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Preface

This book is based on my lecture notes, which I used to teach courses at

many universities, including Texas A&M University, Shanghai University

of Finance and Economics, Hong Kong University of Science and Technol-

ogy, Tsinghua University, and Renmin University of China. A Chinese ver-

sion was published in 2016. This book is rich in content, and comprises a

full range of topics, including the most typical themes in modern microe-

conomic theory up to those at the frontier, such as dynamic mechanism

design, auction theory and matching theory that were mainly developed

in the last three decades, but not covered in standard microeconomics text-

books. It also constitutes an integration of my study, research, and teaching

of microeconomic theory for more than 30 years. The content in this book

is suitable for multiple purposes. By selecting different chapters and/or

sections, it can serve as the text for a graduate or an advanced undergrad-

uate course in microeconomics, a sequential course of advanced microeco-

nomics for doctoral students, a course in advanced topics in microeconomic

theory, or even a course in mathematical economics. It can also be used as

an important reference book for researchers.

Economics is a discipline that is seemingly simple, but hard to learn

and master well. The main reason why economic issues are challenging to

understand and solve is that, besides the common behavior pattern that e-

conomic agents at any level (as nation, firm, household, or person) pursues

their own interests under normal circumstances, there is information asym-

metry in the vast majority of cases given that economic agents are usually

privately informed about relevant economic characteristics. For example,

a person may say something, but whether or not he or she is telling the

xiii
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truth is unclear; and even if someone is staring directly at you, seeming to

be listening attentively, one cannot be certain if he or she is really listen-

ing. Indeed, how best to deal with these two most basic objective realities,

and what kinds of economic systems, institutions, incentive mechanism-

s, or policies should be adopted have become core issues and topics in all

branches of economics.

At the same time, economics frequently involves normative statements,

i.e., subjective value judgments. Different individuals have dissimilar val-

ues and varied opinions. For instance, some people emphasize the efficien-

cy of resource allocations, while others highlight the equality of resource

allocations. Individuals also frequently hold divergent views on economic

reforms and policies. Consequently, it is easy to cause major controversy,

making it challenging to understand and master economics.

In addition, the use of economics is likely to generate strong externality,

either positive or negative. Unlike in the case of medical treatment, those

who suffer, or even die, from poor medical skills are only a few individuals,

while poor economic application may influence all aspects of the economy.

As a consequence, a rigorous and systematic training of economics, and e-

specially the main content of microeconomics discussed in this textbook, is

not only important for theoretical innovations, but also critical for practical

applications. Once faults are made and inappropriate economic policies or

rules are implemented, not only will individuals be harmed, but also eco-

nomic development at the national level. As such, in addition to learning

economics well, when making policy suggestions, we should not make de-

cisions with too much concern about your personal interests. Indeed, we

should not only be courageous in taking responsibility for being thorough,

but also possess a strong sense of social conscience and responsibility.

Modern economics constitutes a dynamically developing and marked-

ly inclusive open discipline. Indeed, it has far surpassed neo-classical eco-

nomics, and economic practice can provide rich realities for the innovative

development of economic theory. From the author’s perspective, as long as

rigorous inherent logical analysis (not necessarily a mathematical model) is

used and rational assumptions (including bounded rationality assumption-

s) are adopted, such research fits in the category of economics. Under the
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framework of modern economics, microeconomics primarily concerns the

theory of how individuals make decisions, thereby laying the microfounda-

tion of macroeconomics, as well as almost all other branches of economics.

It is a theory about how markets operate, as well as how specific market

mechanisms should be modified in the case of market failure. It also fo-

cuses on the study of how limited resources are allocated among different

uses to better meet the various needs of humanity. Therefore, it can assist

one to understand the decisive role of market in resource allocation, and

the critical role of government in making the market orderly and efficient,

providing public goods and services, and guaranteeing social fairness.

Knowing what an economic theory is, it is also necessary to be cog-

nizant of the scope of its applications. If this is not the case, once it is

broadly used to guide the formulation of economic policies, it will pro-

duce highly negative social impacts. With limited training of theoretical

logic and empirical quantifications, and the lack of understanding in the

premise of theory, blind applications will indeed lead to negation of the role

of economics and the assertion that the basic assumptions of mainstream

economics are too strong, and too much focus is given to mathematics and

rigor. Consequently, a false conclusion will be reached that economic theo-

ries cannot explain and solve practical problems. In extreme cases, one will

disavow the basic role of economics in economic development and market-

oriented reforms.

In fact, in most cases, people who hold this view do not know the pre-

conditions of a theory, and thus they are unaware of the scope of appli-

cation of the theory. Once proven to be incorrect, they blame the theory

for being fallacious and of no value. In fact, just like the theories of any

discipline, any rigorous economic theory provides preconditions, i.e., it is

not valid in all situations. Therefore, unless a theory itself possesses one or

more logical inconsistencies, there is nothing right or wrong about the the-

ory, but only whether or not the theory is suitable for a particular economic

environment. If there is no rigorism, how can one always reach the result of

inherent logic? This is as pointed out by Dani Rodrik 2. These accusation-

2DANI RODRIK. “Economists vs. Economics”, http://www.project-syndicate.org
/commentary/economists-versus-economics-by-dani-rodrik-2015-09.
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s usually come from laymen or certain unorthodox marginalists. Indeed,

individuals who hold such opinions are often those who have a limited un-

derstanding of economic theory and its methodology. Overall, whether the

goal is to conduct original research or applied research, it is necessary to

learn economics well, thoroughly understand its analytical framework and

methods, and adapt the rigor of logical analysis.

As a high-level course in microeconomics, the purpose of advanced

microeconomics teaching is to elucidate the inherent logic existing behind

common principles and concepts, and to cultivate students’ ability and way

of thinking to analyze theoretical issues in a rigorous manner. It also aim-

s to teach students how to characterize the nature of complex economic

behaviors and economic phenomena (i.e., through modeling) in order to

carry out rigorous economic analyses. This book systematically expounds

on the content of modern microeconomics from basic theory, benchmark

theory, analytical framework, research methods, to the latest frontier topic-

s. Therefore, all or part of the chapters and sections can be selected for use

by doctoral, postgraduate, and senior undergraduate students majoring in

economics, finance, statistics, management, applied mathematics, and re-

lated disciplines according to the course requirements. This book can also

serve as an useful reference book for teachers and scholars engaged in eco-

nomics teaching and research.

The characteristics of this book

While the mainstream of the economics profession prior to World War II

focused mainly on economic thoughts and lacked scientific rigor, the most

attention is currently paid to techniques and rigor, and the profound e-

conomic thoughts that exist behind economics are largely neglected. It is

the case that many people become lost in mathematical models, and do

not know the underlying assumptions and profound insights of these eco-

nomic theories. Why can we not achieve the dialectical unity of rigorous

academics “with deep thoughts and for deep thoughts”? In fact, rigor-

ous and original research can achieve this unity, numerous highly technical

theories and methods also contain profound economic thoughts, and mod-
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els can reflect them (e.g., general equilibrium theory, mechanism design

theory). As such, when studying economics, one should know well not

only the academic contents of economics, but also its systems, in order to

master the underlying profound thoughts and wisdom. Although it may

not be crucial for it to become a norm for the public to understand these

thoughts in a mature modern market system, it remains extremely impor-

tant in institutional transitional countries where the direction of economic

and social transformation is not clear. Combining both, this textbook at-

tempts to advocate pursuing academics both“with deep thoughts and for

deep thoughts”.

I have comprehensively compiled the biographies of 44 economists who

made pioneering contributions to the development of modern microeco-

nomics, in order to enhance understanding of the origin, development, and

inheritance of the various economic theories (including the economic the-

ory expressed in advanced mathematics) discussed in this textbook. This

was also done to increase readers’ interest in learning economic theory, to

expand the comprehensiveness of knowledge, and to balance scientific rig-

or and profound thoughts well.

This textbook also connects with the profound philosophy and wisdom

of ancient China, in an effort to achieve more comprehensive ideological

and academic thinking, and realize ideological and organic academic in-

tegration. To learn economics, it is not sufficient to just be proficient at

economics itself, but also to grasp its inherent logic, master its profound

ideas, and consequently attain pragmatic wisdom.

Structure of this textbook

Microeconomics focuses on the study of economic phenomena and eco-

nomic issues from the analysis of individual economic behavior, and then

develops various theories and results under given or designed institutional

arrangements, especially under the market system. This textbook arranges

thematic chapters according to this logic. Prior to this, however, the text-

book presents an introduction to the requisite knowledge and methods to

study advanced microeconomic theories.
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The textbook is divided into seven parts. Part I comprises the gener-

al introduction and preparatory knowledge of the textbook. Parts II-IV

mainly introduce the benchmark models and theories in ideal economic

environments in which a spontaneous market works well, as well as ana-

lytical frameworks, methods, and tools. Parts V-VII address market failure

in terms of efficiency. They primarily examine how to modify the market

in the presence of economic externalities, public goods, and especially pri-

vate information, in order to achieve efficient allocation of resources. The

contents of the textbook are as follows:

There are two chapters in Part I. Chapter 1 primarily introduces the na-

ture and methods of economics, the scope of the textbook, as well as the

preparatory knowledge and methods of mathematics. It commences with

an overview of the nature, scope, thoughts, analytical framework, and re-

search methods of economics, especially microeconomic theory, as well as

the similarities between economic thoughts and Chinese wisdom. These

contents aim to increase readers’ inclusiveness to all subdisciplines of eco-

nomics, which is not only essential for the development of various branches

of economics, but also within disciplines, such as benchmark theories and

relatively realistic theories.

Chapter 2 provides almost all of the commonly used mathematical an-

alytical tools and methods in economics, and particularly in this textbook.

It can be used as the basic text or primary reference textbook for courses of

mathematical economics for studying advanced macro/micro economics.

It can also serve as a manual reference for basic mathematic tools that are

needed to study economics.

Part II comprises three chapters, which largely discuss individual decision-

making, including consumer theory, producer theory, and individual choice

under uncertainty. The individual decision-making theory constitutes the

micro foundation for the establishment of numerous theoretical models in

economics, and it occupies a central position in the way that economists

think about problems. Many choices are made in risk and uncertain situa-

tions. Since people frequently need to avoid some uncertainties, for exam-

ple, by purchasing insurance, choice under risk and uncertainty is a critical

aspect of economics.
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Part III consists of four chapters. It mainly discusses game theory and

market theory, including basic game theory, repeated game and reputation

mechanism, cooperative game, and market theory of various market struc-

tures. Game theory has become an extremely important subdiscipline in

mainstream economics, a core field in microeconomics, and the most foun-

dational analytical tool for analyzing various interactive decision problems

in economics. For instance, monopolistic competition, and especially the

discussion of oligopolistic markets, necessitates the use of a great amount

of knowledge and results of game theory, and thus it is discussed together

as applications.

Part IV comprises five chapters. It mainly discusses the benchmark

market theory in the frictionless situation of perfect competition: gener-

al equilibrium theory and social welfare, including the positive theory of

competitive equilibrium, the normative theory of competitive equilibrium,

economic core, fair allocation, social choice theory, and general equilibri-

um theory under certainty. General equilibrium theory is one of the most

important theories in the history of economic theory development in the

past 100 years. It provides a core reference and benchmark for better s-

tudying and solving practical problems. This part describes the nature of

competitive equilibrium, and explores how to achieve the fair allocation of

resources, in order to further demonstrate the universality, optimality, and

rationality of the market economy system.

The above four parts mainly describe benchmark models and theories

under ideal economic environments in which the market results in effi-

cient allocations, as well as the analytical framework, methods, and tool-

s. However, in many cases, the market is not omnipotent and frequent-

ly fails in term of efficiency, especially from the micro- and information-

perspective. Indeed, it can face numerous problems, leading to “market

failure”. Therefore, it is very important to elucidate where the market fail-

s and precisely what corrective actions should be taken by governments,

regulators, and/or designers. As a consequence, the next three parts of this

textbook focus on how to deal with problems caused by market failures,

which is closer to reality.

Part V consists of two chapters. It discusses theories of externalities
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and public goods, including the typical market failures of externalities and

public goods provision. In this part, it will be shown that, in general, these

“non-market goods”or“harmful goods”will result in Pareto inefficient

allocations, and produce market failure. Due to externalities and the provi-

sion of public goods, a primary market is generally not an ideal mechanism

for allocating resources.

Part VI has five chapters. The most important three keywords in e-

conomics are information, incentive, and efficiency. Therefore, this part

is devoted to discussing incentive, information and economic mechanis-

m design, including principal-agent theory under hidden information and

moral hazard, mechanism design under complete information and incom-

plete information, and dynamic mechanism design. Mechanism design

does not attempt to change human nature, which is essentially immutable.

As such, mechanism design theory investigates whether and how to de-

sign a set of mechanisms (i.e., rules of games or systems) to achieve de-

sired goals under the conditions of individuals pursuing their self-interest,

free choice, voluntary exchange, incomplete information and decentralized

decision-making, and to compare and assess the advantages and disadvan-

tages of a particular mechanism. Whether or not information is symmetric

and incentive is compatible constitute the root causes of different perfor-

mances of alternative competing mechanisms.

Part VII comprises two chapters, which discusses market design of auc-

tion theory and matching theory that are the two frontier subfields of mi-

croeconomic theory. Market design, as a relatively new field, can be re-

garded as the specific expansion and extension of the general mechanism

design theory in Part VI, and has a wide range of applications in the real

world.

Teaching tips

As mentioned above, the content of this textbook may be taught at many

different levels, and is intended for courses of microeconomics for gradu-

ate and advanced undergraduate students, topics of advanced microeco-

nomic theory, or courses in mathematical economics. The rich and fully
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expounded-upon content in this textbook also provides a broad range of

choices and space for the teaching of microeconomics at different levels,

and for the aspects that teachers consider to be the most important. More-

over, teachers can flexibly select relevant chapters and sections to teach ac-

cording to their teaching needs. The second chapter, about which concerns

the knowledge of mathematics, can be also be used as a teaching material

or an important reference for mathematical economics.

The following are some suggestions for instructors who choose to use

this textbook. (1) For microeconomics sequence I for graduate students and

senior undergraduates, consider the following chapters for the teaching of

one semester: Chapters 3-5 on individual decision-making and Chapters 6-

8 on game theory. (2) For microeconomics II for graduate students, consider

the following chapters for the teaching of one semester: Chapter 9 on mar-

ket theory, Chapters 10-13 on general equilibrium theory, Chapters 14-15

on externalities and public goods, and Chapters 16-17 on principal-agent

theory. (3) For advanced topics in microeconomic theory for graduate s-

tudents, depending on different foci, the instructor can choose Chapters

18-20 on mechanism design theory or Chapters 21-22 on market design. Of

course, the selection of chapters needs to be based on the preference of in-

structors, research interests, and constraints on course time. In addition, in

teaching advanced microeconomics I, II, or advanced topics in microeco-

nomic theory, it is crucial for students to know the context of Chapter 1 on

the nature, category, analytical framework, thoughts and methodologies of

economics, and thus students should first either self-study Chapter 1 or be

taught it by instructors. In addition, for undergraduates to obtain a gen-

eral understanding of the scope, ideas, analytical framework, and research

methods of economics, they are strongly recommended to read Chapter 1

and the introduction sections of the other chapters.

Doing exercises is the most reliable and effective way to master the

content of teaching materials. The exercises at the end of each chapter

were written by myself, adapted from classical textbooks and the Doctoral

Qualification Examination Question Bank of the Economics Department of

world-class universities, or are examples or basic conclusions of original

academic papers, indicating their sources whenever possible. I would al-
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so like to express my sincere gratitude to the anonymous authors of many

exercises in this textbook.

Research tips

This textbook can also be used as a reference for research. Whether it is

to carry out original theoretical, applied or policy-oriented research, it is

necessary to learn economics well, master its basic analytical framework

and research methods, and establish a solid theoretical and methodolog-

ical foundation. From the content of textbook, it is possible to learn the

most advanced microeconomic theory and engage in relevant research. In

general, the study of economics can be broadly divided into two categories.

The first category is the study of basic, original, and common theories and

tools, most of which have no borders and can generally be applied to any

region. The various theories introduced in this textbook basically fall in-

to this category. The second is the attempt to solve pragmatic or realistic

issues, i.e., applying the basic principles, analytical frameworks, research

methods, and analytical tools of economics to study and solve real-world

problems of a nation or region. Indeed, these two are dialectically unified,

and it is crucial not to negate the latter by the former, or vice versa. This is

the same situation as in basic research in the natural sciences and techno-

logical innovation in industry: they are complementary, equally important,

and indispensable.

In addition, it should be pointed out that economics, and especially mi-

croeconomic theory, mainly provides two categories of theories, both of

which possess stringent prerequisites. The first category is to provide var-

ious benchmark theories. Most of the theories introduced in Parts II-IV

of this textbook belong in this category. The second category is to deliver

various relatively more realistic theories. Parts V-VII are more closely as-

sociated with reality, and are primarily theories that are proposed to solve

practical problems. The first category of theories is primarily based on the

economic environments of mature market economies or nations, and pro-

vides basic theory in ideal situations. Although it serves an important role

in guiding improvement or reform orientation, it deviates from reality, e-
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specially concerning economic environments that are still in the process

of transition. As a consequence, it is necessary to revise the benchmark

theory and consider situations that have frictions and are closer to reality,

in order to develop a relatively more realistic economic theory that solves

specific practical problems, draws accurate conclusions, and makes predic-

tions with intrinsic logic. For these reasons, these two categories of theories

exist in a progressive relationship in the development of disciplines. The

basic analytical framework, thoughts, and research methods of economics

described in this textbook are not only common to the study of these two

types of theories, but can also be employed to better apply economic theo-

ry to investigate real-world economic problems. They can even establish a

solid theoretical and methodological foundation for the development of e-

conomic theories that are suitable for studying transitional economies. This

requires the special attention of researchers when using this textbook.
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Part I

Preliminary Knowledge and

Methods

3





In order for readers to grasp the content in this textbook more effec-

tively, learn economics, and rigorously understand its profound economic

thoughts, theoretical models and proofs, this part introduces the prelimi-

nary knowledge and methods of economics and mathematics.

Chapter 1 briefly discusses the nature, essence, category, thoughts, and

methods of the discipline of economics. We will fully discuss the ideas and

methods of economics, especially those that are involved in this textbook.

While the mainstream of the economics profession prior to World War II

focused largely on qualitative analysis and economic concepts, to a great

extent lacking scientific rigor and quantitative analysis, it currently seems

that primary attention is given to techniques and rigor, and the profound e-

conomic thoughts behind economics are largely neglected. When studying

economics, one should know not only the academic contexts of economics

well, but also its systems, in order to master its deep thoughts and wisdom.

Combining both, this textbook attempts to advocate pursuing academics

“with deep thoughts and for deep thoughts”.

Chapter 2 introduces the basic knowledge and results of mathematics

that are indispensable for studying economics, in general, and advanced

microeconomic theory, in particular. They are used for rigorous analysis of

economic problems and for derivation and proofs of theoretical results. In

other words, they provide requisite mathematical knowledge and tools for

formalization, axiomatization, and scientification of microeconomic theory.
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Chapter 1

Nature of Modern Economics

In this chapter, we discuss the nature, role, and methodology of economic-

s, categories of theories, and the scope, preliminary knowledge, concepts,

and methods involved in the textbook. We will present the basic termi-

nologies, core assumptions, standard analytical frameworks, methodolo-

gies and techniques used in economics, and discuss its research object of

the market system, its connection with ancient Chinese economic thought,

as well as some key points.

Methodologies and techniques for studying economics include the fol-

lowing: providing benchmarks, establishing reference systems, setting up

studying platforms, developing analytical tools, conducting positive and

normative analyses, mastering the basic requirements of learning econom-

ic theory, understanding the role of economic theory, clarifying necessary

and sufficient conditions for a statement, elucidating the role of mathemat-

ics and statistics in economics, and becoming familiar with the conversion

between economic and mathematical languages.

1.1 Economics and Modern Economics

1.1.1 What is economics about?

To learn economics well, one must first know its definition and understand

its nature, connotation, scope, and concerns.

7
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Economics is a social science that studies how people interact with val-

ue in the face of resource scarcity and/or information asymmetries. Specif-

ically, it studies economic behavior and phenomena, and how rational in-

dividuals (agents, households, firms, nations, organizations, and govern-

ment agencies) make trade-off choices with limited resources.

In fact, economics could only come into being due to the fundamental

inconsistency and conflict that exists between resource scarcity and indi-

viduals’ unlimited desires (or wants). The core idea is that individuals, who

are under the basic constraint of limited resources (i.e., limited information,

capital, time, capacity, freedom etc.) and driven by unlimited desires, must

make trade-off choices in resource allocation to make optimal utilization of

limited resources to maximize satisfaction of their needs.

As a discipline of social science, economics investigates the problem of

choices based on logical analysis and scientific tools, and establishes itself

via systematic exploration of the specific topic of choice. Such exploration

not only involves the building of theory, but also provides analytical tools

for the testing of economic data.

1.1.2 Four Basic Questions in Economics

For any economic system, regardless of whether it is a planned economy,

wherein the government plays a decisive role, a free economy, wherein the

market plays a decisive role, or a semi-market and semi-planned mixed

economy, wherein the state-owned economy plays a leading role, all face

the following four basic questions regarding the allocation of resources:

(1) What should be produced, and in what quantity?

(2) How should the product be produced?

(3) For whom should it be produced, and how should it be dis-

tributed?

(4) Who makes the decisions?

Although these questions must be answered in all economic systems, dif-

ferent economic institutional arrangements provide varied answers. Whether
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an institutional arrangement can effectively resolve these problems depend-

s on whether it can effectively deal with the issues induced by information

and incentives, and result in efficient or equitable allocations of resources.

Two basic economic institutional arrangements have been used in the

real world:

(1) The institutional arrangement of planned economies: Al-

l of the four questions are answered by the government,

who determines most economic activities and monopolizes

decision-making processes and all sectors. The governmen-

t makes all decisions on market access, product catalogue,

infrastructure investment allocation, individual job assign-

ment, product pricing and wages, and it bears all of the risk.

(2) The institutional arrangement of market economies: Most

economic activities are organized through the free market.

The decisions about what to produce, how to produce and

for whom to produce are mainly made by decentralized firm-

s and consumers, and the risk is borne by individuals.

While almost every real-world economic system exists somewhere in

between these two extremes, the key factor is which extreme is in the dom-

inant position. Due to the pursuit of personal interests and the presence

of private or incomplete information, the fundamental flaw of the planned

economic system is that it cannot effectively resolve problems induced by

information and incentives, which in turn results in inefficient allocation of

resources. On the other hand, the free-market economic system provides a

viable solution in these respects in most situations. This is the fundamen-

tal reason why countries that once adopted a planned economic system

inevitably failed, and why China carried out market-oriented reforms and

strove to have the market play the decisive role in resource allocation.

1.1.3 What is Modern Economics?

Modern economics, which has developed rapidly since the 1940s and was

constructed on the basic recognition of individuals pursuing their self-interest,
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systematically studies individuals’ economic behavior and economic phe-

nomena by intensively using mathematical tools and adopting scientific

methods for rigorous thinking. Specifically, it makes historical and empir-

ical observations of the real world, utilizes the observations towards the

formation of theory through rigorous logical analysis, and then again tests

the theory in the continuing real world. As a consequence, it is a branch

of science equipped with a scientific analytical framework and research

methodology. This systematic inquiry not only involves the form of theory,

but also provides analytical tools for testing economic data. For brevity,

modern economics is simply termed the economics. In the following we

will use the both terms interchangeably.

Scientific economic analysis, especially aimed at studying and solving

major practical problems affecting the overall situation, is inseparable from

“three dimensions and six natures”, among which the “three dimen-

sions”are “theoretical logic, practical knowledge, and historical per-

spective”and the “six natures”are scientific, rigorous, realistic, perti-

nent, forward-looking, and thought-provoking”. Since social economic

issues generally cannot be studied by only using real society and perform-

ing experiments on it, we need not only theoretical analysis with inheren-

t logical inferences, but also empirical quantitative analysis or tests with

appropriate tools, such as statistics and econometrics. However, only us-

ing theory and practice is insufficient, and may cause shortsightedness, because

the short-term optimum does not necessary equate to the long-term opti-

mum. As a consequence, historical comparisons from a broad perspective

are also requisite for gaining experience and drawing lessons. Indeed, only

through the three dimensions of “theoretical logic, practical knowledge,

and historical perspective”can we guarantee that its conclusions or refor-

m measures satisfy the“six natures”. Therefore, the“three dimensions

and six natures”are indispensable.

Indeed, all knowledge is presented as history, all science is exhibited

as logics, and all judgment is understood in the sense of statistics. This is

why Joseph Schumpeter (see Section 2.12.2 for his biography) asserted that

the difference between an economic scientist and a general economist lies

in whether he or she adopts the following three elements when conducting
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economic analysis: the first element is theory for logical analysis; the sec-

ond is history for historical analysis; and the third is statistics for empirical

analysis with data.1

For theoretical innovations and practical applications, it is of critical

importance to correctly understand and master general knowledge of e-

conomics and the content of this textbook. It is useful for studying and

analyzing economic problems, interpreting economic phenomena and in-

dividuals’ economic behavior, setting up goals, and identifying the direc-

tion of improvements. More importantly, with the support of comparative

analysis from the historical perspective and quantitative analysis based on

data, we can draw reliable conclusions of inherent logic and make relative-

ly accurate predictions through rigorous inference and analysis.

Economics — a key part of social sciences, is referred to as the“crown”of

social sciences due to its extremely general analytical framework, research

methods, and analytical tools. Its basic ideas, analytical framework, and re-

search methodologies are potent for studying economic problems and phe-

nomena that occur in different countries, regions, customs and cultures,

and can be applied to almost all social sciences. It can even be beneficial

if one strives to be a good leader with strong leadership ability, manage-

ment and work ethic. Indeed, it is lightheartedly referred to as“economic

imperialism”or an“omnipotent discipline”due to a bunch of influential

works by Gary S. Becker (1930-2014, see Section 13.7.2 for his biography),

who applied economic analysis to the entire spectrum of human behavior,

including areas previously considered more or less the exclusive domain of

sociology, psychology, criminology, demography and education.

1.1.4 Economics vs. Natural Science

There are three major differences between economics and natural science:

(1) Economics studies human behavior and needs to impose certain be-

1In his inaugural speech titled “Science and Ideology”when assuming the position
of President of the American Economic Association in 1949, Schumpeter pointed out that
“Science is knowledge processed by special skills. Economic analysis, i.e., scientific eco-
nomics, involves skills of history, statistics, and economic theory.”See Schumpeter, Joseph
A. (1984). “Science and Ideology”in Daniel M. Hausman, eds., The Philosophy of Economic-
s, Cambridge: Cambridge University Press, 260-275.
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havioral assumptions; whereas, natural science, in general, does not in-

volve the behavior of human beings (of course, such distinction is not abso-

lute; for example, biology and medicine sometimes involve human behav-

ior. However, these involvements are not from the perspective of rationali-

ty, while economics considers human behavior primarily from the perspec-

tive of utilitarianism). Once individuals are involved, information is highly

incomplete and private (asymmetric) and easy to obscure because their be-

havior is unpredictable or they reveal information strategically, making it

highly challenging to deal with.

(2) In the discussion and study of economic problems, positive analysis

of description and normative analysis of value judgment are both need-

ed. As people possess dissimilar values and self-interests, controversies

frequently emerge, while natural science generally makes descriptive posi-

tive analysis only and the conclusions can be verified through experiments

or practice.

(3) Society cannot be simply experimented upon or subjected to tests

to form conclusions in economics because policies have broad impacts and

large externalities. However, this does not constitute a problem for almost

all branches of natural science.

These three differences may make the study of economics more com-

plex and harder. In order to study and solve practical economic problems,

one must start from the reality, combine theory with practice, establish the

overall and systematic thinking, and adhere to the comprehensive gover-

nance concept with general equilibrium analysis as the core, rather than

simple controlled experiment (although it is the first step of scientific re-

search). It is essential to adopt the research methodology of“three dimen-

sions and six natures”mentioned above.

1.2 Two Categories of Economic Theory

Modern economic theory is an axiomatic way to study economic issues.

Similar to mathematics, it relies on logic deductions from presupposed as-

sumptions. It further consists of assumptions/conditions, analytical frame-

works and models, and conclusions (interpretations and/or predictions).
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Since these conclusions are strictly derived from the assumptions and an-

alytical frameworks and models used, it constitutes an analytical method

with inherent logic. This analysis method is highly advantageous for clear-

ly elucidating the problem and can avoid unnecessary complexities and

disputes. Economics aims to explain and evaluate observed economic phe-

nomena and make predictions based on economic theory.

1.2.1 Benchmark Theory and Relatively Realistic Theory

Economic theory can be divided into two categories by function. One is

benchmark economic theory, which provides various benchmarks or ref-

erence systems2, which is relatively remote from reality and deals with

ideal situations. Parts II-IV of the textbook provide such benchmark the-

ories. The second category is a relatively realistic theory that aims to solve

practical issues, so that assumptions are closer to reality, which are usually

modifications to the benchmark theory. Parts V-VII provide such relatively

applied theories. As such, both types of theories are essential, and can be

used to draw logical conclusions and make predictions. In addition, a pro-

gressive and complementary relationship of development and extension

exists between these two categories. The second category of realistic theo-

ries is developed by revising the first category of benchmark theories as the

reference frame, thus making the theoretical system of economics complete

and proximal to the real world.

The benchmark theories are largely built on the economic environmen-

t of mature market economies and ideal situations. Their great signifi-

cance should not be underestimated, misunderstood, or denied. They have

demonstrated their critical importance in at least two aspects.

Firstly, although theoretical results of this category do not exist and can-

not be realized in practice, they do play a critical role in providing guid-

ance, orientation, and benchmarks. When we tackle a problem, it is neces-

sary to first determine what to do and whether it should be done, and then

proceed to the question of how to do it. Benchmark theories answer the

question of what to do, or provide the direction and goals of improvement
2We will come back to discuss the role of the benchmark or reference system in more

detail.
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towards the ideal situation. Although it is the case that sometimes only

a relatively better result can be achieved, the optimal outcome can be ap-

proached through the process of continually comparing the outcomes with

the benchmark or reference system. This is why it is correctly claimed that

it is only through comparing our performances with the best and learning

from the best, can we perpetually improve. Therefore, the benchmark the-

ory provides necessary standards for judging what is better and whether it

constitutes the right direction, without which what we are doing may not

be moving us towards our goals at all. .

Secondly, it establishes the necessary foundations for developing the

other category of realistic theories. Any theory, conclusion, or statemen-

t can only be considered relatively; otherwise, there will be no basis for

analysis or evaluation. It is for this reason that benchmark theories are

required. This is true for both physics, which is a natural science, and e-

conomics, which is a social science. For instance, a world with friction is

relative to a world with no friction, information asymmetry is relative to

information symmetry, monopoly is relative to competition, technological

progress and institutional changes are relative to technological and insti-

tutional lock-in, etc. Consequently, we must first develop the benchmark

theory under rather ideal situations. This is analogous to basic laws and

principles in physics, which only hold under an ideal situation without

friction, and do not exist in reality, but nevertheless remain fundamentally

important because they provide requisite benchmarks for solving physics

problems in reality. Similarly, to study real economic behaviors and phe-

nomena, which include “friction”, it is necessary to first be clear about

the ideal situation without “friction”, and then use it as a benchmark

and reference system. Indeed, the rapid development of economics would

be impossible without benchmark economic theories.

As an important part of economics, neoclassical economics assumes the

regularity conditions of complete information, zero transaction costs, and

convexities of consumer preference and production sets, and thus falls into

the first category of benchmark economic theory. Neoclassical economic-

s considers ideal situations; although there is no artificially designed so-

cial goal, it contends that, as long as individuals are self-interested, the
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market of free competition will naturally lead to the efficient allocation

of resources. This is regarded as a rigorous statement of the “invisible

hand”proposed by Adam Smith (1723-1790, see 1.17.1 for his biography).

It is thus set as the reference system for us to determine the direction and

goals for reforms in order to improve the economic, political, and social

environment, establish the competitive market system, and let the market

play a decisive role in the allocation of resources. The boundary conditions

for the market to work well also inform us about when the market will fail,

at which time the government will need to step in and play a guiding role.

One may assert that an ideal reference system is far removed from the

real economy, and thus deny the role of neoclassical economics and reject

the instructive role of economics in economic reform. This, however, con-

stitutes a serious misunderstanding, as it fails to acknowledge that the great

gap between reality and the benchmark/reference system only shows the

necessity for a nation, such as China, to implement market-oriented re-

forms and to continuously improve the efficiency of resource allocation.

This kind of opinion, which refutes the role of benchmark theory, is similar

to the denial of physics by a junior high school student who has just learned

several formulas of Newton’s three laws and criticizes them for postulating

conditions that are totally dissimilar from those in the real world. In these

cases, however, the role of benchmark theory is not understood correctly.

Indeed, without the benchmark theory in physics concerning free fall and

uniform motion, how could we know the magnitude of frictional force so

that we could construct a house that is stable ? Furthermore, how could we

determine how much frictional force should be overcome to solve prob-

lems regarding the taking-off and landing of airplanes or the launching of

satellites? It is clear that, without benchmark theory, applied physics can-

not be developed. The study of economics follows the same logic, and thus

we need directions, structures, goals, and certain fundamentals, which is

especially the case for implementing reforms in transitional economies.

To facilitate reforms for transitional economies, goals must be estab-

lished, and thus benchmarks and reference systems are required for the

reform to orientate itself. For the social economic development of a coun-

try, it is necessary to transcend rational thinking,theoretical discussion and
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theoretical innovation, and determine the direction and goals of the reform

in the first place. Moreover, it must be acknowledged that the fundamen-

tal institutions that determine the rule of collective decision-making, legal

systems, strategies and policies play decisive roles in this process. If basic

institutions of the rule of law, legal systems, politics, economy, society, and

culture that concern a nation’s path of development and long-term stability

are not determined, economic theories in the present state-of-the-art may

accomplish nothing, and may even have deleterious effects. In the disci-

pline of economics, there is not a universal economic theory that is always

applicable for all development stages, but rather there is an optimal one

that is best suited for certain development stage under certain institutional

environments.

For market-oriented reforms, it is natural and necessary to set neoclassi-

cal economic theory - especially economic theory of the first category, such

as general equilibrium theory, that demonstrates the market as the optimal

economic system - as a benchmark and the competitive market as a refer-

ence system for the orientation of these reforms. In this way, the results

of the reforms will be continuously improved towards reaching the best

possible outcome.

According to the economic environment defined by these benchmark-

s, reforms of deregulation and delegation for competition neutrality must

be carried out, including ownership neutrality, liberalization, privatization,

and marketization or reforms against government monopoly of resources

and control of market access. In particular, the general equilibrium theory

defines the applicable range of market mechanisms and identifies the en-

vironments under which the market may fail. With such knowledge, it is

possible to identify the areas in which governments could establish rules

and institutions to correct market failures.

Therefore, the study of economic problems and reforms, and especially

determination of the direction of reforms, must commence from the bench-

mark of economics. Reforms that run counter to common sense in eco-

nomics will end up in failure. The benchmark and reference system present

the premises on which the market will lead to a more efficient allocation

and result in a more prosperous market economy, thereby revealing the di-
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rection of the reforms. The fourth part of this textbook stresses the Arrow-

Debreu general equilibrium theory (Kenneth Joseph Arrow, 1921-2017, see

Section 10.8.2 for his biography; Gerald Debreu, 1921-2004, see Section

11.9.2 for his biography) and the rational expectations theory of macroeco-

nomics (referred to as neoclassical macroeconomics), both of which are s-

tandard theories of neoclassical economics and rigorously demonstrate that

markets of free competition lead to efficient allocation of resources.

Alternative benchmarks and reference systems under different value

judgements and goals could lead to markedly divergent outcomes. For

example, when students regard a “pass”grade as their benchmark, the

result is frequently a failure because a test comprised of questions is a ran-

dom variable to the students. Just as Confucius and Sun Zi asserted, those

who aim at the superior get the medium, those who aim at the medium get

the inferior, and those who aim at the inferior lose entirely, which illustrates

the critical importance of the choice of benchmark. Meanwhile, given that

many benchmark theories are established under ideal conditions, they can-

not be simply adopted to solve real problems in practice. In other words,

a well-trained economist will not mechanically apply economic theories in

the first category. However, concerning the economic reforms implement-

ed in some transitional economies, we may come across some economists

who do not analyze the dynamics in the transition, consider only develope-

d countries but not developing countries, and neglect the objective law and

constraints in special development stages. As such, both the target and the

path selection and schedule arrangement for accomplishing the target are

of crucial importance in practice. In addition, although some short-term e-

conomic and social problems might be resolved through promoting growth

and development per se, market-oriented reforms should not be delayed;

otherwise, an emerging economy is likely to be trapped in the transitional

status.

It should be pointed out that a benchmark economic theory is estab-

lished under an exogenously given economic environment that constitutes

a relatively ideal situation. In so doing, we are able to address the key is-

sues and draw some benchmark conclusions; otherwise, no question can be

scientifically discussed if we do not control for many factors. Therefore, in
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neoclassical theories and numerous other economic theories, an economic

environment that comprises basic institutions, individual preferences and

production technologies must be exogenously-given. Elaborating further,

if achieving the market system under the ideal situation is our goal, it is

logical to set it as a given institutional arrangement in order to thoroughly

elucidate its desirable properties. However, this does not mean that eco-

nomics only investigates situations in which the institution is given. In

fact, many theories in economics are specialized in addressing how the e-

conomic environment changes, such as the study of institutional evolution,

economic transition, endogenous preferences and technological progress.

As such, one should not misinterpret economics as a sort of discipline that

provides only benchmark economic theories established under ideal situa-

tions.

Theories in the second category constitute relatively more realistic e-

conomic theories that aim haw to solve practical problems, and are con-

structed on presupposed assumptions that more closely approach reality

and are modifications of the benchmark theories. According to their func-

tions, they can be further divided into two types: the first kind provides

an analytical framework, method, or tools for solving practical problem-

s, such as game theory, mechanism design theory, principal-agent theory,

auction theory, matching theory; and the second kind offers specific poli-

cy suggestions, such as the Keynesian theory, rational expectations theory,

and growth theory in macroeconomics.

1.2.2 The Domain and Scientific Rigor of Economics

It can be seen from the definition of the above two categories of econom-

ic theories, modern economics is a highly inclusive and open discipline

in dynamic development, which far exceeds the scope of neoclassical eco-

nomics. Through weakening the assumptions of benchmark theories and

standardized axiomatic formulation of descriptive theories, economics con-

tinuously develops the second category of economic theories, which grants

itself great insight, explanatory power, and predictability. In the author’s

opinion, as long as a study involves rigorous logical analysis (not necessarily us-
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ing mathematical models) and adopts rationality assumption (bounded rationality

assumption included), it falls into the category of (modern) economics.

Modern economics originated from classical economics, which was de-

veloped based on integration of Adam Smith’s work by Thomas Robert

Malthus (1766-1834, see Section 4.6.1 for his biography) and David Ricar-

do (1772-1823, see Section Section 1.17.2 for his biography), including not

only benchmark theories, such as neoclassical marginal analysis economic-

s established by Alfred Marshall (1842-1924, see Section 3.11.1 for his bi-

ography) and Arrow-Debreu’s general equilibrium theory, but also many

more realistic economic theories. For instance, the new institutional eco-

nomics by Douglass C. North (1920-2015, see Section 5.5.1 for his biog-

raphy) and mechanism design theory by Leonid Hurwicz (1917-2008, see

Section 16.10.2 for his biography) have both developed neoclassical theory

in a revolutionary manner. Specifically, while neoclassical theory takes in-

stitutions as given, North and Hurwicz endogenized institutions, viewing

them as changeable, shapeable and designable, and thus formulated vari-

ous institutional arrangements by complying with human nature for differ-

ent environments. Indeed, they have both become crucial components of

economics. Furthermore, the development of new political economics has,

to a large extent, borrowed the analytical methods and tools of the second

category of economic theory.

It is important to note that, because theories of the second category

strive to develop analytical frameworks, methods, and tools for solving

practical problems and offer specific policy recommendations largely based

on a mature modern market system, their application must be approached

cautiously. In fact, every rigorous economic theory in modern economics

possesses a self-consistent logic and consequently must have boundaries

and scopes within which they are applicable. This is true for not only o-

riginal theory but also analytical tools, and for not only the first category

of theory that offers benchmarks or reference systems but also the second

category of theory that aims to solve practical economic problems. As a

consequence, much mathematics is frequently needed, which incurs a com-

mon criticism of economics’ overemphasis on model details and increas-

ingly heavy involvement of mathematics and statistics, making economic
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questions and conclusions per se even more opaque and challenging to un-

derstand.

The major reason that modern economics uses a substantial amount of

mathematics and statistics is that economists must scientifically (both qual-

itatively and quantitatively) identify the applicable scope of an econom-

ic theory, which is especially the case when proposing economic policies

based on the economic theory. Once a theory is adopted for making policy,

great negative externalities may come into being if the boundary condition-

s of the theory are not known. In particular, it is the economists who make

policy proposals, rather than the policy-makers and the public, that must

have a good knowledge of the details or premises of a rigorous theoreti-

cal analysis. To this end, mathematics is needed to thoroughly identify the

boundary conditions and applicable scopes of economic theories; simulta-

neously, economists equipped with the knowledge of mathematics can lay

a strong foundation for continuous theoretical innovations. Moreover, the

application of a theory or the formulation of a policy will usually require

the use of statistics and econometrics for quantitative analyses or empirical

tests.

In most cases, as real society cannot be simply used for experiments,

a larger historical perspective is useful for viable vertical and horizontal

comparisons. In addition, many superfluous disputes can be avoided in

the exploration and discussion of certain questions. Hurwicz, for exam-

ple, believed that the biggest shortcoming of traditional economic theories

is the imprecise explanation of concepts, while the greatest significance of

the axiomatic method lies in its formalization of the theory, providing a

commensurable research paradigm and analytical framework for both dis-

cussion and criticism.

As a result, as the basic theoretical foundation for market economies,

economics relies heavily on the introduction of research methodology and

analytical framework of natural sciences to study social economic behav-

iors and phenomena. Indeed, using mathematical models as basic analyt-

ical tools, it stresses the inherent logic from assumptions and derivations

to conclusions, along with the use of statistics, econometrics and comput-

er simulations for data-driven empirical research, laboratory experimental
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research, as well as field research. As such, comparing to other humani-

ties and social sciences, modern economics exhibits strong characteristics

of positivism and pragmatism, and is more likely to have the flavor of nat-

ural sciences.

1.2.3 The Roles of Economic Theory

Economic theory has at least three roles.

The first role is to provide various benchmarks and reference systems

to establish desired goals in order to create directions to be pursued for

improvement. Through reforms, transitions and innovations guided by

theory, the economy in the real world is driven increasingly proximal to

the ideal state.

The second role is to be used to learn and understand the real economic

world, and to explain economic phenomena and economic behaviors in

order to solve real problems. Indeed, this is the major content of economics.

The third role is to be used to make logically inherent inferences and

predictions. Practice is the sole criterion for testing truth, but not the sole

criterion for predicting it. In many cases, problems may still arise if only

historical examination and existing data are employed for economic predic-

tion, and thus theoretical analysis with inherent logic is imperative. Through

logical analysis of economic theory, it is possible to make logically inherent

inferences and predictions on possible outcomes under given economic en-

vironments. In so doing, we can solve real economic problems in a better

way. As long as the pre-assumptions in a theoretical model are roughly

met, scientific conclusions can be obtained and essentially correct predic-

tions and inferences can be made accordingly, so that we may know the

outcomes. For instance, the theoretical inference that a planned economy

is unfeasible proposed in 1920s by Friedrich Hayek (1899-1992, see Sec-

tion 2.12.1 for his biography) possesses this kind of insight. A good theory

can deduce logically inherent results without requiring social experiments,

which can somehow overcome the shortcoming that economics cannot car-

ry out experiments on real society to a great extent. What is necessary,

however, is to check whether the assumptions made on economic environ-
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ments are reasonable (experimental economics, which has become popu-

lar in recent years, is mainly engaged in fundamental theoretical research,

such as testing individual behavioral assumptions). For example, we are

not allowed to issue currency just for examining the relationship between

inflation and unemployment. Similar to the case of astronomers and bi-

ologists, most of the time economists can only rely on existing data and

phenomena to test and revise theories.

Of course, as indicated above, it would not be helpful to exaggerate the

role of economic theory, and expect it to solve key and fundamental prob-

lems. What is fundamental, key, and decisive is the basic constitution and

institution that determine a nation’s fundamental path of development. If

the underlying system governing the direction of the country and long-

term prosperity in politics, economy, society, and culture is not yet built,

the application of economic theory may even lead to deleterious results.

1.2.4 Microeconomic Theory

A notable feature of microeconomic theory is that it sets up theoretical

models for economic activities of self-interested individuals, especially in

market economies, conducts rigorous analysis and examines how the mar-

ket works on such a basis.

Microeconomics deals with the core issue of pricing. It focuses on such

questions as: which factors affect pricing? Do enterprises have pricing

power? How can an enterprise get the power of pricing ? How can an

enterprise set the optimal price? To elucidate the answers to such a large

issue, it is necessary to study the demand, supply, characteristics and func-

tions of the market, and pricing in all kinds of markets and economic envi-

ronments. As a result, microeconomics is also called the price theory.

Microeconomics constitutes the core of economics and the theoretical

foundation of all branches of economics. It enables us to employ simplified

assumptions for in-depth analyses of various aspects of the complex world

in order to get some useful insights. It also assists us to extract the most

useful information from unrelated entities and consider various issues us-

ing the method of economics to develop explanations and predictions that
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conform to reality. It is in this sense that all other branches of economics,

such as macroeconomics, finance, applied economics, etc., call for support

from microeconomic theory.

1.3 Economics and Market System

A main purpose of economics is to investigate the objective laws of mar-

ket and individuals’ (e.g., consumers and firms) behavior in the market.

Specifically, it examines how self-interested individuals coordinate their e-

conomic activities and make optimal choices in the market, how the market

allocates social resources, how economic stability and sustainable growth

are achieved, etc. Therefore, for the purpose of studying economics com-

prehensively, one should possess a general understanding of the functions

and advantages of modern market mechanisms.

1.3.1 Market and Market Mechanism

Here, we briefly introduce the operation and basic functions of the market

and how the market coordinates individuals’ economic activities without

requiring excessive participation or intervention of the government.

Market: The market constitutes a modality of trade in which buyers

and sellers conduct voluntary exchanges. It refers not only to the location

where buyers and sellers conduct exchanges, but also to all forms of trading

activity, such as auction and bargaining mechanisms.

When studying microeconomics, it is crucial to keep in mind that any

transaction in the market has both buyers and sellers. In other words, for

a buyer of any good, there is a corresponding seller. The final outcome of

the market process is determined by the rivalry of relative forces of sell-

ers and buyers in the market. Three forms of competition exist in such

a rivalry: consumer-producer competition, consumer-consumer competi-

tion, and producer-producer competition. Throughout this textbook, read-

ers will find that the bargaining position of consumers and producers in the

market is circumscribed by these three sources of competition in economic

transactions. Competition in any form is like a disciplinary mechanism that
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guides the market process and has varied impacts on different markets.

Market mechanism: The market mechanism or price mechanism is an

economic institution in which individuals make decentralized decisions

guided by price. It is worth noting, however, that this is usually a nar-

row definition of market mechanism. In fact, a mature market mecha-

nism or market system constitutes the set of all systems and mechanisms

closely related with the market (including the system of market laws and

regulations). As a form of economic organization featuring decentralized

decision-making, as well as voluntary cooperation and voluntary exchange

of products and services, it is one of the greatest inventions in human his-

tory and by far the most successful means for human beings to solve their

economic problems. Indeed, the establishment of the market mechanism

is not a conscious, purposeful human design, but rather a product of the

natural process of evolution. In the opinion of Hayek, market order is a

spontaneous order of the economy which has evolved through long-term

choices and processes of trial and error. The emergence, development, and

further extension of economics are mainly based on the study of the mar-

ket system. In aggregate, the operation of the market appears wonderous

and beyond comprehension. It is genuinely awe-inspiring that, in the mar-

ket system, decisions on resource allocation are independently made by

producers and consumers who pursue their own interests under the guid-

ance of market price without the imposition of any command or order. The

market system unknowingly solves the previously mentioned four basic

questions which must be faced by all economic systems: what to produce,

how to produce, for whom to produce, and who makes the decisions.

