-
section of the planes. If vectors V1 and V2 are unit vectors orthogonal to the
planes, then the operation corresponding to the composition of reflections is
W 7→ V2V1WV1V2. By (12.3), we can write V2V1 = − cos(θ/2) − V sin(θ/2),
where V is a unit vector in the direction of the rotation axis. In summary, if
Q denotes the quaternion cos(θ/2)+V sin(θ/2), where V is a unit vector, then
the transformation W 7→ QWQ̄ represents rotation of a vector W by angle θ
about the direction of the vector V .
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Quaternionic multiplication gives an easy way to compute the composition
of rotations. Namely, we multiply the quaternions that represent the two
rotations, and the product is a quaternion representing the composite rotation.

Exercise 12.40. Rotate space by π/2 radians about the z-axis, then by π radi-
ans about the y-axis, and then by π/2 radians about the x-axis. The composite
motion is a rotation by what angle about what axis?
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12.5 Problems

Problem 12.1. Explain the fallacy:

−1 = i× i =
√−1×√−1 =

√
(−1)(−1) =

√
1 = 1.

Problem 12.2. Verify that Euler’s formula eix = cos(x) + i sin(x) is compati-
ble with the usual power series expansions for the trigonometric and exponen-
tial functions.
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Problem 12.3. Use Euler’s formula to derive

1. the addition formula cos(θ + ϕ) = (cos θ)(cos ϕ)− (sin θ)(sin ϕ);

2. the identity cos 3θ = cos3 θ − 3(cos θ)(sin2 θ).

Problem 12.4. 1. Find all complex numbers z such that ez = 2.

2. Find all complex numbers z such that ez = i.

3. Find all complex numbers z such that ez = 0.

Problem 12.5. François Viète solved the reduced cubic equation x3 − 3ax−
2b = 0 by making the change of variable x = w+aw−1. Show how this method
leads to the solution formula (12.1).

Problem 12.6. In the solution formula (12.1) for the reduced cubic equation,
there are two different cube roots. Since a cube root has three complex values,
why does the formula not produce 3 × 3 = 9 different solutions of a cubic
equation?

Problem 12.7. Find all four solutions of the equation5

(x− 3)4 + (x− 7)4 = 24832.

Problem 12.8. Find all four solutions of the equation6

x4 − 4x = 1.

Problem 12.9. Show that quaternions may be represented as 2× 2 matrices(
a+di −c+bi
c+bi a−di

)
of complex numbers.

5Mathematics Student Journal 28 (1981/4), 3.
6Murray Klamkin, Mathematics Student Journal 28 (1980/3), 2.
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Projects

13.1 Paradoxes

Research one of the following paradoxes, write a paper about it, and make a
presentation in class about it.

You are expected to do more than simply research the topic in the library
and on the Internet and report your findings. You should include some original
contribution of your own. For example, you might present illustrative examples
and your opinion (with explanatory reasons) about a solution of the paradox.

Of course your paper should be computer printed, preferably by LATEX, the
de facto standard for mathematical typesetting.

Please consult your instructor if you have any questions.

Banach-Tarski paradox A ball the size of a pea can be cut into finitely
many pieces that can be reassembled into a ball the size of the sun.

Braess’s paradox Adding capacity to a network can make it less efficient.

Carl Hempel’s paradox of the ravens Every black raven that Edgar Al-
lan Poe observes gives him more confidence in the truth of the statement:
“All ravens are black.” The contrapositive statement “Everything that
is not black is not a raven” is equivalent. Therefore a purple cow is also
a confirming instance of the proposition that all ravens are black.

Newcomb’s problem Box A has $1,000 in it; box B has $1,000,000 or $0.
You may take either box B alone, or you may take both boxes. Box B is

137
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empty if and only if a Being with superior predictive powers has guessed
that you will take both boxes. What should you do?

The exchange paradox You are offered a choice of one of two identical
boxes, and you are given the information that one of the boxes con-
tains twice as much money as the other one. You open your choice and
observe how much money it contains. Now you are offered the chance to
switch and take the other box. Should you switch?

Argument 1: By symmetry, it makes no difference whether or not you
switch. If one box contains Y dollars and the other contains 2Y dollars,
half the time you will gain Y by switching, and half the time you will
lose Y by switching. Your expected gain by switching is zero.

Argument 2: Suppose your box contains X dollars. If you switch, half
the time you will end up with 2X (a gain of X), and half the time you
will end up with X/2 (a loss of X/2). Your expected gain by switching
is therefore (X −X/2)/2 = X/4, so you should always switch.

Petersburg paradox A fair coin is flipped repeatedly until heads comes up.
If heads comes up for the first time at toss n, you win 2n dollars. What
is a fair price to play the game?

Prisoner’s dilemma In a competitive situation where all parties act ratio-
nally, they may arrive at an outcome that is inferior for all of them.
Compare “the tragedy of the commons.”

Surprise examination paradox There will be a surprise examination one
day next week. If the examination has not been given by Thursday, then
you deduce that it will be on Friday, so it will not be a surprise. Hence
the examination cannot be on Friday. By induction, it cannot be on any
of the preceding days either.

Nelson Goodman’s grue-bleen paradox The adjective “grue” applies to
all objects examined prior to the resolution of the Riemann hypothesis
just in case they are green and to all other objects just in case they are
blue. Confirming instances of the statement “All emeralds are green”
are also confirming instances of the statement “All emeralds are grue”.
Color blindness is not an allowable resolution of the paradox!
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. . . like a rudd yellan gruebleen orangeman in his violet indig-
onation . . . James Joyce

Finnegans Wake
page 23

The content effect in the Wason selection task Although the following
two problems are logically equivalent, the second one is significantly
easier to solve. Why?

1. Each card has an integer written on one side and a letter written on
the other side. To determine the truth or falsity of the statement
“If there is a vowel on one side, then there is an even number on
the other side”, which cards must you turn over?'

&

$

%
5

'

&

$

%
8

'

&

$

%
A

'

&

$

%
F

2. In a bar, there is a card in front of each customer with the customer’s
age written on one side and the name of the customer’s drink written
on the other side. To determine if all customers are drinking legally,
which cards must you turn over?'

&

$

%
25

'

&

$

%
16

'

&

$

%
Beer

'

&

$

%
Coke

The Efron dice Consider the following four “unfolded” dice with sides la-
belled as indicated.

4
4
0
0

4 4

A

3
3
3
3

3 3

B

6
6
2
2

2 2

C

5
5
1
5

1 1

D
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If two of these dice are rolled in competition with each other, then A
beats B two times out of three, B beats C two times out of three, C
beats D two times out of three, and D beats A two times out of three.

Zeno’s paradoxes These are the grandparents of all paradoxes. One of them
says that this class will never end: before the end of class, half the
remaining time must elapse; then half the time still remaining must
elapse; then half . . . ; and there are infinitely many halves.

“Was that a paradox?” asked Mr. Erskine. “I did not think so.
Perhaps it was. Well, the way of paradoxes is the way of truth. To
test Reality we must see it on the tight-rope. When the Verities
become acrobats, we can judge them.” Oscar Wilde

The Picture of Dorian Gray



13.2. SPECIAL FUNCTIONS 141

13.2 Special Functions

Research one of the following special functions, write a paper about it, and
prepare a lesson about it that you will present in class. Your lesson should
include homework (and solutions).

• Bessel functions

• elliptic functions/integrals

• Gamma function

• Hermite polynomials/functions

• hypergeometric functions

• Laguerre polynomials/functions

• Legendre polynomials/functions

• Riemann zeta function

• Weierstrass ℘ function

• Lambert’s W function defined by W (z)eW (z) = z

• other (please get the instructor’s approval)

Some questions you might want to consider are:

• How is the function defined?

• When was it first defined?

• Who first defined it?

• What question or event motivated the inventor to think about this func-
tion?

• What other uses does this function have?

• What are some examples that illustrate the importance or application
of this function?
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These questions are to get you started. You should be creative and not simply
do a literature search.

After you write your paper and the instructor reads and returns it, you
will teach the rest of the class about your special function using group exercise
techniques. You are also responsible for preparing a homework set for the
other students to work to solidify their knowledge of your special function.