Under the market system, firms and individuals make the decisions on

voluntary exchange and cooperation. Consumers seek maximal satisfac-

tion of their demands, while firms pursue profits. In order to maximize

profits, firms must have meticulous plans for the most efficient utilization

of resources. In other words, for resources with similar usage or quali-

ty, firms will choose the ones with the lowest possible cost. Although

“making the best use of everything”may differ in meaning from the point

of view of firms and that of the economy, price makes them related which,

as a result, harmonizes the interests of firms and those of the entire soci-
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ety, and leads to the efficient allocation of resources. The price level reflects

the supply and demand of resources in the economy and the degree of scarcity of

resources. For example, in the case of an inadequate timber supply and am-

ple steel supply in the economy, timber will be expensive while steel will

be inexpensive; consequently, to reduce expenses and make more profits,

firms will strive to use more steel and less timber. In doing so, firms do

not take the interests of society into consideration, but the outcome is pre-

cisely in accordance with social interests, and it is the role of resource price

that achieves this. Resource price coordinates the interests of firms and

those of the overall society, and solves the problem of how to produce. The

price system also guides firms to make production decisions in the inter-

est of society. Indeed, it is the consumer who has the final say about what

to produce. Firms only need consider how to produce products that have

a higher price. Yet, in the market system, the price level exactly reflect-

s social needs. For instance, poor harvests and the corresponding rising

grain price will encourage farmers to produce more grain. As such, profit-

pursuing producers “come to the rescue”under this guiding force, and

the problem of what to produce is solved. Moreover, the market system al-

so addresses the problem of how to distribute products among consumers.

If a consumer really needs a shirt, he or she will offer a higher price for

it than will others. Profit-pursuing producers will certainly aim to sell the

shirt to the consumer who offers the highest price. In this way, the problem

of for whom to produce is solved. Furthermore, all of these decisions are

made by producers and consumers in a decentralized manner, and thus the

problem of who makes the decision is also resolved.

As such, the market mechanism easily coordinates seemingly incom-

patible individual interests and public interests. As early as over 200 years

ago, Adam Smith, the Father of modern Economics, identified the harmo-

ny and wonder of the market mechanism in his masterpiece, The Wealth of

Nations (Adam Smith, 1776). He regarded the competitive market mecha-

nism as an“invisible hand”. Under the guidance of this invisible hand,

individuals solely pursuing their own interests move towards a common

goal, and thus achieve maximization of social welfare:

“... every individual necessarily labours to render the annual revenue of the



26 CHAPTER 1. NATURE OF MODERN ECONOMICS

society as great as he can. He generally, indeed, neither intends to promote the

public interest, nor knows how much he is promoting it ... he intends only his own

gain, and he is in this, as in many other cases, led by an invisible hand to promote

an end which was no part of his intention. Nor is it always the worse for the society

that it was no part of it. By pursuing his own interest, he frequently promotes that

of the society more effectually than when he really intends to promote it.”

Smith meticulously examined how the market system combines the

self-interestedness of individuals with social interests and the division and

cooperation of labor. The core of Smith’s paradigm is that, if the division of

labor and exchange of goods are totally voluntary, then exchange will only

occur when we realize that the result of the exchange is mutually beneficial

to both parties of exchange. Indeed, as long as there are benefits, indi-

viduals driven by self-interest will cooperate voluntarily. In other words,

external pressure is not a requisite condition for cooperation. Even if lan-

guage barriers exist, as long as mutual benefits can be obtained, exchange

can take place. In most cases, the market mechanism works so harmo-

niously that individuals are not even cognizant of its existence. With the

metaphor of “the invisible hand”, Smith highlighted the importance of

voluntary cooperation and voluntary exchange in economic activities. It

is worth noting, however, that the claim that the welfare of society can be

achieved by the market system is not yet recognized universally, nor was

it during Smith’s lifetime. The Arrow-Debreu general equilibrium theo-

ry, which will be discussed in this textbook, contains a formal statement

of Smith’s“invisible hand”, and rigorously demonstrates how the mar-

ket of free competition can lead to the maximization of social welfare, and

proves the optimality of the market in allocating resources.

1.3.2 Three Functions of Price

As discussed above, the normal operation of the market system is realized

via the price mechanism. As analyzed by Milton Friedman (1912-2006, see

Section 4.6.2 for his biography), the Nobel Laureate in Economics, price

performs three functions in organizing rapidly changing economic activi-

ties involving hundreds of millions of individuals:
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(1) Transmitting information: price transmits production and

consumption information in the most efficient manner;

(2) Providing incentive: price provides incentives for individu-

als to carry out consumption and production in an optimal

way;

(3) Determining income distribution: endowment of resources,

price, and the efficiency of economic activities determine the

income distribution.

In fact, as early as the Han dynasty of China, Sima Qian (a Chinese

historian of the Han dynasty who is considered the father of Chinese his-

toriography) observed and summarized the law of commodity price fluc-

tuation, stating that, for all commodities, “when an article has become

extremely expensive, it will surely fall in price, and when it has become

extremely cheap, then the price will begin to rise”. Therefore, in the effort

to become rich, individuals will make good use of this law to“look for a

profitable time to sell”.

Function 1 of Price: Transmitting Information

Price guides the decision-making of participants and transmits informa-

tion about changes in supply and demand. When the demand for a certain

commodity increases, sellers will notice the increase of sales and thus place

more orders with wholesalers. These wholesalers will then place more or-

ders with manufacturers, causing the price to rise, and the manufacturers

will then invest more factors of production to produce this commodity. In

this way, the message of increasing demand for this commodity is received

by all related parties.

The price system also transmits information in a highly efficient man-

ner, and it only transmits information to those who need it. Moreover, the

price system not only transmits information, but also produces a certain

incentive to ensure the smooth transmission of information so that infor-

mation will not remain in the hands of those who do not need it. Those

who transmit information are internally motivated to look for those who
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are in need of that information, while those who need information are in-

ternally driven to acquire information. For example, ready-to-wear apparel

manufacturers are continually striving to obtain the best kind of cloth and

looking for new suppliers. Meanwhile, cotton cloth manufacturers are also

always reaching out to clients to attract them with the high quality and in-

expensive price of their products by various means of marketing and pub-

licity. Those who are not involved in such activities will surely be indiffer-

ent to the prices and supply and demand of cotton cloth. The mechanism

design theory, as discussed in Chapter 18 of this textbook, will demonstrate

that the competitive market mechanism is the most efficient mechanism in

the utilization of information because it requires the least amount of infor-

mation and thus the lowest transaction cost. In the 1970s, Hurwicz and his

collaborators had already proved that, for the neoclassical economic envi-

ronment of pure exchange, no other economic mechanism can achieve as

efficient resource allocation using less information than does the competi-

tive market mechanism.

Function 2 of Price: Providing Incentive

Price can also provide incentives, so that individuals will react to changes

of supply and demand. When the demand of a commodity decreases, an e-

conomic society should provide certain incentives so that manufacturers of

the commodity will increase production. One of the advantages of the mar-

ket price system is that prices not only transmit information, but also pro-

vide incentives for individuals to respond to the information voluntarily

out of self-interest, so that consumers are driven to consume in an optimal

way while producers are driven to conduct production in the most efficient

manner. The incentive function of price is closely related to the third func-

tion of price: determining income distribution. As long as the increased

gain brought by increased production (i.e., marginal revenue) exceeds the

increased cost (i.e., marginal cost), producers will continue to increase pro-

duction until the two are equal, and thus maximum profits are realized.
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Function 3 of Price: Determining Income Distribution

In a market economy, an individual’s income depends on the resource en-

dowment that he or she owns (e.g., assets, labor) and the outcomes of eco-

nomic activities in which he or she is engaged. Concerning income distri-

bution, it is always desirable to separate price’s function of income distri-

bution from its other functions, in the aim of attaining a more equal income

distribution without affecting the other two functions of transmitting infor-

mation and providing incentive. The three functions, however, are closely

related and complementary. Indeed, once price no longer influences in-

come, its functions of transmitting information and providing incentive

will disappear. If one’s income does not depend on the price of labor or

commodities that he or she offers to others, why would he or she bother

to acquire the information of price and market demand and supply and re-

spond to such information? If one receives the same income irrespective

of how much work he or she performs, then who would strive to do an

excellent job? If no benefits are given for innovation and inventions, who

would be willing to invest effort in this endeavor? If price has no impact

on income distribution, it will also lose its other two critical functions.

1.3.3 The Superiority of the Market System

The modern market system is a sophisticated and delicate economic insti-

tution that has emerged, gradually taken shape, and been constantly im-

proved in the long-term evolution of human society. The fundamental and

decisive role of the market mechanism in resource allocation is the key to

the market economy’s capacity for optimal resource allocation. Optimality

here has the same meaning as the Pareto optimality (efficiency) proposed

by Vilfredo Pareto (1848–1923, see his biography in Section 11.9.1) which

will be discussed in Chapter 11 in more detail. It means that, under given

resource constraints, no other feasible allocation of rescouses exists that can

make some participants better off without harming the welfare of others.

Even though Pareto optimality fails to consider the issue of social fairness

and justice in terms of equality, it provides a basic criterion of whether or

not a resource is wasted concerning social benefit for an economic system,



30 CHAPTER 1. NATURE OF MODERN ECONOMICS

and evaluates social economic effects regarding feasibility. According to

this criterion, if an allocation is not efficient, space exists for such allocation

to be improved.

Two fundamental theorems of welfare economics, which we will dis-

cuss in Part IV on general equilibrium theory, provide a rigorous formal

expression of Adam Smith’s assessment. As the formal statement of his

‘invisible hand’, the theorems prove that the free competitive market can

maximize social welfare and achieve market optimality in terms of resource

allocation. The First Fundamental Theorem of Welfare Economics demon-

strates that when individuals pursue their own self-interest, and if eco-

nomic agents have unlimited or locally non-satiable desire, the competitive

market system can achieve Pareto-efficient allocation for economic environ-

ments with private divisible goods, complete information, and no external-

ity. The Second Fundamental Theorem of Welfare Economics, on the oth-

er hand, proves that for neo-classical economic environments, any Pareto-

efficient allocation can be achieved by reallocating initial endowments and

competitive market equilibrium without the need to introduce other eco-

nomic systems to replace the market mechanism. Precise statements and

rigorous proofs of these theorems will be given in Chapter 11.

The economic core equivalence theorem in Chapter 12, from another

perspective, proves that the market system can benefit social stability, and

is optimal and unique in terms of resource allocation, being the result of

natural selection with objective inherent logic regarding economic activ-

ities. The competitive market mechanism can not only lead to efficient

allocation of resources, but also solve the problem of social stability and

orderliness well. Moreover, it is the product of free and full competition.

The basic connotation of the economic core is that, when the allocation of

social resources possesses the core property, there will not be any coalition

(i.e., a group of agents) that is dissatisfied with the allocation, and wants to

improve their welfare by controlling and utilizing their own resources. In

this sense, no powers or groups exist that pose a threat to society, and thus

society will be relatively stable.

Under the fundamental fact of individuals’ pursuit of self-interest, the

economic core equivalence theorem reveals that: the equilibrium allocation
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by competitive market mechanism has the core property; on the contrary,

under some regularity conditions, such as monotonicity, continuity, and

convexity (diminishing marginal rate of substitution) of preference, as long

as individuals are given enough economic freedom (i.e., the freedom to co-

operate and exchange voluntarily) and perfect competition, the outcome

will be identical to that of competitive market equilibrium without estab-

lishing any institutional arrangements in advance, so they are equivalent.

Therefore, the market system is not an invention, but rather an inherent

economic rule and a spontaneous order, which is as objective and reliable

as any law of nature. The policy implication of this conclusion is that the

market should be allowed to fully play its role when the competitive mar-

ket mechanism is able to attain optimal allocation. Indeed, it is only under

the circumstances in which the competitive market is incapable will other

mechanisms be designed to compensate for market failures.

Furthermore, the competitive market mechanism is not only optimal

and unique concerning social stability maintenance and efficient resource

allocation, but also effective in the transmission of information. In the

1970s, Hurwicz and his collaborators proved that, for neoclassical pure

exchange economies, there is no other economic mechanism which can

lead to such efficient allocation of resources using less information than

the competitive market mechanism. In 1982, Jordan further proved that,

in pure exchange economies, the market mechanism is the only mecha-

nism that achieves efficient allocation using the least amount of informa-

tion. Tian (2006) also demonstrated that this conclusion is true not on-

ly in pure exchange economies, but also for economies with production,

and that the market mechanism is unique. Consequently, an important in-

ference follows: irrespective of whether in a command planned economy,

state-owned economy or mixed economy, the amount of information that

is needed to realize the efficient allocation of resources is more than that in

a competitive market mechanism, and thus those economic systems are not

informationally efficient. This conclusion provides a key theoretical expla-

nation for why China needs market-oriented economic reform and priva-

tization of its state-owned economy. The uniqueness result of information

efficiency will be explored further in Chapter 18.
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Even though the market mechanism cannot perfectly solve the problem

of social fairness manifested in the large income and wealth gap between

the rich and the poor, as long as the government strives to provide a level

playing field with equality of opportunity and equal value of resources for

all individuals and allows the market to play its role instead of controlling

it, equity and efficient resource allocation can be achieved by the market,

as the fairness theorem in Chapter 12 indicates. The above statements and

proofs about the optimality, uniqueness, and fairness of the modern com-

petitive free market system in resource allocation and its contribution to

social stability are all core aspects of the general equilibrium theory.

Joseph Schumpeter also discussed the optimality of the market mech-

anism from the perspective of how interactions (dynamic game) between

competition and monopoly lead to innovation-driven growth. His inno-

vation theory informed us that valuable competition is not merely price

competition, but more importantly, competition in new commodities, new

technologies, new markets, new supply sources, and new combinations of

ideas, knowledge, and resources. As a consequence, the root of the long-

term vitality of the market economy is innovation and creativity, which

stems from entrepreneurship and entrepreneurs’ constant, creative desta-

bilization of the market equilibrium, which he refers to as ‘creative destruc-

tion’. Profit-pursuing entrepreneurs and private economies are necessary

to cultivate the soil for innovation, and to encourage and protect innova-

tion.

In fact, competition and monopoly, like supply and demand, can form

an astonishing unity of opposites through the power of the market, thus

revealing the true beauty and power of the market system. Indeed, market

competition and enterprise innovation are inseparable. If there is no com-

petition, there will also be no motivation for innovation; this is what occurs

in state-owned enterprises in state monopolies. It is the case, of course,

that competition results in profit decline. Overall, the fiercer the competi-

tion becomes, the more rapidly corporate profits decrease. This provides

enterprises with strong incentives to innovate in order to survive. Innovat-

ing enterprises may gain a monopoly position, which implies monopoly

profits, which will attract more enterprises to participate in the competi-
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tion. As a consequence, a repeated cycle of “competition → innovation

→ monopoly profit → competition”is established, in which market com-

petition tends to achieve an equilibrium, but innovation disrupts it. The

market continually goes through such cycles to inspire enterprises to pur-

sue innovation. Through this dynamic process, the market maintains its vi-

tality, and greater economic development and social welfare are obtained.

Therefore, in order to encourage innovation, the government should strict-

ly enforce laws regarding intellectual property rights protection.

While people may realize the importance of entrepreneurs and entrepreneur-

ship, not all fully recognize the fundamental importance of the institutional

basis for the emergence of entrepreneurs and entrepreneurship, and that in-

novation and development need institutional support. This is because en-

trepreneurs and entrepreneurship do not appear randomly, but rather en-

trepreneurship is derivative and superficial. Therefore, it must be built on

a basic meta-institution, which necessitates a conducive institutional envi-

ronment as a prerequisite. As such, Baumol (1990) extended Schumpeter’s

innovation theory, and argued that innovation and entrepreneurship depend

on institutional choice, and are therefore endogenous variables. If the rules of the

game that affect the choice of entrepreneurial behaviors are abnormal, in-

novation and entrepreneurship cannot achieve their full potential. Indeed,

so far, three industrial revolutions have occurred in the world: the indus-

trial revolution in Britain; the second industrial revolution led by the U-

nited States and Germany; and the third industrial revolution, which takes

artificial intelligence manufacturing as the core. The occurrence and de-

velopment of each industrial revolution are closely related to institutional

innovation, which provides critical support for the smooth development of

industrial revolutions.

For instance, in order to encourage competition and form positive ex-

ternalities of technological innovation, anti-monopoly legislation should be

enacted and enforced. In addition, protection of intellectual property right-

s should not last forever, but rather should be limited to a certain number

of years so that they will not establish a perpetual oligopoly or monopoly.

Therefore, technological innovations operate on the basis of institutional

innovations. These two kinds of innovations behave like an action-reaction
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pair. Specifically, a good institution can reduce the transaction costs of in-

novation, create conditions for cooperation, provide incentives for innova-

tion, and facilitate internalization of the benefits of innovation. One goal

of constructing a technological innovation system is to promote effective

interaction and cooperation among innovative elements.

Innovation comprises transcending rules and regulations, which inevitably

poses high risks. High-tech innovation, in particular, means high risks

and an extremely low possibility of success for venture capital investment;

when it succeeds, however, it brings considerable, and possibly parabolic,

returns, which then attracts more investment. Nevertheless, it is impossible

for state-owned enterprises to take such high risks due to the fact that they

inherently lack the incentive mechanisms that would enable the assump-

tion of such risks. In contrast, it is private enterprises that typically dare

to take the most risk out of a strong incentive to pursue their self-interest,

and consequently they are the most creative and innovative entities. There-

fore, entrepreneurial innovation (not fundamental scientific research) large-

ly takes place within the context of private business. In fact, Sima Qian, a

major Chinese philosopher, also affirmed that competition and survival of

the fittest constituted fully natural tendencies. He believed that it was not

certain trades that were more likely to produce wealth, and that wealth

was not exclusively attained by specific people. He asserted that a capable

person would accumulate wealth; whereas, incapable people would forfeit

it.

What should be noted is, with the emergence of innovation in financial

technology and big data method, the deviation between the real economic

situation and the ideal state will be decreased. Innovation will push the

real market economy toward the ideal state of market economy described

by Adam Smith, Friedrich Hayek, Kenneth Joseph Arrow, Gerard Debrue,

and Ronald H. Coase (1910-2013, see Section 14.6.2 for his biography). In-

deed, the market can be proven to be optimal, irrespective of whether it de-

fines the role of the competitive market as the“invisible hand’ à la Adam

Smith, general equilibrium in the perfectly competitive market by Arrow

and Debrue, the theory with the zero transaction cost in the perfectly com-

petitive market by Coase, or the assertion that competition benefits inno-
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vation from Schumpeter. The basic conclusion of these theories is that the

perfectly competitive market leads to efficient allocation of resources and

social welfare maximization. Of course, the perfectly competitive market

merely provides a reference system or an ultimate goal, which means that

the more competitive the market is, the better it is; and the more symmet-

ric the information is, the better it is. Such a perfectly competitive market

system, however, does not exist in reality because communication costs,

transaction costs, and financing costs cannot be zero (although they may

approach it).

With the Internet as a medium for finance and big data method, trans-

action costs are becoming increasingly diminutive. Due to the disruptive

innovation and development of financial technology and big data method,

to some extent, the perfectly competitive market, as considered by the first

category of economic theory, is not just an ideal state but also tends to in-

creasingly approach reality. In particular, financial technology and big data

method will greatly reduce the cost of information communication in real-

ity in order to make market economic activities closer to the ideal state of

perfect competition and thus more efficient.

1.4 Government, Market, and Society

The theoretical conclusion concerning market optimality relies on an im-

plicit assumption about the critical importance of fundamental institutions.

In other words, there should be a mature governance structure to regulate

the government, the market, and the society.

1.4.1 Three Elements of State Governance and Development

State governance involves three dimensions: government, market, and so-

ciety. The market mechanism may give an incorrect impression that, in a

market economy, one can do whatever one desires in the pursuit of self-

interest; this, however, is not the case. In the world, there is no completely

laissez-faire market economy that is totally independent of the governmen-

t. A well-functioning market requires appropriate and effective integration
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of government, market and society, which constitutes a three-dimensional

structure of state governance. A completely laissez-faire market without

governance and regulation is also not omnipotent. As we shall discuss in

Parts V-VII of this textbook, the market frequently fails in certain circum-

stances, such as monopoly, unfair income distribution, polarization of rich

and poor, externality, unemployment, inadequate supply of public goods

and information asymmetry, thus resulting in inefficient allocation of re-

sources and various social problems.

The three basic institutional arrangements of government, market and

society are the three elements of state governance and benign development: 1) in-

clusive economic institution; 2) state capacity to plan and implement poli-

cies and laws; and 3) an inclusive and transparent civil society with democ-

racy, the rule of law, fairness and justice. Either in short-term response

or in long-term governance, the three are all indispensable and essentially

necessary and sufficient conditions for a nation’s sustainable and benign

economic development, social harmony and stability, and long-term peace

and stability. Indeed, the practice at all times and all over the world has

repeatedly shown that all economic and social achievements or progress

were due to the improvement of some aspects of these three elements, and

the problems were inevitably caused by the lack of some of them. As such,

these three elements are the most fundamental comprehensive governance

elements to identify whether a state’s governance system and capacity are

good or not and whether it can cope with crisis in the short term and main-

tain stability in the long term. A modern state governance system must

be a system that properly deals with the relationship between government

and market and between government and society, so that each functions in

its respective position and interacts effectively with one another.

Benign development and governance exhibit an inherent dialectical re-

lationship, and must be accurately understood. Economic development

primarily focuses on the improvement of a nation’s hard power; where-

as, governance stresses the construction of soft power. Of course, gover-

nance should be all-dimensional from different aspects, including gover-

nance systems of the government and the market, social equity and justice,

culture, values, etc. How the relationship between the government and the
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market and between the government and the society is handled frequently

determines the effect of state governance and development. If they cannot

be well balanced, a series of major problems and crises may occur, includ-

ing poor development, an excessive gap between the rich and the poor,

unequal opportunities, etc., preventing an inclusive market economy and a

tolerant and harmonious society from coming into existence. In this way, in

the logic of governance, there is a“good”kind and a“bad”kind of gov-

ernance that will lead to a good or bad market economy and good or bad

social norms, respectively. Therefore, governance should not be taken as

being equivalent to rules, controls or regulations, or regarded as the oppo-

sition of development, making it difficult to attend to both governance and

development simultaneously. To achieve and maintain an efficient mar-

ket and harmonious society, a limited government should be built that is

capable, accountable, effective and caring, leading towards a desired gov-

ernance that features the principle of the rule of law.

1.4.2 Good Market Economies vs. Bad Market Economies

A market economy can be classified into “good market economy”and

“bad market economy”. Whether it is good or bad depends on the sys-

tem of state governance and whether the governance boundaries among

the government, the market, and the society are clearly and appropriately

delineated. In a good market system, the government enables the market

to fully play its role, and in case of market failures, the government can

take certain remediative actions. This does not mean that the government

should directly intervene in economic activities, but rather the government

is expected to enact appropriate the design of rules or institutions to cor-

rect market failures in order to achieve incentive-compatible outcomes so

that individual interests and social interests are consistent. One of the most

successful examples of institutional design is the enaction of the basic con-

stitution of the U.S. at its founding, which made the U.S. become the most

powerful nation in the world within approximately 100 years.

A good, inclusive, and efficient modern market economy should pro-

tect the private interests of individuals to the greatest extent through insti-
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tutions or laws, and simultaneously limit and counterbalance the govern-

ment and its public powers as much as possible. In this sense, it is a con-

tractual and rule-of-law economy constrained by an agreement regarding

commodity exchange, rule of market operation, and reputation. Under the

constraints of individuals’ pursuit of self-interests, of resources and of in-

formation asymmetries in an economic society, to build a strong state with

prosperous people, individuals should first be endowed with private right-

s, the core of which includes the basic rights to survival, freedom of choice

for one to pursue happiness, and private property rights. Through their

participation in full competition, voluntary cooperation, and voluntary ex-

change of the market mechanism and their pursuit of self-interest, efficient

allocation of resources and maximization of social welfare can be attained.

Therefore, the modern market economy is established upon the basis of the

rule of law, which works in two ways: first, it is of fundamental importance

to restrict arbitrary government intervention in market economic activities;

and second, it further supports and promotes the market in certain ways,

including the definition and protection of property rights, enforcement of

contracts and laws, maintenance of fair market competition, etc., in order

to allow the market to play the decisive role in resource allocation and give

full range to the three basic functions of price, i.e., transmitting information,

providing incentives, and determining income distribution. In addition, a

good market calls for good social norms, for one’s pursuit of self-interest

should exist on the premise of respect for others’ pursuit of self-interest,

and self-interest and fair competition function in parallel to one another

with no conflict. The spirit of compromise and respect for others’ standards

of values constitute the foundation for the normal process of exchange.

On the other hand, in a bad market economy, in which there is a lack

of adequate ruling and governance capacity in economic and social transi-

tions, and the government is unable to provide sufficient public goods and

services to compensate for market failures. The government’s excessive

economic activities result in public powers that are not effectively coun-

terbalanced, property rights of state-owned enterprises that are not clearly

defined, and the government that is involved in numerous rent-seeking

and corrupt behaviors so that equity and justice are greatly diminished.
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This breeds the so-called the “State Capture”, which refers to the phe-

nomenon that, by providing personal interests for government officials, e-

conomic agents interfere in decisions on laws, rules and regulations, and

thus, without going through fair competition, they convert their personal

interests to the basis of rules of the game of the whole market economy.

This then leads to policies that produce high monopoly profits for specif-

ic individuals at the expense of enormous social costs and the decrease of

government credibility. As a result, an inefficient balance in public choice

continues over a long period of time. The behavior of striving for social

and governmental resources by means of unfair rent-seeking instead of fair

competition will not only produce market failures, but more importantly

gradually result in bad social norms in the long term. These poor social

norms produce a distortion of resource allocation and social values, the de-

cline in moral values, an absence of good faith, the popularity of “false,

big, and empty”words and deeds, the frivolity of society and increased

factors of instability, which finally result in enormous explicit and implic-

it transaction costs. Some sociologists refer to such social state as“social

corruption”, meaning that the social cells of the social organism are dead

and experiencing functional failures.

Therefore, in the three-dimensional framework of government, market

and society, the government, as an institutional arrangement with great

positive and negative externalities, plays a vital role. Indeed, it can make

the market efficient, become the impetus for economic development, assist

to construct a harmonious society, and realize sustainable development. On

the other hand, it may also make the market inefficient, lead to various so-

cial conflicts, offer tremendous resistance against the benign development

of the society and economy, and exert deleterious social impacts. Although

almost all countries in the world have adopted a market economy, a ma-

jority have not achieved sound and rapid development. Among numer-

ous reasons for this, the most fundamental one is the lack of reasonable

and clearly delineated governance boundaries between the government,

the market and the society, so that there is over-playing, under-playing,

and mis-playing of the government role. Only when the government ap-

propriately tightens its omnipresent “visible hand”, and the functions
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and governance scope of the government are appropriately and reasonably

defined, can it be expected to define a proper and scientific governance

boundary between the government, the market, and the society.

1.4.3 The Boundaries of Government-Market-Society

How can governance boundaries be best defined among the governmen-

t, the market, and the society? The answer is to allow the market to do

whatever it can do well, while the government does not participate in e-

conomic activities directly (however, it is necessary for the government to

maintain market order and guarantee strict implementation of contracts

and rules). Regarding what the market cannot achieve, or in circumstances

in which it is not appropriate for the market to be involved, such as in

cases affecting national security, the government can directly participate

in economic activities. In other words, when considering the construction

of an inclusive and transparent civil society and benign development of

an economy, or when transforming government functions and innovating

modes of management, the boundaries of the government, the market, and

the society should be carefully considered. For instance, the governmen-

t should exit from competitive sectors. Only in the case of market failure

should the government solve problems by itself or be in cooperation with

the market. However, the basic dictum is that the government should not

directly intervene in economic activities, but instead enact conducive rules

and institutions to correct market failures. Because individuals’ pursuit of

self-interest and private information are at the core of many economic ac-

tivities, direct intervention in economic activities (e.g., large numbers of

state-owned enterprises, and arbitrary restriction of market access and in-

terference with commodity prices) would not frequently generate desired

outcomes. In this respect, mechanism design theory can play a key role in

making the market more efficient and solving the problem of market fail-

ures. In Hurwicz’s opinion, “law-making by the U.S. Congress or other

legislative bodies equals to designing new mechanisms”.

Under a modern market economy, the basic and sole functions of gov-

ernment can be distilled as “maintenance”and “service”, i.e., making
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fundamental rules to ensure national security, social stability and economic

order, as well as providing public goods and services. Just as Hayek assert-

ed, the government has two basic functions: firstly, the government must

be responsible for law enforcement and defense against its enemies; and

secondly, the government must provide services that the market is unable

to provide or unable to fully provide. He also stated that “it is indeed

most important that we keep clearly apart these altogether different tasks

of government and do not confer upon it in its service functions the au-

thority which we concede to it in the enforcement of the law and defence a-

gainst enemies.”3 This requires that, in addition to undertaking necessary

functions, the government should separate its powers regarding market

and society. Abraham Lincoln provided the following clear and incisively-

defined functions of the government:

“The legitimate object of government, is to do for a community of people,

whatever they need to have done, but can not do, at all, or can not, so well do, for

themselves—in their separate, and individual capacities. In all that the people can

individually do as well for themselves, government ought not to interfere.”4

Meanwhile, a good-inclusive-efficient modern market economy and s-

tate governance mode require an independent autonomous civil society

with a strong ability to coordinate interests as an auxiliary informal institu-

tional arrangement. Otherwise, the explicit and implicit transaction costs of

economic activities would be prohibitive, and it would be very challenging

to establish the most basic norm of social trust.

In summary, a reasonable and clearly defined governance boundary a-

mong the government, the market, and the society is a prerequisite for es-

tablishing a good-inclusive-efficient market economic system and achiev-

ing benign development that is characterized by efficiency, equity, and har-

mony. Of course, the transition to an effective modern market system often

constitutes a long and arduous process. Due to various constraints, gover-

nance boundaries of the government, the market, and the society cannot be

clearly defined in a single attempt, but rather a series of transitional institu-

3See Von Hayek F. Law, Legislation, and Liberty (Vol. 3). Chicago, IL: The University of
Chicago Press, 1979, pp42.

4Abraham Lincoln’s Quotes on Government (1854).
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tional arrangements are frequently requisite. However, with the deepening

of transitions, some transitional institutional arrangements may decline in

efficiency, and may even degenerate into invalid institutional arrangements

or negative ones. If governance boundaries of the government, the market,

and the society cannot be timely and appropriately clarified while some

temporary, transitional institutional arrangements (e.g., government-led e-

conomic development) function as permanent and ultimate institutional

arrangements, it is then impossible to achieve an efficient market and an

inclusive, transparent society. With the development of modern economic-

s, its analytical framework and research methods play an essential role in

the study of how to reasonably and clearly define governance boundaries

among the government, the market and the society, and how to carry out

comprehensive governance.

1.5 Comprehensive Governance by the Three Arrange-

ments

As discussed above, in order to establish a well-functioning and efficient

modern market system, it is necessary to coordinate and integrate the rela-

tionship of the three basic institutional arrangements, i.e., the governmen-

t, the market and the society, in order to regulate and guide individuals’

economic behavior and conduct comprehensive governance. The govern-

ment, the market, and the society correspond precisely to the three basic

elements of governance, incentive, and social norms in an economy, re-

spectively. Mandatory public governance and formal institutional arrange-

ments, such as market mechanism as an incentive scheme, as two elements

of comprehensive governance which overlap, through long-term interac-

tions, may assist to guide and form normative informal institutional ar-

rangements, enhance the predictability and certainty of social and econom-

ic activities, and markedly decrease transaction costs. The informal institu-

tional arrangement mentioned here is social norms and culture. The same

as with enterprises, the first-class enterprise performs branding, in which

its corporate culture plays the key role, the second-class enterprise devel-
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ops technologies, and the third-class enterprise produces. Similarly, it is the

position of the government that plays the crucial role in the establishment

of good or bad social norms and market economy.

Expressed in another way, the three basic institutional arrangements

for comprehensive governance are employed to “enlighten with reason,

guide with benefits, and persuade with emotions”, all of which are re-

alized and implemented mainly by the government, the market, and the

society, respectively, on the level of state governance. To“enlighten with

reason”means to work through the stimulus of legal principles and rea-

son; to “guide with benefits”means to link up economic activities with

revenue through the stimulus of rewards and penalties, thus becoming an

incentive mechanism; and to “persuade with emotions”means to work

through the stimulus of emotions and shared beliefs, as sometimes rela-

tionships, friendships and emotions, and especially shared beliefs and con-

cepts, can assist to solve large problems, which as a kind of social culture

will greatly decrease transaction costs.

1.5.1 Governance on Rules

Governance on rules, as the basic institutional arrangement and manage-

ment rule, is about enforcement. The basic criterion for whether such rules

and regulations shall be formulated is whether or not they facilitate a clear

definition (according to the possibility of information transparency and

symmetry), and whether the costs of information acquisition, supervision,

and enforcement are high. If a regulation is too costly concerning supervi-

sion, it will not be feasible for enforcement. Protection of property rights,

contract implementation, and appropriate supervision all call for relevan-

t rules, which thus require a third party to oversee enforcement of those

rules. The third party is then a government agency. In order to maintain

market order, the role of the government is inevitable. As the government

is also an economic agent, it functions as both a judge and a player, and

thus it exerts an enormous influence. This requires procedures and rules to

constrain the behavior of the government. Regulations on other economic

agents and the market should be the opposite of this. Due to information
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asymmetry, regulations in this regard should not be too detailed, so as not

to interfere too much with the freedom of choice of economic agents.

Institutional arrangements that“enlighten with reason”and deter peo-

ple with the threat of sanctions are similar to the thoughts of Legalism in an-

cient China. However, a major problem of Legalism was that it only aimed

to govern economic agents, but applied no restrictions on the government.

In this way, it is rule by law, but not rule of law. Moreover, this kind of in-

stitutional arrangement only considered cruelty in individuals’ struggle for

power and profit, but neglected the influence of individuals’ consciences

and emotions upon behavior. The employment of the heavy hand of Legal-

ism without considering other institutional arrangements will frequently

lead to coercive powers, and hinders the formation of a modern market

economy.

1.5.2 Incentive Mechanism

Incentive mechanisms, such as market mechanisms, are inducing by their

nature, have the widest applications, and are a main concern of this text-

book. Due to information asymmetry and the high cost of information ac-

quisition, as well as the fact that human nature, especially the nature of

self-interest, can hardly be altered, specific operation rules need to mobi-

lize individuals’ enthusiasm through incentive mechanisms, such as mar-

ket mechanisms, to realize incentive compatibility in order to make indi-

viduals, who pursue their own interests, strive to achieve the aims of the

mechanism designer, as well. As shown in Chapter 7 on repeated game

theory, reputation and integrity, we will show that reputation and integrity

under the market incentive mechanism are one kind of punishment incen-

tive mechanism. Integrity is essential in engaging in business activities; this

does not, however, mean that business owners behave with integrity out of

their own will, but rather that they have no choice because, otherwise, they

will be forced out of the market. It is also the case that integrity can save

economic costs and lower transaction costs.

Institutional arrangements that “guide with benefits”are similar to

the precepts of Taoism in ancient China. It asserts that individuals are all
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self-interested and have a limited ideological realm, and these two asser-

tions should be universally recognized. Although it is not difficult to stop

“talking”about interests, in reality, it is challenging not to“value”interests.

Taoism contends that“the law of nature is beneficial, but not harmful”,

and emphasizes compliance with natural tendency and governance by non-

interference. However, it neglects two necessary conditions for govern-

ing by non-interference, i.e., the establishment of basic institutions and the

proper role of government.

1.5.3 Social Norms

A key factor in understanding institutions and other long-term relation-

ships is the role of shared expectations of behavioral norms and cultural

beliefs, as well as the role of sanctions in ensuring compliance with the

“rules”. Behavioral norms and cultural beliefs mentioned here are the

so-called social norms. They are informal institutional arrangements that

are implemented by neither forces nor incentives. Solving problems with

mandatory laws and inducing incentives in the long term will become a

kind of social norms, values, beliefs, and culture that requires neither en-

forcement nor incentive, such as corporate culture, folk customs, religious

faith, ideology, sentiments and concepts. This is an efficient way to mini-

mize transition costs. Especially when the force of collective consciousness

is well developed, problems will be much easier to resolve, and working

efficiency will be greatly augmented. Otherwise, even if one problem is

solved through mandatory commands, inducing incentive mechanisms or

personal relationships, new problems will continue to arise in the same

way, which will produce large implementation costs. Chapter 7 will dis-

cuss the important role of social norms in stimulating voluntary coopera-

tion among individuals.

Even so, social norms that espouse morality and“persuade with emo-

tions”remain largely constrained by the reality of individuals’ ideological

limitations. Relying on improvement of humanity, social norms lack the

power of constraint and possess a limited scope of governance. This kind

of institutional arrangement is similar to the philosophy of Confucianism in
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ancient China. The concept of the“rule of virtue”in Confucianism over-

emphasizes ethical relations among people, and deliberately overlooks e-

conomic relations. Overall, it is successful in managing families or small

communities, but biased in the governance of a nation. Benevolence and

morality can be dominant, or at least considerably important, in a family or

a small group, but may not be very effective in the lives of general people.

Indeed, benevolence is highly personal, and its effect diminishes with the

enlargement of the realm. Those who rely on others’ benevolence to ac-

quire the necessities of life cannot be satisfied, in most cases. Although all

people may need assistance from others, they cannot depend on benevo-

lence alone to meet their needs. Consequently, the experience of managing

a family cannot be simply extended to all economic and social activities;

otherwise, manifold problems and even disasters may ensue. Especially

under the environment of a modern market economy and people’s limited

ideological development, reliance solely on internal ethical norms, and an

absence of external laws and incentive mechanisms, will cause the market

economy to move towards a perilous state.

Therefore, all three of these mentioned institutional arrangements have

two sides: positive and negative. They also possess varied functions, ranges

of application, and limitations. Moreover, if emphasis is placed too heavily

on only one of them, serious negative consequences will occur; it is neces-

sary for the three of them to play their own specific roles and complement

each other. This condition can be elucidated with the example of friend-

ship. If friends are made solely on the basis of interests, the friendship will

disintegrate when the interests are exhausted; if friends are made based on

influence, the friendships will end when the influence fails; if friends are

established on the basis of power, the friendships will fail when the power

dissipates. Of course, only when one makes friends with a sincere heart

can the friendship last forever. Making friends with a sincere heart is the

best way, but it can be very difficult, and even many couples may not be

able to sustain this.
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1.5.4 The Hierarchical Structure of the Three Arrangements

Even though this textbook primarily discusses the problem of economic in-

centives, governance on rules or institution remains the most essential and

fundamental among the three kinds of arrangements since it establishes the

most basic institutional environment, has strong positive and negative ex-

ternalities, and determines whether or not the role of government is appro-

priate, thereby determining the effect of incentive mechanism design and

the formation of good or bad social norms. In addition, for the formulation

of institutional arrangements of both regulatory governance and incentive

mechanisms, the principle should not, and essentially cannot, change the

self-interested nature of human beings. Instead, it should make use of in-

dividuals’ immutable self-interestedness to guide them to perform actions

that are beneficial to society. In other words, the design of an institution

should conform to the self-interested nature of individuals, rather than at-

tempting to alter it. Moreover, individuals’ self-interestedness cannot be

simply deemed to be either good or evil, but instead what kinds of institu-

tions that are employed and towards what directions they are guided must

be taken carefully into account. Different institutional arrangements will

result in individuals’ different responses to incentives and various trade-

off choices, thereby leading to markedly dissimilar consequences. As Deng

Xiaoping contended, “Good institutions can make bad people unable to

run amok arbitrarily, and bad institutions can make good people unable to

do good enough, or even go to the opposite side.”5 Expressed in a collo-

quial way, bad institutions can turn good people into bad people, but good

institutions can turn even bad people to do good things.

Therefore, the utilization of“reason, interest, and emotion,”should be

synthesized, and vary with individuals, matter, place, and time to analyze

and solve problems case by case. The criterion for deciding which aspect

to use is determined by the importance of regulations, the degree of infor-

mation symmetry, and the cost of supervision and law enforcement. All

three institutional arrangements possess their own boundary conditions.

5Selected Works of Deng Xiaoping (Second Version). Beijing: People’s Publishing House.
Volume 2, 333.
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To“enlighten with reason”should depend on the availability of informa-

tion symmetry and difficulty of legal supervision. Indeed, the law will be

meaningless if its cost of supervision and execution is too high.

To sum up this and the previous sections, a well-functioning market

needs the government, the market, and the society to be optimally situat-

ed so that the three-dimensional structure of state governance can be ef-

fectively interconnected and integrated. Defining the boundaries between

the government and the market and between the government and the so-

ciety involves two levels. The first level is defining boundaries. It is first

necessary to know the appropriated boundaries among them. The pre-

requisite for an efficient market and a normal society is to build a limited

government that is capable, accountable, effective and caring, and thus the

reasonable position of government is vital. The principle here is that the

market should be allowed to do whatever it can do, while the government

should do what the market cannot do or cannot do well. Consequently, the

function of government can be generalized as maintenance and service.

The second level is the identification of priorities. What is the top prior-

ity? The answer is fundamental institutions. After knowing the boundaries

of the three, it is then necessary to sort them out. Who can best sort them

out? The answer is the government. Then, what is the best entity to regu-

late the position of the government? It must be the rule of law that mainly

restricts the government, but not rule by law that mainly restricts the people. Reg-

ulatory governance (or institutions) is the most important and foundational

arrangement, which establishes the most basic institutional environment,

possesses great positive or negative externalities, assesses whether the po-

sition of the government is appropriate, and thus determines the effect of

the incentive mechanism design and the formation of good or bad social

norms. However, is the government willing to limit its power? In general,

absolutely not. Therefore, power requires further partitioning, and sep-

aration of the responsibilities and power of administrative departments,

law-making departments, and judicial departments.

For all of these reasons, the underlying governance system is of deter-

minant importance. Only when the governance boundaries between the

government and the market and between the government and the society
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are reasonably defined through comprehensive governance by the three di-

mensions of institution, the rule of law and civil society, can government

power be regulated, restricted, and supervised, problems of economic effi-

ciency, social equity and justice be resolved, the phenomena of corruption

and bribery be eradicated, and healthy relations among the government,

the market, the society, enterprises, and individuals be established. Indeed,

in this way, relations of benign interactions are established between all of

them. When benign interactions are realized, the government can then aug-

ment the efficiency of the market through continuous enaction and enforce-

ment of laws, in order to truly promote the long-term peace and stability of

a nation.

1.6 Ancient Chinese Thoughts on the Market

Many of the basic concepts of the market economy and conclusions of e-

conomics, including the idea that commodity prices are determined by the

market and the “invisible hand”of Adam Smith, were stated in a pro-

found way thousands of years ago. Indeed, numerous fundamental ideas,

core assumptions and basic conclusions of economics, such as the behav-

ioral assumption of pursuing self-interest, economic freedom, governance

by the invisible hand, the social division of labor, the intrinsic relationship

between national prosperity and individual wealth and between develop-

ment and stability, and the relationship between the government and the

market have all been discussed by ancient Chinese philosophers. Some

examples of this are given as follows:

As early as over 3,000 years ago, Jiang Shang (also known as Jiang Ziya

and Jiang Taigong, an ancient Chinese strategist and adviser) believed that

“averting risks and pursuing interests”is the innate nature of human be-

ings, i.e.,“In general, people hate death and take pleasure in life. They love virtue

and incline to profit.”He proposed the people-centered concept of dialecti-

cal unity between the wealth of the people and the stability and strength

of the state, and the fundamental law of state governance, by stating that

“the state is not the property of one man but of all people. The man who shares

interests with all men will win the state”, and provided the fundamental s-
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trategy of state governance, i.e., the government should take the common

interests, risks, welfare and livelihood of the populace as its own, in order

to achieve the incentive-compatible outcome in which the populace shares

the same interests and risks as the government. Jiang Shang also provided

an incisive answer to the relationship and priority of the wealth of the state

and the wealth of the people:“The true king enriches the people. The hegemon

enriches the gentry. The state which barely survives enriches its grand ministers.

The state which perishes enriches its coffers and fills up its treasuries.”His advice

was followed by King Wen of the Zhou dynasty, who ordered the granary

to be opened to assist the poor and reduce taxes to enrich the people. As a

consequence, the Western Zhou became a growing power.

Over 2,600 years ago, Guan Zhong (a Legalist chancellor and reformer

of the State of Qi in ancient China) had deep insights on numerous econom-

ic issues. The core of his economic thought was“the theory of self-interest”.

In Guan Zi: Jinzang (On Maintaining Restraint), he vividly explained so-

cial economic activities with individuals pursuing their interests:“All men

pursue interests and avert harm. When doing business, merchants hasten on the

way day and night and make light of traveling from afar because, for them, interests

are on their way. When fishermen go fishing in the sea, though the sea is hundreds

of meters deep, they sail against the current for hundreds of miles day and night be-

cause, for them, interests are in water. So as long as there is interest, people would

climb the mountain regardless of its height and go to sea regardless of its depth.

Therefore, if those who know well how to govern the origin of interest, people will

naturally admire the state and settle. The governor does not need to push them

to go or lead them to come. Without being bothered or disturbed, people will get

rich in a natural course. It is like a bird incubating eggs, the process of which is

invisible and silent, but the result is noticeable when it is done.”Essentially, this

constitutes a clear demonstration of Adam Smith’s“invisible hand”more

than 2,000 years earlier. In his book Guan Zi, Guan Zhong presented the

law of demand by stating that“The devaluation comes from the excess, while

the value from the scarcity”, and also drew the basic conclusion that individ-

uals’ wealth leads to national stability, security, prosperity, and power by

saying that“Only at times of plenty will people observe the etiquette. Only when

they are well-clad and fed will they have a sense of honor and shame.”He further



1.6. ANCIENT CHINESE THOUGHTS ON THE MARKET 51

pointed out that“State governance must start with enriching the people. When

the people become well-off, the state will be easy to govern. If they are in poverty,

the state will be hard to govern.”· · · “Usually, an orderly state is abundant in

prosperity, while a disorderly one is deep in poverty. So, a king versed in ruling a

state must give priority to making people wealthy over governance itself.”. Fur-

thermore, comprehensive governance is another essential point in Guan

Zhong’s thought of state management. For example, with respect to vas-

sal kings, Guan Zhong suggested“restraining them with interest, associating

with them with trust, admonishing them with military power”so that vassal

kings “won’t dare to defy the king and will accept his interest, trust his benev-

olence, and fear his military force.”Indeed, it does not require much effort

to discern that certain corresponding relations exist between “restraining

them with interest, associating with them with trust, admonishing them with mil-

itary power”mentioned here and the three institutional arrangements pre-

viously discussed.

More than 2,500 years ago, Sun Tzu (a military general, strategist, and

philosopher in ancient China)’s book entitled The Art of War focused on

military strategies and tactics, but its principles and ideas are highly simi-

lar to the market behavior and decision-making of firms. The first chapter

“Detail Assessment and Planning”of the book coincides, to a large ex-

tent, with the basic analytical framework of economics and can be fully

adopted in the context of accomplishing an endeavor. It serves as essen-

tial guidance for accomplishing big goals, making optimal decisions, and

winning competitions in governing a state and managing an enterprise or

organization. He also provided the basic conclusion of information eco-

nomics: it is possible to achieve the optimal outcome (“the best is first

best”) only under complete information; under information asymmetry,

we can, at most, obtain a suboptimal outcome (“the best is second best”):

“if you know your enemies and know yourself, you will not be imperiled in a

hundred battles; if you do not know your enemies but do know yourself, you will

win one and lose one; if you do not know your enemies nor yourself, you will be

imperiled in every single battle.”

In the same period, a more remarkable fact was that Lao Tzu (a fa-

mous philosopher of ancient China, the founder of Taoism) presented the
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supreme law of comprehensive governance:“Rule a kingdom by the Nor-

mal. Fight a battle by (abnormal) tactics of surprise. Win the world by

doing nothing.”(Chapter 57, Tao Te Ching) This is the essential way of

governing a state or administering an organization, which can be abstract-

ed in common parlance as being righteous in deed, flexible in practice

and minimal in intervention, and thus the government realizes governing

by non-intervention. Lao Tzu considered“Tao”to be the invisible inner

law of nature (that is, the fundamental rules and laws of doing things),

while “Te”(meaning inherent character, integrity, virtue) to be the con-

crete embodiment of Tao. He further deemed that the governance of the

state and the people should follow the Way of Heaven (referring to the

objective laws governing nature or the manifestations of heavenly will),

the Virtue of Earth and the Principle of Non-intervention, by stating that

“Man models himself after the Earth; The Earth models itself after Heaven; The

Heaven models itself after Tao; Tao models itself after nature.”(Chapter 25, Tao

Te Ching) In addition, he also pointed out that “The difficult (problems) of

the world must be dealt with while they are yet easy; the great (problems) of the

world must be dealt with while they are yet small.”(Chapter 63, Tao Te Ching)

In other words, in whatever we do, success lies in the details. All of the

above-mentioned statements demonstrate that Lao Tzu’s thought of non-

intervention does not mean“doing nothing”as is commonly believed. In

fact, the non-intervention discussed by Lao Tzu is a relative concept, which

requires non-intervention in major aspects, but action and care in specific

aspects. Expressed in another way, we should never lose sight of the gen-

eral goal, and begin by taking action to solve small, immediate practical

problems.

Over 2,300 years ago, Shang Yang (an important Chinese statesman)

of the State of Qin used the example of the hare to expound on the ut-

most importance of establishing private property rights and how clearly

well-defined property rights can “determine ownership and settle dis-

putes”and assist to establish market order. He came to this conclusion

2,300 years earlier than Coase. In Shang Jun Shu (The Book of Lord Shang),

Shang Yang wrote that“when a hare is running, a hundred men chase after it;

this is not because the hare can be divided into one hundred shares, but its owner-
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ship is not yet determined. On the other hand, hares are sold on the market, but

even a thief dare not take one because ownership has been determined. Thus, if

ownership is not definite, sages like Yao, Shun, Yu, and Tang would also chase af-

ter it; when ownership is definite, even a greedy thief will not dare to take it.”The

hare is chased because people are driven to strive for its ownership, and

even sages would do the same. In contrast, ownership of a captured hare

in the market is determined, and thus others cannot simply take it.

Approximately 2,100 years ago, Sima Qian (a Chinese historian of the

Han dynasty who is considered the father of Chinese historiography) made

a remarkable statement in his work Records of the Grand Historian: Biogra-

phies of the Money-makers ,“Jostling and joyous, the whole world comes after

profit; racing and rioting, after profit the whole world goes,”which succeeded

Guan Zhong’s concept of self-interest. He also demonstrates the economic

paradigm of achieving social welfare through the social division of labor

based on self-interest, which is similar to that of Adam Smith. Sima Qian

investigated the development of social and economic life, and realized the

importance of the social division of labor. He wrote that “All of them are

commodities coveted by the people, who according to their various customs use

them for their bedding, clothing, food, and drink, fashioning from them the goods

needed to supply the living and bury the dead.”Therefore, “Society obviously

must have farmers before it can eat; foresters, fishermen, miners, etc., before it can

make use of natural resources; craftsmen before it can have manufactured good-

s; and merchants before they can be distributed.”Moreover, he believed that

the entire social economy, composed of agriculture, forestry, industry and

commerce, should develop in a natural manner without the constraint of

administrative orders.

Also in the Biographies of the Money-makers, Sima Qian continued to

write that“What need is there for government directives, mobilizations of labour,

or periodic assemblies? Each man has only to be left to utilize his own abilities and

exert his strength to obtain what he wishes. Thus, when a commodity is very cheap,

it invites a rise in price; when it is very expensive, it invites a reduction. When each

person works away at his own occupation and delights in his own business then,

like water flowing downward, goods will naturally flow forth ceaselessly day and

night without having been summoned, and the people will produce commodities
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without having been asked. Does this not tally with reason? Is it not a natural

result?”

In addition, Sima Qian’s thinking contains great wisdom regarding the

philosophy of state governance, the importance of economic freedom, and

the priority of several basic institutional arrangements. Sima Qian provid-

ed an insightful conclusion in the Biographies of the Money-makers,“The

highest type of ruler accepts the nature of the people, the next best leads the people

to what is beneficial, the next gives them moral instruction, the next forces them to

be orderly, and the very worst kind enters into competition with them.”

Confucius affirmed that the pursuit of personal material interests on

the premise of social ethics is justifiable. He stated,“When a country is well

governed, poverty and a mean condition are things to be ashamed of. When a coun-

try is ill governed, riches and honor are things to be ashamed of.”(The Analects:

Tai Bo) By saying so, Confucius encouraged people to pursue a sufficient

amount of material wealth. The Analects also recorded Confucius’s com-

pliments on his disciple Zigong (Duanmu Ci), who was a merchant. In The

Analects: Xian Jin, it states that “The Master said, ‘There is Hui! He has

nearly attained to perfect virtue. He is often in want. Ci does not acquiesce in the

appointments of Heaven, and his goods are increased by him. Yet his judgments

are often correct.’ ”Here, Confucius compared Yan Hui, his favorite disci-

ple, with Zigong. The former was almost perfect in morality, but frequently

lived in poverty, which did not seem to be the right way of living; whereas,

the latter, who did not follow the arrangement of destiny and went into

business, turned out to be excellent in predicting the market.

These ancient Chinese economic thoughts are profound and historical-

ly important. Indeed, what Adam Smith discussed had already been ad-

dressed by ancient Chinese philosophers much earlier. Yet, as those ancient

Chinese statements just constituted summaries of experience, they did not

form rigorous scientific subjects or disciplines, provide boundary condi-

tions and scopes for conclusions, or make logically inherent analyses. As a

result, little is currently known about them in the outside world.

In the remaining parts of this chapter, we will present a rough discus-

sion on core assumptions, key points, analytical frameworks, and research

methodology of economics to assist you to understand the rigorous analy-
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sis of the content covered by this textbook.

1.7 A Cornerstone Assumption in Economics

Every social science discipline imposes assumptions on individual behav-

ior as the logical starting point of its theoretical system. As discussed

above, the essential distinction of social science and natural science is that

the former studies individuals’ behavior and needs to make certain as-

sumptions about individuals’ behavior, while the latter investigates natural

environments and objects. Economics is an important social science disci-

pline since it not only studies and elucidates economic phenomena and

enables positive analyses, but also closely examines individual behavior in

order to make accurate predictions and value judgments.

1.7.1 Self-love, Selfishness, and Self-interest

When discussing individuals’ behavior, three terms are often mentioned:

self-love, selfishness, and self-interest, which are related to, and also dis-

tinct from, each other. Self-love means one’s esteem and affection for one-

self, which can be positive, as it encourages individuals to live a righteous

and productive life, and can also be negative, since it may lead to a tenden-

cy towards narcissism, and even self-harm or self-deceit. Self-love can also

generate self-interestedness and selfishness.

Selfishness refers to caring only for one’s own welfare or advantage at

the expense of or in disregard of others. It can lead to manifold harms. For

example, being selfish makes one greedy; being greedy makes one overly

ambitious; being overly ambitious makes one vain and arrogant; and being

vain makes individuals lose themselves, while being arrogant may make

individuals ruthless and offensive.

Self-interest means benefiting oneself without at the expense of others

while it may or may not benefit others. Therefore, self-interest makes one

judicious and rational, while selfishness produces greed. In other words,

it may be altruism for the sake of self-interest. To pursue and obtain one’s

interest, individuals have to choose altruistic behavior. This constitutes the
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self-interest assumption adopted in the study of economics. When self-love

and self-interest complement one another, individuals will possess clear

self-knowledge; whereas, when self-love is related with selfishness, indi-

viduals will experience moral decline. Consequently, when individuals are

dominated by self-love, it does not necessarily mean that they will disre-

gard others because self-love may also be combined with self-interest.

1.7.2 Practical Rationality of Self-interested Behavior

In this textbook, especially in the proof that competitive market mecha-

nisms lead to optimal resource allocation, a key assumption is that individ-

ual behavior is driven by self-interest in normal situations. In fact, this is

the most basic assumption in economics and forms its cornerstone. Indeed,

economics claims that this is also the most accurate description of reality.

This assumption also applies to the handling of relations among na-

tions, groups, households and individuals, being an objective reality or

constraint that must be taken into account when studying and solving po-

litical, social, and economic problems. For example, when dealing with the

relation between two nations, as a citizen, one must protect the interests of

his or her own nation and speak and act from the standpoint of that nation,

and may be subject to penalties if he or she divulges state secrets. When

dealing with the relation between enterprises, as an employee, one must

protect the interests of his or her organization, and if he or she leaks firm

secrets to competitors, he or she may face negative consequences. The self-

interest assumption is frequently questioned with the following: why are

there families if individuals are rationally self-interested and pursue per-

sonal interests? In fact, concerning the family, individuals act in the interest

of their own families. In other words, under normal circumstances, indi-

viduals care about their own families more than they do about the families

of others. The discussion on the relationships between individuals follows

the same reasoning. In practice, misunderstandings of this assumption are

common, one of which is that this applies to only individuals in every case.

It is necessary to assume that individuals are self-interested because this

conforms to the basic reality, and more importantly, the risk of doing so is
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minimal. Specifically, even if the self-interest assumption is incorrect, seri-

ous consequences will not ensue. In contrast, if one adopts the altruistic be-

havior assumption, once it is proven to be incorrect, the consequences may

be quite dire. In fact, the rules of the game adopted under the self-interest

assumption also apply to altruistic individuals in most cases, and institu-

tional arrangements or game rules and individuals’ trade-offs under the

altruistic behavior assumption are much simpler. Furthermore, the choice

of behavior assumption is also critical for making optimal judgments of in-

dividual behavior in daily life. For example, the costs incurred could be

enormous if a selfish, cunning person is misperceived as a simple, selfless

and honest person, and trusted with important responsibilities or informa-

tion.

Acknowledging that individuals are self-interested shows a realistic and

responsible attitude towards solving social and economic problems. This is

why we need certain government legislation to prevent opportunists from

taking advantage of loopholes in institutions under the altruism assump-

tion. As already discussed, if altruism is used as the premise to solve so-

cial and economic problems, the consequences may be disastrous. As an

additional example, in the organization of production, if we deny the cru-

cial importance of individuals’ self-interest and only motivate individuals

by emphasizing their contribution to the nation and the group, the result

would be that everyone would aim to take advantage of the institutions to

benefit from others’ contributions, thereby leading to the free-rider prob-

lem. In this case, how could any nation become prosperous?

1.7.3 Boundaries of Self-interest and Altruism

It should be specially noted that, although the self-interest assumption hold-

s true in most cases, it exhibits certain boundaries in application. For in-

stance, under abnormal circumstances, such as natural or man-made dis-

asters, wars, earthquakes and other major crises, individuals will often

demonstrate their altruistic and selfless character, make sacrifices to fight

for the nation, and go to great lengths to assist others. This constitutes an-

other form of rationality, i.e., altruism, with which individuals are willing
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to sacrifice their lives (even certain animals possess this instinct). For exam-

ple, when a nation is invaded by another nation, many citizens are willing

to sacrifice their lives to protect their country. Under a normal and peaceful

environment, however, when engaged in economic activities, individuals

normally pursue their own interests. These illustrations demonstrate that

self-interest and altruism are not oppositional to each other, but rather con-

stitute natural responses to different situations and environments.

Therefore, we can view self-interest and altruism as relative terms. In

fact, such duality can also be witnessed in animals. For example, when wild

goats are chased to the edge of a cliff, the old goats sacrifice themselves by

making the first jump, so that the goatlings could jump on them and have

a greater chance of survival. Adam Smith not only wrote the foundational

work of The Wealth of Nations, but also wrote The Theory of Moral Senti-

ments, which contends that individuals should have sympathy and a sense

of justice. These two works complement each other in the overall philoso-

phy of Adam Smith. It is the case that, under the reality of an individual’s

self-love and self-interest, morality should be a kind of balance, an equi-

librium outcome, and a convention realized through the social division of

labor and cooperation. Under the guidance of appropriate institutions, in-

dividuals voluntarily divide the work by choosing varied specializations

and cooperate in order to establish a harmonious, civilized, stable, and or-

derly society. It is against human nature to regard self-interest as immoral

and runs counter to reality; it is not selfish. In fact, the organic combina-

tion of moral ethics and self-interest can actually promote social civilization

and individuals’ decency. The biggest advantage of the modern market is

its utilization of the power of self-interest to counteract the weakness of

benevolence so that hard-workers can be rewarded. As a consequence, we

should not neglect the role of benevolence and morals in the formation of

the modern market system.

Overall, self-interested individuals can be benevolent, altruistic, and

moral. However, “self-interest”should not be“at others’ cost”. There

are limitations and boundaries for self-interest and altruism, while selfish-

ness that benefits oneself at the expense of others is the origin of malefi-

cence and greed. Rationally self-interested behavior will conform to social
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norms as a requisite constraint. As a society, we collectively agree to edu-

cate individuals to pursue their personal interests without violating pub-

lic order and to protect the public interest based on individual rationality.

However, we also disagree with economic idealism that grounds policies in

ignorance of the driving force of personal interest in a wayward attempt to

protect the public interest. It is the case that self-interested behavior under

appropriate legal constraints must be distinguished from selfishness that

violates laws and/or harms the interests of others.

It should also be mentioned that, even in the case of self-interested be-

havior, there are differences in extent. Under ideal situations, the less self-

interested are individuals, the better are the results produced. However, it

is also impossible to eliminate self-interest completely. We can prudently

state that self-interest is the logical starting point for economics. If all hu-

man beings are unselfish and always considerate to others, then economics

involving human behavior would be useless, and industrial engineering or

input-output analysis may be sufficient. It is from the starting point that

self-interest is an objective reality and individuals tend to pursue their own

interests concerning economic activities that China has carried out the re-

form and opening-up, and made the transition from a planned economy to

a market economy.

1.8 Key Points in Economics

When investigating economic issues, economists commonly use the follow-

ing basic assumptions, constraints, axioms, and principles:

(1) Scarcity of resources;

(2) Information asymmetry and decentralization: individuals

prefer decentralized decision-making;

(3) Economic freedom: voluntary cooperation and voluntary

exchange;

(4) Decision-making under constraints;

(5) Incentive compatibility: economic institutions or mecha-

nisms should be used to solve the problem of conflicting
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interests among individuals or economic units, i.e., provide

individuals with the incentive to do what the institution or

mechanism designer wants them to do;

(6) Well-defined property rights;

(7) Equality of opportunity;

(8) Efficient allocation of resources.

The above assumptions and constraints are crucial because relaxing any

one of them may result in different outcomes. The consideration and appli-

cation of these assumptions, constraints, and principles are also useful for

people in their daily lives. Although they may appear to be simple, thor-

oughly understanding and skillfully utilizing them in reality is not easy. In

the following, we briefly discuss these key points, conditions, axioms, and

principles, respectively.

1.8.1 Scarcity of Resources

Economics stems from the fact that resources are limited in the world (at

least the Earth’s mass is finite). As long as an individual is self-interested,

and his or her material desire is unlimited (i.e., the more one possesses, the

better), it is impossible to realize distribution according to wants. There-

fore, the problem of precisely how to employ limited resources to optimally

satisfy wants must be addressed, and economics is needed to achieve this.

1.8.2 Information Asymmetries and Decentralization

In addition to the major objective reality of the self-interested nature of in-

dividuals, another fundamental objective reality is that, in most cases, in-

formation is private or asymmetric among economic agents, so that the

effect of institutional arrangements adopted may be inadvertently neutral-

ized. This is a fundamental reason why some core economic problems are

difficult to solve. For example, although a person’s words may be righ-

teous, it may be challenging to discern if he or she actually means what

is said; listeners may appear to concentrate on what you are saying, but

you do not know if the message is actually being well-received by them.
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The fundamental reason for such phenomena is the presence of private

information. Private information, together with the self-interested nature

of individuals, frequently leads to conflicts of interest among economic a-

gents. If there is no appropriate governance system to equitably reconcile

these differences, dishonesty, cheating, and selfishness in fighting for lim-

ited resources may become rampant. This is also the reason why the social

sciences, and especially economics, are more complex and challenging to

study and master than the natural sciences. Also due to information asym-

metry, centralized decision-making is often inefficient; whereas, decentral-

ized decision-making, such as the use of market mechanisms, is required

to solve economic problems.

Only when complete information is acquired can the outcome be the

first best. However, private information is frequently hard to obtain, and

thus an incentive mechanism is needed to obtain truthful information. S-

ince information acquisition also incurs costs, only the second-best out-

come can be obtained in most situations. This is a basic conclusion in

principal-agent theory, optimal contract theory and optimal mechanism

design theory, which will be discussed in Part VI of this textbook. With-

out appropriate institutional arrangements, incentive distortion will exist,

in which inducing information revelation inevitably incurs costs. As a con-

sequence, it is particularly important to achieve information symmetry for

the first-best outcome, without which many misunderstandings and inef-

ficiencies may arise. By communicating openly with others, you enable

others to understand you (signaling) and also get to know them (screen-

ing), which makes information more symmetric, clears up misunderstand-

ings and enables consensus, which is the requisite condition of obtaining

desired outcomes.

Excessive intervention of governments in economic activities and the

over-playing of governments’ role will lead to inefficiency, which is essen-

tially resultant from information asymmetry. Many problems exist regard-

ing governments’ information acquisition and discrimination. If decision-

makers are able to possess all relevant information, centralized decision-

making featuring direct control would not be problematic, i.e., all that would

be required is optimal decision-making. However, it is impossible for decision-
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makers to have all related information. This is why we prefer decentralized

decision-making. This is also the reason why economists call for the design

of various incentive mechanisms, and that a decentralized decision-making

method featuring indirect control should be used to stimulate individuals

to do as decision-makers desire or to achieve the goals that decision-makers

want to be attained. We will focus on the issue of information and incentive

in Parts VI and VII.

It is worth mentioning that centralized decision-making also offers cer-

tain advantages, especially concerning decision-making involving rapid

major changes. For instance, centralized decision-making is more efficien-

t when a nation, group, or enterprise is establishing a vision, orientation

and/or strategies, or making major decisions. Such major changes, how-

ever, might bring about enormous successes or disasters. For example, the

decision of adopting the reform and opening-up policy has led to the rapid

development of the Chinese economy. In contrast, the decision of the Cul-

tural Revolution almost drove the Chinese economy to collapse. One viable

solution to this problem is to take public opinion into deep consideration

when making decisions and select great leaders.

1.8.3 Economic Freedom and Voluntary Exchange

Due to economic agents’ pursuit of their own interests and information

asymmetry, institutional arrangements of the mandatory“stick”style are

often not effective. Consequently, it is necessary to provide individuals

with more freedom of economic choice, which is the most important right

among the three private rights (right to survival, freedom of choice for

one to pursue happiness, and private property rights). To achieve this,

we should mobilize economic agents with economic freedom based on

voluntary cooperation and exchange through inductive incentive mech-

anisms, such as the market. Therefore, the freedom of economic choice

(“deregulation”) plays a vital role in market mechanisms, with decen-

tralized decision-making (“decentralization”) being a prerequisite for the

normal operation of market mechanisms and also a core precondition to

ensure efficient allocation of resources under competitive market mecha-
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nisms.

In fact, the Economic Core Equivalence Theorem, which will be dis-

cussed in Chapter 12, reveals that once full economic freedom is given and

free competition, voluntary cooperation and exchange are allowed, even

without the establishment of any institutional arrangement in advance, the

outcome of resource allocation driven by the self-interested behavior of in-

dividuals will be theoretically consistent with equilibrium allocation of a

perfectly competitive market. The essence of the Economic Core Equiv-

alence Theorem can be summarized as follows: under the rationality as-

sumption, as long as economic freedom and competition are given, even if

institutional arrangements are not considered, the economic core obtained

will constitute a competitive market equilibrium.

China’s reform and opening-up over the past 40 years have confirmed

this assertion in practice. When analyzing the reasons for China’s remark-

able economic achievements, the critical factor is the provision to individ-

uals of more freedom of economic choice. Indeed, reform practices from

rural to urban areas indicate that wherever there are looser policies and a

greater degree of economic freedom provided for producers and consumer-

s, higher levels of economic efficiency prevail. China’s so-called miraculous

economic growth stems from the government’s delegation of powers to the

market; whereas, its imperfect market today is the result of excessive gov-

ernment intervention and inadequate or inappropriate government regu-

lation and institutional arrangements.

1.8.4 Acting under Constraints

Acing under constraints is one of the most fundamental principles in eco-

nomics, and is well expressed in the saying that“one must bow under the

eaves”. In fact, everything has its own objective constraints. Individuals,

then, make trade-off choices under these existing constraints. Moreover,

individuals’ choices are determined by both objective constraints and sub-

jective preferences. Constraints include material constraints, information

constraints and incentive constraints, all of which can make it difficult for

economic agents to achieve their goals. In economics, one embodimen-
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t of the basic idea of constraints is the budget set (or opportunity set) of

consumer theory, as will be discussed in Chapter 3, which states that an in-

dividual’s budget is constrained by the prices of the commodities and his

or her income. For an enterprise, constraints include available technolo-

gies and prices of inputs, under which the goal of maximum profit requires

firms to determine the quantity of production, technologies to be adopted,

the quantity of each input, pricing for products, responses to competitors’

decisions, etc. The development of a person, or even a nation, must con-

tend with various constraints, including political, social, cultural, environ-

mental, and resource constraints. Furthermore, if constraint conditions are

not clearly identified and understood, it is difficult to perform tasks and

achieve goals.

When introducing a reform measure or an institutional arrangement, it

is essential to consider feasibility and meet the objective constraints. In ad-

dition, the implementation risk is expected to be reduced to a minimum so

that social, political, and economic turmoil will not result. Therefore, feasi-

bility is a requisite condition to judge whether a reform measure or institu-

tional arrangement is conducive to economic development and the smooth

transformation of economic systems. In a nation’s economic transition, to

make a feasible institutional arrangement, it must conform to the institu-

tional environment of the specific stage of the country’s development.

Participation constraint is critical when considering optimal contract

design (cf. Chapters 16 and 17), which means that an economic agent can

benefit, or at least will not experience harm, from economic activities; oth-

erwise, he or she will not participate in, or may even oppose, the rules or

policies to be implemented. Individuals who pursue the maximization of

self-interest will not automatically accept an institutional arrangement, but

instead will make a choice between acceptance and refusal. Only under an

institutional arrangement in which the individual’s benefit is not less than

his or her reserve level (or he or she does not accept the arrangement) will

the individual be willing to work, produce, trade, distribute, and consume.

Moreover, if a reform measure or an institutional arrangement does not

meet the participation constraint, individuals may give up. Of course, if

everyone is reluctant to accept the reform measure or institutional arrange-
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ment, it cannot be successfully implemented. Mandatory reform may also

arouse opposition and cause social instability, so that development will not

be possible. Consequently, participation constraint is closely related to so-

cial stability, and is an essential factor of social stability in development.

1.8.5 Incentives and Incentive Compatibility

The incentive is one of the core concepts in economics. Each individual has

his or her own self-interest; to obtain interests from some activity, one must

also pay the corresponding cost. Through a comparison between benefits

and costs, individuals may be willing (have an incentive) to get something

done or do it well, or be reluctant or unwilling to get it done or do it well,

and thus will have a rational incentive response to the rules of the game.

This, however, frequently leads to incentive-incompatible conflicts of inter-

est among individuals or between individuals and society, and produces

chaos. The concept of incentive compatibility has been discussed by Adam

Smith in The Theory of Moral Sentiments, in which he stated that“...in the

great chess-board of human society, every single piece has a principle of motion of

its own, altogether different from that which the legislature might choose to impress

upon it. If those two principles coincide and act in the same direction, the game of

human society will go on easily and harmoniously, and is very likely to be happy

and successful. If they are opposite or different, the game will go on miserably, and

the society must be at all times in the highest degree of disorder.”6 The reason

for this is that, under given institutional arrangements or rules of the game,

individuals will make optimal choices according to their own interests, but

such choices will not automatically satisfy the interests or goals of other-

s and society. In addition, information asymmetry makes it challenging

to implement social optimum by command. A good institutional arrange-

ment or rule is able to guide self-interested individuals to act subjectively

for themselves, but objectively for others, making individuals’ social and

economic behavior beneficial to the nation and the individuals, as well as

to themselves. This is core content of economics.

Everything that an individual does involves interests and costs (i.e.,

6Adam Smith: The Theory of Moral Sentiments.



66 CHAPTER 1. NATURE OF MODERN ECONOMICS

benefits and costs), making incentive a ubiquitous issue that must be dealt

with in daily work and life. As long as the benefits and costs are not e-

qual, there will be different incentive reactions. To maximize profits, an

enterprise has the incentive to use resources in the most efficient way and

provide incentives to guide employees to expend the greatest effort. Out-

side of the enterprise, changes of profits provide an incentive for resource

holders to modify their ways of using the resource; whereas, inside of the

enterprise, incentive influences the way that the resource is used and the ef-

fort that employees invest in the work. To make management efficient, the

role of incentive in organizations must be clear, as well as how to construct

incentives to guide subordinates to exert the greatest effort in the work.

Since the interests of individuals, society and economic organizations

cannot be identical, how can self-interest, mutual benefits, and social inter-

ests be organically combined? This requires incentive compatibility, with

which the reform measures and institutional arrangements adopted can

drive individuals’ incentive for production and work. As a consequence,

to implement a goal of one’s own or that of society, appropriate rules of the

game must be defined, under which when individuals pursue their self-

interest, the goal can also be achieved. In other words, it unifies the self-

interest of individuals and mutual benefits among individuals so that when

pursuing one’s self-interest, each individual can assist in attaining the goal

intended by society or other individuals. We will focus on the issue of how

to achieve incentive compatibility in Part V of the textbook.

1.8.6 Property Rights as an Incentive Scheme

Property rights are an important component of a market economy. In the

previous section about ancient Chinese thoughts on the market, we men-

tioned that over 2,300 years ago, Shang Yang of the State of Qin utilized the

example of the hare to expound on the crucial importance of establishing

private property rights, and how a clear definition of property rights can

“determine ownership and settle disputes”, and assist to establish the

market order.

Property rights determine how a resource or economic good is owned
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and used. A clear definition of property rights will enable a clear definition

of the attribution of profits, thus providing incentives for property owners

to consume and produce in the most efficient way, to provide quality prod-

ucts and good services, to build reputation and credibility, and to maintain

their own commodities, housing, and equipment. If property rights are

not unequivocally defined, however, the enterprises’ incentive will be di-

minished, giving rise to incentive distortion and moral risk. For example,

unclear property rights in state-owned enterprises will lead to inefficien-

cy, induce wide-spread corruption, such as rent-seeking and interest trans-

fer, squeeze the private economy, impede innovation, and lead to unfair

competition. In the market mechanism, incentives are given to individuals

mainly in forms of property possession and profit acquisition. The Coase

Theorem, which will be discussed in Chapter 14, is a benchmark theorem in

property rights theory. It claims that when there is neither transaction cost

nor income effect, as long as property rights are clearly defined, an efficien-

t allocation of resources can be achieved through voluntary coordination

and cooperation.

1.8.7 Equality of Opportunity and Equity in Outcome

“Equality in outcome”is a goal that an ideal society aims to achieve.

However, for human society with self-interested behavior, this“outcome

equality”often produces low efficiency. Then, in what sense can equality

or equity be consistent with economic efficiency? The answer is that if one

uses “equality of opportunity”as the value judgment standard, equity

and efficiency can be consistent. “Equality of opportunity”means that

no barrier should exist to hinder individuals from pursuing their goals,

and there should be a level playing field for every individual. The Fair-

ness Theorem, to be discussed in Chapter 12, informs us that as long as

individuals’ initial endowments are of equal value, through the operation

of a competitive market, allocation of resources that is not only efficient,

but also equitable, can be attained even if individuals pursue self-interest.

A concept similar to “equality of opportunity”is “individual equali-

ty”(also known as “all men are created equal”), which means that, al-
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though individuals are born with different values, genders, physical con-

ditions, cultural backgrounds, capacities, ways of life, etc., “individual

equality”requires deep respect for such individual differences.

As individuals hold heterogeneous preferences, the seemingly equal

distribution of, for example, milk and bread, may not satisfy everyone, and

then the difference between equality and equity must be emphasized. Al-

though both promote fairness, equality achieves this through treating ev-

eryone the same irrespective of need, while equity achieves this through

treating people differently depending on need. Therefore, beside equal al-

location that defines equality as absolute equalitarianism, the concept of

equity in other senses should also be used in the discussion of econom-

ic issues. For instance, equitable allocation, which will be discussed in

Chapter 12, considers both subjective needs and objective factors, such as

income, which means that everyone is satisfied with their own allotment.

1.8.8 Efficient Allocation of Resources

Whether resources are efficiently allocated is a basic criterion to evaluate

the effectiveness of an economic system. In economics, efficient allocation

of resources usually refers to Pareto efficiency/optimality, which means

that no other feasible allocation exists, such that at least one individual is

better off without making any one worse off. As such, it requires not only

efficient consumption and production, but also production of products that

can best meet the needs of consumers.

It is worth mentioning that, concerning economic efficiency, we should

distinguish between three types of efficiency: a firm’s production efficien-

cy; industrial production efficiency; and allocation efficiency of an econo-

my. By stating that a firm’s production is efficient, we mean that, with a

given input, the output is a maximum, or with a given output, its input-

s are a minimum. Industry is the aggregation of all firms’ production for

a particular commodity, the efficiency of which can be similarly defined.

However, the efficiency of a firm does not imply the efficiency of an in-

dustry. The reason for this is that if the production materials of firms with

outdated technologies are given to those firms with advanced technologies,
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there will be more outputs for the whole industry. At the same time, even

if production of the entire industry is efficient, the allocation of resources

may not be (Pareto) efficient.

The concept of Pareto efficiency in allocating resources is applicable to

any economic institution. Indeed, it provides a basic criterion of value judg-

ment for an economic institution from the perspective of social welfare,

and assesses the economic performance from the perspective of feasibili-

ty. It can also be applied to a planned economy, a market economy, or a

mixed economy. The First Fundamental Theorem of Welfare Economics,

which will be introduced in Chapter 11, proves that when individuals pur-

sue their own self-interest, a perfectly competitive market will lead to the

efficient allocation of resources.

1.9 Understanding Economics Properly

An accurate and thorough understanding of economics can assist indi-

viduals to correctly use basic principles and analytical methods of eco-

nomics to study various economic issues under different economic envi-

ronments, behavioral assumptions, and institutional arrangements. The d-

ifferent schools and theories of economics per se show inclusiveness, speci-

ficity, universality, and generality of the analytical framework and method-

ologies of economics. Under different economic environments, various

assumptions and specific models are required. Only in this way will the

developed theory be able to explain different economic phenomena and

individuals’ behavior, and more importantly, make logically inherent anal-

yses, draw conclusions of inherent logic, and make scientific predictions

and reasoning under various economic environments that are close to the

theoretical assumptions. However, due to the complexity of economic en-

vironments, for the sake of semantic and logic clarity, economics employs

various rigorous mathematical tools to construct economic models in or-

der to develop various economic theories. Rigorous mathematical tools are

often difficult to master, which results in frequent misunderstandings and

criticisms of economics. In addition to the common misunderstandings of

benchmark theories discussed previously, misunderstandings exist about
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economics concerning the following several aspects.

1.9.1 On the Scientification of Economics

One of the primary misunderstandings is that economics is not a science

and includes numerous conflicting theories. A common criticism is that

too many different economic theories exist that come from different eco-

nomic schools in economics, making it difficult to discern which is correct

and which is not. Those who hold such an opinion, however, fail to fully

comprehend that all economic theories do not diverge from the two ba-

sic categories of theory discussed previously. Indeed, it is precisely due

to the complexity of objective reality, and dissimilar economic, political,

social and cultural environments in different countries and regions, differ-

ent thoughts and preferences of people, and various economic goals that

people pursue, that different theoretical economic models and economic

institutional arrangements need to be developed.

It may be easy to understand that different economic theories or models

should be developed for different economic, social, and political environ-

ments. However, it is challenging for many to comprehend why different

economic theories are developed under the same economic environmen-

t. Consequently, some individuals, while disavowing economics and its

scientific characteristics, sharply criticize economists by stating that“100

economists will have 101 opinions”. Actually, it is they who do not real-

ize that it is analogous to the fact that we need different maps for different

purposes, such as traffic, travel, military, etc., even though there is only one

Earth. It is the case that, in the same given economic environment, we may

need to develop distinct economic theories and different economic institu-

tional arrangements for various goals.

The fact that different opinions of economists will arise for the same

problem merely demonstrates the precision and thoroughness of economic-

s because, when the premises and the environment change, the conclusion-

s should vary accordingly; this is especially true in the case of the second

category of economic theory that aims to solve practical problems. Further-

more, as different individuals will also have dissimilar subjective judge-
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ments of values, there are few universally correct conclusions that satisfy

everyone and apply in all situations. Just as medicines will vary according

to the disease, when considering economic problems, case-by-case analy-

ses must be conducted according to the specific time, place, people, and

occasion involved. The major difference in the analogy to medicine is that,

while an incorrect prescription for a condition may result in serious health

problems or the death of an individual, an incorrect choice of economic pol-

icy, with large externalities, will influence an entire group of individuals or

even a nation.

Although different economic theories and models exist, both the bench-

mark economic theory, which provides a benchmark or reference system,

and the second category of economic theory, that aims to solve practical

problems, they definitely do not constitute different“economics”.

The basic analytical framework and methodologies of (modern) eco-

nomics, just like those of mathematics, physics, chemistry, engineering,

etc., are not bounded by regions or nations. The foundational principles,

methodologies, and analytical framework can be used to investigate a va-

riety of economic issues under all economic environments and institutions,

and to study economic behavior and phenomena in specific areas and time

periods. The analytical framework and methodologies that will be intro-

duced later can be used to conduct comparative analyses on almost every

economic phenomenon and issue. In fact, this is precisely where the pow-

er and wonder of the analytical framework of economics lies: its essence

and core require that the economic, political, and social environment con-

ditions at a specific time and place must be considered and clearly defined

when carrying out research. Economics can be used to investigate econom-

ic issues and phenomena under human behavior as manifested in different

nations, regions, and cultures. Its basic analytical framework and method-

ologies can also be applied to elucidate other social phenomena and human

decision-making processes. Indeed, it has been proven that, due to the u-

niversality and generality of the analytical framework and methodologies

of economics, in the past few decades, various analytical methods and the-

ories have been successfully extended to other disciplines, including polit-

ical science, sociology, and the humanities.
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1.9.2 On the Mathematical Feature of Economics

In addition to the criticisms that the assumptions of economic theory do not

conform with reality and economics is not a science, another common crit-

icism is that economics pays too much attention to details and involves an

increasing amount of mathematics, statistics and models, and this makes

questions more incomprehensible. However, the reason that economics us-

es so much mathematics and statistics is to achieve rigor and quantifiabili-

ty of empirical studies. Although decision-makers in government and the

general public do not need to understand details or premises of rigorous

theoretical analysis, economists who make policy suggestions must thor-

oughly understand these. As economic theory will generate great exter-

nalities once adopted, blind application without considering premises may

produce serious problems and perhaps catastrophic consequences. This is

why mathematics should be employed to rigorously define the boundary

conditions of a theory. In addition, the application of a theory or enact-

ment of a policy often requires the tools of statistics and econometrics to

carry out quantitative analyses or empirical tests. Moreover, because the

real economic society is so complicated, the use of mathematical models in

economic theories can assist to depict the real economic world for people

to understand problems to be solved in reality. We will discuss the role of

mathematics in economics later in this chapter.

1.9.3 Misunderstandings on Economic Theory

Each theory or model in economics that aims to solve practical problems

adopts axiomatic analysis, which comprises a set of presupposed assump-

tions on economic environments, behavior patterns and institutions, and

conclusions based on these assumptions. Considering the complexity of

economic environments and the diversity of individual preferences in the

real world, the more general are the presupposed assumptions of a theo-

ry, the more powerful is the theory. If the presupposed assumptions of a

theory are too restrictive, the theory will lose generality, and thus offer less

utility in reality. As economics is employed to serve the society and the

government, the theory must be of some breadth and depth. Consequent-
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ly, a necessary requirement for a good theory is its generality, in which the

more general it is, the larger explanatory power it will have and the more

useful it will be. The general equilibrium theory, which studies competitive

markets, constitutes such a theory. It proves that the existence of compet-

itive equilibrium leads to efficient resource allocation under the condition

of very general individual preferences and production technologies.

Even so, theories of social sciences, and especially those of economics,

like all theorems in mathematics, are subject to boundary conditions. As

discussed previously, because of the great externalities of economic theo-

ries, when discussing or applying an economic theory, it is necessary to

focus on its presupposed assumptions and application scope. This is be-

cause the conclusions of any economic theory are not absolute, but rather

only hold when the assumptions are satisfied. Whether or not this point is

recognized when discussing economic issues is a basic criterion of whether

an economist is well-trained. As economic issues are closely correlated

with daily life, even ordinary people can give their opinions about eco-

nomic problems, such as inflation, business climate, balance or imbalance

of supply and demand, unemployment, the stock market, and the hous-

ing market. For this reason, many people do not regard economics as a

science. Indeed, economics would not be a science if it did not take into

account constraints or base itself on accurate data and rigorous theoretical

logical analysis. A well-trained economist always discusses issues based

on economic theories and is fully cognizant of the boundary conditions of

the relationship among economic variables and the inherent logic of the

corresponding conclusions. It is crucial to fully understand the boundary

conditions of economic theories; otherwise, one will not be able to distin-

guish between the theory and the reality, but instead tend towards one of

two extremes: either simply applying the theory to reality, irrespective of

constraints in reality; or completely denying the value of economic theory.

The first extreme viewpoint overestimates the role of theory and misus-

es it. For example, some people disregard the realistic objective constraints

that face a nation. They blindly or mechanically apply the two categories of

economic theories to solve the nation’s problem, and indiscriminately copy

models to study the problem, assuming that the inclusion of mathematical
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models will produce valid theories. Conclusions and suggestions obtained

by copying economic theories or models, whether they be benchmark e-

conomic theory, or the second category of economic theory that closely re-

flects reality, if blindly applied without taking into consideration various

constraints and boundary conditions created by the nation’s actual situa-

tion and economic institutional environment will frequently lead to serious

problems. In fact, irrespective of how general the theory and behavioral

assumption are, they always have application boundaries and limitations,

and thus must not be used indiscriminately. Indeed, especially for those

theories developed based on an ideal state that exists far from reality and

primarily for the purposes of establishing a reference system, benchmark

and goal, they should not be applied directly or incorrect conclusions will

result. In addition, without a sense of social responsibility or strong train-

ing in economics, a person may overestimate the role of theory and blindly

apply economic theory to the real economy without taking the premises

into account, which could bring severe consequences, negatively influence

social and economic development, and lead to great negative externalities.

For instance, the conclusion of the First Fundamental Theorem of Welfare

Economics that a competitive market leads to the efficient allocation of re-

sources is subject to a series of preconditions, and its misapplication will

produce severe policy errors and damage to the real economy.

The other extreme viewpoint completely denies the role of theory. Peo-

ple holding such a point of view underestimate or deny the pragmatic u-

tility of economics, including its behavioral assumptions, analytical frame-

work, basic principles, and research methodology. In fact, just as in the

case of the benchmark theory of economics, no discipline in the world ex-

ists whose assumptions and principles coincide with reality perfectly (like

the concepts of free fall without air resistance and fluid motion without fric-

tion in physics). However, this is not a reason to deny the scientific features

and usefulness of a discipline, including economics. We learn economics

to acquire not only its basic principles and utility, but also its approaches

towards thinking, asking, and solving questions. As discussed previously,

the value of benchmark theories lies not in the direct explanation of reality,

but in the provision of a study platform and reference system for develop-
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ing new theories to explain the real world. With these methods, economists

can become enlightened on how to solve economic problems in reality. Fur-

thermore, as discussed in the previous section, a theory applicable to one

nation or region may not be applicable to another due to different environ-

ments. Instead of applying the theory mechanically and indiscriminately, it

is necessary to modify the original theory to develop new theories accord-

ing to given economic environments and individual behavior patterns.

There is also another extreme viewpoint, in which certain people con-

tend that market failures may occur under any circumstance, and that the

market has externalities. In claiming this, they deny the practical signifi-

cance of economic theory, believing that economics is highly hypothetical,

and that these assumptions are superfluous because the market does not

have boundaries.

It is also sometimes stated that a certain theory or conclusion has been

overturned. As not all of the conditions of a certain theory are in accor-

dance with reality, the theory is deemed to be incorrect and thus supplant-

ed. In general, this statement is not correct. Assumptions, even those in the

second category of theories that aim to solve practical problems, cannot ful-

ly coincide with reality or cover every possible case. Indeed, a theory may

be applicable to the economic environment of one location but inapplicable

to that of another. As long as there is no inherent logic error present, how-

ever, it cannot be concluded that the theory is fallacious and needs to be

abandoned. It may only be stated that it is not applicable to a certain place

or a particular time.

Another common mistake is attempting to draw a general theoretical

conclusion based solely on certain specific examples. This constitutes a

methodological error. Of course, we do not deny the unique role of history,

culture, and paradigms of each country in the establishment of its own

discourse of economics.

1.9.4 On Experiments in Economics

Another criticism about economics is that it is not an experimental science

at all, and thus the scientific feature of economics is negated. Such view-
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point constitutes a misunderstanding. First of all, as with the rapid de-

velopment of experimental economics in recent years, economics is using

increasing numbers of laboratory experiments, field experiments, and com-

puter simulation experiments to investigate various economic problems.

Experimental economics also tests individuals’ behavior and rationality of

behavioral assumptions through these experimental methods, and conse-

quently constitutes an important tool to determine whether or not an eco-

nomic theory fits objective reality. Theorists have also obtained crucial in-

formation from experiments in order to promote the advancement of theo-

ries (important discussions of numerous economists on how to understand

experiments in economics can be found on the website of Al Roth). Fur-

thermore, experiments in economics are already transitioning more from

the laboratory toward field experiments (see relevant discussion by John

List).

Indeed, from an empirical perspective, in real economic activities, ex-

periments in economics provide an indispensable advantage to verify poli-

cies and systems, especially concerning the need for institutional transi-

tions. After continual exploration by early scholars, and the systematic syn-

thesis of methodologies and tools of experiments in economics by Vernon

Smith, winner of the 2002 Nobel Memorial Prize in Economic Sciences, ex-

perimental economics as an important empirical tool has received increas-

ing attention in market mechanism design. When external environments

change rapidly and new technologies abound, reform becomes inevitable;

however, the strategic risks and social costs of various policy suggestion-

s must be carefully considered. Therefore, it is a difficult and key objec-

tive in institutional reform to identify a way to comprehensively examine

problems in advance that might arise out of new proposals regarding in-

stitutions. For instance, in the earlier days of the reform and opening-up,

China took various measures, including the “special economic zone pol-

icy’”, “pioneering pilot scheme”, “typical example as the lead”, etc.

Although economic experiments are consistent with such measures in the

guiding aim of lowering the risk and cost of the reform, major differences

in methodology remain between economic experiments and pilot experi-

ments for the accumulation of experience.
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In comparison with the pilot method, firstly, the economic experimen-

t is liable to focus on a single research question, so that each experiment

examines the effects of only one policy and the characteristics of only one

mechanism. Secondly, the economic experiment employs relatively nor-

mal techniques and tools. Indeed, there are multiple influential factors in

real economic activities, while the methodology of economic experiments

is able to control factors that are irrelevant to the research question in order

to focus more closely on the effect of one factor on certain economic phe-

nomena. In comparison with the pilot method, it is also less costly to carry

out economic experiments. It is also worth noting that the relation between

genetics and economic behavior is meaningful and promising. Once the

relation between the two is accurately determined, the foundation will be

established for economics to become a discipline of science, just as a natural

science.

It must also be admitted that some economic theories, such as gener-

al equilibrium theory that can be used for comprehensive analysis cannot

easily be tested by social experiments since policy mistakes may result in

enormous risks to economy and society. This is the greatest difference from

natural sciences. As in natural sciences, natural phenomena and objects

can be studied through experiments, and theories can be tested and fur-

ther developed in the laboratory. Astronomy might be the only exception

to this, but it involves no individual behavior. In all cases, once individual

behavior is involved, the situation will at least become relatively more com-

plicated. Moreover, extreme precision can be attained in the application of

theories in natural sciences. For instance, in the construction of buildings or

bridges, and the manufacturing of missiles or nuclear weapons, accuracy

of any degree is attainable since all of the parameters are controllable, and

the interrelationship between variables is amenable to experimentation. In

economics, however, numerous factors affecting economic phenomena are

uncontrollable.

Economists are also frequently criticized for inaccurate economic fore-

casts. This can be explained from two perspectives. From the subjective

perspective, it is due to whether or not specific economists have had sys-

tematic and rigorous training in economics. If not, they may be unable
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to discern the main causes of problems or make correct logical analyses

and inferences when they discuss and attempt to solve economic problems,

and thus will prescribe solutions to economic problems that will be unsuc-

cessful. From the objective perspective, some economic factors that influ-

ence economic results may suddenly and uncontrollably change, thus caus-

ing predictions to be inaccurate, even though they may be made by well-

trained economists with excellent economic insight. Moreover, an econom-

ic issue involves not only human behavior, which increases complexity, but

numerous other uncontrollable factors, as well. Although an economist

might be knowledgeable and talented, his or her predictions may still de-

viate because certain uncontrollable factors that influence economic results

may change. For instance, even for a good economist with sound judg-

ment, his or her economic forecasts might become inaccurate once sudden

changes occur in the economic, political, or social environment. It is also

the case that some people assert that no matter how economics develops

and what the reason may be, inaccurate prediction is the norm, and accu-

rate prediction is attributable to chance. In principle, this is true since eco-

nomic fluctuations are random variables. However, since the probability

for an event to occur and the capability of economists vary, a well-trained

economist can better judge the probability of an event and be more likely

to be accurate in his or her prediction. This constitutes the subjective factor

of inaccurate prediction as mentioned above.

How can the problem that economic theory cannot experiment on so-

ciety under many circumstances be overcome? The answer is logically in-

herent analysis, based on which inherent conclusions and inferences can

be drawn, and comparisons and empirical data tests can be carried out

through both horizontal and vertical perspectives of history. In this way,

when conducting economic analysis or providing policy suggestions, ac-

cording to the three dimensions of economic analysis discussed previous-

ly, there should first be theoretical analysis of inherent logic to define the

applicable boundary conditions and scope. Meanwhile, tools of statistics,

econometrics and/or experimental economics should be used to perfor-

m empirical quantitative analyses or tests, and the invaluable perspective

of history should be taken into account to conduct vertical and horizon-
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tal comparative analysis. Therefore, when carrying out economic analy-

sis or identifying policy suggestions, there must be theoretical analysis of

inherent logic, historical comparative analysis, and empirical quantitative

analysis based on data and statistics; and all three are indispensable, which

makes the analysis have six natures: scientific, rigorous, realistic, pertinent,

forward-looking, and thought-provoking. This three-in-one study method-

ology, to a large extent, overcomes the challenge that many economic theo-

ries cannot or cannot easily experiment on society.

The method of logically inherent analysis of economics aims to fully un-

derstand and characterize relevant circumstances (economic environment,

situation, and status quo) for a problem to be solved to ascertain what the

problem is and its causes, apply appropriate economic theories according-

ly, draw conclusions, and make accurate forecasts and inferences or give

the direction of reforms. As long as the status quo accords with the causes

(economic environments and behavioral assumptions) presupposed in the

economic model, logically inherent conclusions can be reached according

to economic theories, and thus solutions can be obtained or certain institu-

tional arrangements can be suggested for different circumstances (varying

with time, place, individual, and case). The method of logically inherent

analysis can assist to make academic inferences on possible results under

circumstances in which real economic and social environments, behavior

patterns of economic agents, and economic institutional arrangements are

given, and thus provide useful guidance for solving real economic prob-

lems. In other words, once the problem and its causes are clearly identi-

fied, and the appropriate economic theory is applied, if such a theory exists,

then the optimal solution can be implemented, and logically inherent con-

clusions can be drawn in order to make accurate predictions and inferences

or provide appropriate reform measures. Otherwise, severely harmful con-

sequences might arise.

It is true that the result of an economic theory may not be tested by

experiments on society under many circumstances, and data do not pro-

vide the sole basis for analysis. Although practice is the sole criterion for

testing truth, but not for predicting it. It is logically inherent analysis and

historic comparison that should be relied upon, and thus theory becomes
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indispensable. Like a doctor prescribing medications for a patient or a me-

chanic repairing an automobile, the most challenging and crucial task is the

accurate diagnosis of the disease or the cause of the failure. The criterion

for a good physician lies in whether he or she can accurately find the true

cause of the problem. Once the cause is identified and a remedy identi-

fied, it is relatively easy to administer appropriate treatment. For economic

problems, however, the prescription is economic theories. Once we truly

understand the characteristics of an economic environment, thoroughly in-

vestigate the situation, and reasonably characterize individuals’ behavior,

the likelihood of success should rise dramatically.

1.10 Basic Analytical Framework of Modern Economic-

s

For performing most tasks in life, basic laws exist. The way that economics

studies and solves problems is similar to how people deal with personal,

household, economic, political, and social affairs. In order to do something

well and establish and maintain good relationships with others, the first

task is to understand national conditions and customs, i.e., to know the re-

al environment, behavior, and personality of the persons with whom you

interact. On such a basis, one determines the optimal way of dealing with

them and performing tasks, and make an incentive response after weigh-

ing the advantages and disadvantages to obtain the best outcome. Finally,

one must make a value judgement on the choice, and evaluate the rules of

the particular game being played. The basic analytical framework and re-

search methods of economics follow this mode precisely to study economic

phenomena, human behavior, and how people assess trade-offs and make

decisions. Of course, a major difference between these two is the rigorous

reasoning of economics, which uses formal models to identify the logical

relationship between presupposed assumptions and conclusions. Such an-

alytical framework offers great generality and consistency.