Appendix A

Lesson Plans

A.1 Fall 1996

Class 1

Plan

Spend about 10 minutes on housekeeping, 80 minutes on logical paradoxes and
logical formalism, 10 minutes break, and 80 minutes on induction exercises.

Reality

We spent the whole class on the formalism of logic. The students were com-
fortable filling out a straightforward truth table, but they had some trouble
in translating word problems into mathematical formalism. They were not
confident about translating an implication “A ⇒ B” into a statement using
“only if” or “is necessary for.”

We held over induction for the second class.

Class 2

Plan

Spend 20 minutes answering questions, 60 minutes on induction, 10 minutes
break, 80 minutes on probability, 10 minutes wrap-up.

143
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Reality

We spent half the class working on negating statements containing quantifiers.
The students understood the principle perfectly well, and they had no trou-
ble with mathematical statements formulated in symbols with ∃ and ∀, but
working with English sentences was difficult for them. They had to learn that
“but” is equivalent to “and” and “any” means “every” (usually).

We spent the second half of the class on induction. The students were
confident about routine induction problems. It was not obvious to them where
the flaw was in the proof that all horses are the same color.

Class 3

Plan

Spend 40 minutes answering questions on the homework and having the groups
work another induction problem. Spend 60 minutes on probability. After a
10 minute break, spend 60 minutes beginning graph theory. The concluding
10 minutes is for wrap-up, assigning homework and reading, etc.

Reality

The induction problem with cases took half the time; the remainder of the
time was spent on finite probability. Most of the students were familiar with
counting arguments and worked through the exercises on probability with some
facility.

Class 4

Plan

Spend 60 minutes discussing previous homework, answering questions, and/or
having students present their own solutions. There were three common errors
that students made in the previous homework:

• They had trouble negating “there exists a unique x.”

• They incorrectly claimed that n | pn implies n | p (in trying to prove
that n

√
n is irrational when n > 1).
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• They missed the point in the induction proof that every set of positive
integers has a least element: it is not sufficient to prove the statement
for finite sets.

There will likely be questions from the new homework on the induction with
cases, on the inverse weighted coin problem, and on Eddington’s problem.

(This discussion could easily go to 90 minutes.)

Spend 30 minutes introducing graph theory and having the students de-
termine Eulerian paths for examples. After a break, have the students try to
discover Fleury’s algorithm for constructing Eulerian paths.

If there is a lot of time left, have the students work on determining which
maps are two-colorable. Otherwise, have them start on the homework during
class.

Reality

Surprisingly, questions took less than an hour. Finding Eulerian paths went
smoothly until the students tried to find an algorithm for constructing an
Eulerian path in a complete graph on a large odd number of vertices.

After a break, the students tried to find a general algorithm to show the
sufficiency of Euler’s criterion. Even with hints, they failed. Completing the
problem was left for homework.

Class 5

Plan

Spend 45 minutes answering questions on the homework (in particular, on the
secretary problem). Have the students work on the two-color problem for 45
minutes. After a 10 minute break, spend 30 minutes on examples and basic
results about Hamiltonian graphs. For the remaining 50 minutes, the students
will try to prove Dirac’s theorem.

Reality

The students quickly decided that two-colorable maps are the ones whose un-
derlying graphs are Eulerian, but they did not succeed in finding a convincing
algorithm to color a map. They realized that the problem is simple locally,
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but they could not make the jump to patch local colorings together to make
a global coloring.

Finally, we cut off the discussion and went on to examples of Hamiltonian
graphs, which they could do. We left Dirac’s theorem as a homework exercise.
(The students can look Dirac’s theorem up in books if they have trouble with
it.)

Class 6

Plan

Answer questions for 20 minutes. Give a quiz individually and in groups (35
minutes). Count vertices, edges, and faces of planar graphs (15 minutes).

Have the students work on Euler’s formula for 20 minutes. Then each
group will present its induction proof of Euler’s formula (20 minutes).

After a 10 minute break, work on consequences of Euler’s formula. If there
is time left, the students can finish up by finding the duals of the Platonic
graphs and their chromatic numbers.

Reality

The student presentations took much longer than anticipated. There were
gaps in the proofs that the students had trouble filling.

We skipped the exercise on consequences of Euler’s formula. (This material
is in the assigned reading anyway.) We covered dual graphs, but did not have
time to determine chromatic numbers of the Platonic graphs.

Class 7

Plan

Answer questions for 20 minutes. Have one group determine the number of
colors needed to color the faces of the Platonic graphs, and the other group
the number of colors for the vertices (15 min). Have each group present the
results and check for consistency (10 min). Then have the groups prove the
6-color theorem (40 min).

After a 10 minute break, start number theory by having the groups prove
the Fundamental Theorem of Arithmetic (30 min). Discuss algebraic and
transcendental numbers (5 min). Have the groups do the warm-up exercises
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on the number of fingers that Martians have and on base n arithmetic (30 min).
Discuss unsolved problems (15 min). Have the groups prove that congruence
mod n is an equivalence relation (10 min).

Reality

The discussion of homework took 45 minutes. The coloring of the Platonic
graphs took 20 minutes, but errors were found during the discussion that took
another 25 minutes to fix (total time on coloring the Platonic graphs was 45
minutes).

After a 10 minute break, the students spent 60 minutes on the 6-color and
5-color problems. One group got the 6-color problem quickly. The other group
took longer on the 6-color problem, but solved the 5-color problem faster.

The last 30 minutes were spent on proving the Fundamental Theorem of
Arithmetic. Both groups quickly got the existence proof by induction. They
then figured out that they needed to use divisibility to prove uniqueness, but
they did not finish proving that if p | ab for p a prime, then p | a or p | b. They
were told to finish the proof for homework.

Class 8

Plan

Discuss homework for 20 minutes. Discuss algebraic and transcendental num-
bers (5 minutes). Have the groups do the warm-up exercises on the number
of fingers that Martians have and on base n arithmetic (30 min). Discuss un-
solved problems (15 min). Have the groups prove that congruence mod n is
an equivalence relation (10 min).

After a 10 minute break, have the groups prove that addition and mul-
tiplication are well-defined in Zn and find the units in Zn (20 min). Have
the groups construct a perpetual calendar (60 min). Discuss Fermat’s Little
Theorem and how to use it (10 min).

Reality

There was no discussion of homework. The students said they knew about al-
gebraic and transcendental numbers (5 minutes). The groups did the warm-up
exercises on the number of fingers that Martians have and on base n arithmetic
(35 min). We discussed unsolved problems (15 min). The groups proved that
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congruence mod n is an equivalence relation, that addition and multiplica-
tion are well-defined in Zn, and they found the units in Zn (35 min).

After a 10 minute break the groups constructed a perpetual calendar (85
min).

Class 9

Plan

Discuss homework 30 minutes (expect discussion on the perpetual calendar
problem). Discuss Fermat’s Little Theorem and how to use it (15 min). Have
the groups find and prove the formula for φ(n) and use it to compute φ(54)
(50 min).

After a 10 minute break, discuss Euler’s generalization of Fermat’s Little
Theorem and have the groups use it computationally (15 min). Have the
groups prove the Chinese Remainder Theorem constructively and then apply
it to a specific computation (60 min). If time is still left, start on exact
solutions to systems of equations.

Reality

The discussion of homework took 20 minutes. We discussed Fermat’s Little
Theorem and its use (5 min). The groups found and tried to prove the formula
for φ(n), but they got hung up on the proof that if s and t are relatively prime,
then φ(st) = φ(s)φ(t). They could do it for distinct primes. We completed
the proof together with one of the students giving an outline that we helped
them make exact (80 min).

After a 10 minute break, the groups proved and used the Chinese Remain-
der Theorem not only on the exercise in the notes, but also on

x ≡ 3 (mod 4)

x ≡ 6 (mod 9)

x ≡ 9 (mod 25)

(60 min). The last 10 minutes they started on a proof of Euler’s generalization
of Fermat’s Little Theorem using Fermat’s Little Theorem and the Chinese
Remainder Theorem. They were told to complete the proof for homework.
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Class 10

Plan

Discuss homework (20 min). Discuss the reading on exact solutions to systems
of equations and have them solve a system using the two variants in the reading
(45 min). Have them figure out why the procedure works (25 min).