A standard academic work needs first to delineate all of the problems

to be studied and/or resolved, or the economic phenomena to be elucidat-
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ed. In other words, economists should first identify research objectives and

their significance, provide readers with information regarding an overview

and progress of the issues under investigation through a literature review,

and illustrate the work’s innovation concerning technical analyses and/or

theoretical conclusions. Subsequent to this, they should discuss how to ad-

dress the issues raised and draw conclusions.

Although economic issues under study may be quite dissimilar, the ba-

sic analytical framework used is essentially identical, which is an axiomat-

ic approach to investigate economic problems. The analytical framework

for a standard economic theory in economics consists of the following five

steps: (1) specifying economic environments; (2) making behavioral as-

sumptions; (3) establishing institutional arrangements; (4) determining e-

quilibrium outcomes; and (5) making evaluations. All economics papers

written with clarity and logical consistency comprise these five parts, espe-

cially the first four parts, irrespective of the conclusion and whether or not

the author realized it. In this way, writing an economics paper constitutes

innovative writing with a logical structure and analysis in such steps. Once

these components are understood, the basic writing pattern of academic

economics papers is known, and it will be substantially easier to learn e-

conomics. These five steps are also quite beneficial for understanding e-

conomic theory and its proofs, and finding research topics and conducting

research.

Prior to discussing the five components in detail, it is first necessary to

define the term “institution”. An institution is usually defined as a set

of rules related to social, political, and economic activities that dominate

and restrict the behavior of various social classes (Schultz, 1968; Ruttan,

1980; North, 1990). When people consider an issue, it is normal to consider

certain factors as exogenously-given variables or parameters, and others as

endogenous or dependent variables. These endogenous variables depend

on the exogenous variables, and thus are functions of those exogenous vari-

ables. In line with the classification method of Davis-North (1971, pp 6-7)

and the issue to be studied, any institution can be divided into two cate-

gories: institutional environment and institutional arrangement. An insti-

tutional environment is the set of a series of basic economic, political, social,
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and legal rules that form the basis for establishing production, exchange,

and distribution rules. Among these rules, the basic rules and policies that

govern economic activities, and property and contract rights, constitute the

economic institutional environment. An institutional arrangement is the

set of rules that dominate potential cooperation and competition existing

among economic participants. It can be interpreted as the generally known

the rules of the game, with different rules of the game leading to dissimilar

incentive reactions of individuals. In the long term, institutional environ-

ment and institutional arrangement will affect each other and evolve. Yet,

in most cases, as Davis-North points out, people usually regard economic

institutional environments as an exogenously-given variable, and consid-

er economic institutional arrangements (e.g., the market system) as exoge-

nous or endogenous, depending on the issue under study or discussion.

1.10.1 Specifying Economic Environment

The primary component of the analytical framework of economics aims to

specify the economic environment where the issue or object to be studied

lies. An economic environment is usually composed of economic agents,

their characteristics, the institutional environment of the economic society,

the information structure, etc., which are treated as exogenous variables

and parameters. They are the embodiment of the basic idea of constraints.

How can we best specify the economic environment? It can be divided

into the following two levels: (1) objective and realistic description of eco-

nomic environment; and (2) concise and acute characterization of the es-

sential features. The former constitutes science and the latter is art, and the

two must be combined and balanced. Overall, the more clear and accurate

is the description of an economic environment, the greater is the likelihood

of reaching correct theoretical conclusions. In addition, the more refined

and acute is the characterization of an economic environment, the easier it

is to reach and fully comprehend the theoretical conclusions. Only by com-

bining these two levels together can the essence of issues under study be

elucidated, as discussed below:

Description of economic environment: The first step in every econom-
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ic theory of economics is to give an approximately objective description of

the economic environment where the issue or object to be studied is situ-

ated. A reasonable, useful economic theory should accurately describe the

specific economic environment. Although different nations and areas have

distinct economic environments, which usually lead to dissimilar conclu-

sions, the basic analytical framework and methodologies used are identical.

As stated previously, a common initial task of studying economic issues is

to describe the economic environment under investigation. Overall, the

more clear and accurate is the description of the economic environment,

the higher is the probability of obtaining correct theoretical conclusions.

Characterization of economic environment: When describing the e-

conomic environment, a question that is equal in importance to a clear

and accurate description of the economic environment is how to concisely

characterize the economic environment in order to capture the essence of

a problem. Because most facts and phenomena in reality may be largely

irrelevant to the economic issue to be analyzed and solved, a completely

objective description of the economic environment may not only be un-

helpful, but may also be confusing and overwhelming. Of course, if we

precisely depict all aspects, a highly accurate and truthful description of

the economic environment is achieved, but this result presents innumer-

able irrelevant facts without identifying the key points of the problem to be

investigated. In order to avoid trivial aspects and focus on the most critical

and central issues, it is necessary to characterize the economic environment

specifically according to the demands of the issue to be studied. For exam-

ple, when discussing consumer behavior in Chapter 3, we simply describe

consumers as a composition of preference relation, consumption space, and

income (or initial endowment) regardless of gender, age, race, or beauty.

When discussing producer theory in Chapter 4, a producer is characterized

as the production possibilities set. When studying transitional economies,

we cannot simply mimic and apply conclusions derived under a mature

market economic environment, but must determine the basic features of

transitional economies, even though the basic analytical framework and

methodologies of economics can still be applied.

A common criticism of economics is that it is useless because it relies
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on a few simple assumptions to summarize complex situations. In fact,

this is also the basic research methodology of physics. In the study of the

relationship between two physical variables, both theoretical research and

experimental operations fix other variables that will influence the object of

study. In many cases, clarifying every aspect (especially unrelated aspects)

is superfluous and may even lead to a loss of focus. This is similar to the

previously described analogy of different kinds of maps. A tourist map

may be needed for travelling, a traffic map may be useful for driving, and

a military map may be appropriate for military exercises. Each of these

maps describes only certain characteristics of a region, and does not present

an aggregate picture of the real world. Indeed, people need a tourist map,

traffic map, and military map according to different purposes. If we were to

depict the entire real world into one map, although it completely describes

the objective reality, how can it be a useful map for any one purpose?

Therefore, economics is not only a science of objective description, but

also the art of abstracting and depicting real economic environments. Eco-

nomics utilizes concise and profound characterizations of economic envi-

ronments to describe the causes of problems and conduct inherently log-

ical analyses, and thus obtain logical conclusions and inferences. A good

economist should be able to accurately grasp the most essential character-

istics of the current economic situation in his or her study. It is only when

we truly clarify the causes and current situation that we can address specif-

ic problems with appropriate solutions (the economic theory adopted). Of

course, to achieve this, one needs to have basic training in economics.

Determining how to describe the economic environment frequently lead-

s to divergent theoretical results, and can even produce new schools of

thought. Because economic environments are markedly complex, in many

cases, economics can not only carry out descriptive analysis, like in natu-

ral science, but must also refine and characterize the behavior of the eco-

nomic environment in an abstract manner to identify the most important

characteristics. This, however, often makes economists possess a degree of

subjective judgment. Different subjective judgments will lead to dissimilar

specifications of economic environments, which will in turn lead to var-

ious economic theories, economic schools, and/or theoretical results. For
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example, there are many schools in macroeconomics: the Keynesian school,

the post-Keynesian school, the rational expectations school (or neoclassical

macroeconomics), the monetarism school, the supply school, and the new

institutional school. In fact, the antagonism between these schools is not

as great as commonly believed by non-economists and the media. Indeed,

the schools have numerous factors in common: the same basic analytical

framework, the same research method (using the economic model and mar-

ket equilibrium to analyze the market), and the same object (studying the

interaction and change law of macroeconomic variables under the arrange-

ment of the market system). It is also the case that they all believe in the

market system. Moreover, it is agreed upon that, in terms of the long-term

or general trend of economic operation, there will be an optimal market

equilibrium. The differences among these theories are primarily resultan-

t from the differences in describing the economic environment, especially

whether the impact on or interference to the economic system comes from

the demand side or the supply side, whether information about economic

fluctuation is sufficient, and whether the differences are caused by different

assumptions on the time effect of the interference, such as lag or instant.

1.10.2 Making Behavioral Assumptions

The second basic component of the analytical framework of economics is to

make assumptions regarding the behavior mode of economic agents. This

is the key difference between economics and natural science. Indeed, the

assumption is of critical importance and constitutes the foundation of e-

conomics. Whether an economic theory is convincing and has practical

value and whether an institutional arrangement or economic policy is con-

ducive to sustainable and rapid economic development primarily depends

on whether the individual behavior assumed truly reflects the behavior of

most individuals. It also depends on whether the institutional arrangement

and individuals’ behavior are incentive-compatible, i.e., whether individu-

als’ reaction to the incentive is also beneficial to others or society.

In general, under a given environment and rules of the game, individ-

uals will make trade-off choices according to their behavioral disposition.
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Therefore, when deciding the rules of the game, policies, regulations or in-

stitutional arrangements, it is necessary to take into account the behavioral

pattern of participants and make correct judgments. Just as when dealing

with different individuals in our daily lives, it is necessary to know whether

or not they are selfless and honest. Different rules of the game should be in-

stituted when faced with different people. When interacting with an honest

person who tends to tell the truth, the best way to deal with him or her, or

the rules of the game imposed on him or her, may be comparatively simple.

When facing totally selfless individuals, the rules to deal with them can be

even simpler, since it is not necessary to take precautions or invest much

energy (in designing the rules of game) to interact with them, and the rules

may seem not as important. In contrast, when encountering a cunning and

dishonest person, the best way to deal with him or her will be quite differ-

ent and requires substantial energy, and thus the rules will be much more

complicated. As such, making accurate judgments about individuals’ be-

havior is a crucial step for the study of how individuals react to incentives

and make trade-off choices. When investigating economic problems, such

as economic choice, and interactions between economic variables and how

they change, it is also important to determine the behavioral pattern of e-

conomic agents.

As mentioned above, under normal circumstances, a logical and realis-

tic assumption about individuals’ behavior used by economists is the self-

interest assumption, or the stronger rationality assumption, i.e., economic

agents pursue the maximization of benefits. Bounded rationality means

to make the best choice according to the knowledge and information pos-

sessed by an agent, which belongs to the category of rationality assump-

tion. In consumer theory, which will be discussed later, we assume that

consumers pursue utility/satisfaction maximization; in producer theory,

we assume that producers pursue profit maximization; and in game theo-

ry, various equilibrium solution concepts have been introduced to describe

the behavior of economic agents, which are given based on different behav-

ioral assumptions. Overall, any economic agent, in his or her contact with

others, implicitly assumes others’ behavior.

The assumption of (bounded) rationality is largely reasonable. From
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a practical point of view, as mentioned previously, there are three basic

kinds of institutional arrangements: mandatory regulation (for situations

with small operation costs and relatively easy information symmetry); in-

centive mechanism (for cases of information asymmetry); and social norm-

s (composed of ideology, beliefs, morals, customs, etc., that are norms of

self-discipline). If individuals are all selfless and highly developed ide-

ologically, there will be no need for rigid “stick-style”regulations that

“enlighten with reason”or the flexible market system that“guides with

interest”.

1.10.3 Setting-up Institutional Arrangements

The third basic component of the analytical framework of economics is to

set up economic institutional arrangements, which are usually referred to

as institutions or rules of the game. Different institutions or rules of the

game should be taken for different situations, environments, and individu-

als with varied goals and behavioral patterns. When the situation or envi-

ronment changes, the rules of the game will also change accordingly. When

an economic environment is given, agents need to decide on the economic

rules of the game, which is termed the economic institutional arrangement.

Determination of institutional arrangement is important for accomplishing

anything in this context. Economics studies and provides various econom-

ic institutional arrangements or economic mechanisms according to differ-

ent economic environments and behavioral assumptions. Depending on

the issue under discussion, an economic institutional arrangement could

be exogenously-given (in which case it will degenerate into the institution-

al environment, such as a perfectly competitive market under which we

study consumer or producer problems) or endogenously-determined.

As discussed previously, there are three basic kinds of institutional ar-

rangements that guide individuals’ behavior: mandatory regulatory gov-

ernance or government intervention; institutional norm of incentive mech-

anism; and didactic social norm. The three means play different roles and

possess respective applicable ranges and limitations. Didactic social nor-

m relies on the improvement of humanity and lacks a constraining force;
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mandatory regulatory governance or government intervention incurs high

information costs, and over-intervention will harm individual freedom;

compared with the other two means, the incentive mechanism is the most

effective. This is why economists focus closely on institutions.

Therefore, for the enaction of an institutional arrangement, irrespective

of whether regulatory governance or incentive mechanism is present, the

purpose is not to change the self-interested nature of individuals, but rather

to make use of such immutable self-interestedness in order to guide indi-

viduals to engage in action that will objectively benefit society. In other

words, mechanism design should follow the nature of individuals, but not

attempt to change such nature. There is no good or evil in the discussion

of individuals’ self-interestedness, and the key lies in how to guide it with

institutions. Different institutional arrangements will induce dissimilar in-

centive reactions and trade-off choices, and thus could produce markedly

divergent results.

Any theory of economics involves economic institutional arrangements.

Standard economics mainly focuses on the market system and studies how

individuals make trade-off decisions in a market system (e.g., consumer

theory, producer theory, and general equilibrium theory) and under what e-

conomic environments market equilibrium exists. It also makes value judg-

ments on the results of resource allocation under different market struc-

tures (the criterion is based on whether resource allocation is efficient and

equitable). In these investigations, the market system is normally assumed

to be exogenously-given. In this way, it is possible to simplify the problem

in order to focus on the study of individuals’ economic behavior and how

individuals make trade-off choices.

Of course, as the exogeneity assumption of institutional arrangements

is not entirely reasonable in many cases, different economic institutional ar-

rangements should be established, depending on particular economic en-

vironments and individuals’ behavioral patterns. As will be discussed in

Parts V-VII of the textbook, there will be market failures (i.e., inefficient

allocation of resources and non-existence of market equilibrium) in many

situations, and thus we will need to find an alternative or better economic

mechanism. In that case, it is necessary to treat institutional arrangements
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as endogenously-determined by the economic environment and individual

behavior. As a consequence, economists should provide a range of alterna-

tive economic institutional arrangements for various purposes.

When studying the economic behavior and choice issues of a specific

economic organization, economic institutional arrangements should espe-

cially be endogenously-determined. New institutional economics, transi-

tion economics, theory of the firm, and in particular the economic mech-

anism design theory, information economics, optimal contract theory, auc-

tion theory, and matching theory that have developed in the last few decades,

provide various economic institutional arrangements for a broad range,

from the state to individuals, according to different economic environments

and behavioral assumptions. Part VI presents detailed discussions on the

issue of incentive design in economic institutional arrangements.

1.10.4 Determining Equilibrium

The fourth basic component of the analytical framework of economics is

to make trade-off choices and determine the “optimal”outcome. Given

the economic environment, institutional arrangement (rules of the game)

and other constraints that must be adhered to, individuals will respond to

incentives based on their own behavior, and assess and choose an outcome

from available and feasible outcomes. Such an outcome is termed an e-

quilibrium. Equilibrium means that, among various feasible and available

choices, the one that is ultimately chosen is called an equilibrium. Those

who are self-interested will choose the optimal one for themselves; where-

as, those who are altruistic may choose an outcome that is favorable to oth-

ers. For this reason, equilibrium, which refers to a state without deviation

incentives for all economic agents, is a static concept.

The equilibrium defined above may be the most general definition in e-

conomics. It embraces equilibria in textbooks that are reached by indepen-

dent decisions under the drive of self-interested motivation and manifold

technology or budget constraints. For instance, under the market system,

for the producer, a profit-maximizing production plan under the constrain-

t of production technology is called an equilibrium production plan; for
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the consumer, a utility-maximizing consumption bundle established under

the budget constraint is called an equilibrium consumption bundle. When

producers, consumers, and their interactions reach a state at which there

is no incentive for deviations, a competitive market equilibrium for each

commodity is obtained.

It should be noted that equilibrium is also a relative concept. The e-

quilibrium outcome depends on economic environments, participants’ be-

havior patterns (whether regarding rationality assumption, bounded ra-

tionality assumption, or other behavioral assumptions), and the rules of

the game by which individuals react to incentives. Indeed, it constitutes

the “optimal”choice relative to these factors. Moreover, due to bound-

ed rationality, it may not be the optimal choice in objective reality, but is

nevertheless the “optimal”one chosen by individuals according to their

preferences and the information that they possess at the time.

1.10.5 Making Evaluations

The fifth basic component of the analytical framework of economics is to

make evaluations and value judgments on equilibrium outcomes and in-

stitutional arrangements. After making their choices, individuals usually

hope to evaluate the equilibrium that then arises and compare it with the

ideal outcome (e.g., efficient allocation, equitable allocation, incentive com-

patibility, informational efficiency, etc.), in order to make further assess-

ments and value judgments on economic institutional arrangements. They

also strive to determine whether or not the adopted economic institutional

arrangement has led to a certain“optimal”outcome, and test whether the

theoretical result is consistent with the empirical evidence, whether it can

provide accurate predictions, and whether it is of pragmatic significance.

Finally, they assess the economic institution and rules adopted to discern

if there is room for improvement. Overall, in order to achieve better re-

sults, after completing the task, we should evaluate the effects, whether

it is worth continuing, and whether there is a possibility for improvement.

Therefore, it is necessary to make evaluations and value judgments on equi-

librium outcomes under institutional arrangements and trade-off choices in
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order to identify the institutions that are best suited to the development of

a nation.

When making evaluations on economic mechanisms or institutional ar-

rangements, one of the most important criterion adopted in economics is

whether the institutional arrangement is in accordance with the principle

of efficiency. Certainly, as economic environments and individuals’ behav-

ioral patterns, as well as science and technology, continue to change, the

precise Pareto optimality may never be fully realized. Just like Newton’s

three laws of motion, free fall, and fluid flow without friction in physics,

Pareto optimality is an ideal state and provides the direction for improve-

ment regarding economic efficiency. As long as the improvement of eco-

nomic efficiency is desired, individuals will continually strive to approach

this goal as closely as possible. With the ideal standard of Pareto optimali-

ty, we have a benchmark against which to compare, measure, and evaluate

various economic institutional arrangements in the real world. Further-

more, it enables us to determine how far they are from this ideal goal for

improvement of economic efficiency in order to continue to approach Pare-

to optimality.

Nonetheless, Pareto optimality is not the sole criterion for social val-

ue, equality or equity is also used. The market system achieves efficient

allocation of resources, but it also faces numerous problems, such as social

injustice resultant from an enormous wealth gap. There are a variety of def-

initions of equality, equity, and fairness. Equitable allocation, which will be

introduced in Chapter 12, takes both objective equality and subjective fac-

tors into consideration, and more importantly, it can achieve equitable and

efficient outcomes simultaneously. This is the basic conclusion of the Fair-

ness Theorem, which will be discussed in Chapter 12. Another important

criterion for evaluating an economic institutional arrangement is incentive

compatibility.

In summary, the five components discussed above constitute the ana-

lytical framework underlying almost all standard economic theories and

models, regardless of how much mathematics is used, or whether the insti-
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tutional arrangement is exogenously-given or endogenously-determined.

In the study of economic issues, one should first define the economic envi-

ronment, and then examine how the self-interested behavior of individuals

affects each other under exogenously-given or endogenously-determined

mechanisms. Economists usually take“equilibrium”,“efficiency”,“information”,

“incentive compatibility”and“equity”as key aspects to observe the ef-

fects of different mechanisms on individual behavior and economic organi-

zations, explain how individual behavior achieves equilibrium, and evalu-

ate and compare the equilibrium. Using such a basic analytical framework

in the analysis of economic issues is not only compatible in methodology,

but may also lead to surprising (but logically consistent) conclusions.

1.11 Basic Research Methodologies in Economics

We have discussed the five components of the basic analytical framework

of economics: (1) specifying economic environment; (2) making behavioral

assumptions; (3) establishing institutional arrangements; (4) determining

equilibrium; and (5) making evaluations. In general, any economic theory

consists of these five aspects. Discussion of the five components natural-

ly leads to the question of how to combine them appropriately, gradually

deepen the study of various economic phenomena, and develop new eco-

nomic theories. This is what we will discuss in this section: the basic re-

search methodology and key points, which include setting up benchmark-

s, establishing reference systems, building studying platforms, developing

analytical tools, constructing rigorous models, and conducting positive and

normative analyses.

The research methodology of economics aims to firstly provide basic s-

tudying platforms for all levels and aspects, and then establish benchmarks

and reference systems in order to present the criteria to evaluate equilibri-

um outcomes and institutional arrangements. Building a studying plat-

form, setting benchmarks, and establishing reference systems are of great

importance to the construction and development of any discipline, and e-

conomics is no exception to this.
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1.11.1 Setting up a Benchmark

Evaluations or judgements can only be relative, and not absolute, and thus

there should be a benchmark, which also applies to the discussion of eco-

nomic issues. In economics, benchmark refers to a relatively ideal state or simple

economic environment. As discussed in the first section of this chapter, to in-

vestigate a realistic economic issue and develop a new theory, we usually

need to first consider it under a relatively ideal economic environment to

develop a simple result or theory. Subsequently, we discuss the result in a

non-ideal economic environment, which is closer to reality, develop a more

general theory, and compare it with that developed under the benchmark

situation.

In this sense, benchmarks are relative to non-ideal economic environ-

ments and new theories to be developed that are closer to reality. For in-

stance, a complete information environment is the benchmark for the study

of incomplete information. When investigating economic issues under pri-

vate information, the situation of complete information must first be un-

derstood (even though it is highly unrealistic). Only when we are clear

about the situation of complete information can we adeptly study econom-

ic issues taking place under the circumstance of private information. This is

the case with theoretical research in economics. We start from the ideal state

or simple scenarios prior to considering more realistic or general scenarios.

In addition, we learn from others’ research results before innovating the

existing theories. In fact, new theories are always developed on the basis

of prior research findings and results. An example of this is that Newton’s

mechanics makes Einstein’s theory of relativity possible, while the theory

of relativity makes it possible for Chen-Ning Yang and Tsung-Dao Lee to

put forward the non-conservation of parity.

1.11.2 Establishing a Reference System

A reference system refers to economic theories or systems generated in an ideal sit-

uation, such as the general equilibrium theory, i.e., a perfectly competitive

market will lead to efficient resource allocation. Establishing a reference

system is of key importance to the construction and development of a new
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discipline, including economics. Although economic theories set as the ref-

erence system may include many assumptions that do not accord with re-

ality, at least they can assist in the following: (1) simplifying the issue and

capturing its characteristics directly; (2) establishing a comparative mea-

surement criterion that is conductive to the assessment of the gap between

the existing system and the ideal system, understanding the reality, and es-

tablishing the direction of improvement; and (3) studying how to reform or

carry out further theoretical innovation, which can be used as a reference

system for additional analysis.

Although an economic theory as a reference system might possess nu-

merous unrealistic assumptions, they remain highly useful and can serve

as a reference for further analysis. The importance of the reference system

does not lie in whether or not it accurately describes the real world, but

rather in establishing the measurement for a better understanding of reali-

ty. This is similar to our practice of setting role models in life. In addition,

like a mirror, it assists to reveal the gap between theoretical models or re-

alistic economic institutions and the ideal state. It is critically important in

the sense that it identifies the direction of efforts and adjustments, and the

extent of those adjustments. If a person has no goal and is unaware of the

gap and approximate direction that should be followed, how can he or she

make improvements or reach any goal?

General equilibrium theory is such a reference system. As we know, a

perfectly competitive market will lead to efficient allocations of resources.

Even if there is no such market in reality, if we make efforts in that direction,

efficiency will be enhanced. This is why we have institutional arrange-

ments, such as anti-trust laws, to protect market competition. By virtue

of the reference system with perfect competition and complete informa-

tion as the benchmark, we can study what outcomes can be obtained from

economic institutional arrangements that are closer to reality (e.g., some

monopolistic or transitional economic institutional arrangements) where

assumptions in the general equilibrium theory are not valid (incomplete

information, imperfect competition, externalities), and compare them with

the results obtained from general equilibrium theory in the ideal state. In

this way, we will know whether an economic institutional arrangement (be
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it theoretical or realistic) is efficient in allocating resources and using infor-

mation, and how far away the economic institutional arrangement adopted

in reality is from the ideal situation. Based on this, we can make appro-

priate policy suggestions or reform measures. In this sense, general equi-

librium theory also serves as a reference theory that provides a criterion

for evaluating institutional arrangements and the corresponding economic

policies or pointing out the direction of reforms in practice.

Therefore, we should hold lofty ideals, which let us know our goals

and the best direction to go. Even if we cannot get there eventually, by only

learning from the best and comparing our performance with the best, we

can do better and better, and continue to at least approach the ideal.

1.11.3 Building Studying Platforms

A studying platform in economics consists of certain basic economic theo-

ries, models or methods, which provide the basis for deeper analysis. The

methodology of economics is very similar to that of physics, i.e., simplify-

ing the issue first to capture the core essence of the issue. In cases in which

many factors produce an economic phenomenon, the impact of every fac-

tor must be elucidated. This can be achieved by investigating the effect of

one factor at a time, while holding all other factors constant. The theoreti-

cal foundation of economics is microeconomics, and the most fundamental

theory in microeconomics is individual choice theory; individual choice

theory further comprises consumer theory and producer theory, which are

the basic studying platform and cornerstone of economics. This is why al-

most all economics textbooks start from the discussion of consumer theory

and firm theory. They provide the fundamental theories that explain how

individuals make choices as consumers and firms, and establish the study-

ing platform for further study of individual choice.

In general, the equilibrium choice of an individual depends not only on

one’s own choice, but also on others’ choices. In order to investigate indi-

vidual choice, it is necessary to determine what are the most important fac-

tors in an individual’s decision making in the absence of influence by other

agents. Consumer theory and producer theory are developed through this
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approach. It is assumed that economic agents are in the institutional ar-

rangement of a perfectly competitive market. Therefore, every agent will

take price as given, and individual choice will not be influenced by others’

choices. The optimal choice is determined by subjective factors (e.g., the

pursuit of utility or profit maximization) and objective factors (e.g., budget

line or production constraints).

This methodology that involves simplification and idealization of the

question establishes a basic platform for deepening research. It is like the

approach in physics: in order to study a problem, we examine the essence

first, start with the simplest situation that excludes frictions from consider-

ation, and then gradually deepen the research and consider more general

and complicated cases. In microeconomics, theories of market structures,

such as monopolies, oligopolies and monopolistic competition, are gener-

ated from more general cases, in which producers can influence each other.

To study the choice issue under the more general situation in which eco-

nomic agents can influence each other’s decision-making, economists have

developed a very powerful analytical tool: game theory.

General equilibrium theory is a more sophisticated studying platfor-

m based on consumer theory and producer theory. Consumer theory and

producer theory provide a fundamental platform for investigating individ-

ual choice problems; whereas, general equilibrium theory provides a core

platform for analyzing how to reach market equilibrium through interac-

tions of individuals and all markets. Mechanism design theory provides

an even higher-level platform for studying, designing, and comparing var-

ious institutional arrangements and economic mechanisms. It can be used

to study and prove the optimality and uniqueness of perfectly competitive

market mechanisms in resource allocation and information requirement,

and more importantly, in the case of market failure, it offers methods of

how to design alternative mechanisms. Under some regularity conditions,

the institutional arrangement of a perfectly competitive market will not on-

ly lead to efficient allocation of resources, but also prove the most efficient

concerning information requirements (mechanism operation cost, transac-

tion cost), as it requires the least amount of information. Under other cir-

cumstances of market failure, it is necessary to design a variety of alterna-
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tive mechanisms for different economic environments. Furthermore, the

studying platform also creates conditions for providing reference system-

s for evaluating various kinds of economic institutional arrangements. In

other words, it provides a criterion for measuring the gap between reality

and the ideal state.

1.11.4 Developing Analytical Tools

For the research of economic phenomena and economic behavior, we also

need various analytical tools besides the analytical framework, benchmark,

reference system, and studying platform. economics necessitates not only

qualitative analysis, but also quantitative analysis, to find the boundary

conditions for each theory to be true, so that the theory will not be misap-

plied. Consequently, a series of powerful analytical tools should be pro-

vided, which are usually given as mathematical models or diagrams. The

power of these tools lies in their ability to support us to deeply analyze

intricate economic phenomena and economic behavior through a simple

and clear diagram or mathematical structure. Examples of this include the

demand-supply curve, game theory, principal-agent theory for investigat-

ing information asymmetry, Paul A. Samuelson’s (1915-2009, see Section

3.11.2 for his biography) overlapping generations model, dynamic optimal-

ity theory, etc. Of course, exceptions exist which are not expressed with an-

alytical tools. For instance, Coase’s theory is established and demonstrated

through words and basic logical deduction only.

1.11.5 Constructing Rigorous Analytical Models

Logical and rigorous theoretical analysis is needed when we explain eco-

nomic phenomena or economic behavior, and make conclusions or eco-

nomic inferences. As mentioned above, each theory holds true under cer-

tain conditions. We need to establish rigorous analytical models that clearly

identify the conditions under which a theory holds true. A lack of relat-

ed mathematical knowledge will make it difficult to achieve an accurate

understanding of the connotations of a definition, or to have discussions

on related issues, as well as defining boundary conditions or constraints.
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Therefore, it is not surprising that mathematics and mathematical statistic-

s are used as basic analytical tools; indeed, they are also among the most

important research methods in economics.

1.11.6 Making Positive and Normative Analysis

According to the research method, economic analysis can be divided in-

to two categories: positive or descriptive analysis; and normative or value

judgement analysis. Another major difference between economics and nat-

ural science is that the latter essentially only performs positive analysis,

while the former involves both positive and normative analysis.

Positive analysis explains how an economy operates. It only gives facts

and provides explanations (thus verifiable), but does not make value judge-

ments about economic phenomena or offer means of revision. For example,

an important task of economics is to describe, compare, and analyze such

phenomena as production, consumption, unemployment and price, and to

predict possible outcomes of different policies. Consumer theory, producer

theory, and game theory are typical examples of the positive approach.

Normative analysis, on the other hand, makes value judgments on e-

conomic phenomena. It not only explains how an economy operates, but

also attempts to identify the means of revision. As a consequence, it always

involves the value judgments and opinions of the economists, and is thus

not verifiable through facts. For instance, certain economists may place

more emphasis on economic efficiency, while others may focus on equali-

ty or social justice. If we are cognizant of the differences between the two

methods, many disputes can be avoided when discussing economic issues.

Economic mechanism design theory is a typical example of the normative

approach.

Positive analysis is the foundation for normative analysis, while norma-

tive analysis is the extension of positive analysis. In this sense, the foremost

task of economics is to make positive analysis, and then normative analysis

follows. General equilibrium theory includes both the former (e.g., the ex-

istence, stability, and uniqueness of competitive equilibrium) and the latter

(the First and Second Fundamental Theorems of Welfare Economics).
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1.12 Practical Role of the Analytical Framework and

Methodologies

The most basic analytical framework and research methods of economics

that have been discussed are of practical utility. Even though these ana-

lytical frameworks and methodologies may appear simple, it is not easy to

comprehend and use them in our lives, studies, and research. However,

once the idea is mastered, lifelong benefits will ensue. For example, one

will be able to think scientifically. It will also be possible to investigate es-

oteric pure economic theories, as well as come up with viable solutions to

solve practical issues in one’s life and work.

First of all, from the perspective of studying economics, if the analytical

framework and methodologies are mastered, abstract models and intricate

mathematics will not be confusing. This is because, irrespective of the pro-

fundity of the mathematics used, how many formulae are employed, and

how complicated are the economic models that are used in an economic

theory, it still uses the above analytical framework and methodologies. If

the basic analytical framework and methodologies are grasped and em-

ployed as the main paradigm, you will be able to maintain your focus and

understand its general idea. Therefore, incomprehensible technical details

can be temporarily put aside, and the framework and conclusion under-

stood first; only then can we fully comprehend the details. In other words,

it is necessary to first grasp the primary point and general idea, know its

objectives, line of thinking as well as conclusions, and then consider the

details. Moreover, once the basic analytical framework and methodologies

are mastered, one possesses the correct idea of economics and cannot be

misled. This, of course, can have a markedly positive effect on your s-

tudy of economics. The reason why some people criticize economics and

its methodologies is that their judgements are mostly not based on method-

s of scientific analysis, and may even rely only on subjective assumptions.

If the basic analytical framework and methodologies are not understood,

it is possible that their judgments will make you confused, lose direction

when studying economics, and/or resist or even disregard the study of e-

conomics.
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Second, regarding economic research, once the basic analytical frame-

work and methodologies are understood, it will be easier to carry out re-

search. It is the case that many people who strive to do economic research,

even though they understand economics quite well and have read a large

number of related papers, they still find it difficult to conduct research. Ei-

ther they do not know how to do research, or their research findings are

not significant or widely recognized. In fact, research would become rela-

tively easier, as long as the basic analytical framework and methodologies

are understood, and one possesses basic mathematic knowledge and the

ability to carry out logical analysis. Conducting research is, to a certain

extent, step-by-step writing with inherent logic according to the five com-

ponents of the basic analytical framework. The basic analytical framework

and methodologies can greatly assist you to improve your research and

innovative abilities.

For example, if you are interested in a specific economic issue or phe-

nomenon, or you want to put forward a new theory with stronger explana-

tory power to guide the resolution of a pragmatic economic issue, it is nec-

essary to reasonably and precisely describe the economic environment and

economic agent’s behavior, employ existing analytical tools or develop new

ones to build as simple a model as possible, and then perform the deduc-

tion and proof. On the other hand, if you only intend to extend and im-

prove the original theory, it is necessary to determine whether the original

assumptions about the economic environment, behavior, and models fit the

reality and whether or not the assumptions can be relaxed to derive novel

or more general conclusions or even pathbreaking theories. In this case,

it might be easier to carry out the work of extensions and improvements.

Of course, it is also possible to modify the specification of economic en-

vironments or other components in order to reach a different, or perhaps

more important, conclusion. This is how the school of macroeconomics

and numerous theories under information asymmetry were developed. If

an economic theory is to be criticized, one should criticize which parts of its

analytical framework are unreasonable, illogical, or unrealistic, and in what

way, rather than censuring economics and its methodologies in aggregate.

Finally, understanding economics, its methodologies, and analytical frame-
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work may assist us to have a greatly improved thinking process, and deal

with everyday concerns and other individuals in a much better manner.

Indeed, it can make you more thoughtful, insightful, and capable in your

work. It is frequently stated that economics is esoteric and metaphysical s-

ince it involves so much difficult mathematics that seems remote from prac-

tice. Some people wonder“What will it be used for?”In fact, the basic ap-

proach of dealing with others and events in our daily lives is similar to the

basic framework in economic analysis. For example, when one is in a new

place preparing to perform a task or cooperate with others, the first thing

one needs to do is to become familiar with the local environment and sit-

uation, which is similar to“specifying the economic environment”in the

framework. It is then necessary to know the local culture and customs, the

behavioral patterns and personalities of your counterparts, etc., which is

similar to“making behavioral assumptions”. Subsequently, by taking all

of the information together, one can decide on one’s rules for dealing with

people, which is similar to “establishing economic institutional arrange-

ments”. The next step is to choose the optimal scheme by making trading-

offs among feasible options, which is similar to the“determining equilib-

rium”. The final step is to summarize and reflect on your decisions, ac-

tions, and your ways of dealing with people, circumstances, and events to

assess whether they constitute the most effective approaches, whether they

achieve the best outcomes, whether they are fair and reasonable, whether

individuals’ enthusiasm is engendered, whether people have reactions to

the incentive, and whether the intended goal of incentive compatibility is

achieved, which is similar to “making evaluations”. In addition, when

the environment and conditions are changed, or the subject with which you

are working is altered, the rules should be changed accordingly. If you can

act in accordance with the five aspects, and adjust the rules with changes

in conditions, better results will certainly be produced. Not only may this

be one of the best ways to deal with daily life and work, certain conclusion-

s of economic theories can also assist you to better think about and solve

problems.
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1.13 Requirements for Learning Economics

There are three basic requirements for learning and mastering economic

theory:

1. The first requirement is to master the basic concepts and definitions,

which is a reflection of logical thinking and a clear mind. This is the pre-

requisite not only for the discussion and analysis of questions and logically

inherent analysis, but also for a strong command of economics. Otherwise,

different definitions of terms may produce substantial confusion and lead

to unnecessary controversies.

2. One should be able to clearly state all theorems or propositions, and

also be definitive about the basic conclusions and their conditions. Other-

wise, even a small misunderstanding about an economic theory in appli-

cation to the analysis of issues may lead to serious problems. Since any

theory or institution has its proper scope of application, if we go beyond

that, problems are liable to arise, bringing about tremendous negative ex-

ternalities. In many cases, social or economic problems occur solely be-

cause economists misapply some theories without a solid understanding

of their applicable conditions. In this sense, a good economist is similar to

a qualified physician who needs to master the properties and efficacies of

different kinds of medicines when prescribing for his or her patients.

3. One must also grasp how the basic theorems or propositions are

proven (ideas and processes). A good economist, like a good physician,

should know what the problem is and why it is present, understand its

pathology, as well as be able to determine appropriate medicines. Then,

he or she can gain a deeper understanding and a better command of the

theories that he or she has learned.

If these requirements are met, it would be easy to refresh your memo-

ry, even if the proofs of some conclusions are forgotten. Economics relies

primarily upon the analysis of inherent logic, which also constitutes the

power of economic theory. This is why it is so crucial to accurately grasp

the theories and their scopes of application.
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1.14 Distinguishing Sufficient and Necessary Condi-

tions

When discussing economic issues, it is also important to distinguish be-

tween sufficient conditions and necessary conditions, which can assist peo-

ple to think clearly and avoid superfluous debates. A necessary condition

is a condition that is indispensable in order for an assessment to be true. A

sufficient condition, on the other hand, is a condition that guarantees that

the assessment is true. For instance, some people often negate the market

economy based on examples of severely underdeveloped countries, which

adopt a market economy but remain poor. From this, they contend that

a nation should not embark on the path of a market economy. These peo-

ple, however, do not realize the difference between sufficient and necessary

conditions: the adoption of a market economy is a necessary condition,

rather than a sufficient condition, for a nation to become developed and

prosperous. In other words, if a country aims to be prosperous, it must

adopt a market economy. Indeed, it is the case that, without exception, all

wealthy nations in the world are market economies. One must also admit,

however, that the market mechanism does not necessarily lead to national

prosperity. To be sufficient, other supplementary systems are needed, such

as the rule of law, strong state capacity, a suitable political system, etc.

Indeed, as discussed previously, a distinction exists between a good

market economy and a bad market economy. The reason for this is that,

although (based on observations of reality) the market mechanism is criti-

cal for national prosperity, many other factors also influence the prosperity

of a nation, such as the degree of government intervention, the political

system, the legal framework, religions, cultures and social structures, all of

which contribute to the labelling of the market mechanism as either good

or bad.
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1.15 The Role of Mathematics and Statistics in Eco-

nomics

Mathematics and statistics are of extreme significance for people to pos-

sess a thorough knowledge of nature and to successfully manage their dai-

ly affairs. As the well-known statistician, C. Radhakrishna Rao, pointed

out, mathematics is a type of logic employed to deduce results on a given

premise; whereas, statistics is a rational method acquired through experi-

ence and a kind of logic used to verify the premise with a given result. Rao

believes that“All knowledge is, in final analysis, history. All sciences are, in the

abstract sense, mathematics. All judgements are, in their rationale, statistics.”7

This assertion profoundly and comprehensively depicts the significance of

mathematics and statistics, and their respective connotations.

Mathematics and statistics are also essential in economics. Almost ev-

ery branch in economics uses mathematics, statistics, and econometrics to

a greater or lesser extent. The reasons for this include the following: eco-

nomics is increasingly becoming a science; mathematical analytical tools

are being increasingly used; and social systems are becoming increasingly

complex and influential. Therefore, when investigating economic problem-

s, it is necessary to have a rigorous theoretical model for inherently logical

analysis, and determine the range for a theoretical conclusion to be true;

then, empirical tests for the given results must be performed by means of

econometric analysis. As a consequence, it is not surprising that mathemat-

ics and mathematical statistics are used as basic analytical tools, and have

become the most important analytical tools in economics. Those who study

and conduct research on economics must possess a thorough knowledge of

both mathematics and mathematical statistics.

Modern economics mainly adopts the mathematical language to make

assumptions about economic environments and individual behavior pat-

terns, uses mathematical expressions to illustrate logical relations between

economic variables and economic rules, constructs mathematical models

to study economic issues, and finally follows the logic of mathematical lan-

7C. R. Rao, Statistics and Truth: Putting Chance to Work, World Scientific, Singapore, 2nd
edition, 1997.



1.15. THE ROLE OF MATHEMATICS AND STATISTICS IN ECONOMICS105

guage to deduce conclusions. Without related mathematical knowledge,

it is difficult to grasp the essence of concepts and discuss related issues,

and certainly conduct research and determine necessary boundaries or con-

straints when reaching conclusions. Consequently, it is necessary to master

sufficient mathematical knowledge if one intends to learn economics well,

engage in research on economics, and become a good economist.

People with little knowledge of mathematics are unlikely to be able to

master the basic theories and analytical tools of economics or understand

advanced economic textbooks or papers. In fact, they may use certain ex-

cuses, such as it is more important to produce economic thoughts, or math-

ematics is not generally needed to approach practical economic issues. Of

course, no one could refute the importance of economic thoughts since they

constitute the output of research. Without the tools of mathematics, howev-

er, how could the boundary conditions and the applicable scope of econom-

ic thoughts or conclusions be identified? Without knowledge of conditions

and scope, how could we protect against the misapplication of economic

thoughts or conclusions? Moreover, what are the odds for us to develop

such profound economic thoughts without using mathematical models, as

Adam Smith and Ronald H. Coase did? Even so, economists have never

ceased investigating what conditions are required for their conclusions to

hold. Without strict arguments, the thoughts or conclusions could not be

widely acknowledged. As mentioned above, the economic thoughts pre-

sented by philosophers in ancient China, such as Jiang Shang, Lao Tzu,

Sun Tzu, Guan Zhong and Sima Qian, are extremely profound, and some

of the ideas of Adam Smith had already been put forward by these philoso-

phers much earlier. However, their thoughts have never been known to the

outside world because they were just observations or conclusions of expe-

rience that did not form a scientific system or involve logically inherent

analyses using scientific methods.

There is another misunderstanding that research of economic issues

with mathematics is remote from reality. In fact, however, most mathe-

matical knowledge is developed on the basis of practical demands. People

who possess basic knowledge of physics, physical science history, or his-

tory of mathematical thought will know that both primary and advanced
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mathematics originated from the demands of scientific development and

reality. As such, why cannot mathematics be used to investigate practical

economic issues? The foundation of mathematics and economics is abso-

lutely essential for one to be a good economist. If one understands mathe-

matics well and masters fundamental analytical frameworks and research

methodologies of economics, economics can be learned more easily and

study efficiency will be markedly improved.

The primary functions of mathematics in the theoretical analysis of e-

conomics are as follows: (1) it makes the language more precise and the

statement of assumptions clearer, which can reduce superfluous disputes

resulting from ambiguous definitions. (2) It makes the analytical logic more

rigorous and makes it possible to definitively state the boundary, applica-

tion scope and conditions for a conclusion to hold true, and accurately i-

dentify the direction of theoretical innovation beyond the limitations of the

original theory. Otherwise, the abuse of a theory may occur. For example,

when discussing the issue of property rights, some people may quote the

Coase theorem, assuming that as long as the transaction cost is zero, there

will be efficient allocation of resources. Surprisingly, many people still ex-

ist (including Coase himself when providing his assessments) who do not

know that this conclusion is normally false if the utility (payoff) function

is not quasi-linear. (3) Mathematics can assist to obtain results that cannot

be easily attained through intuition. For example, from intuition, accord-

ing to the laws of supply and demand, competitive markets will achieve

market equilibrium through the adjustment of market prices according to

the“invisible hand”as long as the supply and the demand are not equal.

Yet, this conclusion does not always hold. For example, Scarf (1960) gave

counterexamples of market instability. (4) It helps to improve and extend

existing economic theory. Examples of this are manifold in the study of eco-

nomic theory. For instance, economic mechanism design theory constitutes

an improvement and extension of general equilibrium theory.

Qualitative theoretical analysis and quantitative empirical analysis are

both requisite for studying economic problems. Statistics and econometric-

s play a key role in these analyses. Statistics focuses more on data collec-

tion, description, sorting and providing statistical methods; econometrics
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identifies economic structures through economic theory, and focuses more

on testing economic theory, evaluating economic policy, making economic

forecasts, and identifying causal relationships between economic variables;

big data analysis can process data faster, better and more efficiently, and use

these data to discover new opportunities, provide new products and ser-

vices, and has great cost advantages. In order to better estimate economic

models and reach more accurate predictions, theoretical econometricians

and statisticians have continually developed increasingly powerful econo-

metric tools and big data analytic tools.

It is, however, worth noting that economics is not mathematics. Math-

ematics in economics is used as a tool to elucidate economic problems.

Economists employ mathematics to express their opinions and theories

more rigorously, and to assess interdependent relationships among eco-

nomic variables. With the metrication of economics and the precision of

various assumptions, economics has become a veritable social science with

a rigorous system.

However, a person with a strong knowledge of mathematics does not

necessarily become a good economist. This also requires a deep under-

standing of the analytical frameworks and research methodologies of eco-

nomics, and acute intuitions of actual economic environments and econom-

ic issues. The study of economics not only calls for the understanding of

terms, concepts and results from the perspective of mathematics (includ-

ing geometry), but more importantly, one must strive vigorously to grasp

economic meanings and underlying economic thoughts. This is, of course,

also the case when those are given by mathematical language and/or ge-

ometric figures. As a consequence, confusion must be avoided regarding

mathematical formulas or symbols in the study of economics. For all of

these reasons, we often state that, in order to become a good economist,

one needs to pursue academics with a good mastery of both scientific rigor

and underlying profound thoughts.
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1.16 Conversion between Economic and Mathemati-

cal Languages

The product of economic research is economic inferences and conclusion-

s. A standard economics paper usually consists of three parts: (1) it raises

questions, states the significance, and identifies the research objective; (2)

it establishes economic models and rigorously expresses and proves the in-

ferences; and (3) it uses non-technical language to explain the conclusions

and provides policy suggestions. In other words, an economic conclusion

is usually obtained through the following three stages: non-mathematical

language stage → mathematical language stage → non-mathematical lan-

guage stage. The first stage proposes economic ideas, concepts or conjec-

tures, which may stem from economic intuition or historical and foreign

experience. As they have not yet been proven by theories, they can be re-

garded as primary products of general production. The first stage is critical

because it is the origin of theoretical research and creation.

The second stage verifies whether or not the proposed economic ideas

or conjectures hold true. The verification requires economists to give for-

mal and rigorous proofs through axiomatic analysis by introducing eco-

nomic models and analytical tools, and if possible, to test them with empir-

ical data. The conclusions and inferences obtained are usually expressed in

mathematical language or technical terms, which may not be understand-

able to non-experts. Therefore, they may not be adopted by the public,

government administrations, or policy-makers. For this reason, these con-

clusions expressed by technical language can be regarded as intermediate

products of general production.

Economic studies should serve the real economic world. Therefore, the

third stage aims to express the conclusions and inferences in non-expert

language rather than expert language, making them more decipherable to

the general public. Policy implications and profound meanings of con-

clusions and insightful inferences conveyed through non-expert language

constitute the final products of economics. It is notable that, in both the

first and the third stages, economic ideas and conclusions are presented

in common, non-technical and non-mathematical language; whereas, the
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third phase is a kind of enhancement of the first phase. In fact, the three-

stage form of common language - technical language - common language is

a normal research method that is widely adopted by numerous disciplines.

1.17 Biographies

1.17.1 Adam Smith

Adam Smith (1723-1790) is well-known as the father of economics. Adam

Smith finished his study of Latin, Greek, mathematics, and ethics at the

University of Glasgow in Britain. Subsequently, he worked at the Univer-

sity of Glasgow as a Professor in Logics and Moral Philosophy, and held

the honorary position of Lord Rector. The Wealth of Nations, published

in 1776, is Smith’s most influential work and also a great contribution to

the establishment of economics as an independent discipline. This book is

widely considered to be the most influential work among all publications

in the field of economics. His main academic thinking was strongly in-

fluenced by Bernard de Mandeville (1670-1731), Francis Hutcheson (1694-

1764), David Hume (1711-1776), J. Vanderlint (year of birth unknown, died

in 1740), George Berkeley (1685-1753), and others.

Smith suggested that the economic development of human society was

the outcome of the spontaneous actions of tens of millions of individuals

whose behavior followed the power of instinct and was driven by their self-

interested nature. Smith regarded this power as the “invisible hand”,

which is his idea of allowing the rule of the market to play the decisive role

in the organization of economic society. The Wealth of Nations denied the

attention to land in physiocracy, but valued labor as the most important

aspect and believed that the division of labor could increase the efficiency

of production.

Thomas Robert Malthus and David Ricardo focused on summarizing

Smith’s theories into a theory known as the classical economics in the twen-

tieth century (where economics thus originated). Malthus further extended

Smith’s theories to the problem of surplus of population. Ricardo, on the

other hand, put forward the iron law of wages, suggesting that the surplus
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of population may lead to the consequence that workers’ livelihood cannot

be guaranteed. Smith assumed that the increase in wages would accom-

pany the increase in production, which seems more correct from today’s

perspective. Theories involved in his book not only set up the division of

labor theory, but also pioneered in certain areas, including monetary theo-

ry, theory of value, theory of distribution, capital accumulation theory, the-

ory of taxation, etc. In addition, Marx’s labor theory of value, which was

built upon the basis of Ricardo’s political economy, also received indirect

influence from Smith’s theory.

Before the foundational work, The Wealth of Nations, Smith wrote The

Theory of Moral Sentiments (first published in 1759). In this book, he main-

ly argued that people should have sympathy and a sense of justice, which

may occur particularly under unusual circumstances (for example, when

people are suffering or when a nation is invaded). He strove diligently to

prove how self-interested individuals controlled their emotions and behav-

ior, and especially their selfish sentiment and behavior, so that incentive

compatibility between social interest and self-interest could be achieved.

Indeed, the system of economic theory built by Smith in The Wealth of Na-

tions is based on his arguments in The Theory of Moral Sentiments.

Smith worked on the two works simultaneously, and revised them re-

peatedly until his death. They became two organic and complementary

components in his academic thinking system. The Theory of Moral Senti-

ments states the problem of morality, while The Wealth of Nations states the

problem of economic development. Smith regarded The Wealth of Nations

as a continuation of his thinking in The Theory of Moral Sentiments. The two

books, however, differ in mood, scope of discussion, structural arrange-

ment, and emphasis. For example, the control for self-interested behavior

in The Theory of Moral Sentiments relied on sympathy and a sense of jus-

tice; whereas, in The Wealth of Nations, it relied on the competitive mecha-

nism. Nonetheless, the discussions about the motivation of self-interested

behavior were essentially identical. It can be suggested that individuals’

sympathy, sense of justice, and pursuit of self-interest just constitute differ-

ent reactions to different circumstances (unusual or usual). In The Theory

of Moral Sentiments, Smith regarded“sympathy”as the core of judgemen-
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t, but when it is viewed as the motivation of an individual’s behavior, a

completely different outcome will result.

1.17.2 David Ricardo

David Ricardo (1772-1823), a representative of Classical Political Economy,

together with Thomas Robert Malthus (1766-1834), integrated Smith’s the-

ory into classical economics. Ricardo was born to a Jewish family, and his

father was a stock broker. He attended a business college in the Nether-

lands at 12-years-old and worked on a stock exchange with his father at

14. He was engaged in stock exchange work independently in 1793, and by

the time he was 25, he had amassed a wealth of two million pounds. After

that, he began to study mathematics and physics. When he first read Adam

Smith’s The Wealth of Nations in 1799, he began to study economic issues. At

the age of 37, he published his first paper in economics and did very well in

this field. During the 14 years of his short academic life, he left numerous

works, papers, notes, letters, and speeches. Among those, the most famous

one is the Principles of Political Economy and Taxation published in 1817. It

has been claimed that Ricardo was somewhat conceited. He stated that his

point of view was different from Smith and Malthus, who enjoyed great

prestige then and, in Britain, there would be less than 25 people who could

fully comprehend his book. In 1819, Ricardo was elected as a member of

parliament.

Starting with Bentham’s version of utilitarianism, Ricardo established a

theoretical system based on the labor theory of value and centered on the

theory of distribution. He insisted in the principle which stated that the

value of a commodity was determined by the labor cost contained in it. He

also criticized Smith’s theory of value by contending that labor that could

decide value constituted socially necessary labor. In addition, labor that

could decide the value of a commodity was not only direct living labor, but

also labor in factors of production. Ricardo suggested that all value was

produced by labor and was distributed among three classes: wages that

were decided by the value of the essential means of subsistence of workers;

profit was the surplus when wages were deducted; and land rent was the
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surplus when wages and profit were deducted.

Based on the labor theory of value, Ricardo established the theory of

comparative advantage. In On the Principles of Political Economy and Tax-

ation, he clearly stated that “The value of a commodity, or the quantity

of any other commodity for which it will exchange, depends on the rela-

tive quantity of labour which is necessary for its production”. He further

asserted that “the exchangeable value of these commodities, or the rule

which determines how much of one shall be given in exchange for another,

depends almost exclusively on the comparative quantity of labour expend-

ed on each”. The profit of each party in international trade is also fully

correlated with the exchangeable value of all commodities in the interna-

tional market, i.e., the relative price level.

Ricardo regarded the free flow of factors of production, such as capital

and labor, among regions and industries within a country as the fundamen-

tal reason of equalized rate of profit. The flow of factors between nations,

however, would inevitably be interrupted by force or even totally stopped

due to various reasons. Ricardo concluded that it was the immobility of

factors between countries that decided“the same rule which regulates the

relative value of commodities in one country, does not regulate the relative

value of the commodities exchanged between two or more countries”. S-

ince there are numerous reasons for different relative values of one com-

modity in different countries, there is room for profit for all of the partici-

pating countries in international trade. Its main premise, however, is that

each country is cognizant of its advantages compared with others, i.e., they

are certain about their own comparative advantages.

1.18 Exercises

Exercise 1.1 (Economics and the three dimensions of scientific economic analysis)

Answer the following questions:

1. What is the definition of economics?

2. What are the two great objective realities facing the study of economic

problems?
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3. What is modern economics?

4. What are the“three dimensions and six natures”?

5. Why does scientific economic analysis need the “three dimensions

and six natures”?

Exercise 1.2 (Differences between economics and natural science) Answer

the following questions:

1. What are the main differences between economics and natural sci-

ence?

2. Why do these differences make economic research more complex and

difficult?

Exercise 1.3 (Two basic categories of economic theory) Answer the follow-

ing questions:

1. Which two categories of economic theories can be classified according

to their functions?

2. Describe the connotation and function of each category, as well as the

relationship between these two categories.

3. How should we correctly regard and deal with the interaction be-

tween these two kinds of economic theory?

Exercise 1.4 (The fundamental functions of economic theory) Answer the

following questions:

1. What are the three main functions of economic theory?

2. Why is there not a best kind of economic theory that is always right

and fits every development stage, but instead a kind that fits certain

institutional environments the best?

3. What are two common misunderstandings of economic theories?

Exercise 1.5 (Market and market mechanism) Answer the following ques-

tions:
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1. From the perspectives of information and incentive, what are the ad-

vantages of the market economic system compared with the planned

economic system?

2. Under the condition of the market economy, what are the three basic

functions of price?

3. What is the superiority of the market system?

4. What are the three development stages that an economy will experi-

ence? How can efficiency-driven and further innovation-driven de-

velopment be realized? What is the basic economic institution behind

this?

Exercise 1.6 (The dialectical relationship between competition and monopoly)

Answer the following questions:

1. Why do people want to introduce the competitive mechanism in the

view of social resource allocation, while enterprises desire monopo-

lies? Please also state the dialectical relationship between competition

and monopoly.

2. What does the Innovation Theory of Schumpeter tell us? Please state

the importance of innovation-driven development.

3. Why do innovation and entrepreneurship depend on institutional

choice, and therefore constitute endogenous variables?

Exercise 1.7 (The boundaries among the government, the market, and the society)

Answer the following questions:

1. Why is it necessary to reasonably define the boundaries between the

government and the market and between the government and the

society?

2. How should the boundaries between the government and the market

and between the government and the society be generally defined?
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3. Why does a well-governed nation need to reasonably define not on-

ly the boundaries between the government and the market, but also

those between the government and the society?

Exercise 1.8 (The three basic institutional arrangements for state governance and benign development)

Answer the following questions:

1. What are the three elements of state governance and benign develop-

ment?

2. What are the three basic institutional arrangements for state gover-

nance?

3. State the range of application and limitation of each of the three basic

institutional arrangements. Which one is the most basic and impor-

tant?

Exercise 1.9 (The logic of development and governance) Answer the fol-

lowing questions:

1. How shall we correctly understand the logic of development and

governance and the dialectical relationship between the two?

2. Explain the achievements and limitations of economic reform in Chi-

na according to this framework.

Exercise 1.10 (Ancient Chinese Economic Thought) Answer the following

questions:

1. Provide five examples that indicate the thought of the market econo-

my in ancient China.

2. Why could not those numerous deep economic thoughts in ancient

China form a scientific economic theory?

Exercise 1.11 (The cornerstone assumptions of economics) Answer the fol-

lowing questions:

1. State the relationship and distinction between self-love, selfishness,

and self-interest.
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2. Why does economics use the self-interest assumption as the most ba-

sic, important, and central assumption?

3. How shall we regard self-interestedness and altruism?

Exercise 1.12 (Key points in economics) Answer the following questions:

1. What are the key points of economics? Please state each of them gen-

erally.

2. State the meanings, advantages, and limitations of centralized and

decentralized decision-making.

3. Why are economic freedom and competition crucial to economic de-

velopment?

4. Why is acting under constraints one of the most fundamental princi-

ples in economics?

5. What is the relationship between incentive and information?

6. Why are clearly defined property rights crucial to the efficient alloca-

tion of resources?

7. Discuss the differences between equity in outcome and equality of

opportunity. Which one does not conflict with efficiency?

Exercise 1.13 (Proper understanding of economics) Answer the following

questions:

1. How shall we regard the scientific nature of economics?

2. How shall we regard the mathematical nature of economics?

3. How shall we regard economic theory correctly?

4. How shall we regard the critics that contend that economics cannot

be tested through experimentation?

Exercise 1.14 (Basic analytical framework of (modern) economics) Answer

the following questions:
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1. What are the components that constitute the basic analytical frame-

work of a standard modern economic theory?

2. Why do different economic environments need different economic

theories?

3. Why are different economic theories needed even for the same eco-

nomic reality or environment under many circumstances?

4. Why should evaluation be included in the analytical framework?

5. Taking Coase theorem as an example, expound on its economic ana-

lytical framework.

6. What are practical usages of the basic analytical framework and re-

search methodologies of economics?

Exercise 1.15 (Benchmark and reference system) Answer the following ques-

tions:

1. What are the definitions of benchmark and reference system?

2. Why are setting-up benchmarks and establishing reference systems

the premise of discussing economic problems?

3. What are typical examples of reference systems?

Exercise 1.16 (Methodologies) Answer the following questions:

1. When considering the problem of economic reform, why is it impor-

tant to distinguish necessary conditions from sufficient conditions?

2. Why are both positive and normative analysis needed when discussing

economic problems?

3. How shall we regard the role of mathematics and statistics in eco-

nomics?

4. How shall we complete the conversion between economic and math-

ematical languages?
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Chapter 2

Preliminary Knowledge and

Methods of Mathematics

This chapter provides self-contained mathematical knowledge and results

that constitute indispensable tools of modern economics, in general, and

advanced microeconomic theory, in particular. It includes basic knowl-

edge and results of topology, linear algebra, mathematical analysis, fixed

point theory, static optimization, dynamic optimization, differential equa-

tions, difference equations, probability theory, and stochastic dominance

and affiliation. Readers with more mathematics training will also find this

chapter useful as an important reference course for most of the principal

mathematical theorems that arise in modern economics.

We begin with the basic mathematical knowledge that you will fre-

quently encounter.

2.1 Basic Set Theory

This section introduces some basic concepts and results of set theory.

2.1.1 Set

A set S is a collection of elements. According to the number of elements, a

set can be a finite set, for example, S = {1, 3, 5, 7, 9}; an infinite countable

set, for example, S = N , where N is the set of all natural numbers; or an

125
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infinite uncountable set, for example, S = R, where R is the set of all real

numbers. A countable set can be either finite or infinite. A set can also be

described with some properties, for example, S = {1, 3, 5, 7, 9} = {x : x <
10, x ∈ N , x2 /∈ N }. The empty set ∅ is a set consisting of no elements.

A subset T of a set S is also a set, and any element in T belongs to S,

denoted by T ⊆ S. If T is a subset of S and S has at least one element that

does not belong to T , then T is a proper subset of S. If T and S are subsets

of each other, then these two sets are equal, i.e., T = S.

The union of two sets T and S is denoted by T
∪
S = {x : x ∈ T or x ∈

S}; the intersection of two sets T and S is denoted by T
∩
S = {x : x ∈

T and x ∈ S}.

The complement set of S in the universal set U is denoted by Sc = {x :
x ∈ U, x /∈ S}. The complement set of the universal set U is the empty set,

and the complement of the empty set is the universal set. The difference

between sets S and T is denoted by S\T or S − T , which is defined as

S\T = S − T = {x : x ∈ S, x /∈ T}.

The complement of the union or the intersection of any number of sets

satisfies De Morgan’s law:

(∪
i∈I

Ai

)c
=
∩
i∈I

Aci ;

(∩
i∈I

Ai

)c
=
∪
i∈I

Aci .

The product of sets T and S is denoted by S × T = {(s, t)|s ∈ S, t ∈ T}.

The n-dimensional real space is defined as Rn = R × R × R × · · · × R︸ ︷︷ ︸
product of n spaces

.

2.1.2 Mapping

Definition 2.1.1 (Mapping) Given sets A and B, if for each element x in A,

there always exists an element y inB related to it, then this relation is called

a mapping or function, denoted by f : A → B. The set A is called the domain

of f , and the set B is called the range.

The image of f is the set of points in the range into which some points
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in the domain are mapped, i.e., I = {y : y = f(x), for some x ∈ A}.

The following definition gives the types of mapping.

Definition 2.1.2 Given sets A and B, and a mapping f : A → B, we call

f a surjection if {y ∈ B : f(x) = y, x ∈ A} ≡ f(A) = B; an injection if

f(x) ̸= f(x′) holds for all x ̸= x′; a bijection if f is both a surjection and an

injection.

If there is a bijection f between sets A and B, then A and B are equiva-

lent, denoted by A ∼ B. Next, we will discuss the number of elements of a

set.

Definition 2.1.3 Let Jn = {1, 2, · · · , n} be the set of the first n positive

integers, and J the set of all positive integers.

(1) A set A is a finite set, if there exists a certain n such that A ∼
Jn;

(2) A set A is a countably infinite set, if A ∼ J ;

(3) A set A is countable, if it is either a finite set or an countably

infinite set;

(4) A set A is uncountable, if it is not countable.

Both sets of natural and rational numbers are countable sets, but the

real number set is not. The following conclusion shows that the set of all

binary numbers is not countable.

Theorem 2.1.1 Suppose that A is a set consisting of all sequences made up of 0

and 1. Then, it is uncountable.

Refer to the proof of Theorem 2.14 in Rudin (1976)’s Principles of Math-

ematical Analysis.

Since real numbers can be represented in binary, the set of real numbers

is equivalent to the set A above, which is uncountable. Any interval (a, b)

is equivalent to the real space since f = y

1 − |y|
with

y =
x− (a+ b)

2
(b− a)

2
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is a bijection of them, and thus any real interval is uncountable.

2.2 Basic Linear Algebra

2.2.1 Matrix and Vector

We use Rn to represent a set of all n-tuple real numbers. Its elements are

called the points or vectors. x =


x1

· · ·
xn

 represents a column vector, and

xi is the ith component of the vector x. x′ = (x1, · · · , xn), a row vector,

is defined as the transpose of x. If not expressly specified, vectors refer to

column vectors, in general.

The inequality signs =, ≥ and > about vectors are defined as follows.

Let a,b ∈ Rn, then a = b represents that as = bs for all s = 1, · · · , n; a ≥ b

represents that a = b, but a ̸= b; a > b represents that for all s = 1, · · · , n,

as > bs.

In economics, it is usually required to solve the system of linear equa-

tions, which can now be easily expressed and solved by linear algebra.

We consider a system ofm linear equations with n variables (x1, x2, · · · , xn):

a11x1 + a12x2 + · · · + a1nxn = d1

a21x1 + a22x2 + · · · + a2nxn = d2

· · ·
am1x1 + am2x2 + · · · + amnxn = dm

where the letter with double subscript, aij , denotes the coefficient appear-

ing in ith equation and attached to the jth variable xj , and dj denotes the

constant term on the right side of the jth equation.

This can be expressed more succinctly in the following matrix form:

Ax = d,

where A,x,d are, respectively:
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A =


a11 a12 · · · a1n

a21 a22 · · · a2n

· · · · · · · · · · · ·
am1 am2 · · · amn



x =


x1

x2

· · ·
xn



d =


d1

d2

· · ·
dm


A is called the coefficient matrix of a m × n system of equations, which

consists of m rows and n columns; x is called a variable vector, and d is a

constant vector. An n-dimensional vector can be viewed as a special n× 1
matrix.

As a shorthand device, the array in matrixA can be written more simply

as

A = [aij ]m×n (i = 1, 2, · · · ,m; j = 1, 2, · · · , n).

2.2.2 Matrix Operations

Here, we provide a brief introduction to some common matrix operations.

Equality of Two Matrices: A = B if and only if aij = bij holds for all

i = 1, 2, · · · ,m, j = 1, 2, · · · , n.

Addition and Subtraction of Matrices: A ± B = [aij ] ± [bij ] = [aij ± bij ].
Note that addition and subtraction make sense only if the dimensions

of matrices are identical.

Scalar Multiplication of Matrices: λA = λ[aij ] = [λaij ].

Matrix Multiplication: Given two matrices Am×n and Bp×q, matrix mul-

tiplication requires a compatibility condition: the number of columns
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in matrix A is the same as the number of rows in matrix B, i.e., n = p. If

the compatibility condition is satisfied, the dimension of the product

of AB is m× q. AB is defined as:

AB = C

with cij = ai1b1j + ai2b2j + · · · + ainbnj =
∑n
l=1 ailblj . Obviously, the

matrix product of AB is not necessarily equal to BA.

Identity Matrix

A square matrix is a matrix with the same number of rows and columns,

which is assumed to be n.

An identity matrix of order n, denoted by In, is a square matrix with

ones in its principal diagonal and zeros everywhere else.

It possesses the following properties:

Property 1:

ImAm×n = Am×nIn = Am×n

Property 2:

Am×nInBn×p = (Am×nIn)Bn×p = Am×nBn×p

Property 3:

(In)k = In

This matrix is analogous to 1 in real space.

Idempotent Matrices: A matrix A is said to be idempotent if AA = A.

Null Matrix

A null or zero matrix (not necessarily a square matrix) –denoted by 0, plays

the role of the number 0.

A m× n null matrix is simply a matrix whose elements are all zero.

Null matrices obey the following rules of operation:

Am×n + 0m×n = Am×n;
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Am×n0n×p = 0m×p;

0q×mAm×n = 0q×n.

Remark 2.2.1 (1) CD = CE, C ̸= 0 does not imply that D = E,

e.g.,

C =

2 3
6 9

 D =

1 1
1 2

 E =

−2 1
3 2

 .
(2) Even if A and B ̸= 0, we still have AB = 0, e.g.,

A =

2 4
1 2

 , B =

−2 4
1 −2

 .

2.2.3 Linear Dependence of Vectors

One of the most important properties among vectors is linear dependence.

Definition 2.2.1 (Linear Dependence) A set of vectors v1, · · · ,vn is linear-

ly dependent, if and only if there exists a vector vi, which is a linear combi-

nation of the others, i.e., vi =
∑
j ̸=i αjv

j .

Example 2.2.1 The following three vectors

v1 =

2
7

 , v2 =

1
8

 , v3 =

4
5


are linearly dependent, since

3v1 − 2v2 =

 6
21

−

 2
16

 =

4
5

 = v3

or

3v1 − 2v2 − v3 = 0

where 0 =

0
0

 is a zero vector.
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2.2.4 Transpose and Inverse of Matrix

The transpose of a m × n matrix A is a matrix which is obtained by inter-

changing the rows and columns of the matrix A. Formally, we have

Definition 2.2.2 (Transpose of Matrix) B = [bij ]n×m is said to be the trans-

pose of the matrix A = [aij ]m×n, denoted by A′ or AT , if aji = bij for all

i = 1, · · · , n and j = 1, · · · ,m.

Definition 2.2.3 We have the following types of matrices regarding the

transpose of a matrix:

The matrix A is said to be symmetric if A′ = A.

The matrix A is said to be antisymmetric if A′ = −A.

The matrix A is said to be orthogonal if A′A = I .

Properties of Transpose:

a) (A′)′ = A;

b) (A+B)′ = A′ +B′;

c) (αA)′ = αA′, where α is a real number;

d) (AB)′ = B′A′.

We now discuss the inverse of a square matrix. The inverse of matrix

A, denoted by A−1, should satisfy

AA−1 = A−1A = I.

While the transpose of matrix always exists, the inverse does not neces-

sarily exist.

Remark 2.2.2 The following statements are true:

1) Not every square matrix has an inverse, i.e., squareness is a

necessary, but not sufficient, condition for the existence of an

inverse. If a square matrix A has an inverse, A is said to be
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nonsingular. If A has no inverse, it is said to be a singular

matrix.

2) If A is nonsingular, then A and A−1 are inverse of each other,

i.e., (A−1)−1 = A.

3) If A is n× n, then A−1 is also n× n.

4) The inverse of A is unique.

5) AA−1 = I implies that A−1A = I .

6) Suppose that A and B are nonsingular matrices with dimen-

sion n× n.

(a) (AB)−1 = B−1A−1

(b) (A′)−1 = (A−1)′

2.2.5 Solving a Linear System

Consider a system of n equations with n unknowns:

Ax = d.

If A is nonsingular, then multiplying both sides by A−1 gives:

A−1Ax = A−1d.

Therefore, x = A−1d is the unique solution of the linear systemAx = d,

where A−1 is unique.

Prior to applying the method of inverse matrix to solve linear systems,

it is necessary to first determine whether or not the matrix is nonsingular.

Secondly, we shall solve it by the Cramer’s rule.

There are two ways to test the nonsingularity of a square matrix A. The

first is to determine whether or not the row or column vectors of a matrix

are linearly independent; the second is to discern whether the determinant

of a square matrix is equal to zero.

An n × n square matrix A could be written as a set of vectors in terms
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of rows.

A =


a11 a12 · · · a1n

a21 a22 · · · a2n

· · · · · · · · · · · ·
an1 an2 · · · ann

 =


v1′

v2′

· · ·
vn′


where vi′ = [ai1, ai2, · · · , ain], i = 1, 2, · · · , n. Whether a square matrix A

is nonsingular is determined by whether the vectors vi′ , i = 1, 2, · · · , n are

linearly independent.

Determinant of a Matrix

The determinant of an nth order square matrix A = (aij), denoted by |A| or

det(A), is a uniquely defined scalar associated with that matrix. Determi-

nants are defined only for square matrices. Prior to giving the definition of

an nth order square matrix A, we give the definition of A with 2th and 3th

orders, respectively.

For a 2 × 2 matrix:

A =

a11 a12

a21 a22

 ,
its determinant is defined as follows:

|A| =

∣∣∣∣∣∣a11 a12

a21 a22

∣∣∣∣∣∣ = a11a22 − a12a21

In view of the dimension of matrix A, |A| as defined in the above is

called a second-order determinant.

For a 3 × 3 matrix A, its third-order determinant is defined as

|A| =

∣∣∣∣∣∣∣∣∣
a11 a12 a13

a21 a22 a23

a31 a32 a33

∣∣∣∣∣∣∣∣∣ = a11

∣∣∣∣∣∣a22 a23

a32 a33

∣∣∣∣∣∣− a12

∣∣∣∣∣∣a21 a23

a31 a33

∣∣∣∣∣∣+ a13

∣∣∣∣∣∣a21 a22

a31 a32

∣∣∣∣∣∣
= a11a22a33 − a11a23a32 − a12a21a33 + a12a23a31 + a13a21a32 − a13a22a31.

From the definition of the determinant for matrix A with 2th or 3th or-

der, it is defined as the sum of all possible products, in which each product
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consists of elements in different rows and columns. This is also true for a

general nth order square matrix A. Then, for a n× n matrix A, its determi-

nants is defined as:

|A| =
∑

(α1,··· ,αn)
(−1)I(α1,··· ,αn)a1α1a2α2 · · · anαn ,

where (α1, · · · , αn) is the permutation of (1, · · · , n), and I(α1, · · · , αn) is

the number of inversion times when reordering (1, · · · , n).

For example, (2, 1, 3) is reordered once by (1, 2, 3), and (2, 3, 1) is re-

ordered twice by (1, 2, 3).

There is a simple method to calculate the determinant of a matrix, i.e.,

the Laplace expansion:

|A| =
n∑
k=1

(−1)l+kalk × det(Mlk), for any l ∈ {1, · · · , n},

whereMlk is the n−1th order square matrix that results fromA by deleting

the l-th row and the k-th column, called the minor of alk.

The Laplace expansion of an nth-order determinant will reduce the

problem to one of evaluating n minors, each of which is of the (n − 1)th

order, and the repeated application of the process will methodically lead to

increasingly lower orders of determinants, eventually culminating in the

basic second-order determinants. Then, the value of the original determi-

nant is calculated.

Even though one can expand |A| by any row or any column, concerning

the numerical calculation, a row or column with largest number of 0’s or 1’s

is always preferable for this purpose, because 0 times its cofactor is simply

0.

Basic Properties of Determinants

1. The determinant of a matrixA has the same value as that of its

transpose A′, i.e., |A| = |A′|. Therefore, row independence is

equivalent to column independence.

2. The multiplication of any one row (or column) by a scalar k
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will change the value of the determinant k-fold.

3. The interchange of any two rows (columns) will alter the sign,

but not the numerical value, of the determinant.

4. A scale of any row (column) added to any other row (column)

does not change the value or the sign of the determinant.

5. If two rows (or columns) are proportional, i.e., they are lin-

early dependent, then the determinant will vanish.

6. det(AB) = det(A)det(B).

7. det(A−1) = 1
det(A) . As a consequence, a necessary condition

for the existence of A−1 is that det(A) ̸= 0.

Using these properties, we can simplify the matrix (e.g., by applying

Property 4, we can make a row or column have as many zero elements as

possible), and the Laplace expansion of a determinant will become a much

more manageable task.

Next, we provide a formula for solving the inverse of a nonsingular

square matrix. Let A−1 = (dij), then

dij = 1
det(A)

(−1)i+jdet(Mij).

The Cramer’s Rule given below summarizes how to solve a linear sys-

tem. For a system of linear equations:

Ax = d,

where

A =


a11 a12 · · · a1n

a21 a22 · · · a2n

· · · · · · · · · · · ·
an1 an2 · · · ann

 ,

d′ = (d1, · · · , dn),

x′ = (x1, · · · , xn).
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The solution is:

xj = det(Aj)
det(A)

,

where:

Aj =


a11 · · · a1j−1 b1 a1j+1 · · · a1n

a21 · · · a2j−1 b2 a2j+1 · · · a2n

· · · · · · · · · · · · · · · · · · · · ·
an1 · · · anj−1 bn anj+1 · · · ann


which is obtained by replacing the jth column of |A| with constant terms

d1, · · · , dn. This result is the statement of Cramer’s rule.

2.2.6 Quadratic Form and Matrix

A function q with n variables is called a quadratic form if it has the follow-

ing expression:

q(x1, x2, · · · , xn) = a11x
2
1 + 2a12x1x2 + · · · +2a1nx1xn

+ a22x
2
2 + · · · +2a2nx2xn

· · ·

+annx2
n.

Let aji = aij , i < j, and then q(x1, x2, · · · , xn) can be written as

q(x1, x2, · · · , xn) =a11x
2
1 + a12x1x2 + · · · + a1nx1xn

+ a12x2x1 + a22x
2
2 + · · · + a2nx2xn

· · ·

+ an1xnx1 + an2xnx2 + · · · + annx
2
n

=
n∑
i=1

n∑
j=1

aijxixj

=x′Ax,

where
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A =


a11 a12 · · · a1n

a21 a22 · · · a2n

· · · · · · · · · · · ·
an1 an2 · · · ann


is called a matrix of quadratic form. Since aij = aji, A is an nth-order

symmetric square matrix.

Definition 2.2.4 For a matrix of quadratic formA, the quadratic form q(u1, u2, · · · , un) =
u′Au is said to be

(a) positive definite (PD) if q(u) > 0 for all u ̸= 0;

(b) positive semidefinite (PSD) if q(u) = 0 for all u ̸= 0;

(c) negative definite (ND) if q(u) < 0 for all u ̸= 0;

(d) negative semidefinite (NSD) if q(u) 5 0 for all u ̸= 0.

Otherwise, q is called the indefinite (ID).

Sometimes, we say that a matrix D is, for instance, positive definite if

the corresponding quadratic form q(u) = u′Du is positive definite.

A necessary and sufficient condition for a matrix of quadratic form A to

be positive definite is that all of its minors are positive, i.e.,

|A1| = A11 > 0;

|A2| =

∣∣∣∣∣∣a11 a12

a21 a22

∣∣∣∣∣∣ > 0;

· · ·

|An| =

∣∣∣∣∣∣∣∣∣∣∣

a11 a12 · · · a1n

a21 a22 · · · a2n

· · · · · · · · · · · ·
an1 an2 · · · ann

∣∣∣∣∣∣∣∣∣∣∣
> 0.

A necessary and sufficient condition for a quadratic form A to be neg-

ative definite is that its minors alternate in sign starting from negative,

namely,

|A1| < 0, |A2| > 0, |A3| < 0, · · · , (−1)n|An| > 0.
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2.2.7 Eigenvalues, Eigenvectors, and Traces

If a square matrixA and a real number λ satisfy the equationAx = λx, then

λ is called the eigenvalue of A, and the vector x is called the eigenvector

of A belonging to the eigenvalue λ.

Eigenvalues and some properties of matrix, such as positive or negative

definiteness, have close connections. The following theorem characterizes

the relation between the eigenvalues and positive (or negative) definite-

ness.

Theorem 2.2.1 A Matrix of quadratic form A is

positive definite, if and only if eigenvalues λi > 0 for all i = 1, 2, · · · , n;

negative definite, if and only if eigenvalues λi < 0 for all i = 1, 2, · · · , n;

positive semi-definite, if and only if eigenvalues λi = 0 for all i =
1, 2, · · · , n;

negative semi-definite, if and only if eigenvalues λi 5 0 for all i =
1, 2, · · · , n;

indefinite, if at least one eigenvalue is positive and at least one eigen-

value is negative.

For a symmetric matrixA, there is a convenient decomposition method.

Matrix A is diagonalizable if there exist a non-singular matrix P and a

diagonal matrix D, such that

P−1AP = D.

Matrix U is orthogonal matrix if U ′ = U−1.

Theorem 2.2.2 (The Spectral Theorem for Symmetric Matrices) Suppose that

A is a symmetric matrix of order n and λ1, · · · , λn are its eigenvalues. Then, there

exists an orthogonal matrix U , such that

U−1AU =


λ1 0

. . .

0 λn
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or

A = U


λ1 0

. . .

0 λn

U ′.

Usually, U is the orthogonal matrix formed by eigenvectors. It has the

property U ′U = I . “Orthogonal”means that for any column u of the

matrix U , u′u = 1.

The power operation of symmetric matrix has a convenient form:

Ak = U


λk1 0

. . .

0 λkn

U ′.

If the eigenvalues of A are nonzero real numbers, then the inverse of A can

be reformulated as follows:

A−1 = U


λ−1

1 0
. . .

0 λ−1
n

U ′.

Another common concept about square matrix is the trace. The trace of

an nth-order A is tr(A) =
∑n
i aii. It also has following properties:

(1) tr(A) = λ1 + · · · + λn;

(2) If A and B have the same dimension, then tr(A + B) =
tr(A) + tr(B);

(3) If a is a real number, tr(aA) = a · tr(A);

(4) tr(AB) = tr(BA), if AB is a square matrix;

(5) tr(A′) = tr(A);

(6) tr(A′A) =
∑n
i=1

∑n
j=1 a

2
ij .
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2.3 Basic Topology

Topology is a branch of mathematics that studies the basic properties of

topological spaces and various kinds of mathematical structures defined

on them. This branch is originated from the study of the set of points on

real axis, manifolds, metric spaces, and functional analysis.

There are two branches of topology. The one that focuses on using the

analysis method is called the general topology, point-set topology, or ana-

lytic topology. If further subdivided, point-set topology also has a branch:

differential topology. The other branch emphasizes the use of algebraic

method, called the algebraic topology. However, these branches tend to

be unified. Topology is broadly applied in functional analysis, Lie Group,

differential geometry, differential equations, and many other branches of

mathematics.

Here, we provide a very brief introduction to basic knowledge of point-

set topology, and apply it to establish some important conclusions about

the properties of sets and continuous mappings between sets.

2.3.1 Topological Space

Definition 2.3.1 Suppose that X is a nonempty set. We call a family of

subsets of X , denoted by τ , a topology of X if

(1) both X and the empty set belong to τ ;

(2) the union of any number of members in τ is in τ ;

(3) the intersection of a finite number of members in τ is in τ .

The set X together with its topology τ is called the topological space, de-

noted by (X, τ); members in τ are called the open sets of this topological

space.

Example: Examples of topological spaces:

(1) (Discrete Topology) Suppose that X is a nonempty set. τ =
2X gives a discrete topology.

(2) (Trivial Topology) Suppose that X is a nonempty set. τ =
{X,∅} gives a trivial topology.
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(3) (Euclidean Topology) Suppose that R is the set of all real

numbers. τ , defined as a collection of open sets, gives the

Euclidean topology (see the following definition).

(4) (Quotient Topology) Suppose that X is a nonempty set. By

a given equivalence relation R, we partition X into disjoint

subsets, all of which make up a new collection, denoted by

X/R. We specify the subset U of X/R as an open set, and

then X/R gives a quotient topology if and only if the union

of any elements of U is an open set belonging to X .

Although the study object of topology can be an arbitrary type of set-

s, for convenience of understanding and application, in the following, we

primarily introduce some commonly used topological spaces, especially

metric spaces in a finite dimensional real space.

2.3.2 Metric Space

We first illustrate the definitions of metric and metric space. Metric is a

measure of distance. A metric space (X, d) is composed of a set X and the

metric d defined on the elements of X . The metric space may be of finite or

infinite dimensions, depending on the topology structure defined on X .

The metric should satisfy three basic assumptions. For any p, q, r ∈ X ,

we have

(1) d(p, q) > 0 if and only if p ̸= q;

(2) d(p, q) = d(q,p);

(3) d(p, q) 5 d(p, r) + d(r, q).

Remark 2.3.1 If the metrics on the same set are different, then the corre-

sponding metric spaces are different. For example,

(1) Metric Space 1: (X = Rn, d1), ∀x1,x2 ∈ X, d1(x1,x2) =√∑
i(x1

i − x2
i )2, and it is called the n-dimensional Euclidean

space.

(2) Metric Space 2: (X = Rn, d2), ∀x1,x2 ∈ X, d2(x1,x2) =∑
i |x1

i − x2
i |.
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(3) Metric Space 3: (X = Rn, d3), ∀x1,x2 ∈ X, d3(x1,x2) =
max{|x1

1 − x2
1|, · · · , |x1

n − x2
n|}.

Although the remaining discussions in this section are also true for gen-

eral metric spaces, we mainly focus on Euclidean spaces for convenience of

statement.

2.3.3 Open Sets, Closed Sets, and Compact Sets

With the concept of metric, we can clearly define proximity between points.

In an n-dimensional Euclidean space, given x0 ∈ Rn, the set of all points of

distances less than ϵ from x0 is called an open ball with radius ϵ and center

x0, denoted by Bϵ(x0). A related concept is closed ball, which is given by

the set of all points of distances less than or equal to ϵ, denoted by B∗
ϵ (x0).

Next, we give the definition of closed sets and compact sets.

Definition 2.3.2 The set S ⊆ Rn is an open set if for any x ∈ S, there always

exists an ϵ > 0, such that Bϵ(x) ⊆ S.

Based on the definition of open sets, the following theorem gives some ba-

sic properties of open sets:

Theorem 2.3.1 (Open Sets in Rn) In terms of open sets, the following conclu-

sions are true.

(1) The empty set ∅ is an open set.

(2) The universal space Rn is an open set.

(3) The union of open sets is an open set.

(4) The intersection of a finite number of open sets is an open set.

PROOF. (1) Since ∅ has no elements, the proposition “for each point

in ∅, there is an ϵ, · · ·”, satisfies the definition of an empty set.

(2) For any point x in Rn and any ϵ > 0, according to the definition of

an open ball, the set Bϵ(x) is a subset in Rn. Therefore, Bϵ(x) ⊆ Rn, and

then Rn is open.

(3) For all i ∈ I , let Si be an open set. We need to show that ∪i∈ISi is an

open set. Suppose that x ∈ ∪i∈ISi. Then, for some i′ ∈ I , we have x ∈ Si′ .
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Since Si′ is open, we have Bϵ(x) ⊆ Si′ for an ϵ > 0. It then follows that

Bϵ(x) ⊆ ∪i∈ISi, and thus ∪i∈ISi is open.

(4) Suppose that B =
∩n
k=1Bk. If B = ∅, it is clear that B is an open set.

IfB ̸= ∅, for any x ∈ B, obviously, we have: for any k ∈ {1, · · · , n}, x ∈ Bk.

Since Bk is an open set, there must exist an ϵk > 0, such that Bϵk(x) ⊆ Bk.

Let ϵ = min{ϵ1, · · · , ϵn}. Then, for any k ∈ {1, · · · , n}, Bϵ(x) ⊆ Bk, and

thus Bϵ(x) ⊆ B. Therefore, B is an open set. 2

The following theorem shows the relationship between open sets and

open balls.

Theorem 2.3.2 (Each open set is a union of open balls) Suppose that S ⊆
Rn is an open set. Then, for each x ∈ S, there exists an ϵx > 0, such that

Bϵx(x) ⊆ S, and also

S =
∪

x∈S
Bϵx(x).

PROOF. Suppose that S ⊆ Rn is an open set. Then, it follows from

the definition of open sets that for any x ∈ S, there exists an ϵx > 0, such

that Bϵx(x) ⊆ S. We now need to show that x′ ∈ S implies that x′ ∈
∪x∈SBϵx(x), and x′ ∈ ∪x∈SBϵx(x) implies x′ ∈ S.

If x′ ∈ S, then it follows from the definition of open balls with centre

x′ that x′ ∈ Bϵx′ (x). But x′ belongs to any union containing this open ball.

Therefore, we have x′ ∈ ∪x∈SBϵx(x).

If x′ ∈ ∪x∈SBϵx(x), then x′ ∈ Bϵx′ (x). Since Bϵx′ (x) ⊆ S, it follows that

x ∈ S. 2

We now discuss closed sets, and first provide the definition of closed

sets based on the definition of open sets.

Definition 2.3.3 (Closed Sets in Rn) If the complement of S, i.e., Sc, is an

open set, then S is a closed set.

We also have some conclusions about the basic properties of closed sets.

Theorem 2.3.3 (Closed Sets in Rn) In terms of closed sets, the following con-

clusions are true.

(1) The empty set ∅ is a closed set.
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(2) The universal space Rnis a closed set.

(3) The intersection of any collection of closed sets is a closed set.

(4) The union of a finite number of closed sets is a closed set.

PROOF. (1) Since ∅ = {Rn}c, and Rn is an open set, it follows from the

definition of closed sets that ∅ is a closed set.

(2) Since {Rn}c = ∅, and ∅ is an open set, it follows from the definition

of closed sets that Rn is a closed set.

(3) Suppose that for all i ∈ I , Si is a closed set in Rn. Then, it is necessary

to show that ∩i∈ISi is closed. Since Si is closed, its complement Sci is an

open set. The union ∪i∈ISci is also open. It follows from the De Morgan’s

laws that i ∈ I , (∪i∈ISci )c = ∩i∈ISi holds. Since ∪i∈ISci is open, then its

complement ∩i∈ISi is closed.

(4) Let C1 and C2 be closed sets, and denote C = C1 ∪ C2. Since C1 and

C2 are closed, Cck = Bk, k = 1, 2, are open. It follows from the properties of

open sets above that B1 ∩ B2 is an open set, and thus C = (B1 ∩ B2)c is a

closed set. 2

Next, we discuss the concept of point sets related to open and closed

sets.

Definition 2.3.4 For set S in Rn, a point x ∈ Rn is called the limit point (or

cluster point or accumulation point) of S if for any ϵ > 0,Bϵ(x)
∩
S ̸= ∅, i.e.,

every neighbourhood of x contains at least one point of S different from x

itself. The collection of all limit points of set S is denoted by ∂S. For set S,

a point x ∈ S is called an interior point of S , if there is an ϵ > 0, such that

B∗
ϵ (x) ⊆ S.

Now, we can redefine the open set as follows: a set is open if every

element in the set is an interior point. Similarly, closed sets can also be

defined as follows: a set is called the closed set if all limit points of the set

belong to itself. In addition, for any set S in a metric space, the smallest

closed set containing S is called the closure of the set, denoted by S̄ =
S
∪
∂S or clS . Obviously, if S is closed, S̄ = S.

Definition 2.3.5 (Bounded Set) If a set S in Rn is contained in a ball (open

or closed ball) with radius ϵ, then S is said to be bounded. In other words,
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if for some x ∈ Rn, there is an ϵ > 0, such that S ⊆ Bϵ(x), and then S is

bounded.

Definition 2.3.6 (Compact Set) If a set S ⊆ Rn is closed and bounded, then

it is compact.

The compact set is a crucial concept in mathematical analysis, but the

definition of compact sets given above only applies to finite dimensional

spaces. The definition of compact sets for infinite dimensional spaces is

based on the concept of open cover. Whether a set is in finite or infinite

dimension, another way to define compact sets exists, i.e., a set is compact

if each open cover of a set has a finite subcover.

We first introduce the concept of open covering.

Definition 2.3.7 (Open Cover) For a set S and a collection of open sets

{Gα} in metric space X , if S ⊆
∪
αGα, then {Gα} is called a open cover

of S ; if the index set {α} is finite, it is called a finite open cover.

Next, we discuss an important feature of the compact set. The following

Heine-Borel theorem, also known as the finite covering theorem, proves

that the above two ways of definition are consistent for compact sets in

finite dimensional spaces.

Theorem 2.3.4 (Heine-Borel Theorem or Finite Covering Theorem) For a

set S ⊆ Rn, the following two arguments are consistent:

(1) S is a bounded closed set;

(2) Any open cover of S has a finite subcover {Gα}. In other words,

for {Gα}, there is a finite set {1, · · · , n} ⊆ {α}, such that S ⊆∪n
i=1Gi.

Refer to the proof of Theorem 2.41 in Rudin’s Principles of Mathematical

Analysis.

2.3.4 Connectedness of Sets

Definition 2.3.8 (Connected Set) For a set S in metric spaces, if there do

not exist two sets A and B, such that A
∩
B̄ = B

∩
Ā = ∅, and S ⊆ A

∪
B,

then S is called a connected set.
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The following theorem illustrates the characteristic of connected sets.

Theorem 2.3.5 The set S ⊆ R1 is connected if and only if it satisfies the following

property: for any x, y ∈ S, if x < z < y, then z ∈ S.

Refer to the proof of the Theorem 2.47 in Rudin’s Principles of Mathemat-

ical Analysis. Obviously, the whole real space is connected, and intervals in

real space, such as (a, b) and [a, b], are all connected sets.

2.3.5 Sequences and Convergence

Definition 2.3.9 (Sequence in Rn) Let Z be the set of positive integers. A

sequence in Rn is a function which mapsZ into Rn, represented by {xk}k∈Z ,

and for each k ∈ Z, xk ∈ Rn.

For all sufficiently large k, if each element of sequence {xk} can arbitrar-

ily approach a point in Rn, then we conclude that the sequence converges

to this point. Formally, we have the following definition:

Definition 2.3.10 (Convergent Sequence) If for each ϵ > 0, there is a k̄,

such that for all k ∈ Z larger than k̄, xk ∈ Bϵ(x), then we call that the

sequence {xk}k∈Z converges to x ∈ Rn.

Like subsets of a set, we have the concept of subsequences of a se-

quence.

Definition 2.3.11 (Subsequence) If J is an infinite subset ofZ, then {xk}k∈J

is called a subsequence of {xk}k∈Z in Rn.

Definition 2.3.12 (Bounded Sequences) If for M ∈ R and any k ∈ Z,∥∥∥xk∥∥∥ 5M , then the sequence {xk}k∈Z in Rn is bounded.

The following is a property of the subsequence of a bounded sequence.

Theorem 2.3.6 (Bounded Sequences) Each bounded sequence in Rn has a con-

vergent subsequence.
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2.3.6 Convex Set and Convexity

The convex set is an important type of set, which is widely used in eco-

nomics. For example, sets of budget constraints of indivisible goods are

generally convex sets and possess a strong economic meaning.

We first define convex sets.

Definition 2.3.13 If for any two elements x1,x2 ∈ S and any t ∈ [0, 1], we

have tx1 + (1 − t)x2 ∈ S, then the set S ⊆ Rn is a convex set.

If z = tx1 + (1 − t)x2, t ∈ (0, 1), then point z is called the weighted av-

erage or convex combination of x1 and x2. If z =
∑k
l=1 α

lxl,xl ∈ S, αl ∈
[0, 1], l ∈ {1, · · · , k},

∑
l α

l = 1, then z is also a convex combination of {xl}.

We have the following theorems about convex sets.

Theorem 2.3.7 If both sets S and T are convex, then their intersection T
∩
S is

also convex.

Any set can be convexified, i.e., it has a convex hull , denoted by co S.

Definition 2.3.14 The convex hull of a set S ⊆ Rn is the smallest convex set

containing S, denoted by co S.

The following theorem illustrates how to convexify a set.

Theorem 2.3.8 For a set S ⊆ Rn, its convex hull is

coS =
{

y ∈ Rn : y =
k∑
l=1

αlxl,xl ∈ S,∀αl ∈ [0, 1],∈ {1, · · · , k},
∑
l

αl = 1
}
,

i.e., the convex hull of S is formed by the set of all convex combinations of finite

points in S.

The points of the convex hull are made up of convex combinations of

finite points. The following Caratheodory theorem simplifies the way of

convexification in finite dimensional real space.

Theorem 2.3.9 (Caratheodory Theorem) If the set is in a finite dimensional

real space, i.e., S ⊆ Rn, the points of its convex hull co S can be written as the

convex combination of at most n+ 1 points in S.
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The following theorems show that the convex hull of a compact set is a

compact set.

Theorem 2.3.10 If S ⊆ Rn is a compact set, then its convex hull co S is also a

compact set.

See A3.1 of Kreps (2013) for the proof of the above three theorems.

Every point in a convex hull is a convex combination of finite points in a

set, but this does not mean that it must be a convex combination formed by

other points. If a point is not a convex combination formed by other points,

we define such a point as the extreme point. For compact sets, the structure

of the convex hull will be more simplified. The following Krein-Milman

theorem characterizes the convex hull of compact sets.

Theorem 2.3.11 (Krein-Milman Theorem) If a set S is a compact set of a finite

dimensional real space, and EX(S) is the set of the extreme points of set S, then

coS = coEX(S), which means that the convex hull of a compact set is composed

of finite convex combinations of all of the extreme points.

2.4 Single-Valued Function

2.4.1 Continuity of functions

Continuity of functions can be defined in any topological space X .

Definition 2.4.1 (Continuity) A function f : X → R is continuous at x0 ∈
X if

lim
x→x0

f(x) = f(x0),

or equivalently, the upper contour set of f at x0

U(x0) ≡ {x′ ∈ X : f(x′) = f(x0)}

and its lower contour set

L(x0) ≡ {x′ ∈ X : f(x′) 5 f(x0)}

are both the closed subsets of X .
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When we suppose X ⊆ Rn, it can be equivalently defined: for any

ϵ > 0, there is δ > 0, such that for any x ∈ X with |x − x0| < δ, we have

|f(x) − f(x0)| < ϵ.

In economics, it is usually assumed that X ⊆ Rn. If f is continuous at

any x ∈ X , we say the function f : X → R is continuous on X .

Although the three definitions of continuity are all equivalent, the sec-

ond definition is easier to verify. The idea of continuity is quite intuitive. If

we draw the function, the curve has no disconnected point.

Since the function is continuous, then the change of f(x) is small when

x changes slightly.

The following theorem illustrates the relationship between the continu-

ity of functions and the open sets.

Theorem 2.4.1 (Continuity and Inverse Image) LetD be a subset of Rm. Then,

the following conditions are equivalent.

(1) f : D → Rn is continuous.

(2) For each open ball B in Rn, f−1(B) is also open in D.

(3) For each open set S in Rn, f−1(S) is also open in D.

PROOF. We will show that (1) ⇒ (2) ⇒ (3) ⇒ (1).