After a 10 minute break, go on to cryptography. Have them solve two
problems on product ciphers (40 minutes) and two on Vigenère ciphers (40
min). If time remains, discuss the idea of public key encryption systems and
the problems inherent in them.

Reality

We discussed homework for 10 minutes, and the articles on transcendental
numbers for 45 minutes. They solved a system of equations using the two
variants in the reading (90 min).

After a 10 minute break, they were shown how to prove Fermat’s Little
Theorem by induction (5 minutes). They spent the remaining 20 minutes
figuring out why the procedure for finding exact solutions works.

Class 11

Plan

Discuss homework (20 min). Have them solve two problems on product ciphers
(40 minutes) and two on Vigenère ciphers (40 min). After a 10 minute break,
have them work the four problems on RSA codes (70 min).

Reality

They solved the product ciphers problems (10 min) and then the two Vigenère
ciphers (25 min). We discussed replacement ciphers, then reset the last class
to Thursday, 12 December, 9:00–noon. We proceeded to discuss RSA codes.
They found e given n and d (5 min), then did the security problem (20 min).
We discussed the square and multiply method by doing an example with e =
11, n = 65, M = O = 15 (the answer is 20) (15 min). They then did the
decode problem (20 min).

After a 10 minute break, they did the problem on the Evil Empire (15
min), and then proved that the distance function is a metric, spending most
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of the time on the triangle inequality (35 min). We concluded by my showing
them how to prove their conjecture on the Fractal Pascal’s Triangle.

Class 12

Plan

Discuss homework 10 minutes. Do the remaining 3 problems on error correct-
ing codes (80 min). After a 10 minute break, spend the rest of the time solving
the problem of winning at Nim.

Reality

They solved the problem of distance and error-correcting properties (15 min)
and worked a long example on the standard array (70 min). After a 10 minute
break, we spent the rest of the class on Nim. One group did the greedy game
(take the last m&m), and the other group did the dieter’s game (leave the last
m&m).

Class 13

Plan

Review the fundamental concepts of game theory, work a matrix game, the
Monty Hall problem, and a two-person non-zero-sum game.

Reality

The class went more or less according to plan.

Class 14

Plan

Spend the first half of the class working a three-person zero-sum game. After
a break, do as much set theory as time permits. There is no homework on set
theory, as the last class will be devoted to student presentations.
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Reality

About 30 minutes was spent discussing previous homework. The three-person
game took somewhat more than an hour. Working an example of an axiomatic
system took most of the remaining time because the students had troubling
deciding the truth or falsity of universal and existential statements quantified
over the empty set.

Class 15

At the final class, the students gave oral presentations of their projects in lieu
of a final examination.

A.2 Spring 1997

Class 1

Plan

Spend 75 minutes on intuitive limits, 10 minutes break, and the remaining
time on continued fractions. If time permits, start on p-adic numbers.

Reality

Intuitive limits took up the whole class. It took the students quite a while to
make an appropriate Riemann sum appear, and they spent over an hour on
the snowflake problem without completely resolving it.

Class 2

Plan

Spend the first half on continued fractions and the second half on p-adic num-
bers.

Reality

Continued fractions took the whole class. The students needed some prompt-
ing to nail down the (almost) uniqueness of continued fraction expansions.
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Class 3

Plan

Do the section on p-adic numbers. Start the unit on functions if there is time.

Reality

We almost finished the unit on p-adic numbers, the long division problem being
left for homework.

Class 4

Plan

Start the unit on functions. If time permits, begin the application on Merca-
tor’s map.

Reality

We did not get to the application on Mercator’s map.
There was some discussion of what a function is. A student suggested that

Dirichlet’s function, which equals 1 on the rationals and 0 on the irrationals, is
not given by a “formula,” so we spent a few minutes on lim

m→∞
lim

n→∞
cos(m! πx)n.

It took the students quite a while to prove that the exponential function
is transcendental; they started by claiming it was “obvious,” but the obvious
reasons were not readily forthcoming.

It was interesting to note that the students did not all have at their fin-
gertips the power series and differential equations for the sine and cosine,
although the groups quickly got these by taking the union of their individual
knowledge. On the other hand, it appeared that none of the students had a

conscious memory of having seen the geometric proof that lim
x→0

sin x

x
= 1.

Class 5

Plan

Spend 30 minutes discussing previous homework. Spend 50 minutes on hyper-
bolic functions. After a 10 minute break, spend the remaining 90 minutes on
the Mercator map.
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If time permits, begin the chapter on plane geometry.

Reality

Surprisingly, the students had trouble finding an appropriate picture to go
with the hyperbolic functions; or they were not confident that they had a
valid picture after drawing it.

We ended up with less than an hour to spend on the Mercator map, and
so did not finish it.

Class 6

Finishing the Mercator map took nearly two hours. We then started the
geometry unit, leaving two of the exercises for homework.

Class 7

We spent the whole class on conics. The students did not have in their con-
scious memory that the discriminant tells the flavor of the conic section.

Class 8

Plan

Work on cubic curves for the first half of class; then go on to non-Euclidean
geometry.

Class 9

We finished non-Euclidean geometry in the first half of class. In the second
half, we discussed different definitions and realizations of the complex num-
bers, similarities and differences between the real numbers and the complex
numbers, and a proof of the fundamental theorem of algebra.

Class 10

Two students presented their projects on functions: Bessel functions and el-
liptic functions.
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Class 11

Two students presented their projects on functions: the Gamma function and
the Riemann zeta function.

Class 12

Two students presented their projects on functions: Hermite polynomials and
Legendre polynomials.

Class 13

For one hour of the class, the students attended a meeting of the Geometry,
Analysis, and Topology seminar, where one of the instructors spoke on “The
football player and the infinite series.” For the remaining two hours of the
class, one of the students presented a project on hypergeometric functions.

Class 14

The students worked on a handout on proving various theorems about factoring
polynomials. Also, they completed the course evaluation forms.

A.3 Fall 1997

Class 1

Plan

Spend about 15 minutes on housekeeping, 80 minutes on logical paradoxes,
10 minutes break, and 80 minutes on logical formalisms. Start induction if
time permits.

Reality

Spent 20 minutes on housekeeping, 80 minutes on logical paradoxes, 10 minutes
on break, 30 minutes on formalism (truth tables, Alice, ...) and 40 minutes
on negation. Assignment: Read #1,2,4,5. Do Alice #17-25, Negations #7-8,
Problems 1.1-1.2. Also decide on which paradox to investigate.
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Class 2

Plan

Spend 20 minutes answering questions, 70 minutes on induction, 10 minutes
break, 20 minutes more on induction, then 50 minutes on probability, 10 min-
utes wrap-up.

Reality

Went over homework 10 minutes, induction the rest of the time but did not get
to last exercise. Homework: Read Bottle Imp and Chance and Chanceability.
Do Exercises 1.13 and Problems 1.3, 1.4.

Class 3

Plan

Spend 40 minutes going over mistakes on 1st homework (Alice #21, 24), an-
swering questions on the homework and maybe having the groups work another
induction problem. Spend 60 minutes on probability. After a 10 minute break,
spend 60 minutes beginning graph theory. The concluding 10 minutes is for
wrap-up, assigning homework and reading, etc.

Reality

Answered questions on homework for 45 min, then gave them

Prove by induction: for all n ∈ Z+

(
2n− 1

e
)

2n−1
2 < 1 · 3 · 5 · · · · · 2n− 1 < (

2n + 1

e
)

2n+1
2

65 minutes were spent on probability (Ex. 2.5 was not done), 10 minute break,
then 60 minutes on graph theory. Since they had not had reading on graph
theory it was necessary to give them some basic definitions before they started
working. They finished Ex. 3.2. Homework: Read 3.2 #1,2,3,9. Do Exercise
2.5, Problems 2.1, 2.2, 2.3, 3.1.
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Class 4

Plan

Spend 45 minutes going over the pieces of 1.3, 1.4 that they missed and an-
swering questions on the homework. It may well take longer than 45 minutes,
especially with Eddington’s problem and the secretary problem. Have the stu-
dents work on the two-color problem for 45 minutes. After a 10 minute break,
spend 30 minutes on examples and basic results about Hamiltonian graphs.
For the remaining 50 minutes, the students will try to prove Dirac’s theorem.

Reality

Going over homework took 70 minutes. They asked good questions such as
why do we assume the statement A affirms . . . in Eddington’s question is
true, and what about other strategies for the secretary’s problem. 2-coloring
a map took 60 minutes (with a 10 minute break put in after 20 minutes).
They took the first 20 minutes to conclude that Eulerian was the condition.
After break they quickly got 2-colorable implies Eulerian, but took a lot of
time going down dead ends before getting Eulerian implies 2-colorable (I gave
them a hint). Finding Hamiltonian circuits (ex. 3.4-3.6) took 10 minutes. The
remaining 20 minutes were spent working on Dirac’s Theorem. We finished
with me answering questions on the hint to Dirac’s Theorem and telling them
to finish the exercise for homework. Homework: Read #4,5,6. Do Exercise
3.7, Problems 3.2-3.6.

Class 5

Plan

Answer questions for 40 minutes. Count vertices, edges, and faces of planar
graphs (15 minutes). Have the students work on Euler’s formula for 20 min-
utes. Then each group will present its induction proof of Euler’s formula (30
minutes). After a 10 minute break, work on consequences of Euler’s formula.
If there is time left, the students can finish up by finding the duals of the
Platonic graphs and their chromatic numbers.
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Reality

Went over Dirac’s theorem, G ∼= L(G) ⇐⇒ G ∼= Cn, and the climber’s
dilemma when plateaus are added (they got this fast) - 30 min. 3.8 took
15 min. 3.9 took them 10 minutes to do (they remembered the induction
on vertices from the reading) with needing 30 minutes for the presentation
- discussed induction some more as to why one starts with the k + 1st case
and uses the info from the kth case rather than build up to k + 1 form k. 7
minute break. The consequences of Euler’s theorem (3.10 1-3) took a total
of 78 minutes because they had trouble proving that 3f < 2e. The last 10
minutes were spent discussing what a dual graph is, how to find it, and their
finding the duals of the platonic solids. Homework: read #7,8; do problems
3.7-3.10.

Class 6

Plan

Answer questions for 30 minutes, including going over the proof of Turán’s
theorem (Problem 3.7). Have one group determine the number of colors needed
to color the faces of the Platonic graphs, and the other group the number of
colors for the vertices (20 min). Have each group present the results and check
for consistency (20 min). Then have the groups prove the 6-color and 5-color
theorems (60 min).

After a 10 minute break, start number theory by having the groups prove
the Fundamental Theorem of Arithmetic (35 min). Discuss algebraic and
transcendental numbers (5 min). If time permits, have the groups do the
warm-up exercises on the number of fingers that Martians have and on base n
arithmetic.

Reality

Went over Turán’s theorem and answered questions for 30 minutes. Both
groups colored both faces and vertices of Platonic graphs and did so correctly
along with observing the dual properties - 30 minutes. One group got the 6
color theorem in 10 minutes, other in 25 (while first started 5 color theorem).
After a 10 minute break they went back to the 5 color theorem for 50 minutes.
I had to remind them about Kempe chains. I also showed them how to use
the fact that K5 is not planar in a proof that does not use Kempe chains.
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They proved the Fundamental Theorem of Arithmetic (30 minute), quickly
realizing that they needed the lemma that, if p is a prime and p divides ab then
p divides a or p divides b. Both groups got the lemma after I suggested they
look at Problem 4.1 to remind themselves about some number theory defini-
tions. The last 5 minutes were spent discussing algebraic and transcendental
numbers. Homework: Read 4.1-3. Do Problems 4.1-8.

Class 7

Plan

Discuss homework and readings for 20 minutes. Have the groups do the warm-
up exercises on the number of fingers that Martians have and on base n arith-
metic (30 min). Discuss unsolved problems (15 min). Have the groups prove
that congruence mod n is an equivalence relation (10 min), then prove that
addition and multiplication are well-defined in Zn and find the units in Zn (20
min).

After a 10 minute break, have the groups construct a perpetual calendar
(75 min). If time permits discuss Fermat’s Little Theorem and how to use it.

Reality

We discussed the homework for 15 minutes. The warmups took 25 minutes. We
discussed unsolved problems for 10 minutes. The basics of mod n arithmetic
took 25 minutes. After a 15 minute break, they spent the rest of the time (90
minutes) working on the perpetual calendar. One group finally got a correct
formula for dn but the other needed to be shown. Homework: Complete the
perpetual calendar, reporting f(m) and the final reduced formula for d and
use same to compute the day of the week on which they were born. Read
4.4-9. Do problems 4.9-13.

Class 8

Plan

Discuss homework 30 minutes (expect discussion on the perpetual calendar
problem). Discuss Fermat’s Little Theorem and how to use it (15 min). Have
the groups find and prove the formula for φ(n) and use it to compute φ(54)
(60 min).
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After a 10 minute break, discuss Euler’s generalization of Fermat’s Little
Theorem and have the groups use it computationally (15 min). Have the
groups prove the Chinese Remainder Theorem constructively and then apply
it to a specific computation (50 min). If time permits, solve

x ≡ 3 (mod 4)

x ≡ 6 (mod 9)

x ≡ 9 (mod 25).

If still time have them prove Euler’s generalization of Fermat’s Little Theorem
using Fermat’s Little Theorem and the Chinese Remainder Theorem.

Reality

There was a long discussion of the Pascal triangle problem during which two
different proofs that the 2nth row was all black were presented by two students.
After that I discussed why that was only one direction and showed them a proof
that that not only showed that the 2nth row was all black but those were the
only all black rows. We also discussed Cantor’s proofs, so we spent 55 minutes
going over the homework. Proving Fermat’s Little Theorem and using it took
20 minutes. They then started to work on Euler’s φ function. Finding the
formula for the power of a prime was done quickly by both groups and proved
quickly by one and after 10 minutes by the other. The rest of the time was
spent on proving φ(st) = φ(s)φ(t) when s, t are relatively prime. Those 90
minutes included a break of 10 minutes. Even with the hint of making a
matrix whose ijth entry is i + (j − 1)s did not help them enough to complete
the proof. We finished the proof together. Homework: Read 4.10, 4.11 and
5.1. Do Problem 4.14. Work on paper.

Class 9

Plan

Discuss homework problem if necessary (unlikely) but reserve discussion of
reading - 5 minutes. Have the groups prove Euler’s generalization of Fermat’s
Little Theorem by induction and have use it computationally (20 min). Have
the groups prove the Chinese Remainder Theorem constructively and then
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apply it to the problem in the course book, then to

x ≡ 3 (mod 4)

x ≡ 6 (mod 9)

x ≡ 9 (mod 25).

(60 min) Then have them prove Euler’s generalization of Fermat’s Little Theo-
rem using Fermat’s Little Theorem and the Chinese Remainder Theorem (one
group says they have done so already, so perhaps just have them present it to
the other group) (15 min).

After a 10 minute break, discuss the reading on exact solutions to systems
of equations and have them solve a system using the two variants in the reading
(60 min). Have them figure out why the procedure works (25 min). If time
permits, have them work on product ciphers.

Reality

Discussed alternate proof of FLT for 15 minutes. No questions on homework.
Euler’s generalization of FLT took 75 minutes. 15 minute break. One group
spent 45 minutes, other 65 on the Chinese Remainder Theorem. The first
group proved Euler’s generalization using FLT and CRT during the 45 min,
so spent the rest of class on exact solutions, finishing the computations using
a prime. The second group started the exact solutions but will turn in both
parts of ex 4.14 for homework. Homework: Read 5.2, 5.3, 5.4 pages.1-5; do Ex
4.14 (one part or both parts as is appropriate) and Problem 4.15; finish rough
draft of project.