(1) ⇒ (2). Suppose that (1) holds, and B is an open ball in Rn. Picking

any x ∈ f−1(B), we have f(x) ∈ B. Since B is open in Rn, then there is

an ε > 0, such that Bε(f(x)) ⊆ B, and it follows from the continuity of

f that there is a δ, such that f(Bδ(x) ∩ D) ⊆ Bε(f(x)) ⊆ B. Therefore,

Bδ(x) ∩ D ⊆ f−1(B). Since x ∈ f−1(B) is arbitrary, it can be seen that

f−1(B) is open in D, and thus (2) is established.

(2) ⇒ (3). Suppose that (2) holds, and S is open in Rn. Then, S can be

written as a union of open balls Bi(i ∈ I), such that S = ∪i∈IBi. There-

fore, f−1(S) = f−1(∪i∈IBi) = ∪i∈If−1(Bi). It follows from (2) that each

set f−1(Bi) is open in D, and then f−1(S) is the union of open sets in D.

Therefore, f−1(S) is also open in D. Since S is an arbitrary open set in Rn,

(3) is established.
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(3) ⇒ (1). Suppose that (3) holds. Take x ∈ D and ε > 0. Then,

since Bε(f(x)) is open in Rn, it follows from (3) that f−1(Bε(f(x))) is open

in D. Since x ∈ f−1(Bε(f(x))), there is a δ > 0, such that Bδ(x) ∩ D ⊆
f−1(Bε(f(x))), which means that f(Bδ(x) ∩D) ⊆ Bε(f(x)). Therefore, f is

continuous at x. Since x is arbitrary, (1) is established. 2

We have the following conclusion for a continuous function whose do-

main is a compact set.

Theorem 2.4.2 (The continuous image of a compact set is a compact set) Sup-

pose that f : D ⊆ Rm → Rn is a continuous function. If S ⊆ D is a compact set

in D, then its image f(S) ⊆ Rn is compact in Rn.

2.4.2 Upper Semi-continuity and Lower Semi-continuity

The upper semi-continuity and lower semi-continuity of functions are

weaker than continuity. Suppose that X is an arbitrary topological space.

Definition 2.4.2 A function f : X → R is said to be upper semi-continuous

at point x0 ∈ X if we have

lim sup
x→x0

f(x) 5 f(x0);

or equivalently, the upper contour set U(x0) of f is a closed set of X .

When we suppose X ⊆ Rn, it can be equivalently defined: for any

ϵ > 0, there is a δ > 0, such that for any x ∈ X with |x − x0| < δ, we have

f(x) < f(x0) + ϵ.

A function f : X → R is said to be upper semi-continuous on X if f is

upper semi-continuous at every point x ∈ X .

Definition 2.4.3 A function f : X → R is said to be lower semi-continuous

on X if −f is upper semi-continuous.

It is clear that a function f : X → R is continuous on X if and only if it

is both upper and lower semi-continuous.



152CHAPTER 2. PRELIMINARY KNOWLEDGE AND METHODS OF MATHEMATICS

2.4.3 Transfer Upper and Lower Continuity

A weaker concept of continuity is transfer continuity. It is used to com-

pletely characterize the extreme values of functions or preferences (see a

series of papers by Tian (1992, 1993, 1994), Tian & Zhou (1995), and Zhou

& Tian (1992)). Suppose that X is an arbitrary topological space.

Definition 2.4.4 A function f : X → R is said to be transfer (weakly)

upper continuous on X , if for any points x,y ∈ X , f(y) < f(x) means

that there exists a point x′ ∈ X and a neighbourhood N (y) of y, such that

f(z) < f(x′) (f(z) 5 f(x′)) for all z ∈ N (y).

Definition 2.4.5 A function f : X → R is said to be transfer (weakly) lower

continuous on X , if −f is transfer (weakly) upper continuous on X .

Remark 2.4.1 It is clear that the upper (lower) semi-continuity of a function

implies transfer upper (lower) continuity (let x′ = x); while transfer upper

(lower) continuity implies the transfer weakly upper (lower) continuity of

the function, and the converse may not be true. We will then prove that a

function f has the maximal (minimal) value on the compact set X if and

only if f is transfer weakly upper continuous on X , and the set of maximal

(minimal) points of f is compact if and only if f is transfer upper (lower)

continuous on X .

2.4.4 Differentiation and Partial Differentiation of Functions

The differentiability of a function in one-dimensional real space measures

sensitivity to the change of a function’s value with respect to a change in

an independent variable. Let X be a subset of R.

Definition 2.4.6 (Derivative) The derivative of f : X → R at point x0 ∈ X

is defined as

f ′(x0) = lim
∆x→0

f(x0 + ∆x) − f(x0)
∆x

,

where ∆x = x− x0.

Obviously, if a function has a derivative at a point, then it must be con-

tinuous; however, this may not be true for the converse.
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We may use the derivatives to find the limit of a continuous function of

which the numerator and denominator approach to zero (or infinity), i.e.,

we have the following L’Hopital rule:

Theorem 2.4.3 (L’Hopital Rule) Suppose that f(x) and g(x) are differentiable

on an open interval I , except possibly at c. If limx→c f(x) = limx→c g(x) = 0
or limx→c f(x) = limx→c g(x) = ±∞, g′(x) ̸= 0 for all x in I with x ̸= c, and

limx→c
f ′(x)
g′(x)

exists. Then,

lim
x→c

f(x)
g(x)

= lim
x→c

f ′(x)
g′(x)

.

Higher order derivatives and partial derivatives are widely used in e-

conomics.

Definition 2.4.7 (Higher Order Derivative) The nth order derivative of f :
X → R at x0 ∈ X is defined as

f [n](x0) = lim
∆x→0

f [n−1](x0 + ∆x) − f [n−1](x0)
∆x

.

In a multidimensional real space X ⊆ Rn, we can define the concept of

partial differentiation of a function f : X → R, f(x1, · · · , xn), to measure

the degree of change of the function value with respect to a change of one

of n independent variables, with the others being held constant.

Definition 2.4.8 (Partial Derivative) The partial derivative of f : X → R, X ⊆
Rn with respect to xi at x0 = (x0

1, · · · , x0
n) ∈ X is defined as

∂f(x0)
∂xi

= lim
∆xi→0

f(x0
1, · · · , x0

i + ∆xi, · · · , x0
n) − f(x0)

∆xi
.

We characterize the degree of change of a multidimensional function in

different directions in the way of the matrix, which is called the gradient

vector.

Definition 2.4.9 (Gradient Vector) Let f be a function defined on Rn that

has partial derivatives. Define the gradient of f as a vector

Df(x) =
[
∂f(x)
∂x1

,
∂f(x)
∂x2

, · · · , ∂f(x)
∂xn

]
.
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Suppose that f has second-order partial derivative. We define the Hes-

sian matrix of f at x as an n× n matrix D2f(x):

D2f(x) =
[
∂2f(x)
∂xi∂xj

]
.

If all of the second-order partial derivatives are continuous, then

∂2f(x)
∂xi∂xj

= ∂2f(x)
∂xj∂xi

,

and thus the above matrix is a symmetric matrix.

2.4.5 Mean Value Theorem and Taylor Expansion

Theorem 2.4.4 (Férmat lemma) Let X be a subset of R. Suppose that

(i) f : X → R is well-defined in a neighborhood N(x0) of x0, and

f(x) 5 f(x0) or f(x) = f(x0) in this neighborhood;

(ii) f(x) is derivable at point x0.

Then, we have

f ′(x0) = 0.

Theorem 2.4.5 (Rolle Theorem) Suppose that f is continuous on [a, b], differ-

entiable on (a, b), and f(a) = f(b). Then, there exists at least one point c ∈ (a, b),

such that f ′(c) = 0.

From the Roll Theorem, we can have the well-known and useful La-

grange’s Theorem or the Mean-Value Theorem.

Theorem 2.4.6 (The Mean-Value Theorem or the Lagrange Formula) Suppose

that f : [a, b] → R is continuous on [a, b] and differentiable on (a, b). Then, there

exists c ∈ (a, b), such that

f ′(c) = f(b) − f(a)
(b− a)

.
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The above mean value theorem is also true for multivariate x. If functionf :
Rn → R is differentiable, then there is z = tx + (1 − t)y with 0 5 t 5 1,

such that

f(y) = f(x) +Df(z)(y − x).

Proof. Let g(x) = f(x) − f(b)−f(a)
b−a x. Then, g is continuous on [a, b],

differentiable on (a, b), and g(a) = g(b). Therefore, by Rolle or Férmat’s

Theorem, there exists a point c ∈ (a, b), such that g′(c) = 0, and therefore

f ′(c) = f(b)−f(a)
b−a .

A variation of the above mean-value theorem is in the form of integral

calculus:

Theorem 2.4.7 (Mean-Value Theorem of Integral Calculus) If f : [a, b] →
R is continuous on [a, b], then there exists a number c ∈ (a, b), such that

∫ b

a
f(x)dx = f ′(c)(b− a).

The second variation of the mean-value theorem is the generalized mean-

value theorem:

Theorem 2.4.8 (Cauchy’s Theorem or the Generalized Mean-Value Theorem)

If f and g are continuous on [a, b] and differentiable on (a, b), then there exists a

point c ∈ (a, b), such that (f(b) − f(a))g′(c) = (g(b) − g(a))f ′(c).

Taylor’s expansion is a useful method for solving approximation.

Consider a continuously differentiable function f : Rn → R, x,y ∈ Rn.

By the mean-value theorem, we know that there exist z,w ∈ co(x,y), such

that the following two equations hold:

f(y) = f(x) +Df(z)(y − x),

f(y) = f(x) +Df(x)(y − x) + 1
2

(y − x)′
D2f(w)(y − x),

where (y − x)′
is the transpose of the vector (y − x).

Generally, we have the following theorem:

Theorem 2.4.9 (Taylor’s Theorem) Given any function f(x) : R → R, if
there exists (n + 1)th order derivative at x0, then the function can be expanded
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at x0:

f(x)=f(x0) + f ′(x0)(x− x0) + 1
2!
f ′′(x0)(x− x0)2 +· · ·+ 1

n!
f (n)(x0)(x− x0)n +Rn

≡ Pn +Rn,

where Pn represents the n-th order polynomial, and Rn is the Lagrange’s remain-

der:

Rn = f (n+1)(P )
(n+ 1)!

(x− x0)n+1,

where P is a point between x and x0, and n! is the factorial of n:

n! ≡ n(n− 1)(n− 2) · · · (3)(2)(1).

We have the following approximation of function by Taylor’s expan-

sion. If y approximates x, then

f(y) ≈ f(x) +Df(x)(y − x),

f(y) ≈ f(x) +Df(x)(y − x) + 1
2

(y − x)′
D2f(x)(y − x).

2.4.6 Homogeneous Functions and Euler’s Theorem

Definition 2.4.10 Let X = Rn. A function f : X → R is said to be

homogeneous of degree k if for any t, f(tx) = tkf(x).

An important result concerning homogeneous function is Euler’s theorem.

Theorem 2.4.10 (Euler’s Theorem) A function f : Rn → R is homoge-

neous of degree k if and only if

kf(x) =
n∑
i=1

∂f(x)
∂xi

xi.

2.4.7 Implicit Function Theorem

If a variable y is clearly expressed as a function of x, we call y = f(x1, x2, · · · , xn)
an explicit function. In many cases, y is not an explicit function, and the
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relationship between y and x1, · · · , xn is expressed by an equation:

F (y, x1, x2, · · · , xn) = 0.

For a domain D, if for each vector x ∈ D, there is a unique deter-

mined value y satisfying the above equation, then y is an implicit func-

tion of x, denoted by y = f(x1, x2, · · · , xn). Then, the pertinent ques-

tion is how to determine whether there is a unique value y satisfying this

equation for every x in a certain domain. The following implicit func-

tion theorem indicates that, under certain conditions, the implicit function

y = f(x1, x2, · · · , xn) determined by F (y, x1, x2, · · · , xn) = 0 not only exist-

s, but is also differentiable.

Theorem 2.4.11 (Implicit Function Theorem) Let X = Rn. Suppose that a

function F (y, x1, x2, · · · , xn) = 0 satisfies the following four conditions:

(a) Fy, Fx1 , Fx2 , · · · , Fxn are continuous in the domainX containing

(y0, x0
1, x

0
2, · · · , x0

n);

(b) F (y, x1, x2, · · · , xn) has continuous partial derivatives with re-

spect to x and y in the domain X ;

(c) F (y0, x0
1, x

0
2, · · · , x0

n) = 0;

(d) The partial derivative Fy of F (y, x1, x2, · · · , xn) with respect to

y at (y0, x0
1, x

0
2, · · · , x0

n) is not equal to zero.

Then:

(1) In a neighbourhood N(x0) of (x0
1, x

0
2, · · · , x0

n), the function y =
f(x1, x2, · · · , xn) of (x1, x2, · · · , xn) can be defined implicitly,

which satisfies F (y(x1, · · · , xn), x1, x2, · · · , xn) = 0 and y0 =
f(x0

1, x
0
2, · · · , x0

n).

(2) y = f(x1, x2, · · · , xn) is continuous in N(x0).

(3) y = f(x1, x2, · · · , xn) has continuous partial derivatives inN(x0),

which is given by:

∂y

∂xi
= −Fi

Fy
, i = 1, · · · , n.
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2.4.8 Concave and Convex Function

Concave functions, convex functions, and quasi-concave functions are com-

mon functions in economics and possess strong economic significance. They

also hold a special position in optimization problems.

Let X ⊆ Rn be a convex set.

Definition 2.4.11 For a function f : X → R, if for any x,x′ ∈ X and any

t ∈ [0, 1], we have

f(tx + (1 − t)x′) = tf(x) + (1 − t)f(x′),

then, f is said to be concave on X .

If for all x ̸= x′ ∈ X and 0 < t < 1, we have

f(tx + (1 − t)x′) > tf(x) + (1 − t)f(x′),

then f is said to be strictly concave on X .

Definition 2.4.12 If −f is (strictly) concave onX , then f : X → R is called

a (strictly) convex function on X .

Remark 2.4.2 We have the following results:

(1) A linear function is both convex and concave.

(2) The sum of two concave (convex) functions is still concave

(convex).

(3) The sum of a concave (convex) function and a strictly con-

cave (convex) function is strictly concave (convex).

The statement that the function f : X → R is concave on X is equiv-

alent to the statement that for any x1, · · · ,xm ∈ X and any ti ∈ [0, 1], we

have

f(t1x1 + t2x2 + · · · + tmxm) = t1f(x1) + · · · + tmf(xm).

This formula is also called the Jensen’s inequality. If ti is regarded as

the probability of xi, when f : X → R is concave on X , Jensen’s inequal-
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ity implies that the expectation of function value with respect to a random

variable is not greater than the function value with respect to the expecta-

tion of the random variable, i.e.,

f(E(X)) = E(f(X)).

When a function is twice differentiable, its convexity or concavity can be

determined by whether the second-order partial derivative matrix is posi-

tive (negative) definite.

Remark 2.4.3 A function f defined on X has a continuous second-order

partial derivative. Then, it is a concave (convex) function if and only if

its Hessian matrix D2f(x) is negative (positive) semi-definite on X . It is

strictly concave (convex) if and only if its Hessian matrix D2f(x) is nega-

tive (positive) definite on X .

Remark 2.4.4 The strict concavity of the function f(x) can be determined

by testing whether the principal minors of the Hessian matrix change signs

alternately, i.e., ∣∣∣∣∣∣ f11 f12

f21 f22

∣∣∣∣∣∣ > 0,

∣∣∣∣∣∣∣∣∣
f11 f12 f13

f21 f22 f23

f31 f32 f33

∣∣∣∣∣∣∣∣∣ < 0,

and so on, where fij = ∂2f

∂xi∂xj
. This algebraic condition is very useful for

testing second-order conditions of optimality.

2.4.9 Quasi-concave and Quasi-convex Function

Quasi-concave functions are frequently used in economics, which are weak-

er than concavity.

Let X ⊆ Rn be a convex set.
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Definition 2.4.13 For a function f : X → R, if for any x,x′ ∈ X and any

t ∈ [0, 1], we have

f(tx + (1 − t)x′) = min{f(x), f(x′)},

then f is said to be quasi-concave on X .

If for any x,x′ ∈ X and any t ∈ [0, 1], we have

f(tx + (1 − t)x′) > min{f(x), f(x′)},

and then f is strictly quasi-concave on X .

If −f is (strictly) quasi-concave on X , then the funciton f : X → R
(strictly) quasi-convex on X .

Remark 2.4.5 The following facts are clear:

(1) If a function f is (strictly) concave (convex), then it is (strict-

ly) quasi-concave (convex);

(2) The function f is (strictly) quasi-concave if and only if −f is

(strictly) quasi-convex;

(3) An arbitrary (strictly) monotone function defined on an in-

terval of one-dimensional real number space is both (strict-

ly) quasi-concave and (strictly) quasi-convex;

(4) The sum of two quasi-concave (convex) functions is gener-

ally not a quasi-concave (convex) function.

The following theorem correlates the quasi-concavity of a function to

the convexity of upper contour set.

Theorem 2.4.12 (Quasi-concavity and Upper Contour Sets) f : X → R is

a quasi-concave function if and only if for any y ∈ R, the upper contour set

S(y) ≡ {x ∈ X : f(x) = y} is a convex set.

PROOF. Necessity: Let x1 and x2 be two points of S(y) (if S(y) is the

empty set, then it is clearly convex). We need to show: all convex combina-

tions xt ≡ tx1 + (1 − t)x2, t ∈ [0, 1] are in S(y).
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Since x1 ∈ S(y) and x2 ∈ S(y), by the definition of upper contour set,

we have f(x1) = y and f(x2) = y.

Now, for any xt, since f is quasi-concave, then:

f(xt) = min[f(x1), f(x2)] = y.

Therefore, f(xt) = y, and then xt ∈ S(y). Consequently, S(y) must be a

convex set.

Sufficiency: we need to show: if for all y ∈ R, S(y) is a convex set, then

f(x) is a quasi-concave function. Let x1 and x2 be two arbitrary points

in X . Without loss of generality, suppose f(x1) = f(x2). Since for all

y ∈ R, S(y) is a convex set, then S(f(x2)) must be convex. It is also clear

that x2 ∈ S(f(x2)), and since f(x1) = f(x2), we have x1 ∈ S(f(x2)).

As such, for any convex combination of x1 and x2, we must have xt ∈
S(f(x2)). It follows from the definition of S(f(x2)) that f(xt) = f(x2). As

a consequence, we must have

f(xt) = min[f(x1), f(x2)].

Therefore, f(x) is quasi-concave. 2

The following theorem characterizes the properties of quasi-concave

functions, i.e., quasi-concavity is robust to monotonic transformations.

Theorem 2.4.13 Suppose that the function f : X → R is quasi-concave on X ,

and h : R → R is a monotonically non-decreasing function. Then, the composite

function h(f(x)) is also quasi-concave. If f is strictly quasi-concave and h is

strictly increasing, then the composite function is strictly quasi-concave.

Similar to concavity, when a function is differentiable, we have the fol-

lowing result.

Proposition 2.4.1 Suppose that f : R → R is differentiable. Then, f is quasi-

concave if and only if for any x, y ∈ R, we have

f(y) = f(x) ⇒ f ′(x)(y − x) = 0. (2.4.1)
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When there are two or more variables, the above proposition becomes:

Proposition 2.4.2 Suppose that f : Rn → R is differentiable. Then, f is quasi-

concave if and only if for any x,y ∈ R, we have

f(y) = f(x) ⇒
n∑
j=1

∂f(x)
∂xj

(yj − xj) = 0. (2.4.2)

When a function f defined on a convex set X has continuous second-

order partial derivatives, the bordered Hessian determinant is defined as

follows:

|B| =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0 f1 f2 · · · fn

f1 f11 f12 · · · f1n

f2 f21 f22 · · · f2n

· · · · · · · · · · · · · · ·
fn fn1 fn2 · · · fnn

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
The principal minors of the bordered Hessian determinant B are as fol-

lows:

|B1| =

∣∣∣∣∣∣ 0 f1

f1 f11

∣∣∣∣∣∣ , |B2| =

∣∣∣∣∣∣∣∣∣
0 f1 f2

f1 f11 f12

f2 f21 f22

∣∣∣∣∣∣∣∣∣ , · · · , |Bn| = |B|.

Then, the necessary condition for f : X → R to be a quasi-concave

function is

|B1| 5 0, |B2| = 0, |B3| 5 0, · · · , (−1)n|Bn| = 0.

The sufficient condition for f : X → R to be a strictly quasi-concave

function is:

|B1| < 0, |B2| > 0, |B3| < 0, · · · , (−1)n|Bn| > 0.

The necessary condition for f : X → R to be a quasi-convex function

is:

|B1| 5 0, |B2| 5 0, · · · , |Bn| 5 0.
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The sufficient condition for f : X → R to be a strictly quasi-concex

function is:

|B1| < 0, |B2| < 0, · · · , |Bn| < 0.

2.4.10 Separating and Supporting Hyperplane Theorems

The separating hyperplane theorem also has crucial applications in eco-

nomics. First, recall that if X ⊆ Rn is a compact set, then it is bounded

and closed. X is convex set, if for any x,x′ ∈ X and any 0 5 t 5 1,

tx + (1 − t)x′ ∈ X . The convex set implies that the connections between

any two points in the set belong to this set.

Theorem 2.4.14 (Separating Hyperplane Theorem) Suppose thatA,B ⊆ Rm

are convex, and A ∩ B = ∅. Then, there is a vector p ∈ Rm,p ̸= 0 and c ∈ R,

such that

px 5 c 5 py ∀x ∈ A,∀y ∈ B.

Moreover, suppose that B ⊆ Rm is convex and closed, A ⊆ Rm is convex and

compact, and A ∩B = ∅. Then, there is a vector p ∈ Rm,p ̸= 0 and c ∈ R, such

that A,B are strictly separated, i.e.,

px < c < py ∀x ∈ A,∀y ∈ B.

Theorem 2.4.15 (Supporting Hyperplane Theorem) Suppose that A ⊆ Rm

are convex, and y ∈ Rm is not an interior of A (i.e., y ̸∈ intA). Then, there is a

vector p ∈ Rm with p ̸= 0, such that

px 5 py ∀x ∈ A.

Unlike the Separating Hyperplane Theorem, the Supporting Hyper-

plane Theorem above does not need to assume that the intersection of two

sets A and {y} is an empty set.

Definition 2.4.14 Let C ⊆ Rm. C is called a cone if for any x ∈ C and

λ ∈ R, we have λx ∈ C.

Proposition 2.4.3 A cone C is convex if and only if x,y ∈ C implies that x +
y ∈ C.
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Proposition 2.4.4 Let C ⊆ Rm be a closed and convex cone, and K ⊆ Rm be a

compact and convex cone. Then, C ∩K ̸= ∅ if and only if for any p ∈ C, there is

z ∈ K, such that

p · z 5 0.

2.5 Multi-Valued Function

Set-valued mapping refers to the situation in which the image of a mapping

may not be a single point, but rather a set.

2.5.1 Point-to-Set Mappings

Suppose that X and Y are two subsets of a topological vector space (e.g.,

the Euclidean space).

Point-to-set mapping is also called a correspondence or multi-valued

function. A correspondence F maps points x in a domain X into sets in

Y (e.g., maps point x in X ⊆ Rn into the range Y ⊆ Rm), denoted by

F : X → 2Y . One also uses F : X ⇒ Y or F : X →→ Y to denote the

multi-valued mapping F : X → 2Y .

Definition 2.5.1 Let F : X → 2Y be a correspondence.

(1) If F (x) is non-empty for every x ∈ X , then the correspon-

dence F is said to be non-empty valued;

(2) If F (x) is a convex set for every x ∈ X , then the correspon-

dence F is said to be convex valued;

(3) If F (x) is a closed set for every x ∈ X , then the correspon-

dence F is said to be closed valued;

(4) If F (x) is compact for every x ∈ X , then the correspondence

F is said to be compact valued;

(5) If F (x) is open for every x ∈ X , then the correspondence F

is said to have open upper sections;

(6) If the preimage F−1(y) = {x ∈ X : y ∈ F (x)} is open for

every y ∈ Y , then the correspondence F is said to have open

lower sections.
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Definition 2.5.2 Let F : X → 2X be a correspondence from X to X itself.

(1) F is said to be FS-convex if for any x1, · · · ,xm ∈ X and its

convex combination xλ =
∑m
i=1 λixi,

1 we have

xλ ∈
m∪
i=1

F (xi).

(2) F is said to be SS-convex if for any x ∈ X , x ̸∈ co F (x).2

Remark 2.5.1 It is easy to verify that correspondence P : X → 2X is SS-

convex if and only if correspondence G : X → 2X defined by G(x) =
X \ P (x) is FS-convex.

Specially, for function f : X → R, define upper contour set

Uw(x) = {y ∈ X : f(y) = f(x)}, ∀ x ∈ X,

strict upper contour set

Us(x) = {y ∈ X : f(y) > f(x)}, ∀ x ∈ X,

lower contour set

Lw(x) = {y ∈ X : f(y) 5 f(x)}, ∀ x ∈ X,

and strict lower contour set

Ls(x) = {y ∈ X : f(y) < f(x)}, ∀ x ∈ X.

The following equivalence results are used later.

Proposition 2.5.1 The following arguments are equivalent:

(1) f : X → R is quasi-concave;

(2) Uw : X → 2X is a convex-valued correspondence;
1The concept of FS-convex is introduced by Fan (1984) & Sonnenschein (1971), and thus

it is said to be FS-convex.
2The concept of SS-convex is introduced by Shafer & Sonnenschein (1975), and thus it is

said to be SS-convex.
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(3) Us : X → 2X is a convex-valued correspondence;

(4) Us : X → 2X is SS-convex;

(5) Uw : X → 2X is FS-convex.

PROOF. It is clear that: (1) implies (2); (2) implies (3); (3) implies (4);

and (5) implies (1). We just need to show that (4) implies (5). Suppose

that this is not the case, and there is a finite set {x1,x2, · · · ,xm} ⊂ X and

certain convex combination, xλ =
∑m
j=1 λjxj , such that xλ ̸∈ ∪mj=1U(xj).

Therefore, for all j, we have xλ ∈ Ls(xj), i.e., xj ∈ Us(xλ), and thus xλ ∈
co Us(xλ), which is a contradiction. 2

2.5.2 Upper Hemi-continuous and Lower Hemi-continuous Cor-
respondence

Intuitively, a correspondence is continuous if a small change in x only leads

to a small change in the set F (x). Unfortunately, giving a formal definition

of continuity for correspondences is not so simple. Figure 2.1 shows a con-

tinuous correspondence.

The notions of hemi-continuity are usually defined in terms of sequences

(see Debreu (1959) and Mask-Collell et al. (1995)). Although they are rela-

tively easy to verify, they depend on the assumption that a correspondence

is compact-valued. The following definitions are more formal (see Border,

1985).

Definition 2.5.3 For a correspondence F : X → 2Y and a point x, F is said

to be upper hemi-continuous at x if for each open setU containing F (x), there

is an open set N(x) containing x, such that F (x′) ⊆ U for all x′ ∈ N(x).

F is said to be upper hemi-continuous on X if the correspondence F is

upper hemi-continuous at every x ∈ X , or equivalently, for every open subset

V of Y , {x ∈ X : F (x) ⊂ V } is always an open subset of X .

Remark 2.5.2 Upper hemi-continuity captures the idea that F (x) should

not“suddenly contain new points”when passing through a point x, i.e.,

F (x) does not jump if x changes slightly. In other words, if one starts at a

point x and moves slightly to x′, upper hemi-continuity at x implies that

there is no point in F (x′) that is not close to some points in F (x).
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Figure 2.1: Continuous correspondence

Definition 2.5.4 For a correspondence F : X → 2Y and a point x, corre-

spondence F is said to be lower hemi-continuous at x if for every open set V ,

F (x)∩V ̸= ∅, there exists a neighborhoodN(x) of x, such thatF (x′)∩V ̸= ∅
for all x′ ∈ N(x).

If F is lower hemi-continuous at every x, or equivalently, the set {x ∈
X : F (x) ∩ V ̸= ∅} is open in X for every open set V of Y , then F is said to

be lower hemi-continuous on X .

Remark 2.5.3 Lower hemi-continuity captures the idea that any element in

F (x) can be“approached”from all directions, i.e., F (x) does not sudden-

ly become much smaller if one changes x slightly. In other words, if one

starts at x and y ∈ F (x), lower hemi-continuity at x implies that if one

moves slightly from x to x′, there is some y′ ∈ F (x′) that is close to y.

Combining the concepts of upper and lower hemi-continuity, we can

define the continuity of a correspondence.

Definition 2.5.5 A correspondence F : X → 2Y is said to be continuous at

x ∈ X if it is both upper hemi-continuous and lower hemi-continuous at

x ∈ X . The correspondence F : X → 2Y is said to be continuous on X if it

is both upper hemi-continuous and lower hemi-continuous on X .

Figure 2.2 shows a correspondence that is upper hemi-continuous, but

not lower hemi-continuous. To see why it is upper hemi-continuous, imag-

ine an open interval U that encompasses F (x). Now, consider moving s-
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lightly to the left of x to a point x′. Clearly, F (x′) = {ŷ} is in the interval.

Similarly, if we move to a point x′ slightly to the right of x, then F (x) will

be in the interval so long as x′ is sufficiently close to x. Therefore, it is up-

per hemi-continuous. On the other hand, it is not lower hemi-continuous.

To see this, consider the point y ∈ F (x), and let U be a very small interval

around y that does not include ŷ. If we take any open set N(x) contain-

ing x, then it will contain some point x′ to the left of x. However, then

F (x′) = {ŷ} will contain no points near y, i.e., it will not intersect U . There-

fore, the correspondence is not lower hemi-continuous.

Figure 2.3 shows a correspondence that is lower hemi-continuous, but

not upper hemi-continuous. To see why it is lower hemi-continuous: For

any 0 < x′ < x, note that F (x′) = {ŷ}. Let xn = x′−1/n, yn = ŷ. Then, xn >

0 for sufficiently large n, xn → x′, yn → ŷ, and yn ∈ F (xn) = {ŷ}. It is thus

lower hemi-continuous. It is also clearly lower hemi-continuous for xi > x.

Consequently, it is lower hemi-continuous on X . On the other hand, it is

not upper hemi-continuous. If we start at x by noting that F (x) = {ŷ}, and

make a small move to the right to a point x′, then F (x′) suddenly contains

many points that are not close to ŷ. Therefore, this correspondence fails to

be upper hemi-continuous.

Figure 2.2: The correspondence is upper hemi-continuous, but not lower
hemi-continuous

Remark 2.5.4 In fact, the notions of upper and lower hemi-continuous cor-

respondence both reduce to the standard notion of continuity for a function

if F (·) is a single-valued correspondence, i.e., a function. In other words,
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Figure 2.3: The correspondence is lower hemi-continuous, but not upper
hemi-continuous

F (·) is a single-valued upper (or lower) hemi-continuous correspondence

if and only if it is a continuous function.

Remark 2.5.5 Based on the following two facts, both notions of hemi-continuity

can be characterized by sequences.

(a) If a correspondence F : X → 2Y is compact-valued, then

it is upper hemi-continuous if and only if for any {xk} and

{yk}, where xk → x, yk ∈ F (xk), there exists a converging

subsequence {ykm}, such that ykm → y and y ∈ F (x).

(b) A correspondence F : X → 2Y is lower hemi-continuous at

x if and only if for any {xk} and y ∈ F (x), where xk → x,

there is a sequence {yk}, such that yk → y and yk ∈ F (xk).

2.5.3 Open and Closed Graphs of Correspondence

Definition 2.5.6 A correspondence F : X → 2Y is said to be sequentially

closed at x if for any {xk} and {yk}, where xk → x and yk → y yk ∈ F (xk),

we have y ∈ F (x). F is said to be sequentially closed or has a closed graph if

F is sequentially closed for all x ∈ X , or equivalently graph

Gr(F ) = {(x,y) ∈ X × Y : y ∈ F (x)} is closed.
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Regarding the relationship between upper hemi-continuity and closed

graph, we have the following results.

Proposition 2.5.2 Let F : X → 2Y be a correspondence.

(i) Suppose that Y is compact, and F : X → 2Y is closed-valued. If

F has a closed graph, it is upper hemi-continuous.

(ii) Suppose that X and Y are closed, and F : X → 2Y is closed-

valued. If F is upper hemi-continuous, then it has a closed graph.

Because of fact (i), a correspondence with a closed graph is sometimes

used to define a hemi-continuous correspondence in the literature. How-

ever, one should keep in mind that they are not the same, in general. For

example, let F : R+ → 2R be defined by

F (x) =


{1
x

}
, if x > 0,

{0}, if x = 0.

The correspondence is sequentially closed, but not upper hemi-continuous.

Moreover, define F : R+ → 2R by F (x) = (0, 1). Then, F is upper hemi-

continuous, but not sequentially closed.

Definition 2.5.7 A correspondence F : X → 2Y is said to be open if its

graph

Gr(F ) = {(x,y) ∈ X × Y : y ∈ F (x)} is open .

Proposition 2.5.3 Let F : X → 2Y be a correspondence. Then,

(1) if a correspondence F : X → 2Y has an open graph, then it has

open upper and lower sections.

(2) If a correspondence F : X → 2Y has open lower sections, then it

must be lower hemi-continuous.

2.5.4 Transfer Closed-valued Correspondence

The concepts of transfer closedness, transfer openness, transfer convexity,

and others for multivalued mapping (correspondence) introduced in Tian
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(1992, 1993) and Zhou and Tian (1992) weaken the conditions for estab-

lishing some basic mathematical theorems in nonlinear analysis and the

existence of equilibrium solutions of optimization problems. They can be

employed to obtain many characterization results, such as necessary and

sufficient conditions for the existence of the maximal element of preference

relations and the existence of Nash equilibrium. These conclusions are pro-

vided in the corresponding chapters of this textbook.

Denote by intD and cl D the set of interior points, and the closure of set

D, respectively.

Definition 2.5.8 A correspondence G : X → 2Y is said to be transfer closed-

valued onX if for any x ∈ X , y ̸∈ G(x) implies that there is an x′ ∈ X , such

that y ̸∈ cl G(x′).

Definition 2.5.9 A correspondence P : X → 2Y is said to have transfer

open upper sections on X if for any x ∈ X and y ∈ Y , y ∈ P (x) implies that

there is a point x′ ∈ X , such that y ∈ intP (x′).

Remark 2.5.6 If a correspondence is closed-valued, then it is a transfer

closed-valued (it is obtained by letting x′ = x); if a correspondence has

open upper sections, then it has the transfer open upper sections (let x′ =
x). Furthermore, the correspondence P : X → 2Y has transfer open upper

sections in X if and only if G : X → 2Y defined by G(x) = Y \ P (x) is

transfer closed-valued in X .

Remark 2.5.7 For any function f : X → R, the correspondence G : X →
2Y defined by

G(x) = {y ∈ X : f(y) = f(x)}, ∀ x ∈ X

is transfer closed-valued if and only if f is transfer upper continuous on X .

The following proposition significantly weakens the various continuity

conditions involved when proving many optimization problems.
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Proposition 2.5.4 (Tian (1992)) Let X and Y be two topological spaces, G :
X → 2Y be a correspondence from point to set. Then,

∩
x∈X

clG(x) =
∩

x∈X
G(x)

if and only if G is transfer closed-valued on X .

PROOF. Sufficiency: We need to show

∩
x∈X

cl G(x) =
∩

x∈X
G(x).

It is clear that ∩
x∈X

G(x) ⊆
∩

x∈X
cl G(x),

and thus we just need to show that

∩
x∈X

cl G(x) ⊆
∩

x∈X
G(x).

Suppose that this is not the case. Then, there is a y, such that y ∈
∩

x∈X cl G(x),

but y ̸∈
∩

x∈X G(x). Therefore, there is a z ∈ X , such that y ̸∈ G(z). Note

that G is transfer closed-valued on X , and then there exists a z′ ∈ X , such

that y ̸∈ cl G(z′), and thus y ̸∈
∩

x∈X cl G(x), which is a contradiction.

Necessity: Suppose that

∩
x∈X

cl G(x) =
∩

x∈X
G(x).

If y ̸∈ G(x), then

y ̸∈
∩

x∈X
cl G(x) =

∩
x∈X

G(x),

and thus y ̸∈ cl G(x′) for some x′ ∈ X . Consequently,G is a transfer closed-

valued correspondence on X . 2

Similarly, we can define transfer convexity.

Definition 2.5.10 (Transfer FS-convex) Let X be a topological space, and

Z be a convex subset of X . A correspondence G : X → 2Z is said to be

transfer FS-convex on X if for any finite set {x1,x2, · · · ,xn} ⊆ X , there is
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a corresponding finite set {y1,y2, · · · ,yn} ⊆ Z, such that for any subset

{yi1,yi2, · · · ,yis}(1 5 s ≤ n), we have

co {yi1,yi2, · · · ,yis} ⊆
s∪
r=1

G(yir).

Definition 2.5.11 (Transfer SS-convex) Let X be a topological space, and

Z be a convex subset of the topological space. A correspondence P : Z →
2X is said to be transfer SS-convex onX if for any finite set {y1,y2, · · · ,yn} ⊆
X , there exists a finite set {y1,y2, · · · ,yn} ⊆ Z, such that for any subset

{yi1,yi2, · · · ,yis}(1 5 s 5 n) and any yi0 ∈ co {yi1,yi2, · · · ,yis}, and we

have xir ̸∈ P (yi0).

Remark 2.5.8 Unlike FS-convex and SS-convex, when defining the transfer

FS-convex and transfer SS-convex, we do not assume that correspondences

are mapping from itself to itself. It is clear that when X = Z and picking

yi = xi, FS-convex implies transfer FS-convex and SS-convex implies trans-

fer SS-convex. Similarly, it is not difficult to verify that the correspondence

P : X → 2Z is transfer SS-convex if and only if G : X → 2X defined by

G(x) = Z \ P (x) is transfer FS-convex.

2.6 Static Optimization

The optimization problem constitutes a core issue in economics. Rationality

is a key assumption about individual decision-makers in economics. Indi-

viduals pursue maximizing their personal interests, and the basic analysis

is to solve optimization problems. This section introduces various methods

for solving static optimization problems.

2.6.1 Unconstrained Optimization

The optimization problem discusses whether an objective function can reach

the maximum or minimum on a given set. LetX be an arbitrary topological

space. First, we give the following concepts:



174CHAPTER 2. PRELIMINARY KNOWLEDGE AND METHODS OF MATHEMATICS

Definition 2.6.1 (Local Optimum) If f(x∗) = f(x) (f(x∗) > f(x)) for al-

l x in some neighbourhood of x∗, then the function is said to have local

maximum (unique local maximum) at point x∗.

If f(x̃) 5 f(x)(f(x̃) < f(x)) for all x ̸= x̃ in some neighbourhoods of

x̃, then the function is said to have local minimum (unique local minimum) at

x̃.

Definition 2.6.2 (Global Optimum) If f(x∗) = f(x)(f(x∗) > f(x)) for all

x in the domain of the function, then the function is said to have global

(unique) maximum at x∗; if f(x∗) 5 f(x) (f(x∗) < f(x)) for all x in the

domain of the function, then the function is said to have global (unique)

minimum at x∗.

A classical conclusion about global optimization is the so-called the

Weierstrass theorem.

Theorem 2.6.1 (Weierstrass Theorem) Any upper (lower) semi-continuous func-

tion must reach its maximum (minimum) on a compact set, and the set of maximal

points is compact.

Transfer continuity can be used to generalize the Weierstrass Theorem

by providing sufficient and necessary conditions for a function f to reach

global maximum (minimum) on a compact set X , sufficient and necessary

conditions for the set of global maximal (minimal) points to be compact,

and characterising a function that has a global maximum (minimum) value

on arbitrary sets in Tian (1992, 1993, 1994), Tian & Zhou (1995), and Zhou

&Tian (1992).

Theorem 2.6.2 (Tian-Zhou Theorem I) Suppose that X is a compact set in an

arbitrary topological space. The function f : X → R has a maximum (minimum)

on X if and only if f is transfer weakly upper (lower) continuous on X .

PROOF. Since f is transfer weakly upper continuous on X if and only

if −f is transfer weakly lower continuous, we just need to show the case in

which the function has a maximal point.

Sufficiency: We prove it by contradiction. Suppose that f does not have

a maximum on X . Then, for each y ∈ X , there is x ∈ X , such that f(x) >
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f(y). It follows from the transfer weak upper continuity of f that there is

a x′ ∈ X and a neighbourhood N (y) of y, such that f(x′) = f(y′) for all

y′ ∈ N (y). Therefore, we have X = ∪y∈XN (y). Since X is compact, there

is a finite number of points {y1,y2, · · · ,yn}, such that X = ∪ni=1N (yi). Let

x′
i be the corresponding points, such that f(x′

i) = f(y′) for all y′ ∈ N (yi).

f must have the maximum in the finite subset {x′
1,x

′
2, · · · , x′

n}. Without

loss of generality, suppose x′
1 satisfying f(x′

1) = f(x′
i) for ∀i = 1, 2, · · · , n.

It follows from the previous assumption that f has no maximum on X , i.e.,

x′
1 is not the maximal point of f on X . Therefore, there exists x ∈ X , such

that f(x) > f(x′
1). However, since X = ∪ni=1N (yi), there is j, such that x ∈

N (yj), and then f(x′
j) = f(x). Therefore, f(x) > f(x′

1) = f(x′
j) = f(x),

which is a contradiction. As a consequence, f has a maximum on X .

Necessity: We prove this in a straightforward manner. Let x′ be a max-

imal point of f . Then, f(x′) = f(y′) holds for all y′ ∈ X .

2

In many cases, when proving the existence of competitive equilibrium

and the existence of equilibrium in a game, we not only need to prove the

existence of optimal points, but also prove that the set of the optimal points

is compact.

Theorem 2.6.3 (Tian-Zhou Theorem II) Suppose that X is a compact set in

an arbitrary topological space, and f : X → R is a function. The set of maximal

(minimal) points of f on X is nonempty and compact if and only if f is transfer

upper (lower) continuous on X .

PROOF. We only need to prove the case with a set of maximal points.

Necessity: Suppose that the set of maximal points of f onX is nonemp-

ty and compact. If f(y) < f(x) for any x,y ∈ X , then y cannot be a maxi-

mal point of f on X . It follows from the compactness of the set of maximal

points that there is a neighbourhood N (y) of y that does not contain any

maximal points of f on X . Let x′ be a maximal point of f on X , and then

f(z) < f(x′) for all z ∈ N (y). Therefore, f is transfer upper continuous on

X .
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Sufficiency: First, note that G : X → 2Y defined by

G(x) = {y ∈ X : f(y) = f(x)}, ∀ x ∈ X

is a transfer closed-valued correspondence if and only if f is transfer upper

continuous on X . Since f is transfer upper continuous on X , according to

Proposition 2.5.4, we have
∩

x∈X cl G(x) =
∩

x∈X G(x), and thus the set of

maximal points is closed.

Since f has a maximal point on any finite subset {x1,x2, · · · ,xm} ⊆ X ,

let f(x1) = f(xi) hold for all ∀i = 1, · · · ,m. Then, we have x1 ∈ G(xi) for

all i = 1, · · · ,m, and thus

∅ ̸=
m∩
i=1

G(xi) ⊆
m∩
i=1

cl G(xi),

i.e., the class of sets {cl G(x) : x ∈ X} has the property of finite intersection

on X . Since {cl G(x) : x ∈ X} is a collection of closed sets in compact set

X , ∅ ̸=
∩

x∈X cl G(x) =
∩

x∈X G(x). This implies that there is x∗ ∈ X ,

such that f(x∗) = f(x) for all x ∈ X . Since the set of maximal points∩
x∈X cl G(x) is a closed subset of the compact set X , it is also compact. 2

In order to easily determine whether a function has an extreme point,

the following gives the method of finding extreme values by the differen-

tial method. We first provide the necessary conditions for interior extreme

points without constraints, and then give the sufficient conditions.

Necessary Conditions for Optimization

Generally, there are two necessary conditions for the interior extreme point,

i.e., first- and second-order necessary conditions.

Theorem 2.6.4 (The first-order necessary condition for interior extreme points)

Suppose that X ⊆ Rn. If a differentiable function f(x) reaches a local maximum

or minimum at an interior point x∗ ∈ X , then x∗ is the solution to the following

system of simultaneous equations:

∂f(x∗)
∂x1

= 0,



2.6. STATIC OPTIMIZATION 177

∂f(x∗)
∂x2

= 0,

...

∂f(x∗)
∂xn

= 0.

PROOF. Suppose that f(x) reaches the local extreme value at an interior

point x∗, then we need to prove thatDf(x∗) = 0. Although this proof is not

the simplest one, it will be very useful when considering the second-order

condition.

Choose any vector z ∈ Rn, and then construct a familiar univariate

function of any scalar t:

g(t) = f(x∗ + tz)

First, for t ̸= 0, x∗ + tz gives a vector that is different from x∗. For

t = 0, x∗ + tz is equal to x∗, and thus g(0) is exactly the value of f at x∗.

According to the assumption that f attains an extremum at x∗, g(t) must

reach a local extreme at t = 0. It follows from the Fermat Theorem given by

Proposition 2.4.4 that g′(0) = 0. Taking the derivative of g(t) by the Chain

Rule gives:

g′(t) =
n∑
i=1

∂f(x∗ + tz)
∂xi

zi.

When t = 0 and using g′(0) = 0, we have

g′(0) =
n∑
i=1

∂f(x∗)
∂xi

zi = Df(x∗)z = 0.

Since the above equation holds for any vector z, including the unit vec-

tor, this means that each partial derivative of f must equal to zero, i.e.,

Df(x∗) = 0.

2

Theorem 2.6.5 (The second-order necessary conditions for interior extreme points)

Suppose that f(x) is twice continuously differentiable on X ⊆ Rn.

(1) If f(x) reaches a local maximum at the interior point x∗, then the Hessian
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matrix H(x∗) is negative semi-definite.

(2) If f(x) reaches a local minimum at the interior point x̃, then H(x̃) is

positive semi-definite.

PROOF. Let g(t) = f(x + tz), z ∈ Rn and x be a stationary point of f .

If f attains a stationary point at x, then g gets a stationary point at t = 0.

Moreover, for any t, we have

g′(t) =
n∑
i=1

∂f(x + tz)
∂xi

zi.

We have the second-order derivatives:

g′′(t) =
n∑
i=1

n∑
j=1

∂2f(x + tz)
∂xi∂xj

zizj .

Now, suppose that f reaches maximum at x = x∗. Since g′′(0) 5 0, then

the value of g′′(t) at x∗ and t = 0 is

g′′(0) =
n∑
i=1

n∑
j=1

∂2f(x∗)
∂xi∂xj

zizj 5 0,

or zTH(x)z 5 0. Since z is arbitrary, this implies that H(x∗) is negative

semi-definite. Similarly, if f is minimized at x = x̃, then g′′(0) = 0 and

H(x̃) is positive semi-definite. 2

Sufficient Conditions for Optimization

Theorem 2.6.6 (The First-Order Sufficient Conditions for Maximization)

Suppose that f(x) is differentiable on X ⊆ R. Then, we have:

(1) If fi(x∗) = 0, and if f ′(x) changes its sign from positive to nega-

tive from the immediate left of the point x0 to its immediate right,

then f(x) has a local maximum at x∗.

(2) If fi(x̃) = 0, and f ′(x) changes its sign from negative to positive

from the immediate left of the point x0 to its immediate right, then

f(x) has a local minimum at x̃.
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(3) There is no extreme point if f ′(x) has the same sign on some neigh-

borhood.

Theorem 2.6.7 (The Second-Order Sufficient Conditions for Maximization)

Suppose that f(x) is twice continuously differentiable onX ⊆ Rn. Then, we have:

(1) If fi(x∗) = 0, and (−1)iDi(x∗) > 0, i = 1, · · · , n, then f(x) has

a local maximum at x∗.

(2) If fi(x̃) = 0, and Di(x̃) > 0, i = 1, · · · , n, then f(x) has a local

minimum at x̃.

Global Optimization

The local optimum is, in general, not the same as the global optimum.

However, under certain conditions, these two are consistent with each oth-

er.

Theorem 2.6.8 (Local and Global Optimum) Suppose that f is a concave and

twice continuously differentiable function on X ⊆ Rn, and x∗ is an interior point

of X . Then, the following three statements are equivalent:

(1) Df(x∗) = 0.

(2) f has a local maximum at x∗.

(3) f has a global maximum at x∗.

PROOF. It is clear that (3) ⇒ (2), and it follows from the previous

theorem that (2) ⇒ (1). We just need to prove that (1) ⇒ (3).

Suppose that Df(x∗) = 0. Then, that f is concave implies that for all x

in the domain, we have:

f(x) 5 f(x∗) +Df(x∗)(x − x∗).