Class 10

Plan

Go over homework (exact solutions) (30 minutes). Have them figure out why
the procedure for exact solutions works (30 minutes). Have them solve two
problems on product ciphers (20 minutes). After a 10 minute break, have
them solve the two problems on Vigenère ciphers (30 min), then have them
work the four problems on RSA codes (60 min). Of time permits, have them
prove the distance function problem in error-correcting codes.
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Reality

Almost no questions on homework so took only 5 minutes. They spent 55
minutes figuring out why the procedure worked in the case of a prime, then
another 15 to see what was going on with the CRT. Product ciphers took 15
minutes and were followed by a 10 minute break. Vigenère took one group 20
minutes and the other 25. The first group went on to RSA codes and spent 20
minutes (other group 15) on 5.3 and 5.4. We then spent 15 minutes in which
I gave a flow chart for the square and multiply method of exponentiation and
we did an example together. They then did 5.5 in 10 minutes by having one
member of the group do one letter and putting them together. After they did
5.6 in in about 10 minutes, I used the rest of the time to give an overview
of error-correcting codes, emphasizing those parts of linear algebra that they
would need to know. Homework: Read and study 5.4. Do problems 5.1-5.3.

Class 11

Plan

Go over homework (10 minutes). Exercises 5.7-5.10 on error-correcting codes
should take about 90 min. After a 10 minute break, spend the rest of the time
solving the problem of winning at Nim - have one group do the greedy game
and the other the dieting game.

Reality

We discussed various parts of TEX for the paper as well as how and when to
use references in the paper plus how to put a reference style at the end of the
paper. I then showed them how to work an affine transfer system when the
matrix is singular (as happened in problem 1). So over homework took 35
minutes. Ex 5.7 took 25 minutes as did 5.8. After a 10 minute break they
spent 70 minutes on 5.9 and 15 on 5.10. They needed to have cosets explained
to them as well as standard arrays. They did not understand the connection
between syndromes and coset leaders. Homework: Read handout on algebra
for constructibility and do problems 5.4-5.11.
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Class 12

Plan

Over homework (30 min). Solve the problem of winning at Nim with one
group doing the greedy game and the other the diet game (60 min). After
a 10 minute break, have them learn about what is constructible (Exercises
6.3.1-3) up to the point of needing algebra. Start algebra if time permits.

Reality

We spent only 5 minutes on homework because they want to wait until next
week to discuss the error-correcting code homework. They spent 85 minutes
finding a winning strategy for Nim, one group doing the greedy game, the
other the dieter’s game. They needed to be told to look at the numbers in
binary. After a 10 minute break they did 6.1 (30 minutes), 6.2 (20 minutes),
and 6.3 (30 minutes). Homework: Papers due. For those who did not read the
handout on algebra for constructibility, they must do so in order to be able to
do the work next week.

Class 13

Plan

Over error-correcting code homework and show how to construct a square root
in an easier fashion (45 minutes). Continue with 6.4 - 6.7 and further if time
permits.

Reality

Over error-correcting code homework and show how to construct a square
root in an easier fashion (35 minutes). 6.4: one group 35 min, other 40. 6.5:
one group 10 minutes, other 15. 6.6: both groups 10 min. 6.7: one group
5 minutes, other 10. break: one group 25 min, other 10. 6.8: one group
got in 15 min and then took 15 min to do presentation to other group (who
was close to a solution when we started the presentation). 6.9: 5 minutes of
discussion, then both groups took 25 minutes to complete. Homework: Read
on Factoring. Do 6.1-6.3.
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Class 14

Plan

Over homework and discuss term papers(10 minutes). Set up for last class
(10 minutes). Do 6.10 (5 minutes) and 6.11 (60 minutes). After a 10 minute
break, introduce axiomatic systems and have them do the first exercise. If
time permits have them do problems 6.4-6.10.

Reality

Going over homework, discussing term papers, and setting up for the last class
took 20 minutes. 6.10 took 5 minutes. 6.11 took one group 35 minutes and the
other 50, but when I then asked them to look at the homework problems and
determine which followed from 6.11 and why, the first group took 25 and the
second 10, finishing at the same time. After a 20 minute break, during which
I discussed some points on the term papers individually, we discussed course
evaluations and the pros and cons of scantron versus essay types for 20 minutes.
We discussed axiomatic systems, models, consistency and independence, then
they did 8.1, all in 20 minutes. We then spent 25 minutes on Cantor’s diagonal
proof and Gödel’s incompleteness theorems. They spent the last 15 minutes
working on the homework. Homework: fill in the course evaluation and do
problems 6.4, 6.5, either 6.8 or 6.10, and 6.11.

Class 15

At the final class, I discussed some problems they had had with the homework.
Then the students gave oral presentations of their projects in lieu of a final
examination. We did all this at the home of one of the students at which we
ate dinner to which all contributed. Harold Boas joined us for this class to
ease the transfer to him next semester.

A.4 Spring 1998

The idea of this course being to foster understanding, rather than to cover
a specific body of material, the instructor did not formulate detailed lesson
plans. What follows is a record of what actually took place in class.
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Class 1

General housekeeping chores and the section on intuitive limits took up the
whole period. The students had to ask for a hint about computing the limit

lim
n→∞

n∑
k=1

n

n2 + k2
, but they could do it after getting the idea to use Riemann

sums. The snowflake curve interests them, but they find the analysis slow
going.

Class 2

More than half the time was spent discussing the previous homework. Only one
of the students had a reasonably complete proof that sin n fails to approach a
limit, although the others had an intuitive understanding. None of the students
had nailed down the convergence of towers of exponents, so we worked on
that. Then we discussed the notion of arc length, what it means for curves
to converge, the question of when the limit of the lengths is the length of the
limit, and why the way in which the sawtooth curves approach a line segment
is different from the way in which the iterates of the snowflake construction
approach their limit. The students had not fully explained the existence of
subsequential limits for the function cos

(
1
x
· tan−1

(
1
x

))
, so we looked at that.

One of the students presented a solution to the problem about rearrangements
of the alternating harmonic series.

After a break, we had a little over an hour left. The students were able to
get most of the way through the section on continued fractions.

Class 3

After a brief discussion of previous homework, the students worked on a task
that was not previously in the guide: namely, to guess a recursive formula for
the numerator and denominator of the approximants of a continued fraction,
and to use induction to prove the formula. This activity took up half the class
period.

After a break, the students began the section on p-adic numbers.
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Class 4

We discussed the problem about the density of the values sin(n) for about 45
minutes. The students had various ideas about attacking the problem, but
they had not succeeded in finding a complete solution.

Then we continued the section on p-adic numbers. Determining the cases
of equality in the strong triangle inequality took the students a surprisingly
long time. It seems that they are not experienced in dividing problems into
cases efficiently.

Finishing the last problem in the section was assigned as part of the home-
work.

Class 5

After some discussion of the homework, the students presented what they
had understood from the difficult reading about construction of p-adic series
with special convergence properties. The reading was somewhat beyond their
capabilities. They could follow some of the details, but they missed the big
picture.

In the second part of the class, we began the unit on functions.

Class 6

In the first part of the class, we worked on something that had not been
in the handout. We split into three subgroups. One subgroup revisited the
homework problem on dividing p-adic series and uncovered the problem of
division of fractions that underlies it. Another subgroup found an induction
proof of Alhazen’s formula discussed in one of the distributed readings:

(n + 1)

n∑
i=1

ik =

n∑
i=1

ik+1 +

n∑
p=1

( p∑
i=1

ik
)

.

The third subgroup deduced from Alhazen’s formula the closed form expres-
sions for

∑n
i=1 ik for k = 1, 2, 3, and 4. Then the original groups reassembled,

and the members explained to each other what the subgroups had worked out.
In the second part of the class, we continued with the unit on functions.

The students ran out of steam when they tried to find a geometric proof of
the addition formula for the sine function.
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Class 7

We finished the material on exponential, logarithmic, and hyperbolic functions,
and began working on loxodromic distance.

Class 8

Two hours were spent finishing the unit on functions. Experience shows that
the students take a long time to work out the details of the Mercator map and
the computation of loxodromic distance. After a break, the students started
on the geometry unit.

Class 9

After returning from Spring Break, we began with a couple of warm-up prob-
lems. One was a review problem about measuring distance on the surface of
Mars. (This problem has since been incorporated into the notes.)

The second was the problem of showing that for a finite collection of points
in the plane, not all on a single line, there must be some pair of the points such
that the line through them misses all the other points. Proof: from all pairs
(`, p), where ` is a line through two of the points and p is one of the points not
on `, select the pair such that the distance from p to ` is minimal. Then ` is a
line of the required type. This is the Gallai-Sylvester theorem. For discussion,
see Béla Bollobás, To prove and conjecture: Paul Erdős and his mathematics,
American Mathematical Monthly 105 (1998), number 3, 209–237.

We then continued with the unit on plane geometry and finished the clas-
sification of conic sections.

Class 10

We mostly finished the section on plane curves. Some of the verifications
concerning the group law on a cubic curve were left for homework.

Class 11

We began the section on non-Euclidean geometry.
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Class 12

Student presentations on the Γ function and on Legendre polynomials.

Class 13

Student presentations on Laguerre polynomials and on the Riemann ζ func-
tion.

Class 14

Student presentations on Bessel functions and on hypergeometric functions.

Class 15

We met at the instructor’s home for dinner and then did a test run of the
newly revised and expanded unit “Beyond the real numbers”.

A.5 Lesson Plans, Fall 1998

Class 1

Plan

Spend about 15 minutes on housekeeping, 80 minutes on logical paradoxes,
10 minutes break, and 80 minutes on logical formalisms. Start induction if
time permits.

Reality

Spent 15 minutes on housekeeping, 30 minutes on warm up and logical para-
doxes, 20 minutes on formalism (truth tables, 1.2, 1.4), 40 minutes on Alice
with a 10 minute break after 25 minutes, 50 minutes on negation, and 15
minutes reading the play on logic and induction. Assignment: Read #1,2,4,5.
Do Alice #17-25, Negations #7-8, Problems 1.1-1.2. Also decide on which
Paradox to investigate.
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Class 2

Plan

Spend 20 minutes answering questions, 70 minutes on induction, 10 minutes
break, 20 minutes more on induction, then 50 minutes on probability, 10 min-
utes wrap-up.

Reality

Spent 10 minutes discussing homework and readings, then 15 on 1.9 and in-
troduction to induction, 75 on 1.10-1.12, 10 on a break, 20 on 1.13-1.14, 25
on 1.15, 5 on 2.1-2, 5 on 2.3 and 10 on 2.4. We will start with 2.4 next time.
Wrap up took 5 minutes. Assignment: Read The Bottle Imp and the reading
of Chapter 2. Do Problems 1.3-1.5.

Class 3

Plan

Spend 30 minutes going over homework being returned, esp. negations, and
questions on homework collected. Spend 45 minutes finishing the chapter on
Probability. Distribute and have them read The Lottery. After a 10 minute
break, discuss the probability issues raised in the short story. Use remaining
time to start Graph Theory.

Reality

Spent 20 minutes going over the homework that was returned and discussing
the reading, esp. The Bottle Imp. Spent 55 minutes on the rest of the proba-
bility chapter, then 15 minutes reading The Lottery. After a 10 minute break
we spent 30 minutes discussing the whether the man who was at his 77th lot-
tery was there because his name started with W – i.e., was it really equally
likely. The rest of the time was spent on introducing graph theory and them
working exercises 3.1-3.3. Homework: Read: numbers 6-9 in the reading book
(3.2 #1-3,9). Do problems 2.1-2.3, 3.1.
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Class 4

Plan

Go over homework for about 50 minutes (expect questions on Eddington and
secretary problem). Have them do the exercises 3.4-3.7 in the section on
Hamiltonian graphs. If time permits start work on Euler’s formula.

Reality

We discussed the induction of 1.3 but there were no questions on the home-
work. They did exercises 3.4-3.9 and were working on 3.10 when class ended.
Homework: Read numbers 10-14 (rest of reading for Chapter 3). Do problems
3.2-3.6.

Class 5

Plan

Spend 1 hour going over 2.1 part 3, Eddington’s problem and the Secretary
problem. Have them complete the work in Chapter 3 including proving the
five color theorem.

Reality

Spent 1 hour going over 2.1 part 3, Eddington’s problem and the Secretary
problem. They completed the work in Chapter 3 including proving the five
color theorem, then proved the existence part of the Fundamental Theorem of
Arithmetic. Homework: Read 14a-17. Do Problems 3.7-3.10, 4.1- 4.6.

Class 6

Plan

Have them redo 3.2, 3.3, 3.4 part 3 - probably take 1 1/2 hours. Then back to
number theory through unsolved problems.
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Reality

Spent 1 1/2 hours having them redo 3.2 and 3.3, present same, then showed
them 3.4 part 3. After a 10 minute break, I showed them the following proof
in order to get the idea of using well-ordering into their heads:

Explain the following proof of the irrationality of the square root of 2.

If
√

2 were rational, then there would be a smallest positive integer n such
that n

√
2 is an integer; but n

√
2− n is a smaller such integer.

Then they finished the proof of 4.1, I showed them an alternate for the
uniqueness:

Suppose N = p1...pr = q1...qs is the smallest positive integer with two
different factorizations. Then no pi equals any qj . WLOG, suppose p1 < q1.
Let N ′ = (q1 − p1)q2...qs. Factor q1 − p1 into primes to turn this into a prime
factorization of N ′ not including the factor p1 (p1 does not divide q1− p1 since
p1 does not divide q1). However, writing N ′ = p1(p2...pr − q2...qs) leads to a
prime factorization containing p1. This contradicts the minimality of N , since
0 < N ′ < N .

We discussed algebraic and transcendental; they did 4.2, 4.3, then we dis-
cussed unsolved problems. Homework: Read 18-22. Do problems 4.7-12. Work
on paper.

Class 7

Plan

Go over homework and reading - expect discussion on the proof that e and
π are irrational/transcendental. Do basics on congruences, then go on to the
perpetual calendar. If time permits discuss Fermat’s Little Theorem and how
to use it.

Reality

Amazingly they understood the basics of the proof of irrationality but were
confused by the article on Cantor. So we went over the diagonal proof and how
it connected to irrational/transcendental. They were happy campers after 15
minutes. They quickly did the basics on congruences, but spent the rest of
the period on the perpetual calendar. Homework: Read 23-25. Do 4.13-14.
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Work on paper. We also rescheduled 24 November (bonfire night) for 9-12 20
November but with the paper still due (but in my mailbox) on 24 November.

Class 8

Plan

Over homework (show them easier ways of doing what they did correctly)
and answer questions on the perpetual calendar and readings. Have them
do the exercises on Fermat’s Little Theorem, Euler’s φ function, and Euler’s
generaliztion of FLT. If time permits, have them do the Chinese Remainder
Theorem.

Reality

We went over homework and looked at the distribution of their birthdays (4
on Thursday!) and discussed drawing conclusions from small samples. They
spent the rest of the period on Fermat’s Little Theorem Euler’s φ function, and
Euler’s generalization of FLT. Homework: Reread 25. Read 26. Do problem
4.15. Work on paper.

Class 9

Plan

Go over homework. Have the do the exercises on the Chinese Remainder
Theorem, and exact solutions. Start codes if time permits.

Reality

We went over the homework and they did the exercises on the Chinese Re-
mainder Theorem and exact solutions, then figured out why the exact solution
algorithm works. Homework: Read 27,28. Do problem 4.16. Rough draft of
paper is due.
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Class 10

Plan

Go over questions (if any) on the exact solutions. Do exercises on cryptogra-
phy. Start error-correcting codes if time permits.

Reality

There were no questions on exact solutions. I spoke for about 10 minutes on the
differences between error-correcting codes and cryptography and talked about
the history of error-correcting codes. They spent about 2 hours (including
break) on the cryptography exercises, then played Nim and devised strategies.
Homework: read 29, 30, and section 1 of 31. Do problems 5.1, 5.2, 5.3.

Class 11

Plan

Go over general items on the rough drafts (everyone got the exact solution
homework correct). Have them do the exercises on error-correcting codes.
Start the chapter on constructibility if time permits.

Reality

I discussed general problems with the rough drafts and encouraged them to do
a good job. They then did the exercises on error-correcting codes, needing me
to show them what was meant by a standard array (I worked a small example).
The last 5 minutes were spent tying up loose ends on Nim. Homework: Read
#31. Do problems 5.4-5.11.

Class 12

Plan

Go over questions on homework. Do as much of chapter 6 as time permits. I
estimate that they will do 6.1-6.8.