These two formulas mean that for all x, we must have

f(x) 5 f(x∗).

Therefore, f reaches a global maximum at x∗. 2
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Theorem 2.6.9 (Strict Concavity/Convexity and Uniqueness of Global Optimum)

Let X ⊆ Rn.

(1) If a strictly concave function f defined on X reaches a local maxi-

mum value at x∗, then x∗ is the unique global maximum point.

(2) If a strictly convex function f reaches a local minimum value at x̃,

then x̃ is the unique global minimum point.

PROOF. Proof by contradiction. If x∗ is a global maximum point of

function f , but not unique, then there is a point x′ ̸= x∗, such that f(x′) =
f(x∗). Suppose that xt = tx′ + (1 − t)x∗. Then, strict concavity requires

that for all t ∈ (0, 1),

f(xt) > tf(x′) + (1 − t)f(x∗).

Since f(x′) = f(x∗),

f(xt) > tf(x′) + (1 − t)f(x′) = f(x′).

This contradicts the assumption that x′ is a global maximum point of f .

Consequently, the global maximum point of a strictly concave function is

unique. The proof of part (2) is similar, and thus omitted. 2

Theorem 2.6.10 (The sufficient condition for the uniqueness of global optimum)

Suppose that f(x) is twice continuously differentiable on X ⊆ Rn. We have:

(1) If f(x) is strictly concave and fi(x∗) = 0, i = 1, · · · , n, then x∗

is a unique global maximum point of f(x).

(2) If f(x) is strictly convex and fi(x̃) = 0, i = 1, · · · , n, then x̃ is a

unique global minimum point of f(x).

2.6.2 Optimization with Equality Constraints

Equality-Constrained Optimization

An optimization problem with equality-constraints has the following for-

m: Suppose that a function of n variables defined on X ⊆ Rn with m
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constraints, where m < n. The optimization problem is:

max
x1,··· ,xn

f(x1, · · · , xn)

s.t. g1(x1, · · · , xn) = 0,

g2(x1, · · · , xn) = 0,

...

gm(x1, · · · , xn) = 0.

The most important conclusion of the equality-constrained optimiza-

tion problem is the Lagrange theorem, which gives a necessary condition

for a point to be the solution of the optimization problem.

The Lagrange function of the above equality-constrained problem is de-

fined as:

L(x, λ) = f(x) +
m∑
j=1

λjg
j(x), (2.6.3)

where λ1, · · · , λm are called the Lagrange multipliers.

The following Lagrange theorem presents how to solve optimization

problems under equality constraints.

Theorem 2.6.11 (First-Order Necessary Condition for Interior Extremum)

Suppose that f(x) and gj(x), j = 1, · · · ,m, are continuously differentiable func-

tions defined on X ⊆ Rn, x∗ is an interior point of X and an extreme point (max-

imal or minimal point) of f ——here f is subject to the constraint of gj(x∗) = 0,

where j = 1, · · · ,m. If the gradient Dgj(x∗) = 0, j = 1, · · · ,m, are linearly

independent, then there is a unique λ∗
j , j = 1, · · · ,m,, such that:

∂L(x∗, λ∗)
∂xi

= ∂f(x∗)
∂xi

+
m∑
i=1

λ∗
j

∂gj(x∗)
∂xi

= 0, i = 1, · · · , n.

The following proposition gives the sufficient conditions for interior ex-

treme values with equality constraints.
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Proposition 2.6.1 (Second-Order Necessary Condition for Interior Extremum)

Suppose that f and g1, · · · , gm are twice continuously differentiable func-

tions, and x∗ satisfies the necessary conditions of Theorem 2.6.10. Let the

bordered Hessian determinant

|H̄r| = det



0 · · · 0 ∂g1

∂x1
· · · ∂g1

∂xr
...

. . .
...

...
. . .

...

0 · · · 0 ∂gm

∂x1
· · · ∂gm

∂xr
∂g1

∂x1
· · · ∂gm

∂x1

∂2L
∂x1∂x1

· · · ∂2L
∂x1∂xr

...
. . .

...
...

. . .
...

∂g1

∂xr
· · · ∂gm

∂xr

∂2L
∂xr∂x1

· · · ∂2L
∂xr∂xr



, r = m+1, 2, · · · , n

take value at x∗. Thus

(1) If (−1)r−m+1|H̄r(x∗)| > 0, r = m + 1, · · · , n, then x∗ is the

local maximum of the optimization problem.

(2) If (−1)m|H̄r(x∗)| < 0, r = m + 1, · · · , n, then x∗ is the local

minimum of the optimization problem.

In particular, when there is only one equality constraint, i.e., m = 1, the

bordered Hessian determinant |H̄| becomes:

|H̄| =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0 g1 g2 · · · gn

g1 L11 L12 · · · L1n

g2 L21 L22 · · · L2n

· · · · · · · · · · · · · · ·
gn Ln1 Ln2 · · · Lnn

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
.

where Lij = fij − λgij . The first-order condition is

λ = f1
g1

= f2
g2

= · · · = fn
gn
.
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The principal minors of the bordered Hessian are

|H̄2| =

∣∣∣∣∣∣∣∣∣
0 g1 g2

g1 L11 L12

g2 L21 L22

∣∣∣∣∣∣∣∣∣ , |H̄3| =

∣∣∣∣∣∣∣∣∣∣∣

0 g1 g2 g3

g1 L11 L12 L13

g2 L21 L22 L23

g3 L31 L32 L33

∣∣∣∣∣∣∣∣∣∣∣
, · · · .

This leads to the following two conclusions.

Conditions for Maximum with Equality Constraints

(1) Lλ = L1 = L2 = · · · = Ln = 0 [First-order Necessary Condi-

tion];

(2) |H̄2| < 0, |H̄3| < 0, |H̄4| < 0, · · · , |H̄n| < 0.

Conditions for Minimum with Equality Constraints

(1) Lλ = L1 = L2 = · · · = Ln = 0 [First-order Necessary Condi-

tion];

(2) |H̄2| > 0, |H̄3| < 0, |H̄4| > 0, · · · , (−1)n|H̄n| > 0.

Note that when the constraint function g is linear, g(x) = a1x1 + · · · +
anxn = c, all of the twice partial derivatives of g are equal to zero, and thus

the bordered determinant |B| and the bordered Hessian determinant have

the following relations:

|B| = λ2|H̄|

Therefore, the sequential principal minors of the bordered determinant have

the same signs. As such, as long as the objective function is strictly quasi-

concave, the first-order necessary condition is also a sufficient condition to have

the maximum value.
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2.6.3 Optimization with Inequality Constraints

Consider an optimization problem with inequality constraints:

max f(x)

s.t. gi(x) 5 di, i = 1, 2, · · · , k.

If for a point x that makes all constraints held with equality, Dg1(x),

Dg2(x), · · · , Dgk(x) are linearly independent, then x is said to satisfy the

strong version of constrained qualification. Here, the symbolD represents

the partial differential operator.

Theorem 2.6.12 (Kuhn-Tucker Theorem) Suppose that x solves the inequality-

constrained maximization problem and satisfies the constrained qualification con-

dition. Then, there is a set of Kuhn-Tucker multipliers (λi = 0, i = 1, · · · , k),

such that

Df(x) =
k∑
i=1

λiDgi(x).

Moreover, we have the complementary slackness conditions:

λi = 0, for all i = 1, 2, · · · , k.
λi = 0, if gi(x) < di.

Comparing the Kuhn-Tucker theorem with Lagrange multipliers in the

equality-constrained optimization problem, we see that the major differ-

ence is that the signs of the Kuhn-Tucker multipliers are nonnegative, while

the signs of the Lagrange multipliers can be positive or negative. This ad-

ditional information can be useful in various occasions.

The Kuhn-Tucker theorem only provides a necessary condition for a

maximum. The following theorem states conditions that guarantee that

the above first-order conditions are sufficient.

Theorem 2.6.13 (Kuhn-Tucker Sufficiency) Suppose that f is concave, and

gi, i = 1, · · · , k, are convex. If x satisfies the Kuhn-Tucker first-order conditions,

then x is a global solution to the constrained maximization problem.

We can weaken the conditions in the above theorem when there is only
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one constraint. Let C = {x ∈ Rn : g(x) 5 d}. We have the following

propositions.

Proposition 2.6.2 Suppose that f is quasi-concave, and the set C is convex (this

is true if g is quasi-convex). If x satisfies the Kuhn-Tucker first-order conditions,

then x is a global solution to the constrained maximization problem.

Sometimes, we require x to be nonnegative. Suppose that we have the

following optimization problem:

max f(x)

s.t. gi(x) 5 di, i = 1, 2, · · · , k,

x = 0.

Then, the Lagrange function in this case is given by

L(x, λ) = f(x) +
k∑
l=1

λl[dl − gl(x)] +
n∑
j=1

µjxj ,

where µ1, · · · , µn are the multipliers associated with constraints xj = 0.

The first-order conditions are

L(x, λ)
∂xi

= ∂f(x)
∂xi

−
k∑
l=1

λl
∂gl(x)
∂xi

+ µi = 0, i = 1, 2, · · · , n.

λl=0, l = 1, 2, · · · , k.

λl=0, if gl(x) < dl.

µi=0, i = 1, 2, · · · , n.

µi=0, if xi > 0.

Eliminating µi, we can equivalently write the above first-order condi-

tions with nonnegative choice variables as

L(x, λ)
∂xi

= ∂f(x)
∂xi

−
k∑
l=1

λl
∂gl(x)
∂xi

5 0, with equality if xi > 0, i = 1, 2, · · · , n,

or in matrix notation,

Df − λDg 5 0,
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x[Df − λDg] = 0,

where we have written the product of two vectors x and y as the inner

product, i.e., xy =
∑n
i=1 xiyi. Therefore, if we are at an interior optimum,

we have

Df(x) = λDg.

2.6.4 The Envelope Theorem

The Envelope Theorem without Constraints

Consider the following maximization problem:

M(a) = max
x

f(x,a).

The function M(a) gives the maximum of the objective function as a func-

tion of parameter a.

Let x(a) be the value of x that solves the maximization problem. Then,

we can also write M(a) = f(x(a),a). It is often of interest to know how

M(a) changes as a changes. The Envelope Theorem gives us the answer:

dM(a)
da

= ∂f(x,a)
∂a

∣∣∣∣∣∣
x=x(a)

The conclusion is particularly useful. This expression informs us that the

derivative ofM with respect to a is given by the partial derivative of f with

respect to a, holding x fixed at the optimal choice. This is the meaning of

the vertical bar to the right of the derivative. The proof of the envelope

theorem is a relatively straightforward calculation.
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The Envelope Theorem with Constraints

Now, consider a more general parameterized constrained maximization

problem of the form:

M(a) = max
x1,x2

g(x1, x2,a)

s.t. h(x1, x2,a) = 0.

The Lagrangian for this problem is

L = g(x1, x2,a) − λh(x1, x2,a),

and the first-order conditions for interior points are

∂g

∂x1
− λ

∂h

∂x1
=0, (2.6.4)

∂g

∂x2
− λ

∂h

∂x2
=0,

h(x1, x2,a)=0.

These conditions determine the optimal choice functions (x1(a), x2(a)), which,

in turn, determine the maximum value function

M(a) ≡ g(x1(a), x2(a),a). (2.6.5)

The Envelope Theorem gives us a formula for the derivative of the

value function with respect to a parameter in the maximization problem.

Specifically, the formula is

dM(a)
da

= ∂L(x,a)
∂a

∣∣∣∣∣∣ x=x(a)

= ∂g(x1, x2,a)
∂a

∣∣∣∣∣∣ xi=xi(a)
− λ

∂h(x1, x2,a)
∂a

∣∣∣∣∣∣
xi=xi(a)

As previously, special focus should be given to the interpretation of

these partial derivatives: they are the derivatives of g and h with respect

to a, holding x1 and x2 fixed at their optimal values.
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2.6.5 Maximum Theorems

In optimization problems, we usually need to check if an optimal solution

is continuous in parameters, e.g., to check the continuity of the demand

function. We can apply the so-called the maximum theorem to these prob-

lems.

Berge’s Maximum Theorem

Theorem 2.6.14 (Berge’s Maximum Theorem) Let A and X be two topologi-

cal spaces. Suppose that f : A × X → R is a continuous function, and the con-

straint set F : A → 2X is a continuous correspondence with non-empty compact

values. Then, the maximum value function (also called the marginal function)

M(a) = max
x∈F (a)

f(x,a)

is a continuous function on A, and the maximum correspondence

µ(a) = arg max
x∈F (a)

f(x,a)

is upper hemi-continuous.

Walker’s Maximum Theorem

In many cases of optimization problems, the preference of an economic

agent may not be represented by a utility function. Walker (1979) general-

ized Berge’s maximum theorem to the case of maximal element under the

open preference relation. Walker’s maximum theorem allows the prefer-

ence relations and constraint sets to vary with parameters.

Theorem 2.6.15 (Walker’s Maximum Theorem) LetA and Y be two topolog-

ical spaces. Suppose that U : Y ×A → 2Y is a correspondence with an open graph.

The constraint set F : A → 2Y is a continuous and non-empty compact-valued

correspondence. Define the maximum correspondence µ : A → 2Y as

µ(a) := {y ∈ F (a) : U(y,a) ∩ F (a) = ∅},
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µ is a compact-valued upper semi-continuous correspondence.

Tian-Zhou Maximum Theorem

Both Berge’s and Walker’s maximum theorems depend on the continuity

(or open graph) of the constraint correspondence and the objective function

(preference correspondence).

Tian and Zhou (1995) relaxed these assumptions, and generalized and

characterized Berge’s and Walker’s maximum theorems. We first give the

following definition of transfer continuity.

Definition 2.6.3 Let A and Y be two topological spaces, and F : A → 2Y

be a correspondence. A function u : A× Y → R ∪ {∞} is said to be quasi-

transfer upper continuous in (a, y) with respect to F if, for every (a,y) ∈ A×Y

with y ∈ F (a), u(a, z) > u(a,y) for some z ∈ F (a) implies that there is a

neighbourhood N (a,y) of (a,y), such that for any (a′,y′) ∈ N (a,y) with

y′ ∈ F (a′), there is a z′ ∈ F (a′), such that

u(a′, z′) > u(a′,y′).

The following definition is a natural generalization of transfer upper

continuity.

Definition 2.6.4 Let A and Y be two topological spaces, and F : A → 2Y

be a correspondence. A function u : A × Y → R ∪ {∞} is said to be

transfer upper continuous on F if, for every (a,y) ∈ A × Y with y ∈ F (a),

u(a, z) > u(a,y) for some z ∈ F (a) implies that there is a point z′ ∈ Y and

a neighbourhood N (y) of y, such that for any y′ ∈ N (y) with y′ ∈ F (a),

we have u(a, z′) > u(a,y′) and z′ ∈ F (a).

Theorem 2.6.16 (Tian-Zhou Maximum Theorem) Let A and Y be two topo-

logical spaces, and u : A×Y → R∪{∞} be a function. Suppose thatF : A → 2Y

is a compact and closed valued correspondence. Then, the maximum correspon-

dence µ : A → 2Y is a nonempty, compact-valued and closed correspondence if

and only if u is transfer upper continuous in y on F , and quasi-transfer upper

continuous in (a, y) with respect to F . Moreover, if F is upper hemi-continuous,

then the correspondence of extreme value µ is also upper hemi-continuous.
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This theorem relaxes the upper semi-continuity of the objective function

and the constraint correspondence in Berge’s maximum theorem.

2.6.6 Continuous Selection Theorems

The continuous selection theorem is a powerful tool to prove the existence

of equilibrium, and it is closely related to the fixed point theorem, which

will be introduced below. The basic conclusion of the continuous selection

theorem is that if a correspondence is lower hemi-continuous with non-

empty convex values, there is a continuous function so that for all points in

the domain, the function value is a subset of the correspondence.

Definition 2.6.5 Let X ⊆ Rn, Y ⊆ Rm and F : X → 2Y be a correspon-

dence. If for any x ∈ X , we have f(x) ∈ F (x), then the single valued

function f : X → Y is said to be a selection corresponding to F .

Theorem 2.6.17 (Michael(1956)) Let X ⊆ Rn be compact. Suppose that F :
X → 2Rm is a lower hemi-continuous correspondence with closed and convex

values. Then, F has a continuous selection, i.e., there exists a single-valued con-

tinuous function f : X → Rm, such that f(x) ∈ F (x) for all x ∈ X .

For the infinite dimension space, we have the following Browder Theo-

rem.

Theorem 2.6.18 (Browder, (1968)) Let X be a Hausdorff compact space, and Y

be a locally convex topological vector space. Suppose that F : X → 2Y is a corre-

spondence with open lower sections and convex values. Then, F has a continuous

selection, i.e., there is a single-valued continuous function f : X → Y , such that

f(x) ∈ F (x) for all x ∈ X .

Since the open lower section of a correspondence implies the lower

hemi-continuity of the correspondence (see Proposition 2.5.3), we then have

the following result.

Corollary 2.6.1 (Yannelis-Prabhakar (1983)) Let X ⊆ Rn. Suppose that F :
X → 2Rm is a correspondence with open lower sections and convex values. Then,

F has a continuous selection, i.e., there is a single-valued continuous function

f : X → Y , such that f(x) ∈ F (x) for all x ∈ X .
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2.6.7 Fixed Point Theorems

The fixed point theorem plays a crucial role in proving the existence of e-

quilibrium. It is the most commonly used method for determining whether

there is a solution of equilibrium equations. John von Neumann (1903-1957,

see Section 5.8.1 for his biography) was the first to propose results that are

essentially the fixed point theorem in two papers published in 1928 and

1937, respectively.

Definition 2.6.6 Let X be a topological space, and f : X → X be a single-

valued function from X to itself. If there is a point x∗ ∈ X , such that

f(x∗) = x∗, then x∗ is called a fixed point of function f .

Definition 2.6.7 Let X be a topological space, and F : X → 2X is a corre-

spondence fromX to itself. If there is a point x∗ ∈ X , such that x∗ ∈ F (x∗),

then x∗ is called a fixed point of correspondence f .

There are some important fixed point theorems which are widely used

in economics.

Brouwer’s Fixed Theorem

Brouwer’s fixed point theorem is one of the most fundamental and impor-

tant fixed point theorems.

Theorem 2.6.19 (Brouwer’s Fixed Theorem) Let X be a non-empty, compact,

and convex subset of Rm. If a function f : X → X is continuous on X , then f

has a fixed point, i.e., there is a point x∗ ∈ X , such that f(x∗) = x∗ (See Figure

2.4).

Example 2.6.1 If f : [0, 1] → [0, 1] is continuous, then f has a fixed point x. To

see this, let g(x) = f(x) − x. Then, we have

g(0) = f(0) = 0

g(1) = f(1) − 1 5 0.

From the mean-value theorem, there is a point x∗ ∈ [0, 1], such that g(x∗) =
f(x∗) − x∗ = 0.
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Figure 2.4: The intersection point of 45◦ line and the curve of a function is
a fixed point. There are three fixed points in this example

Kakutani’s Fixed Point Theorem

In applications, mapping is often a correspondence, and thus Brouwer’s

fixed point theorem cannot be used directly, and Kakutani’s fixed point

theorem is commonly used instead.

Theorem 2.6.20 (Kakutani’s Fixed Point Theorem (1941)) Let X ⊆ Rm be

a non-empty, compact, and convex subset. If a correspondence F : X → 2X is

an upper hemi-continuous correspondence with non-empty compact and convex

values on X , then F has a fixed point, i.e., there is a point x∗ ∈ X , such that

x∗ ∈ F (x∗).

Browder’s Fixed Point Theorem

It follows from Theorem 2.6.16 that we have the following Browder’s Fixed

Point Theorem.

Theorem 2.6.21 (Browder (1968)) Let X ⊆ Rn be a compact and convex sub-

set. Suppose that a correspondence F : X → 2Rm is convex-valued with open

lower sections. Then, F has a fixed point, i.e., there is a point x∗ ∈ X , such that

x∗ ∈ F (x∗).
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Michael’s Fixed Point Theorem

It follows from Theorem 2.6.17 that Michael’s Fixed Point Theorem is given

as follows.

Theorem 2.6.22 (Michael (1956)) LetX ⊆ Rn be a compact and convex subset.

Suppose that F : X → 2Rm is a lower hemi-continuous correspondence with

closed and convex values. Then, F has a fixed point, i.e., there is a point x∗ ∈ X ,

such that x∗ ∈ F (x∗).

Tarsky’s Fixed Point Theorem

Tarsky’s fixed point theorem is a very different type of fixed point theorem.

It does not require the function to have any kind of continuity, but only re-

quires that the function be monotonic and non-decreasing, and be defined

on the domain composed of intervals. It is becoming increasingly impor-

tant in applications of economics, especially in games with a monotonic

payoff function.

Theorem 2.6.23 (Tarsky’s Fixed Point Theorem (1955)) Let [0, 1]n be the n

times product of interval [0, 1]. If f : [0, 1]n → [0, 1]n is a non-decreasing func-

tion, then f has a fixed point, i.e., there is a point x∗ ∈ X , such that f(x∗) = x∗.

Contraction Mapping Theorem

In numerous dynamic economic models, we not only need to prove the ex-

istence of equilibrium, but also prove the uniqueness of equilibrium. The

contraction mapping principle is an important tool to solve this problem.

It is also the most basic and simple theorem of existence in functional anal-

ysis. Indeed, many of the existence theorems in mathematical analysis are

its special cases. Its basic conclusion is that a contraction mapping from a

complete metric space to itself has a unique fixed point.

Definition 2.6.8 Let (X, d) be a complete metric space, and f : X → X be

a single-valued function from X to itself. If for any point x,x′ ∈ X , there

is α ∈ (0, 1), such that d(f(x), f(x′)) < αd(x,x′), then f is a contraction

mapping.
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Theorem 2.6.24 (Banach Contraction Mapping Theorem ) Suppose that f :
X → X is a contraction mapping from a complete metric space X to itself. Then,

f has a unique fixed point on X.

Characterization of the Existence of Fixed Points

All of the above fixed-point theorems are only sufficient conditions for the

existence of fixed points. Tian (2017) introduced a series of concepts of

recursive transfer continuity, and provided a sufficient and necessary con-

dition for the existence of fixed points.

We first introduce the concept of diagonal transfer continuity intro-

duced by Baye, Tian and Zhou (1993).

Definition 2.6.9 A function φ : X ×X → R∪ {±∞} is said to be diagonally

transfer continuous in y if, whenever φ(x, y) > φ(y, y) for x, y ∈ X , there

exists a point z ∈ X and a neighborhood Vy ⊂ X of y, such that φ(z, y′) >
φ(y′, y′) for all y′ ∈ Vy.

We now define the concept of recursive diagonal transfer continuity.

Definition 2.6.10 (Recursive Diagonal Transfer Continuity) A function φ:

X × X → R ∪ {±∞} is said to be recursively diagonally transfer continu-

ous in y if, whenever φ(x, y) > φ(y, y) for x, y ∈ X , there exists a point

z0 ∈ X (possibly z0 = y) and a neighborhood Vy of y, such that φ(z, y′) >
φ(y′, y′) for all y′ ∈ Vy and for any finite subset {z1, . . . , zm} ⊆ X with

zm = z and φ(z, zm−1) > φ(zm−1, zm−1), φ(zm−1, zm−2) > φ(zm−2, zm−2),

. . ., φ(z1, z0) > φ(z0, z0) for m = 1.

Theorem 2.6.25 (Tian’s Fixed Point Theorem (2017)) Let X be a nonempty

and compact subset of a metric space (E, d), and f : X → X be a function.

Then, f has a fixed point if and only if the function φ: X × X → R ∪ {±∞},

defined by φ(x, y) = −d(x, f(y)), is recursively diagonally transfer continuous

in y.

2.6.8 Variation Inequality

Ky-Fan minimax inequality is one of the most prominent results in nonlin-

ear analysis. It is equivalent to many important mathematical theorems in a
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certain sense, such as KKM lemma, Sperner lemma, Brouwer’s fixed point

theorem, and Kakutani’s fixed point theorem (which can be derived from

each other). In numerous disciplines, such as variation inequalities, mathe-

matical programming, partial differential equations and economic models,

it can be used to prove the existence of equilibrium solutions.

Theorem 2.6.26 (Ky-Fan minimax inequality) Let X ⊆ Rm be a nonempty,

convex and compact set, and let ϕ: X × X → R be a function that satisfies the

following conditions:

(1) for all x ∈ X , ϕ(x,x) 5 0;

(2) ϕ is lower semi-continuous in y;

(3) ϕ is quasi-concave in x.

Then, there exists a point y∗ ∈ X , such that ϕ(x,y∗) 5 0 holds for all x ∈ X .

Ky-Fan inequality has been generalized in various forms in mathemat-

ical literature. Tian (2017) fully characterized the existence of solutions to

Ky-Fan inequalities, and provided the sufficient and necessary conditions

for the existence of Ky-Fan inequalities.

Definition 2.6.11 Let X be a topological space. A function ϕ: X × X →
R ∪ {±∞} is said to be γ-recursively transfer lower semicontinuous in y if,

whenever ϕ(x, y) > γ for x, y ∈ X , there exists a point z0 ∈ X (possibly

z0 = y) and a neighborhood Vy of y, such that ϕ(z,Vy) > γ for any sequence

of points {z1, . . . , zm−1, z} with ϕ(z, zm−1) > γ, ϕ(zm−1, zm−2) > γ, . . .,

ϕ(z1, z0) > γ, m = 1, 2, . . .. Here, ϕ(z,Vy) > γ means that ϕ(z, y′) > γ for

all y′ ∈ Vy.

Theorem 2.6.27 (Tian, 2017) LetX be a compact subset in a topological space,

γ ∈ R, and ϕ : X ×X → R∪ {±∞} be a function satisfying ϕ(x,x) 5 γ, ∀x ∈
X . Then, there is a point y∗ ∈ X , such that ϕ(x,y∗) 5 γ for all x ∈ X if and

only if ϕ is γ-recursively diagonally transfer lower hemi-continuous in y.

2.6.9 FKKM Theorems

The Knaster-Kuratowski-Mazurkiewicz (KKM) lemma is quite basic and is,

in certain ways, more useful than Brouwer’s fixed point theorem.
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Theorem 2.6.28 (KKM Theorem) Let X ⊆ Rm be a convex set. Suppose

that F : X → 2X is a correspondence, such that

(1) F (x) is closed for all x ∈ X ;

(2) F is FS-convex, i.e., for any x1, · · · ,xm ∈ X and its convex com-

bination xλ =
∑m
i=1 λixi, we have

xλ ∈
m∪
i=1

F (xi),

then ∩
x∈X

F (x) ̸= ∅.

The following is a generalized version of the KKM lemma by Ky Fan

(1984).

Theorem 2.6.29 (FKKM Theorem) Suppose that X ⊆ Rm is a convex set,

∅ ̸= X ⊆ Y , and F : X → 2Y is a correspondence, such that

(1) F (x) is closed for all x ∈ X ;

(2) F (x0) is compact for some x0 ∈ X ;

(3) F is FS-convex, i.e., for any x1, · · · ,xm ∈ X and its convex

combination xλ =
∑m
i=1 λixi, we have

xλ ∈
m∪
i=1

F (xi).

Then, ∩
x∈X

F (x) ̸= ∅.

This theorem has numerous generalizations. Tian (2017) also provided

the sufficient and necessary conditions for establishing the FKKM theorem:

Theorem 2.6.30 (Tian, 2017) Let X be a nonempty compact set in a topological

space T , and F : X → 2X be a correspondence satisfying x ∈ F (x) for all x ∈ X .
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Then,
∩

x∈X F (x) ̸= ∅ if and only if the correspondence ϕ: X ×X → R ∪ {±∞}
defined by

ϕ(x,y) =

 γ, if (x,y) ∈ G,

+∞, otherwise

is γ- recursively transfer semi-continuous with respect to y, where γ ∈ R and

G = {(x,y) ∈ X × Y : y ∈ F (x)}.

2.7 Dynamic Optimization

We generally encounter various constraints when making optimal deci-

sions, and the constrained optimization problems in the last section are all

among different variables in the same period. However, individuals usual-

ly need to make decisions in a dynamic environment, and early decisions

will affect decisions in later periods. Dynamic optimization, dynamic pro-

gramming, and optimal control provide analytical frameworks and tools

for solving optimization problems in dynamic environments. In this sec-

tion, we discuss the calculus of variation, optimal control, and the basic

results of dynamic programming. We focus mainly on continuous cases of

dynamic optimization problems defined on X ⊆ R .

2.7.1 Calculus of Variation

A general dynamic optimization problem has the following form:

max
∫ t1

t0
F [t,x(t),x′(t)]dt (2.7.6)

s.t. x(t0) = x0,x(t1) = x1. (2.7.7)

The above optimization problem is to choose a function x(t) subject to

the constraints in (2.7.7) to maximize the objective function (2.7.6). Calculus

of variation is a common method to solve such problems. Let x∗(t) be the

solution to the above optimization problem, and the necessary condition is

that the solution must satisfy the Euler equation:
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Fx[t,x∗(t),x′∗(t)] = dFx′ [t,x∗(t),x′∗(t)]
dt

, t ∈ [t0, t1]. (2.7.8)

Next, we will derive the Euler equation of dynamic optimization.

We say the function satisfying the constraint (2.7.7) is admissible. Let

x(t) be admissible, and let h(t) = x(t) − x∗(t) be the difference between

x(t) and the optimal selection. We then have h(t0) = h(t1) = 0.

For any constant a, y(t) = x∗(t) + ah(t) is also admissible. In this way,

the dynamic optimization problem can be transformed into solving under

what conditions a = 0 is the optimal choice under dynamic optimization.

g(a)=
∫ t1

t0
F [t,y(t),y′(t)]dt

=
∫ t1

t0
F [t,x∗(t) + ah(t),x′∗(t) + ah′(t)]dt. (2.7.9)

The first-order condition of optimization is obtained by differentiating (2.7.9)

with respect to a and then is set to 0:

g′(0)=
∫ t1

t0
Fx[t,x∗,x′∗(t)]h(t) + Fx′ [t,x∗,x′∗(t)]h′(t)dt

=0. (2.7.10)

Using integration by parts on the second part of the right side of the equa-

tion (2.7.10) yields:

∫ t1

t0

{
Fx[t,x∗,x′∗(t)] − dFx′ [t,x∗(t),x′∗(t)]

dt

}
h(t)dt = 0. (2.7.11)

If equation (2.7.11) holds for any continuous function h(t) that satisfies the

constraint h(t0) = h(t1) = 0, the Euler equation (2.7.8) also holds (see

Kamiem & Schwartz (1991)).

Example 2.7.1 (Kamien & Schwartz (1991)) Suppose that an enterprise re-

ceives an order, requiring B units of products delivered at time T . Assume

that the production capacity of the enterprise is limited, and the unit cost of

production is proportional to the output. In addition, completed products
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need to be stocked, and the inventory cost per unit is a constant. Business

managers need to consider production problems from now (time 0) to de-

livery date (time T ). Suppose that at time t ∈ [0, T ], the inventory of the en-

terprise is x(t), and the change of inventory depends on the production of

the enterprise, i.e., ẋ(t) ≡ x′(t) = y(t), where y(t) is the productivity at time

t. At t, the cost of the enterprise is c1x
′(t)x′(t)+c2x(t) or c1u(t)u(t)+c2x(t),

where c1u(t) is the unit cost of production when the yield is u(t), and c2 is

the unit cost of inventory. The goal of the enterprise is to minimize cost-

s (including both production costs and inventory costs), and therefore the

dynamic optimization problem is

min
∫ T

0
[c1x

′2(t) + c2x(t)]dt (2.7.12)

s.t. x(0) = 0, x(T ) = B, x′(t) = 0.

In expression (2.7.12), u(t) is called a control variable, and x(t) is called

a state variable. Using the calculus of variation to solve the optimization

problem, we have

F [t, x(t), x′(t)] = c1x
′2(t) + c2x(t).

The Euler equation is:

c2 = 2c1x
′′∗(t).

With the constraint conditions: x∗(0) = 0, x∗(T ) = B, we solve the above

Euler equation and obtain:

x∗(t) = c2
4c1

t(t− T ) +Bt/T, t ∈ [0, T ].

Integrating the Euler equation (2.7.8) yields:

Fx = Fx′t + Fx′xx′ + Fx′x′x′′. (2.7.13)

Now, we introduce the Hamilton equations to avoid taking second-

order derivatives. Let p(t) = Fx′ [t,x(t),x′(t)], and the Hamilton equation
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is:

H(t,x,p) = −F (t,x,x′) + px′. (2.7.14)

In equation (2.7.14), p(t) can be regarded as the shadow price. The total

differential of equation (2.7.14) is:

dH = −Ftdt− Fxdx − Fx′dx′ + pdx′ + x′dp = −Ftdt− Fxdx + x′dp.

The partial derivatives of equation (2.7.14) with respect to x and p, respec-

tively, are:

∂H/∂x =−Fx;

∂H/∂p = x′.

Since −Fx = −(dFx′/dt) = −p′, we have two Euler equations under first-

order conditions:

∂H/∂x =−p′;

∂H/∂p = x′.

The Euler equations are only the necessary conditions for solving dy-

namic optimization, and the sufficient conditions involve the second-order

conditions. After deriving the first-order conditions by the calculus of vari-

ation, it is clear that the second-order condition is:

g′′(0) =
∫ t1

t0
[Fxxh

2 + 2Fxx′hh′ + Fx′x′(h′)2]dt 5 0.

It is easy to verify that if the objective function F is concave in x and x′,

then the second-order condition is satisfied.

Denote F = F (t,x,x′), F ∗ = F (t,x∗,x′∗), and let h(t) = x(t) − x∗(t).
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Then, we have h′(t) = x′(t) − x′∗(t), and thus

∫ t1

t0
(F − F ∗)dt5

∫ t1

t0
[(x − x∗)F ∗

x + (x′ − x∗′)F ∗
x′ ]dt

=
∫ t1

t0
(hF ∗

x + h′F ∗
x′)dt

=
∫ t1

t0
h(F ∗

x − dF ∗
x′/dt)dt = 0.

It can be proven (see Kamiem & Schwartz (1991, p.43)) that the first-order

condition, i.e., the Euler equation, will be met as long as Fx′x′ 5 0, and

thus the dynamic maximization problem is solved. Regarding dynamic

minimization, the first-order condition is also a sufficient condition if the

second-order condition satisfies Fx′x′ = 0.

2.7.2 Optimal Control

We have two types of variables in the previous example: state variable and

control variable. We can also discuss the dynamic optimization problem

using the analytical framework of optimal control.

The optimal control problem can be generally expressed as follows:

max
∫ t1

t0
f [t,x(t),u(t)]dt (2.7.15)

s.t. x′(t) = g(t,x(t),u(t)), (2.7.16)

x(t0) = x0. (2.7.17)

In the above statement, x(t) is a state variable, u(t) is a control variable

that affects the change of the state variable, and the objective (2.7.15) is a

function of the state variable and the control variable.

The necessary and sufficient conditions for optimal control are given

below. Analogously to the optimization problem under static constraints,

the dynamic Lagrange equation is established as:

L =
∫ t1

t0

{
f [t,x(t),u(t)] + λt[g(t,x(t),u(t)) − x′(t)]

}
dt, (2.7.18)

where λt is the multiplier of the constraint on the change in state at time t,
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commonly known as costate variable. Integrating by parts gives:

L =
∫ t1

t0

{
f [t,x(t),u(t)] + λtg(t,x(t),u(t)) + x(t)λ′

t

}
dt− λt1x(t1) + λt0x(t0).

The necessary conditions for the optimal control problem can be de-

rived by using a similar process of deducing the calculus of variation. As-

suming that u∗(t) is the optimal control function, we introduce a new con-

trol function u∗(t) + ah(t), which reduces to the original optimal control

function when a = 0. The optimal state function x∗(t) can be determined

by giving the optimal control function u∗(t) and the initial state x(t0) = x0.

Denote the state variable generated by control function u∗(t) + ah(t) and

initial state x0 as y(t, a), which satisfy: y(t, a) = x∗(t),y(t, 0) = x0, and

dy(t, a)/dt = g(t,y(t, a), u∗(t) + ah(t)). Set the function:

J(a)=
∫ t1

t0
f [t,y(t, a),u∗(t) + ah(t)]dt

=
∫ t1

t0
{f [t,y(t, a),u∗(t) + ah(t)]

+λt[g(t,y(t, a),u∗(t) + ah(t)) + y′(t, a)λ′
t]}dt

−λt1y(t1, a) + λt0y(t0, a). (2.7.19)

The derivative of the function (2.7.19) at a = 0 is:

J ′(a) =
∫ t1

t0
[(fx + λgx + λ′)ya + (fu + λgu)h]dt− λt1y′(t1, 0).

Here, λ(t) is required to be differentiable, and the optimization needs to

satisfy the following three conditions:

The first one is the first-order condition with respect to the control vari-

able:

fu[t,x(t),u(t)] + λgu(t,x(t),u(t)) = 0. (2.7.20)

The second one is the first-order condition with respect to the costate

variable:

λ′(t) = −fx[t,x(t),u(t)] − λ(t)gx[t,x(t),u(t)], λ(t1) = 0. (2.7.21)
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The third one is the state function:

x′(t) = g(t,x(t),u(t)), x(t0) = x0. (2.7.22)

The Hamilton equation for optimal control, which is similar to the La-

grange equation for constrained optimizations, is defined as:

H(t,x(t),u(t)) ≡ f(t,x(t),u(t)) + λ(t)g(t,x(t),u(t)). (2.7.23)

We then have: 1) the optimal control condition,

∂H/∂u = 0 : ∂H/∂u = fu + λgu = 0, (2.7.24)

i.e., the equation (2.7.20);

2) the costate (multiplier) equation,

−∂H/∂x = λ′ : λ′(t) = −∂H/∂x = −(fx + λgx), (2.7.25)

i.e., the equation (2.7.21);

3) the state equation,

∂H/∂λ = x′ : x′(t) = ∂H/∂λ = g, (2.7.26)

i.e., the equation (2.7.20).

Example 2.7.2 Consider Example 2.7.1 again. The problem is

min
∫ T

0
[c1u

2(t) + c2x(t)]dt

s.t. x′(t) = u(t), x(0) = 0, x(T ) = B, x′(t) = 0.

It follows from the above three conditions of optimization that:

2c1u(t) = −λ(t);λ′(t) = −c2;x′(t) = u(t), x(0) = 0, x(T ) = B.

and thus we have:

x∗′′(t) = c2
2c1

, t ∈ [0, T ],
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x∗(t) = c2
4c1

t(t− T ) +Bt/T, t ∈ [0, T ],

u∗(t) = c2
2c1

t+ k, t ∈ [0, T ]; k = −c2
4c1

T +B/T.

The second-order conditions of optimal control can be similarly de-

rived. If the objective function and the state function f and g are concave

with respect to x and u, then the first-order necessary conditions are also

the sufficient conditions, and one can refer to Kamien & Schwartz (1991)

for the proof.

2.7.3 Dynamic Programming

The third method of dealing with dynamic optimization is dynamic pro-

gramming proposed by Richard Bellman, and its basic logic can be sum-

marized as Bellman’s principle of optimality. An optimal path satisfies the

property that whatever the states and the control variables are prior to a

certain time, the selection of decision function must constitute an optimal

policy from now to the end with regard to the current state.

The general form of dynamic programming problems is:

max
∫ T

0
f(t,x(t),u(t))dt+ ϕ(x(T ), T ) (2.7.27)

s.t. x′(t) = g(t,x(t),u(t)),x(0) = a, t ∈ [0, T ]. (2.7.28)

Define the value function J(t0,x0) as the maximal value starting at time

t0 in state x0:

J(t0,x0)=max
u

∫ T

t0
f(t,x(t),u(t))dt+ ϕ(x(T ), T ) (2.7.29)

s.t. x′(t)=g(t,x(t),u(t)),x(t0) = x0, t ∈ [t0, T ]. ∀t0 ∈ [0, T ].

When t0 = T , the value function is J(T,x(T )) = ϕ(x(T ), T ).

We can break up the equation (2.7.29) and obtain:

J(t0,x0) = max
u

{∫ t0+∆t

t0
fdt+

∫ T

t0+∆t
fdt+ ϕ(x(T ), T )

}
. (2.7.30)

At time t0 +∆t, the state changes to x0 +∆x, and it follows from Bellman’s
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principle of optimality that the equation (2.7.30) is equivalent to:

J(t0,x0)=max
u

∫ t0+∆t

t0
fdt+ max

u

(∫ T

t0+∆t
fdt+ ϕ(x(T ), T )

)

=max
u

∫ t0+∆t

t0
fdt+ J(t0 + ∆t,x0 + ∆x), (2.7.31)

x′ = g,x(t0 + ∆t) = x0 + ∆x.

The equation (2.7.31) depicts Bellman’s principle of optimality. Expanding

the right side of (2.7.31) by Taylor’s theorem yields:

J(t0,x0)=max
u

[f(t0,x0,u)∆t+ J(t0,x0) + Jt(t0,x0)∆t

+Jx(t0,x0)∆x + h.o.t]. (2.7.32)

Let ∆t → 0, equation (2.7.32) becomes:

0 = max
u

[f(t,x,u) + Jt(t,x) + Jx(t,x)x′],

and then we have

−Jt(t,x) = max
u

[f(t,x,u) + Jx(t,x)g(t,x,u)]. (2.7.33)

Compared to the method of optimal control, Jx(t,x) on the right side of

(2.7.33) plays the role of the costate variable λ. We just define λ(t) =
Jx(t,x), and thus the economic meaning behind the costate variables is

the marginal contribution of states to the value function.

The derivative of (2.7.33) with respect to x gives:

−Jtx(t,x∗) = fx(t,x∗,u∗) + Jx(t,x∗)gx. (2.7.34)

Since

λ′(t) = dJx(t,x)
dt

= Jtx + Jxxg,

together with (2.7.34), we obtain:

−λ′(t) = fx + λgx. (2.7.35)
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The equation (2.7.35) is just the first-order condition for optimal control

with respect to the state variable:

−∂H/∂x = λ′.

The derivative of the right side of (2.7.33) with respect to u gives:

fu + Jxgu = 0,

and this is the first-order condition for optimal control with respect to con-

trol variables:
∂H

∂u
= fu + λgu = 0.

Then, optimal control and dynamic programming are essentially con-

sistent.

In the discrete case, the method of dynamic programming may be more

convenient. The following results are given only for an infinite time hori-

zon.

Suppose that the state set S ⊆ Rn is a nonempty and compact set, and

U : S × S → R is a bounded continuous function, which generally rep-

resents the utility function in a period. Given the initial state s0 = z, the

general dynamic optimization problem is:

max
{st}

∞∑
t=0

δtU(st, st+1) (2.7.36)

s.t. st ∈ S, ∀t,

s0 = z. (2.7.37)

It can be proven by using the contraction mapping theorem that there is

a sequence of maximum points in the problem (2.7.36), and thus there exists

a maximum value denoted by V (z). Function V : S → R is called the value

function of problem (2.7.36). Like function U(·, ·), the value function is also

continuous. In addition, if S is a convex set and U(·, ·) is concave, then V (·)
is also concave, and it is equivalent to Bellman’s principle of optimality, i.e.,
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it is the solution to the following Bellman equation:

V (s) = max
ŝ∈S

U(s, ŝ) + δV (ŝ).

The equivalence results provide the basis for solving the dynamic opti-

mization problem by the Bellman method. The following theorem reveals

that the value function is the only function satisfying the Bellman equation.

Theorem 2.7.1

f(s) = max
ŝ∈S

U(s, ŝ) + δV (ŝ) (2.7.38)

i.e., f(·) = V (·).

PROOF. Using (2.7.38) repeatedly gives: for each T ,

f(z)= max
{st}T

t=0

T−1∑
t=0

δtU(st, st+1) + δT f(xT )

s.t. st ∈ S, ∀t,

s0 = z.

When T → ∞, the contribution of δT f(xT ) to the above summation is

increasingly negligible, and thus f(·) = V (·). 2

The above theorem provides a way to calculate the value function. S-

tarting from any continuous function f0(·) : S → R, one can imagine f0(ŝ)
as a trial “value”function which gives the estimated value from time 0.

Then, let

f1(s) = max
ŝ∈S

U(s, ŝ) + δf0(ŝ)

holds for any s ∈ S, and thus we obtain a new value function f1(ŝ).

Value function V (·) can be also found by the iterative method. If f1(t) =
f0(t), then f0(t) satisfies the Bellman equation. It follows from the above

theorem that f0(t) = V (t). If f1(t) ̸= f0(t), we obtain a new value func-

tion from f1(t), and also obtain the whole sequence of functions {fr(·)}∞
r=0.

Then, it can be shown that

lim
r→∞

fr(s) = V (s),
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i.e., it will converge to the value function as r increases to infinity.

If the function is differentiable, there is a similar first-order condition

called the Euler equation of dynamic optimization:

0 =
∂U(s∗

t , s
∗
t+1)

∂st+1
+ δ

∂U(s∗
t+1, s

∗
t+2)

∂st+1
, t = 0, 1, 2, · · · . (2.7.39)

The first-order condition of optimal decision gives:

0 = ∂U [x, g(x)]
∂g

+ δV ′[g(x)], (2.7.40)

where g(x) is the state of the next periods determined by x following Bell-

man’s principle of optimality. It follows from the envelope theorem that

V ′(x) = Ux[x, g(x)]. (2.7.41)

The Euler equation is derived from these two equations above.

2.8 Differential Equations

We first provide the general concept of ordinary differential equations de-

fined on Euclidean spaces.

Definition 2.8.1 An equation,

F (x, y, y′, · · · , y(n)) = 0, (2.8.42)

which constitutes independent variable x, unknown function y = y(x) of

the independent variable, and its first derivative y′ = y′(x) to the nth order

derivative y(n) = y(n)(x), is called an ordinary differential equation.

If the highest order derivative in the equation is n, the equation is also

called the nth-order ordinary differential equation.

If for all x ∈ I , the function y = ψ(x) satisfies

F (x, ψ(x), ψ′(x), · · · , ψ(n)(x)) = 0,
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then y = ψ(x) is called a solution to the ordinary differential equation

(2.8.42).

Sometimes, the solutions of ordinary differential equations are not u-

nique, and even infinite solutions may exist. For example, y = C

x
+ 1

5
x4 is

the solution of the ordinary differential equation
dy

dx
+ y

x
= x3, where C is

an arbitrary constant. Next, we introduce the concept of general solutions

and particular solutions of ordinary differential equations.

Definition 2.8.2 The solution of the nth-order ordinary differential equa-

tion (2.8.42)

y = ψ(x,C1, · · · , Cn), (2.8.43)

which contains n independent arbitrary constants, C1, · · · , Cn, is called the

general solution to ordinary differential equation (2.8.42). Here, indepen-

dence means that the Jacobi determinant

D[ψ,ψ(1), · · · , ψ(n−1)]
D[C1, · · · , Cn]

def=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∂ψ

∂C1

∂ψ

∂C2
· · · ∂ψ

∂Cn
∂ψ(1)

∂C1

∂ψ(1)

∂C2
· · · ∂ψ(1)

∂Cn
...

...
...

...
∂ψ(n−1)

∂C1

∂ψ(n−1)

∂C2
· · · ∂ψ(n−1)

∂Cn

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
is not identically equal to 0.

If a solution of an ordinary differential equation, denoted y = ψ(x),

does not contain any constant, it is called a particular solution. Obviously,

a general solution becomes a particular solution when the arbitrary con-

stants are determined. In general, the restrictions of some initial conditions

determine the value of any constants. For example, for ordinary differential

equation (2.8.42), if there are some given initial conditions:

y(x0) = y0, y
(1)(x0) = y

(1)
0 , · · · , y(n−1)(x0) = y

(n−1)
0 , (2.8.44)

then the ordinary differential equation (2.8.42) and the initial value condi-

tions (2.8.44) are said to be the Cauchy problem or initial value problem for
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nth-order ordinary differential equations. Then, the pertinent question is

what conditions the function F should satisfy so that the above ordinary

differential equations are uniquely solvable. This problem is the existence

and uniqueness of solutions for ordinary differential equations.

2.8.1 Existence and Uniqueness Theorem of Solutions for Ordi-
nary Differential Equations

We first consider an ordinary differential equation of first-order y′ = f(x, y)
that satisfies initial condition (x0, y0), i.e., y(x0) = y0. Let y(x) be a solution

to the differential equation.

Definition 2.8.3 Let a function f(x, y) be defined on D ⊆ R2. We say that

f satisfies the local Lipschitz condition with respect to y at the point (x0, y0) ∈
D, if there exists a neighborhood U ⊆ D of (x0, y0), and a positive number

L, such that

|f(x, y) − f(x, z)| 5 L|y − z|, ∀(x, y), (x, z) ∈ U.

If there is a positive number L, such that

|f(x, y) − f(x, z)| 5 L|y − z|, ∀(x, y), (x, z) ∈ D,

we say that f(x, y) satisfies global Lipschitz condition with respect to y in

D ⊆ R2.