A.5. LESSON PLANS, FALL 1998 173

Reality

The students said that they had a lot of trouble with some of the problems but
wanted me to look at their work before we discussed them or I gave them hints
to finish them. The class was interrupted by a fire alarm at 7:30 so we lost
30 minutes. The rest of the class was spent on chapter 6. They did 6.1-6.5.
Homework: Read #32. Do problems 6.1-6.3. These may be turned in Friday
(bonfire night moved) or after Thanksgiving.

Class 13

Plan

Over the error-correcting code homework. Continue on chapter 6, possibly
completing it.

Reality

Went over the problems on error-correcting they did not all get. The main
problem seemed to be that they read more into the problems than was in the
statement of the problem. They then did the rest of chapter 6. Homework:
Read the articles on graph theory. Do problems 6.4-6.11. I reminded them
that their term papers are due by 4pm Tuesday, 24 November.

Class 14

Plan

Do the exercise on building models to show consistency, independence, etc
from Chapter 8, then do as much of Chapter 7 as possible in the time allotted.
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Reality

Class 15

Plan

Have the class to dinner at my house and then have them make their presen-
tations.

Reality

They came out to my house early, helped with the rest of the dinner prepa-
rations, then stayed late. After each presentation there was lively discussion
not only on that presentation but on how that paradox fit with all the others.
There were some excellent insights into how the paradoxes were the same.

A.6 Spring 1999

The idea of this course being to foster understanding, rather than to cover
a specific body of material, the instructor did not formulate detailed lesson
plans. What follows is a record of what actually took place in class.

Class 1

Housekeeping chores took 1/2 hour because we had two new students this
semester (and 6 returning). They took 1 hour to do exercises 9.1-9.4 and
had no trouble recognizing the Riemann sum. After a 10 minute break, they
worked on the snow flake problem. One group got it in 30 minutes, the other
said they had it in 40. Since the answers didn’t match, we spent 10 minutes
with the two groups checking what they did with each other until they arrived
at a common (and correct) answer. They then spent 15 minutes doing 9.6-9.8
and started 9.9 in the remaining 15 minutes. The homework is to read # 1
and 4, finish exercise 9.9, and do problems 9.1-9.4, 9.6-9.7. I also asked them
to look at 9.5 and tell me whether they preferred 9.2 or 9.5 since they are so
similar.
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Class 2

The students needed more time to do problems 9.3, 9.4 iii, and 9.7 which I
agreed to. I asked them what they did with exercise 9.9 and they replied that
the representation was unique. Since it is not, I gave them a counterexample
and asked them to check the counterexample to see that I was right, then to
find the error in their proofs and correct them. This took 45 minutes. They
then took 50 minutes to do exercise 9.10, after which we had a 10 minute
break. I then posed the following problem which I got off of the lessonplans
from 98a.

Suppose one has a continued fraction [a1, a2, . . .]. Let sn/tn = xn =
[a1, . . . , an] be the nth approximant. Guess a recursive formula for sn and
for tn, then prove the formulas using induction.

They did well finding the recursive formula but needed help developing
notation for it. They had trouble with the induction proof until I suggested a
change of variables in the approximant of bi = an−i+1. We had a discussion of
functional notation and how it affects (or not) induction. This problem took
up the rest of the period. Assignment: Problems 9.3, 9.4 iii, 9.7, 9.8, 9.9.

Class 3

Since the students did not correctly solve some of the homework, I explained
why what they did was incomplete or wrong and had them rework some of
the problems. It took 90 minutes to redo problem 9.1 and to briefly discuss
problems 9.3 and 9.7. After a 10 minute break, they took an hour to redo
problem 9.2. I made a few comments on problems 9.4 and 9.8. They then
did exercise 9.11 in ten minutes and worked on exercise 9.12 for the rest of
the time, completing part 1 but misreading part 2. Homework: Exercise 9.12
parts 2 and 3, Problems 9.9, 9.10 for both of which I gave some hints as they
had no clue how to do 9.9 (why it was held for a second week). Note that I
graded their homework during the time they worked on problems 9.1 and 9.2.
They really liked getting the homework back that night.

Class 4

We spent 55 minutes discussing a proof that the even and odd truncations
converge to the same limit in problem 9.9. They then did exercise 9.13 quickly
but took 40 minutes to do 9.14. There was a 10 minute break after 20 minutes
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of work on 9.14. It took them 10 minutes to do 9.15 and 9.16 but they then
got hung up on 9.17 briefly because I insisted that they prove that the series
converged to the limit they found. They did 9.18 i quickly but then stalled on
9.18 ii. We discussed again what convergence of a series meant. Some of them
were confused about when to take the norm. Homework: Complete exercise
9.18 ii. Do problems 9.11 and 9.12. Reread reading #1.

Class 5

They understood the reading on p-adic series much better the second time
but indicated they did not understand all of the steps of the proof. They did
understand what was proved and how amazing it was. We discussed this for 10
minutes. They then took 35 minutes to do exercise 9.19 as it took a while to
get the borrowing done correctly. They did 10.1 and 10.2 quickly and then we
discussed them (20 minutes total), after which 10.3 took 5 minutes and 10.4,
25 minutes. They needed a hint to divide by enx. After a 10 minute break
they spent the rest of the time working on 10.5, getting the first 4 parts easily,
but having trouble with the geometric proofs of limits. They did not get to
the geometric proof of the addtion formula for sin x. Homework: Complete
exercise 10.5. Read #2, 3. Do problems 9.13 and 10.1. I reminded them that
the rough draft of their papers are due next week.

Class 6

Going over the homework took 10 minutes. They then did 10.6 in 60 minutes,
10.7 in 80 minutes (plus a 10 mintue break during it), then 10.8 and 10.9 in
10 minutes each. Homework: Read #5, 6, 7, 8. Do problems 10.2-10.5.

Class 7

We discussed the papers, presentations, and scheduling of same for 20 minutes
at which time we had assigned everyone a day upon which to present and
made the papers due by the class on 23 March. 10.10 took them 65 minutes.
After a 10 minute break we went over problem 10.5 for fifteen minutes. The
rest of the class was spent on 10.11. Homework: read # 9 and the handout
on concise sherical trigonometry. Do problems 10.6, 10.7, 10.8.
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Class 8

The class read me an hysterical story they wrote on why Gudermann studied
the gudermannian. We discussed it for 20 minutes. They then spent 7 minutes
on 11.1, 10 (resp., 15) on 11.2, 10 (resp., 20) on 11.3, then 40 (resp., 18) on
11.4. There was a break while they worked on 11.4. The group that took
40 minutes had forgotten a lot of the basics of calc 2 integration techniques
and had to rederive some of them. Both groups then spent the remaining
60 minutes working on 11.5 but they did not remember how to rotate axes
to eliminate the xy term in a quadratic nor could the derive it. Homework:
Finish exercise 11.5. Do problems 1.1, 1.2, 1.3, 1.4. Read #10. Do the final
draft of the paper.

Class 9

We started out with a discussion of what they had done over break on various
math issues including a request for help in that they had a conflict with proc-
toring 27 April and our class (7 min). They did 11.6 plus that problem for an
hyperbola in 8 minutes. 11.7 took them 15 minutes, 11.8 and problem 11.2
(undone on homework) 45. We then spent 20 minutes with Dusty presenting
his solution to problem 11.3. After a 10 minute break, we spent 5 minutes
discussing problem 11.4 (some of them copied the problem wrong) after which
they did 11.9 in 5 minutes, 11.10 in 10 minutes, 11.11 in 20 minutes, 11.12
if 20 and 35 minutes resp, then 11.13 in 20 and 5 minutes resp. Homework:
Read #11. Do problems 11.5, 11.6, 11.7, 11.8.

Class 10

Harold Boas took the class since I was sick. It took 10 minutes to orient
Harold, then 65 minutes to finish Chapter 11. Harold then spent 10 minutes
making comments on the homework they turned in. After a 10 minute break
they started chapter 12 spending 30 minutes on 12.1-4, 10 minutes on 12.5-6,
30 minutes on 12.7, and 15 minutes on 12.8-12.9. Homework: Problems 11.9,
11.10, 11.11, 12.1.
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Class 11

Student presentations on Laguerre polynomials and the Riemann Zeta func-
tion.

Class 12

Student presentations on Legendre polynomials and the Gamma function.

Class 13

Student presentations on Lambert’s W function and Bessel functions.

Class14

Student presentations on Weierstrass φ function and hypergeometric series.

Class 15
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These materials will be available for purchase at a local copy center.

1. René Descartes, Discourse on the Method of Rightly Conducting the Rea-
son, and Seeking Truth in the Sciences, excerpt from Part II; available
from gopher://wiretap.area.com:70/00/Library/Classic/reason.

txt.

2. René Descartes, Philosophical Essays, translated by Laurence J. Lafleur,
Bobbs-Merrill Company, Indianapolis, 1964, pages 156–162.

3. Excerpt from Alice in Puzzleland by Raymond M. Smullyan, Penguin,
1984, pages 20–29.

4. Proofs without words from Mathematics Magazine 69 (1996), no. 1, 62–
63.

5. Stephen B. Maurer, The recursive paradigm: suppose we already knew,
School Science and Mathematics 95 (1995), no. 2 (February), 91–96.

6. Robert Louis Stevenson, “The Bottle Imp”, in Island Nights’ Enter-
tainments, Scribner’s, 1893; in the public domain and available on the
world-wide web at http://www.inform.umd.edu/EdRes/ReadingRoom/
Fiction/Stevenson/IslandNights/bottle-imp. (Compare the sur-
prise examination paradox.)
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7. “Chance and Chanceability”, Chapter VII, pages 223–264, of Mathemat-
ics and the Imagination by Edward Kasner and James Newman, Simon
and Schuster, 1940. This selection is an introduction to probability.

8. Richard J. Trudeau, Dots and Lines, Kent State University Press, 1976,
pages ix–27. This introduces the notion of a graph and gives some ex-
amples.

9. William Dunham, The Mathematical Universe, Wiley, New York, 1994,
pages 51–63. This is a biographical piece about Euler.

10. James R. Newman, The World of Mathematics, Volume One, Simon and
Schuster, New York, 1956, pages 570–580. This is a commentary on and
a translation of Euler’s original paper on the seven bridges of Königsberg.

11. Sir Edmund Whittaker, “William Rowan Hamilton,” Scientific Ameri-
can, May 1954, reprinted in Mathematics in the Modern World, Freeman,
San Francisco, 1968, pages 49–52. This is a biographical piece about
Hamilton.

12. Alan Tucker, The parallel climbers puzzle, Math Horizons, Mathematical
Association of America, November 1995, pages 22–24.

13. Frank Harary, Graph Theory, Addison-Wesley, 1969, chapter 1, pages
1–7.

14. Richard J. Trudeau, Dots and Lines, Kent State University Press, 1976,
chapter 4, pages 97–116.

15. The Traveling Salesman Problem, edited by E. L. Lawler, J. K. Lenstra,
A. H. G. Rinnooy Kan, and D. B. Shmoys, Wiley, New York, 1985, pages
1–15. This is a historical piece by A. J. Hoffman and P. Wolfe on the
traveling salesman problem.

16. Norman L. Biggs, E. Keith Lloyd, and Robin J. Wilson, Graph Theory
1736–1936, Oxford University Press, 1976, chapter 6, pages 90–108. This
is a historical piece including Kempe’s famous false proof of the four-color
theorem and Heawood’s correction.

17. Ralph P. Boas, Möbius shorts, Mathematics Magazine 68 (1995), no. 2,
127.
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18. Ian Richards, “Number Theory,” in Mathematics Today: Twelve Infor-
mal Essays, pages 37–63, edited by Lynn Arthur Steen, Springer-Verlag,
1978.

19. Ivars Peterson, “A Shortage of Small Numbers,” in Islands of Truth: A
Mathematical Mystery Cruise, pages 152–161, Freeman, 1990.

20. Victor Klee and Stan Wagon, Old and New Unsolved Problems in
Plane Geometry and Number Theory, Dolciani Mathematical Exposi-
tions, No. 11, Mathematical Association of America, 1991, pages 173–181
and 203–214.

21. Robert Gray, “Georg Cantor and transcendental numbers,” American
Mathematical Monthly 101 (1994), no. 9, 819–832.

22. David M. Bloom, “A one-sentence proof that
√

2 is irrational,” Mathe-
matics Magazine 68 (1995), no. 4, 286.

23. Vincent P. Schielack, Jr., “Math Bite: A quick counting proof of the
irrationality of n

√
k,” Mathematics Magazine, 68 (1995), no. 5, 386.

24. Ivan Niven, “A simple proof that π is irrational,” Bulletin of the Amer-
ican Mathematical Society, 53 (1947), 509.

25. Excerpts from Ivan Niven, Irrational Numbers, Mathematical Associa-
tion of America, 1967, pages 16–27, 117–118, and 131–133.

26. Excerpt on Fermat theorems, in A source book in mathematics, 1200-
1800, edited by Dirk Jan Struik, Harvard University Press, 1969, 1987,
reprinted by Princeton University Press, pages 26–29.

27. Kenneth H. Rosen, Elementary Number Theory and Its Applications,
third edition, Addison-Wesley, 1992, pages 166–170 (the perpetual cal-
endar).

28. Sue Geller, “Exact Solutions to Linear Systems,” 1997.

29. Kenneth H. Rosen, Elementary Number Theory and Its Applications,
third edition, Addison-Wesley, 1992, 234–245.

30. Joseph Gallian, “Math on Money,” Math Horizons, Mathematical Asso-
ciation of America, November, 1995, 10–11.
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31. R. L. Rivest, A. Shamir, and L. Adleman, “A Method for Obtain-
ing Digital Signatures and Public-Key Cryptosystems,” Communica-
tions of the ACM 21 (1978), 120–126. Available as LATEX source and
as PostScript on Rivest’s home page at http://theory.lcs.mit.edu/

~rivest/publications.html.

32. Sue Geller, An Introduction to Error-Correcting Codes, 1997.

33. Daniel Pedoe, The Gentle Art of Mathematics, Macmillan, 1959 (Collier,
1963; Dover, 1973), pages 18–21 (excerpt on Nim).

34. Sue Geller, Algebra for Constructibility, 1998.
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36. Philip D. Straffin, Game Theory and Strategy, Mathematical Association
of America, 1993, Part I, pages 3–61.
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carat,” American Mathematical Monthly 64 (1957), 465–469.
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semester.
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ney of Ion the quiet”, in Stories about Sets by N. Ya. Vilenkin, Academic
Press, 1968.

39. Robert Gray, Georg Cantor and transcendental numbers, American
Mathematical Monthly 101 (1994), no. 9, 819–832.
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verge? Infinite series and p-adic analysis, American Mathematical
Monthly 103 (1996), number 7, 565–577.
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42. Wayne Barrett, “It had to be e”, Mathematics Magazine 68 (1995),
number 1, 15.
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43. Chapter 47, “bentley’s theorems”, Pomona group (provided by one of
the original members of the group).

44. B. C. Carlson, Special Functions of Applied Mathematics, Academic
Press, 1977, pages 1–6.

45. John Fauvel, “Revisiting the history of logarithms,” Learn from the Mas-
ters, Frank Swetz et al., eds., Mathematical Association of America,
1995, pages 39–48.

46. Victor J. Katz, “Napier’s logarithms adapted for today’s classroom,”
Learn from the Masters, Frank Swetz et al., eds., Mathematical Associ-
ation of America, 1995, pages 49–55.

47. David Shelupsky, “Limitless integrals and a new definition of the loga-
rithm,” Mathematics Magazine, 68 (1995), number 4, 294–295.

48. Victor J. Katz, “Ideas of calculus in Islam and India,” Mathematics
Magazine 68 (1995), number 3, 163–174.

49. Jacques Redway Hammond, Concise Spherical Trigonometry, Houghton
Mifflin Co., (1943), pages 29–37 and 98–101.

50. B. L. van der Waerden, A History of Algebra, Springer-Verlag, 1985,
pages 52–62, 94–102, and 177–186.

51. William Dunham, Journey through Genius: The Great Theorems of
Mathematics, Wiley, 1990, Chapter 6: Cardano and the Solution of the
Cubic, pages 133–154.

52. Uwe F. Mayer, “A Proof that Polynomials have Roots,” The College
Math Journal, 28, (1997), number 1, page 58.

53. David Eugene Smith, A source book in Mathematics, Dover, 1959,
“Gauss”, pages 292–306.