The following lemma characterizes the properties of the function satisfying

the Lipschitz condition.

Lemma 2.8.1 Suppose that f(x, y) defined on D ⊆ R2 is continuously differ-

entiable. If there is an ϵ > 0, such that fy(x, y) is bounded on U = {(x, y) :
|x−x0| < ϵ, |y−y0| < ϵ}, then f(x, y) satisfies the local Lipschitz condition with

respect to y. If fy(x, y) is bounded on D, then f(x, y) satisfies the global Lipschitz

condition with respect to y.

Theorem 2.8.1 If f is continuous on an open set D, then for any (x0, y0) ∈ D,

there always exists a solution y(x) of the differential equation, and it satisfies y′ =
f(x, y) and y(x0) = y0.
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The following is the theorem on the uniqueness of the solution for dif-

ferential equations.

Theorem 2.8.2 Suppose that f is continuous on an open set D, and satisfies the

global Lipschitz condition with respect to y. Then, for any (x0, y0) ∈ D, there

always exists a unique solution y(x) satisfying y′ = f(x, y) and y(x0) = y0.

For nth order ordinary differential equations, y(n) =f(x, y, y′, · · · , y(n−1)),

if the Lipschitz condition is changed to for y, y′, · · · , y(n−1) instead of for y,

we have similar conclusions about the existence and uniqueness of solu-

tion. See Ahmad and Ambrosetti (2014) for the specific proof of existence

and uniqueness.

2.8.2 Some Common Ordinary Differential Equations with Ex-
plicit Solutions

Generally, we aim to obtain the concrete form of solutions, i.e., explicit so-

lutions, for differential equations. However, in many cases, there is no ex-

plicit solution. Here, we present some common cases in which differential

equations can be solved explicitly.

Case of Separable Equations

Consider a separable differential equation y′ = f(x)g(y), and y(x0) = y0. It

can be rewritten as:
dy

g(y)
= f(x)dx.

Integrating both sides, we then obtain the solution to the differential equa-

tion.

For example, for (x2 +1)y′ +2xy2 = 0, y(0) = 1, using the above solving

procedure, we obtain the solution as

y(x) = 1
ln(x2 + 1) + 1

.

In addition, the differential equation with the form y′ = f(y) is called an

autonomous system, since y′ is only determined by y.
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Homogeneous Type of Differential Equation

Some differential equations with constant coefficients have explicit solu-

tions.

Definition 2.8.4 We call function f(x, y) a homogeneous function of degree n

if for any λ, f(λx, λy) = λnf(x, y).

Differential equations have the form of homogeneous functions ifM(x, y)dx+
N(x, y)dy = 0, whereM(x, y) andN(x, y) are homogeneous functions with

the same order.

By variable transformation z = y

x
, the above differential equations can

be transformed into separable form. Suppose that M(x, y) and N(x, y)
are homogeneous functions of degree n, and M(x, y)dx + N(x, y)dy =

0 is transformed to z + x
dz

dx
= −M(1, z)

N(1, z)
, then the final form is

dz

dx
=

−
z + M(1, z)

N(1, z)
x

, where z + M(1, z)
N(1, z)

is a function of z.

Exact Differential Equation

Given a simply connected and open subset D ⊆ R2 and two functions M

and N , which are continuous and satisfy
∂M(x, y)

∂y
≡ ∂N(x, y)

∂x
on D, then

the implicit first-order ordinary differential equation of the form

M(x, y)dx+N(x, y)dy = 0

is called the exact differential equation or the total differential equation.

The nomenclature of“exact differential equation”refers to the exact deriva-

tive of a function. Indeed, when
∂M(x, y)

∂y
≡ ∂N(x, y)

∂x
, the solution is

F (x, y) = C, where the constant C is determined by the initial value, and

F (x, y) satisfies
∂F

∂x
= M(x, y) or

∂F

∂y
= N(x, y).

It is clear that a separable differential equation is a special case of an

exact differential equation y′ = f(x)g(y) or
1

g(y)
dy − f(x)dx = 0, and then

we have M(x, y) = −f(x), N(x, y) = 1
g(y)

,and
∂M(x, y)

∂y
= ∂N(x, y)

∂x
= 0.
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For example, 2xy3dx+ 3x2y2dy = 0 is an exact differential equation, of

which the general solution is x2y3 = C, and C is a constant.

When solving differential equations with explicit solutions, we usually

convert differential equations into the form of exact differential equations.

First-Order Differential Linear Equation

Consider the first-order linear differential equation of the following form:

dy

dx
+ p(x)y = q(x). (2.8.45)

When q(x) = 0, the above differential equation (2.8.45) is a separable

differential equation, and its solution is assumed to be y = ψ(x).

Suppose that ψ1(x) is a particular solution of the differential equation

(2.8.45). Then, y = ψ(x) +ψ1(x) is clearly also the solution of the equations

(2.8.45).

It is easy to show that the solution to
dy

dx
+ p(x)y = 0 is y = Ce−

∫
p(x)dx.

Next, we find the general solution to the differential equation (2.8.45).

Suppose that

y = c(x)e−
∫
p(x)dx,

and differentiating this gives

y′ = c′(x)e−
∫
p(x)dx + c(x)p(x)e−

∫
p(x)dx,

then substituting this back into the original differential equation, we have

c′(x)e−
∫
p(x)dx + c(x)p(x)e−

∫
p(x)dx = p(x)c(x)e−

∫
p(x)dx + q(x),

and thus

c′(x) = q(x)e
∫
p(x)dx.

We have

c(x) =
∫
q(x)e

∫
p(x)dxdx+ C.
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Therefore, the general solution is

y(x) = e−
∫
p(x)dx

(∫
q(x)e

∫
p(x)dxdx+ C

)
.

Bernoulli Equation

The following differential equation is called the Bernoulli equation:

dy

dx
+ p(x)y = q(x)yn, (2.8.46)

where n (with n ̸= 0, 1) is a natural number.

Multiplying both sides by (1 − n)y(−n) gives:

(1 − n)y(−n) dy

dx
+ (1 − n)y(1−n)p(x) = (1 − n)q(x).

Let z = y(1−n), and get:

dz

dx
+ (1 − n)zp(x) = (1 − n)q(x),

which becomes a first-order linear differential equation whose explicit so-

lution can be obtained.

Differential equations with explicit solutions have other forms, such as

some special forms of Ricatti equations, and equations similar toM(x, y)dx+
N(x, y)dy = 0, but not satisfying

∂M(x, y)
∂y

≡ ∂N(x, y)
∂x

.

2.8.3 Higher Order Linear Equations with Constant Coefficients

Consider a differential equation of degree n with constant coefficients

y(n) + a1y
(n−1) + · · · + an−1y

′ + any = f(x). (2.8.47)

If f(x) ≡ 0, then the differential equation (2.8.47) is called the constant

coefficient homogeneous differential equation of degree n; otherwise, it

is called the constant coefficients nonhomogeneous differential equation.
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There is a method for finding the general solution yg(x) of a constant

coefficient homogeneous differential equation of degree n. The general so-

lution is the sum of n bases of solutions y1, · · · , yn, i.e., yg(x) = C1y1(x) +
· · · + Cnyn(x), where C1, · · · , Cn are arbitrary constants. These arbitrary

constants are uniquely determined by initial-value conditions. Find a func-

tion y(x) satisfying

y(x) = y00 , y
′(x) = y01 , · · · , y(n−1)(x) = y0n−1 ,when x = x0,

where x0, y00 , y01 , · · · , y0n−1 are given initial values.

The procedures for solving the fundamental solution of homogeneous

differential equations are given below:

(1) Solve the characteristic equation with respect to λ:

λn + a1λ
n−1 + · · · + an−1λ+ an = 0.

Suppose that the roots of the characteristic equation are λ1, · · · , λn. Some

roots may be complex, and some are multiple.

(2) If λi is the non-multiple real characteristic root, then the fundamental

solution corresponding to this root is yi(x) = eλix.

(3) If λi is the real characteristic root of multiplicity k, then there are k

fundamental solutions:

yi1(x) = eλix, yi2(x) = xeλix, · · · , yik(x) = xk−1eλix.

(4) If λj is the non-multiple complex characteristic root, λj = αj +
iβj , i =

√
−1, its complex conjugate denoted by λj+1 = αj − iβj is also

the characteristic root, and thus there are two fundamental solutions gen-

erated by these complex conjugate roots λj , λj+1:

yj1 = eαjx cosβjx, yj2 = eαjx sin βjx.

(5) If λj is the complex characteristic root of multiplicity l, λj = αj + iβj ,

its complex conjugate is also the complex characteristic root of multiplicity
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l, and thus these 2l complex roots generate 2l fundamental solutions:

yj1 = eαjx cosβjx, yj2 = xeαjx cosβjx, · · · , yjl = xl−1eαjx cosβjx;

yjl+1 = eαjx sin βjx, yjl+2 = xeαjx sin βjx, · · · , yj2l
= xl−1eαjx sin βjx.

The following is a general method for solving nonhomogeneous differ-

ential equations.

The general form of solution to nonhomogeneous differential equations

is ynh(x) = yg(x)+yp(x), where yg(x) is the corresponding general solution

of the homogeneous equation, and yp(x) is the particular solution of the

nonhomogeneous equation.

Next, we will provide some procedures for solving for particular solu-

tions of nonhomogeneous equations.

(1) If f(x) = Pk(x)ebx, and Pk(x) is the polynomial of degree k, then the

form of particular solutions is:

yp(x) = xsQk(x)ebx,

whereQk(x) is also a polynomial of degree k. If b is not a characteristic root

corresponding to the characteristic equation, then s = 0; if b is a character-

istic root of multiplicity m, then s = m.

(2) If f(x) = Pk(x)epx cos qx+Qk(x)epx sin qx, and Pk(x) and Qk(x) are

all polynomials of degree k, then the form of particular solutions is:

yp(x) = xsRk(x)epx cos qx+ xsTk(x)epx sin qx,

where Rk(x) and Tk(x) are also polynomials of degree k. If p + iq is not a

root of the characteristic equation, then s = 0; if p + iq is a characteristic

root of multiplicity m, then s = m.

(3) A general method for solving nonhomogeneous differential equa-

tions is called the the variation of parameters or the method of undetermined-

coefficients.

Suppose that the general solution of a homogeneous equation is given
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as follows:

yg = C1y1(x) + · · · + Cnyn(x),

where yi(x) is the fundamental solution. Regard constants C1, · · · , Cn as

the functions with respect to x, such as u1(x), · · · , un(x). Therefore, the

form of particular solutions to the nonhomogeneous equation can be ex-

pressed as

yp(x) = u1(x)y1(x) + · · · + un(x)yn(x),

where u1(x), · · · , un(x) are the solutions of the following equations

u′
1(x)y1(x) + · · · + u′

n(x)yn(x) = 0,

u′
1(x)y′

1(x) + · · · + u′
n(x)y′

n(x) = 0,

...

u′
1(x)y(n−2)

1 (x) + · · · + u′
n(x)y(n−2)

n (x) = 0,

u′
1(x)y(n−1)

1 (x) + · · · + u′
n(x)y(n−1)

n (x) = f(x).

(4) If f(x) = f1(x) + f2(x) + · · · + fr(x), and yp1(x), · · · , ypr(x) are the

particular solutions corresponding to f1(x), · · · , fr(x), then

yp(x) = yp1(x) + · · · + ypr(x).

Here, we provide an example to familiarize the application of this method.

Example 2.8.1 Solve y′′ − 5y′ + 6y = t2 + et − 5.

The characteristic roots are λ1 = 2 and λ2 = 3. The general solution of

the homogeneous equation is thus:

y(t) = C1e
2t + C2e

3t.

Next, to find a particular solution of the nonhomogeneous equation, its

form is written as:

yp(t) = at2 + bt+ c+ det.
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We first substitute this particular solution in the initial equation to de-

termine the coefficients a, b, c, d:

2a+ det − 5(2at+ b+ det) + 6(at2 + bt+ c+ det) = t2 − 5 + et.

The coefficients of both sides should be consistent, and thus we obtain:

6a = 1, −5 × 2a+ 6b = 0, 2a− 5b+ 6c = −5, d− 5d+ 6d = 1,

Therefore, d = 1/2, a = 1/6, b = 5/18, and c = −71/108.

Finally, the general solution of the nonhomogeneous differential equa-

tion is:

y(t) = C1e
2t + C2e

3t + t2

6
+ 5t

18
− 71

108
+ et

2
.

2.8.4 System of Ordinary Differential Equations

The general form is:

ẋ(t) = A(t)x(t) + b(t), x(0) = x0,

where t (time) is an independent variable, x(t) = (x1(t), · · · , xn(t))′ is a

vector of dependent variables, A(t) = (aij(t))[n×n] is an n × n matrix of

real varying coefficients, and b(t) = (b1(t), · · · , bn(t))′ is an n-dimensional

varying vector.

Consider the case that A is a constant coefficient matrix and b is a con-

stant vector, also called the system of differential equations with constant

coefficients:

ẋ(t) = Ax(t) + b, x(0) = x0, (2.8.48)

where A is assumed to be nonsingular.

The system of differential equations (2.8.48) can be solved by the fol-

lowing two steps.

Step 1: consider the system of homogeneous equations (i.e., b = 0):

ẋ(t) = Ax(t), x(0) = x0. (2.8.49)
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Its solution is denoted by xc(t).

Step 2: find a particular solution xp to the nonhomogeneous equation

(2.8.48). The constant vector xp is a particular solution so that Axp = −b,

i.e., xp = −A−1b.

Given the general solution of the homogeneous equation and the par-

ticular solution to the nonhomogeneous equation, the general solution of

the system of differential equations (2.8.49) is:

x(t) = xc(t) + xp.

There are two methods for solving the system of homogeneous differential

equations (2.8.49).

The first one is that we can eliminate n − 1 dependent variables, and

thus the system of differential equations becomes the differential equation

of order n, such as the following example.

Example 2.8.2 The system of differential equation is:

 ẋ = 2x+ y,

ẏ = 3x+ 4y.

We differentiate the first equation to eliminate y and ẏ. Since ẏ = 3x +
4y = 3x+ 4ẋ− 4 · 2x, we obtain the corresponding quadratic homogeneous

differential equation:

ẍ− 6ẋ+ 5x = 0,

thus the general solution is x(t) = C1e
t +C2e

5t. Since y(t) = ẋ− 2x, y(t) =
−C1e

t + 3C2e
5t.

The second method is to rewrite the homogeneous differential equation

(2.8.49) as:

x(t) = eAtx0,

where

eAt = I +At+ A2t2

2!
+ · · · .

Now, we solve eAt in three different cases.
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Case 1: A has different real eigenvalues

Matrix A has different real eigenvalues, which means that its eigenvectors

are linearly independent. Therefore, A can be diagonalized, namely,

A = PΛP−1,

where P = [v1, v2, · · · , vn] consists of the eigenvectors of A, and Λ is a di-

agonal matrix whose diagonal elements are the eigenvalues of A, and thus

we have

eA = PeΛP−1.

Therefore, the solution to the system of differential equation (2.8.49) is:

x(t) = PeΛtP−1x0

= PeΛtc

= c1v1e
λ1t + · · · + cnvne

λnt,

where c = (c1, c2, · · · , cn) is a vector of arbitrary constants, and it is deter-

mined by the initial value, i.e., c = P−1x0.

Case 2: A has multiple real eigenvalues, but no complex eigenvalues

First, consider a simple case in which A has only one eigenvalue of mul-

tiplicity m. In this case, there are at most m linearly independent eigen-

vectors, which means that the matrix P cannot be constructed as a matrix

consisting of linearly independent eigenvectors, and thus A can not be di-

agonalized.

Therefore, the solution has the following form:

x(t) =
m∑
i=1

cihi(t),

where hi(t), ∀i, are quasi-polinomials, and ci, ∀i, are determined by initial
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conditions. For example, when m = 3, we have:

h1(t)=eλtv1,

h2(t)=eλt(tv1 + v2),

h3(t)=eλt(t2v1 + 2tv2 + 3v3),

where v1, v2, v3 are determined by the following conditions:

(A− λI)vi = vi−1, v0 = 0.

If A has more than one multiple real eigenvalues, then the solution of the

differential equation (2.8.49) can be obtained by summing up the solutions

corresponding to each eigenvalue.

Case 3: A has complex eigenvalues

Since A is a real matrix, complex eigenvalues will be generated in the form

of conjugate pairs.

If an eigenvalue of A is α+ βi, then its conjugate complex α− βi is also

an eigenvalue.

Now, consider a simple case: A has only one pair of complex eigenval-

ues, λ1 = α+ βi and λ2 = α− βi.

Let v1 and v2 be the eigenvectors corresponding to λ1 and λ2. Then, we

have v2 = v̄1, where v̄1 refers to the conjugation of v1. The solution of the

differential equation (2.8.49) can be expressed as:

x(t) = eAtx0

= PeΛtP−1x0

= PeΛtc

= c1v1e
(α+βi)t + c2v2e

(α−βi)t

= c1v1e
αt(cosβt+ i sin βt) + c2v2e

αt(cosβt− i sin βt)

= (c1v1 + c2v2)eαt cosβt+ i(c1v1 − c2v2)eαt sin βt

= h1e
αt cosβt+ h2e

αt sin βt,
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where h1 = c1v1 + c2v2 and h2 = i(c1v1 − c2v2).

IfA has many pairs of conjugate complex eigenvalues, then the solution

of the differential equation (2.8.49) is obtained by summing up the solutions

corresponding to all eigenvalues.

2.8.5 Stability of Simultaneous Differential Equations

Consider the following simultaneous differential equations system:

ẋ = f(t,x), (2.8.50)

where t (time) is an independent variable, x = (x1, · · · , xn) are dependent

variables, and f(t,x) is continuously differentiable with respect to x ∈ Rn

and satisfies the initial condition x(0) = x0. Such simultaneous differential

equations are called the planar dynamic systems. If f(t,x∗) = 0, the point

x∗ is called the stationary point of the above dynamical system.

Definition 2.8.5 A simultaneous differential equation system x∗ is local-

ly stable if there is δ > 0 and a unique path of x = ϕ(t, x0), such that

limt→∞ ϕ(t, x0) = x∗ whenever |x∗ − x0| < δ.

Consider the case of a simultaneous differential equations system with

two variables x = x(t) and y = y(t):
dx

dt
= f(x, y),

dy

dt
= g(x, y).

Let J be the Jacobian

J =


∂f

∂x

∂f

∂y
∂g

∂x

∂g

∂y



evaluated at (x∗, y∗), and λ1 and λ2 be the eigenvalues of this Jacobian.

Then, the stability of the stationary point is characterized as follows:
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(1) It is a (locally) stable ( or unstable) node if λ1 and λ2 are different

real numbers and are negative (or positive);

(2) It is a (locally) saddle point if eigenvalues are real numbers but with

opposite signs, i.e., λ1λ2 < 0;

(3) It is a (locally) stable (or unstable) focus if λ1 and λ2 are complex

numbers, and Re(λ1) < 0(or Re(λ1) > 0);

(4) It is a center if λ1 and λ2 are complex, and Re(λ1) = 0;

(5) It is a (locally) stable (or unstable) improper node if λ1 and λ2 are

real, λ1 = λ2 < 0 (or λ1 = λ2 > 0), and the Jacobian is not a diagonal

matrix;

(6) It is a (locally) stable (or unstable) star node if λ1 and λ2 are real,

λ1 = λ2 < 0 (or λ1 = λ2 > 0), and the Jacobian is a diagonal matrix.

Figure 2.5 below depicts six types of stationary points.

Figure 2.5: Types of stationary points
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2.8.6 The Global Stability of Dynamical System

In a dynamic system, the Lyapunov method studies the global stability of

stationary points.

Let x̄(t,x0) be the unique solution of the dynamic system (2.8.50), and

Br(x) = {x′ ∈ D : |x′ − x| < r} be an open ball of radius r centered at x.

The following is the definition of stability of stationary points.

Definition 2.8.6 The stationary point x∗ of the dynamic system (2.8.50)

(1) is globally stable if for any r > 0, there is a neighbourhood U of

x∗, such that

x̄(t,x0) ∈ Br(x∗), ∀x0 ∈ U.

(2) is globally asymptotically stable if for any r > 0, there is a

neighbourhood U ′ of x∗, such that

lim
t→∞

x̄(t,x0) = x∗, ∀x0 ∈ U.

(3) is globally unstable if it is neither globally stable nor asymptoti-

cally globally stable.

Definition 2.8.7 Let x∗ be the stationary point of the dynamic system (2.8.50),

Q ⊆ Rn be an open set containing x∗, and V (x) : Q → R be a continuously

differentiable function. If it satisfies:

(1) V (x) > V (x∗), ∀x ∈ Q,x ̸= x∗;

(2) V̇ (x) is defined as:

V̇ (x) def= ▽V (x)f(t,x) 5 0, ∀x ∈ Q, (2.8.51)

where ▽V (x) is the gradient of V with respect to x,

thus it is called a Lyapunov function.

The following is the Lyapunov theorem about the stationary point of

dynamic systems.
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Theorem 2.8.3 If there exists a Lyapunov function V for the dynamic system

(2.8.50), then the stationary point x∗ is globally stable.

If the Lyapunov function (2.8.51) of the dynamic system satisfies V̇ (x) <

0, ∀x ∈ Q,x ̸= x∗, then the stationary point x∗ is asymptotically globally stable.

2.9 Difference Equations

Difference equations can be regarded as discretized differential equations,

and many of their properties are similar to those of differential equations.

Let y be a real-valued function defined on natural numbers. yt means

the value of y at t, where t = 0, 1, 2, · · · , which can be regarded as time

points.

Definition 2.9.1 The first-order difference of y at t is:

∆y(t) = y(t+ 1) − y(t).

The second-order difference of y at t is:

∆2y(t) = ∆(∆y(t)) = y(t+ 2) − 2y(t+ 1) + y(t).

Generally, the nth- order difference of y at t is:

∆ny(t) = ∆(∆n−1y(t)), n > 1.

Definition 2.9.2 The difference equation is a function of y and its differ-

ences ∆y,∆2y, · · · ,∆n−1y,

F (y,∆y,∆2y, · · · ,∆ny, t) = 0, t = 0, 1, 2, · · · . (2.9.52)

If n is the highest order of nonzero coefficient in the formula (2.9.52), the

above equation is called an nth-order difference equation.

If F (ψ(t),∆ψ(t),∆2ψ(t), · · · ,∆nψ(t), t) = 0 holds for ∀t, then we call

function y = ψ(k) a solution of the difference equation. Similar to differential

equations, the solutions of difference equations also have general solutions
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and particular solutions. The general solutions usually contain some arbi-

trary constants that can be determined by initial conditions.

The difference equations can also be expressed in the following form by

variable conversion:

F (y(t), y(t+ 1), · · · , y(t+ n), t) = 0, t = 0, 1, 2, · · · . (2.9.53)

The following is mainly about difference equations with constant coef-

ficients. A common expression is written as:

f0y(t+n)+f1y(t+n−1)+ · · ·+fn−1y(t+1)+fny(t) = g(t), t = 0, 1, 2, · · · ,
(2.9.54)

where f0, f1, · · · , fn are real numbers, and f0 ̸= 0, fn ̸= 0.

Dividing both sides of the equation by f0, and making ai = fi
f0

for i =

0, · · · , n, r(t) = g(t)
f0

, the nth order difference equation can be written in

a simpler form:

y(t+ n) + a1y(t+ n− 1) + · · · + an−1y(t+ 1) + any(t) = r(t), t = 0, 1, 2 · · · .
(2.9.55)

Here, we provide three procedures that are usually used to solve nth

order linear difference equations:

Step 1: find the general solution of the homogeneous difference equa-

tion

y(t+ n) + a1y(t+ n− 1) + · · · + an−1y(t+ 1) + any(t) = 0,

and let the general solution be Y .

Step 2: find a particular solution y∗ of the difference equation (2.9.53).

Step 3: the solution of the difference equation (2.9.53) is

y(t) = Y + y∗.

The following are solutions of first-order, second-order, and nth-order

difference equations, respectively.
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2.9.1 First-order Difference Equations

The first-order difference equation is defined as:

y(t+ 1) + ay(t) = r(t), t = 0, 1, 2, · · · . (2.9.56)

The corresponding homogeneous difference equation is:

y(t+ 1) + ay(t) = 0,

and the general solution is y(t) = c(−a)t, where c is an arbitrary constant.

To obtain a particular solution for a nonhomogeneous difference equa-

tion, consider r(t) = r, namely, the case that does not change over time.

Obviously, a particular solution is as follows:

y∗ = r

1 + a
, a ̸= −1,

y∗ = rt, a = −1.

Therefore, the solution of the nonhomogeneous difference equation(2.9.56)

is:

y(t) =

 c(−a)t + r

1 + a
, if a ̸= −1,

c+ rt, if a = −1.
(2.9.57)

If the initial condition y(0) = y0 is known, the solution of the difference

equation (2.9.56) is:

y(t) =


(
y0 − r

1 + a

)
× (−a)t + r

1 + a
, if a ̸= −1,

y0 + rt, if a = −1.
(2.9.58)

If r depends on t, a particular solution is:

y∗ =
t−1∑
i=0

(−a)t−1−ir(i),
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thus the solution of the difference equation (2.9.56) is:

y(t) = (−a)ty0 +
t−1∑
i=0

(−a)t−1−ir(i), t = 1, 2, · · · .

For a general function r(t) = f(t), the coefficients of A0, · · · ,
Am can be determined by using the method of undetermined-coefficients,

namely, considering y∗ = f(A0, A1, · · · , Am; t). The following is to solve

for a particular solution in a case in which r(t) is a polynomial.

Example 2.9.1 Solve the following difference equation:

y(t+ 1) − 3y(t) = t2 + t+ 2.

The homogeneous equation is:

y(t+ 1) − 3y(t) = 0,

The general solution is:

Y = C3t.

Using the method of undetermined-coefficients to obtain the particular so-

lution of the nonhomogeneous equation, suppose that the particular solu-

tion has the following form:

y∗ = At2 +Bt+D.

Substitute y∗ into the nonhomogeneous difference equation, and derive

A(t+ 1)2 +B(t+ 1) +D − 3At2 − 3Bt− 3D = t2 + t+ 2,

or

−2At2 + 2(A−B)t+A+B − 2D = t2 + t+ 2.
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Since equality holds for each t, we must have:
−2A = 1
2(A−B) = 1
A+B − 2D = 2,

which gives A = −1
2
, B = −1 and D = −3

4
, and thus we have a particular

solution: y∗ = −1
2
t2 − t− 3

4
. As a consequence, a particular solution of the

nonhomogeneous equation is y(t) = Y + y∗ = C3t − 1
2
t2 − t− 3

4
.

We can also solve the case with an exponential function by using the

method of undetermined-coefficients.

Example 2.9.2 Consider the first-order difference equation:

y(t+ 1) − 3y(t) = 4et.

Suppose that the form of particular solution is y∗ = Aet. Then, substituting

it into the nonhomogeneous difference equation gives: A = 4
e− 3

. There-

fore, the general solution of the first-order difference equation is: y(t) =

Y + y∗ = C3t + 4et

e− 3
.

Here, we provide some of the common ways for finding particular so-

lutions:

(1) when r(t) = r, a usual form of particular solution is: y∗ = A;

(2) when r(t) = r + ct, a usual form of particular solution is:

y∗ = A1t+A2;

(3) when r(t) = tn, a usual form of particular solution is: y∗ =
A0 +A1t+ · · · +Ant

n ;

(4) when r(t) = ct, a usual form of particular solution is: y∗ =
Act;

(5) when r(t) = α sin(ct) + β cos(ct), a usual form of particular

solution is: y∗ = A1 sin(ct) +A2 cos(ct).
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2.9.2 Second-order Difference Equation

The second-order difference equation is defined as:

y(t+ 2) + a1y(t+ 1) + a2y(t) = r(t).

The corresponding homogeneous differential equation is:

y(t+ 2) + a1y(t+ 1) + a2y(t) = 0.

Then, its general solution depends on the roots of the following linear

equation:

m2 + a1m+ a2 = 0,

which is called the auxiliary equation or characteristic equation of second-

order difference equations. Let m1 and m2 be the roots of this equation.

Since a2 ̸= 0, both m1 and m2 are not 0.

Case 1: m1 and m2 are different real roots.

The general solution of the homogeneous equation is Y = C1m
t
1 +

C2m
t
2, where C1 and C2 are arbitrary constants.

Case 2: m1 and m2 are the same real roots.

The general solution of the homogeneous equation is Y = (C1 +
C2t)mt

1.

Case 3: m1 and m2 are two complex roots, i.e., r(cos θ ± i sin θ) with r >

0, θ ∈ (−π, π]. The general solution of the homogeneous equation is

Y = C1r
t cos(tθ + C2).

For a general function r(t), it can be solved by the method of undetermined-

coefficients.
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2.9.3 Difference Equations of Order n

The general nth-order difference equation is defined as:

y(t+ n) + a1y(t+ n− 1) +· · ·+ an−1y(t+ 1) + any(t)=r(t), t=0, 1, 2, · · · .
(2.9.59)

The corresponding homogeneous equation is:

y(t+ n) + a1y(t+ n− 1) + · · · + an−1y(t+ 1) + any(t) = 0,

and its characteristic equation is:

mn + a1m
n−1 + · · · + an−1m+ an = 0.

Let its n characteristic roots be m1, · · · ,mn.

The general solutions of the homogeneous equations are the sum of the

bases generated by these eigenvalues, and its concrete forms are as follows:

Case 1: The formula generated by a single real root m is C1m
k.

Case 2: The formula generated by the real root m of multiplicity p is:

(C1 + C2t+ C3t
2 + · · · + Cpt

p−1)mt.

Case 3: The formula generated by a pair of nonrepeated conjugate com-

plex roots r(cos θ ± i sin θ) is:

C1r
t cos(tθ + C2).

Case 4: The formula generated by a pair of conjugate complex roots r(cos θ±
i sin θ) of multiplicity p is:

rt[C1,1 cos(tθ+C1,2)+C2,1t cos(tθ+C2,2)+· · ·+Cp,1tp−1 cos(tθ+Cp,2)].

The general solution of the homogeneous difference equation is ob-

tained by summing up all formulas generated by eigenvalues.
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A particular solution y∗ of a nonhomogeneous difference equation can

be generated by the method of undetermined-coefficients.

A particular solution is:

y∗ =
n∑
s=1

θs

∞∑
i=0

mi
sr(t− i),

where

θs = ms

Πj ̸=s(ms −mj)
.

2.9.4 Stability of nth-Order Difference Equations

Consider an nth-order difference equation

y(t+n) + a1y(t+n− 1) + · · · + an−1y(t+ 1) + any(t) = r(t), t = 0, 1, 2, · · · .
(2.9.60)

The corresponding homogeneous equation is:

y(t+ n) + a1y(t+ n− 1) + · · · + an−1y(t+ 1) + any(t) = 0, t = 0, 1, 2, · · · .
(2.9.61)

Definition 2.9.3 The difference equation (2.9.55) is asymptotically stable, if

an arbitrary solution Y (t) of the homogeneous equation (2.9.61) satisfies

Y (t)|t→∞ = 0.

Let m1, · · · ,mn be the solution of their characteristic equation:

mn + a1m
n−1 + · · · + an−1m+ an = 0. (2.9.62)

Theorem 2.9.1 Suppose that the modulus of all eigenvalues of the characteristic

equation are less than 1. Then, the difference equation (2.9.60) is asymptotically

stable.

When the following inequality conditions are satisfied, the modulus of all

eigenvalues of the characteristic equation are less than 1.

∣∣∣∣∣∣ 1 an

an 1

∣∣∣∣∣∣ > 0,



2.9. DIFFERENCE EQUATIONS 233

∣∣∣∣∣∣∣∣∣∣∣

1 0 an an−1

a1 1 0 an

an 0 1 a1

an−1 an 0 1

∣∣∣∣∣∣∣∣∣∣∣
> 0,

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 0 · · · 0 an an−1 · · · a1

a1 1 · · · 0 0 an an−1 · · · a2
...

...
. . .

...
...

...
. . .

...

an−1 an−2 · · · 1 0 0 · · · an

an 0 · · · 0 1 a1 · · · an−1

an−1 an · · · 0 0 1 · · · an−2
...

...
. . .

...
...

...
. . .

...

a1 a2 · · · an 0 0 · · · 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

> 0.

2.9.5 Difference Equations with Constant Coefficients

The difference equation with constant coefficients is defined as:

x(t) = Ax(t− 1) + b, (2.9.63)

where x = (x1, · · · , xn)′, b = (b1, · · · , bn)′. Suppose the matrix A is diago-

nalizable, the corresponding eigenvalues are λ1, · · · , λn, and the matrix P

formed by linearly independent eigenvectors, such that

A = P−1


λ1 0 · · · 0
0 λ2 · · · 0
...

...
. . .

...

0 0 · · · λn

P.

Similar to the discussion of obtaining the solutions of ordinary differen-

tial equations, we can find the general solutions of the difference equation

with constant coefficients. Moreover, a necessary and sufficient condition

for the differential equation (2.9.63) to be (asymptotically) stable is that the

modulus of all eigenvalues λi are less than 1. When the modulus of all

eigenvalues λi are less than 1, the stationary point x∗ = limt−→∞ x(t) =
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(I −A)−1b.

2.10 Basic Probability

Risk and uncertainty, as well as some of their basic operations, are broadly

used in economics. This section briefly introduces knowledge involved in

the textbook.

2.10.1 Probability and Conditional Probability

Compared with other fields of mathematics, the development of probabil-

ity theory occurred relatively late. However, probability theory has devel-

oped rapidly and become a very important field in mathematics since its

axiomatization.

When dealing with probabilities, we must clearly define the probability

space. Classical probability (i.e., explaining probability as the same possi-

bility) is often associated with permutation and combination. Since statis-

tics requires obtaining data from sampling, the randomness in probability

theory is revealed.

Let the probability of random variable Xa be Xas be πs, s ∈ S, where S

can be either discrete or continuous. When S = {1, · · · , n}, where n can be

finite or infinite, this situation is about a discrete random variable. If S is

an interval of the real space, then it is called a continuous random variable.

If there is a correlation between two random variables, then the value of

a random variable provides information for the value of the other random

variable, which gives the concept of conditional probability.

When the two random variables, Xa and Xb, have the joint probability

distribution πss′ , with the known information that Xa = Xas, the probabil-

ity of Xb = Xbs′ is called a conditional probability:

P (Xb = Xbs′ |Xa = Xas) = πss′∑
t′∈S πst′

.

This formula is also called the Bayes rule.
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2.10.2 Mathematical Expectation and Variance

The (mathematical) expectation of random variableXa is the weighted av-

erage of all possible values, and is defined and denoted by

E(Xa) ≡ X̄a =
∑
s∈S

πsXas,

which in a continuous case is defined by integral instead of summation,

and it will be discussed in the next subsection.

The operation rule of expected utility is that if Xa and Xb are two ran-

dom variables, then we have

E(aXa + bXb) = aX̄a + bX̄b.

The variance of a random variableXa measuring the degree of variation

of its value is defined as

Var(Xa) ≡ σ2
Xa

=
∑
s∈S

πs(Xas − X̄a)2.

Therefore, the larger is the variance, the greater is the variation degree.

There may be some correlations between the two random variables, Xa

and Xb. Suppose that the value space of Xa is {Xas}s∈S , and that of Xb is

{Xbs′}s′∈S′ . Then, their covariance measures the correlations between their

values.

Let πss′ be the probability of Xa = Xas and Xb = Xbs′ . Covariance,

denoted by Cov(Xa, Xb), is defined as:

Cov(Xa, Xb) =
∑

s∈S,s′∈S′
πss′(Xas − X̄a)(Xbs′ − X̄b)

or

Cov(Xa, Xb) = E(Xa − X̄a)(Xb − X̄b) = E(XaXb) − E(Xa)E(Xb).

If two random variables Xa and Xb are independent, then πss′ = πsπs′ ,

and thus we have Cov(Xa, Xb) = 0.
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The following operation is for deriving the variance of linear combina-

tions:

Var
(∑
a∈A

αaXa

)
=

∑
a∈A,b∈A

αaαbCov(Xa, Xb).

2.10.3 Continuous Distributions

When a random variable X takes values over [a, b], its probability distri-

bution function F on support [a, b] is defined by

F (x) = Prob[X 5 x],

which is the probability that X takes values not exceeding x. By definition,

the function F is nondecreasing and satisfies F (a) = 0 and F (b) = 1. Here,

a and b can be any real number, and thus it is possible that a = −∞ and

b = ∞.

The derivative of F is called the probability density function and is

denoted by f ≡ F ′. We assume that f is continuous, and f(x) > 0 for all

x ∈ (a, b).

The expectation of X is then defined by

E(X) =
∫ b

a
xf(x)dx.

If u : [a, b] → R is an arbitrary function, the expectation of u(X) is defined

by

E[u(X)] =
∫ b

a
u(x)f(x)dx,

which can also be written as

E[u(X)] =
∫ b

a
u(x)dF (x).

The conditional expectation of X given that X < x is

E[X|X < x] = 1
F (x)

∫ x

a
tf(t)dt,
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and thus

F (x)E[X|X < x] =
∫ x

a
tf(t)dt = xF (x) −

∫ x

a
F (t)dt,

in which the second equality is obtained by integrating by parts.

2.10.4 Common Probability Distributions

Next, we review some common distributions, as well as their expectations

and variances.

Binomial Distribution

Assume that there are many balls in a box with two colors. The proportion

of red balls is p, and that of black balls is 1 − p. The value of the random

variable X is 1 if the red ball is drawn; otherwise, it is 0. If it is taken only

once, the probability distribution of the random variable is p(X = 1) = p

and p(X = 0) = 1 − p.

The expectation and variance are:

E(X) = p; Var(X) = p(1 − p).

If we draw n times (the ball is put back into the box at each time),

the random variable is defined as the number of times that the red ball

is drawn.

The probability distribution of random variables is

p(X = k) = n!
k!(n− k)!

pk(1 − p)n−k.

Its expectation and variance are:

E(X) = np; Var(X) = np(1 − p).
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Poisson Distribution

If the probability of a random variable X is

P (X = k) = e−λλ
k

k!
,

then X follows a Poisson distribution with parameter λ, and its expecta-

tion and variance are:

E(X) = λ; Var(X) = λ.

Uniform Distribution

If the probability density function of a random variable X is

f(x) = 1
b− a

, x ∈ [a, b],

then X follows a uniform distribution over [a, b]. Its expectation and vari-

ance are:

E(X) = b+ a

2
; Var(X) = (b− a)2

12
.

Normal Distribution

If the probability density function of a random variable X is

f(x) = 1√
2πσ

e− (x−µ)2

2σ2 , x ∈ (−∞,∞),

then X follows a normal distribution with parameters (µ, σ2).

The expectation and variance are:

E(X) = µ; Var(X) = σ2.

Exponential Distribution

If the probability density function of a random variable X is
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f(x) = λe−λx, x ∈ [0,∞),

then X follows an exponential distribution with parameter λ, and its ex-

pectation and variance are

E(X) = 1
λ

; Var(X) = 1
λ2 .

2.11 Stochastic Dominance and Affiliation

2.11.1 Order Stochastic Dominance

First-Order Stochastic Dominance

Definition 2.11.1 (First-Order Stochastic Dominance) Given two distribu-

tion functions F and G with support [a, b], we say that F first-order stochas-

tically dominates G if for all x ∈ [a, b], F (x) 5 G(x).

First-order stochastic dominance means that for any outcome x, the

probability of obtaining at least x under F (·) is at least as high as that under

G(·). For example, considering two assets, first-order stochastic dominance

means that when two assets are greater than a certain constant return, the

probability of one asset’s return is higher than that of the other. This is

analogous to the monotonicity concept under certainty.

There is another test criterion for F to first-order stochastically domi-

nate G. The following theorem shows that these two criterions are equiva-

lent.

Theorem 2.11.1 F (·) first-order stochastically dominates G(·) if and only if for

any nondecreasing function u : [a, b] → R, we have

∫ b

a
u(z)dF (z) =

∫ b

a
u(z)dG(z).

PROOF. Define H(z) = F (z) −G(z). We need to prove that H(z) 5 0 if

and only if
∫ b
a u(z)dH(z) = 0 for any increasing and differentiable function

u(·).
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Sufficiency: We prove this by way of contradiction. Suppose that there

is a ẑ, such thatH(ẑ) > 0. We choose a weakly increasing and differentiable

function u(z) as

u(z) =

0, z 5 ẑ,

1, z > ẑ,

then immediately
∫ b
a u(z)dH(z) = −H(ẑ) < 0, which is a contradiction.

Necessity: Since a monotonic function is differentiable almost every-

where, in finding integration, we may just assume that u is differentiable,

and we have∫ b

a
u(z)dH(z) = [u(z)H(z)]ba −

∫ b

a
u′(z)H(z)dz = 0 −

∫ b

a
u′(z)H(z)dz = 0,

in which the first equality is obtained by integration by parts, the second

equality is based on

F (a) = G(a) = 0, F (b) = G(b) = 1,

while the inequality is based on the assumptions that u(·) is weakly increas-

ing (u′(·) = 0) and H(z) 5 0. 2

For any two probability distributions F and G, as long as an agent’s

utility is (weakly) increasing in outcomes, he or she prefers the one that

first-order stochastically dominates the other one.

Second-Order Stochastic Dominance

Definition 2.11.2 (Second-Order Stochastic Dominance) Given two distri-

bution functions F and G defined on [a, b], which have the same expecta-

tion, we say that F (·) second-order stochastically dominates G(·) if∫ z

a
F (r)dr 5

∫ z

a
G(r)dr

for all z.

It is clear that first-order stochastic dominance implies second-order s-

tochastic dominance. In addition, second-order stochastic dominance im-
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plies not only monotonicity, but also lower risk. To show this, we introduce

the notion of“mean-preserving spreads”.

Suppose that X is a random variable with distribution function F . Let

Z be a random variable whose distribution conditional on X = x, H(·|X =
x), is, such that for all x, E[Z|X = x] = 0. Suppose that Y = X + Z

is the random variable obtained from first drawing X from F and then

for each realization X = x, drawing a Z from the conditional distribution

H(·|X = x) and adding it to X . Let G be the distribution of Y so defined.

We will then say that G is a mean-preserving spread of F .

While random variables X and Y have the same mean, i.e., E[X] =
E[Y ], variable Y is “more spread-out”than X since it is obtained by

adding a “noise”variable Z to X . Now, suppose that u : [a, b] → R is

a concave function. Using Jensen’s inequality, we have

EY [u(Y )] = EX [EZ [u(X + Z)]|X = x]

5 EX [u(EZ [X + Z|X = x])]

= EX [u(X)].

As such, similar to Theorem 2.11.1, we have the following conclusion

for second-order stochastic dominance.

Theorem 2.11.2 If distributions F (·) and G(·) defined on [a, b] have the same

mean, then the following statements are equivalent.

(1) F (·) second-order stochastically dominates G(·);

(2) for any nondecreasing concave function u : R → R, we have
∫ b
a u(z)dF (z) =∫ b

a u(z)dG(z);

(3) G(·) is a mean-preserving spread of F (·).

PROOF. (3)⇒(2): It is obtained by using

∫ b

a
u(z)dF (z)=

∫ b

a
u

(∫ b

a
(x+ z)dHz(x)

)
dF (z)

=
∫ b

a

(∫ b

a
u(x+ z)dHz(x)

)
dF (z)

=
∫ b

a
u(z)dG(z),
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in which the inequality follows from the concavity of u(·).

(1)⇒(2): For expositional convenience, we set b = 1. We have

∫ b

a
u(z)dF (z) −

∫ b

a
u(z)dG(z)

=−u′(1)
∫ b

a
(F (z) −G(z))dz +

∫ b

a

(∫ z

a
(F (x) −G(x))dx

)
u′′(z)dz

=
∫ b

a
(
∫ z

a
(F (x) −G(x))dx)u′′(z)dz

=0,

in which the inequality follows from the definition of second-order stochas-

tic dominance, i.e., ∫ z

a
F (r)dr 5

∫ z

a
G(r)dr,

and also u′′(·) 5 0 for any z. We thus have

∫ b

a
u(z)dF (z) −

∫ b

a
u(z)dG(z) = 0.

(1)⇒(3): We just show the case with discrete distributions.

Define

S(z) = G(z) − F (z),

T (x) =
∫ x

a
S(z)dz.

By the definition of second-order stochastic dominance, we have T (x) = 0
and T (1) = 0, which imply that there exists some ẑ, such that S(z) = 0 for

z 5 ẑ and S(z) 5 0 for z = ẑ.

Since the random variable follows a discrete distribution, S(z) must be

a step function. Let I1 = (a1, a2) be the first interval over which S(z) is

positive, and I2 = (a3, a4) be the first interval over which S(z) is negative.

If no such I1 = (a1, a2) exists, then S(z) ≡ 0, and thus statement (3) is

immediate. If I1 = (a1, a2) does exist, then I2 = (a3, a4) must exist, as well.

Therefore, S(z) ≡ γ1 > 0 for z ∈ I1, and S(z) ≡ −γ2 < 0 for z ∈ I2.

By T (x) = 0, we must have a2 < a3. If γ1(a2 − a1) = γ2(a4 − a3), then

there exist a1 < â2 5 a2 and â4 = a4, such that γ1(â2 − a1) = γ2(â4 − a3).
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If γ1(a2 − a1) < γ2(a4 − a3), then there exists a3 < â4 5 a4, such that

γ1(â2 − a1) = γ2(â4 − a3).

Letting

S1(z) =


γ1, if a1 < z < â2,

−γ2, if a3 < z < â4,

0, otherwise.

If F1 = F + S1, then F1 is a mean-preserving spread of F . Letting S1 =
G − F1, we can similarly construct S2(z) and F2. Since S(z) is a step

function, then there exists an n, such that F0 = F, Fn = G, and Fi+1 is a

mean-preserving spread of Fi. Furthermore, a finite summation of mean-

preserving spreads is still a mean-preserving spread. 2

Although a continuous function can be arbitrarily approximated by step

functions, the formal proof is complicated. Rothschild and Stiglitz (1971)

provided a complete proof for the case with continuous distributions.

2.11.2 Hazard Rate Dominance

Let F be a distribution function with support [a, b]. The hazard rate of F is

the function λ : [a, b) → R+ defined by

λ(x) ≡ f(x)
1 − F (x)

.

If we interpret F as the probability that some event will occur prior to time

x, then the hazard rate at x represents the instantaneous probability that

the event will happen at x, given that it has not occurred until time x. S-

ince the event may be the failure of some component, e.g., a lightbulb, it is

sometimes also called the“failure rate”.

Solving for F , we have

F (x) = 1 − exp
(

−
∫ x

a
λ(t)dt

)
. (2.11.64)

This shows that any arbitrary function λ : [a, b) → R+, such that for all

x < b, ∫ x

a
λ(t)dt < ∞, lim

x→b

∫ x

a
λ(t)dt = ∞,
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is the hazard rate of some distribution that is given by (2.11.64).

Definition 2.11.3 (Hazard Rate Dominance) For any two distributions F

and G with hazard rates λF and λG, respectively, we say that F dominates

G in terms of the hazard rate if λF (x) 5 λG(x) for all x. This order is also

referred to in shortened from as hazard rate dominance.

If F dominates G in terms of the hazard rate, then

F (x) = 1 − exp
(

−
∫ x

a
λF (t)dt

)
5 1 − exp

(
−
∫ x

a
λG(t)dt

)
= G(x),

and thus F first-order stochastically dominates G. Therefore, hazard rate

dominance implies first-order stochastic dominance.

2.11.3 Reverse Hazard Rate Dominance

A closely related concept to the hazard rate is the reverse hazard rate σ :
(a, b] → R+ given by

σ(x) ≡ f(x)
F (x)

,

and is sometimes referred to as the inverse of the Mills’ ratio. Similarly,

solving for F gives

F (x) = exp
(

−
∫ b

x
σ(t)dt

)
. (2.11.65)

This shows that any arbitrary function σ : (a, b] → R+, such that for all

x > a, ∫ b

x
σ(t)dt < ∞ and lim

x→0

∫ b

x
σ(t)dt = ∞.

is the“reverse hazard rate”of some distribution that is given by (2.11.65).

Definition 2.11.4 (Reverse Hazard Rate Dominance) For two distribution-

s F andGwith reverse hazard rates σF and σG, we say that F dominatesGin

terms of the reverse hazard rate if σF (x) = σG(x) for all x. This order is also

referred to in shortened form as reverse hazard rate dominance.

If F dominates G in terms of the reverse hazard rate, then

F (x) = exp
(

−
∫ b

x
σF (t)dt

)
5 exp

(
−
∫ b

x
σG(t)dt

)
= G(x),
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and thus, again, F first-order stochastically dominates G. Therefore, re-

verse hazard rate dominance also implies first-order stochastic dominance.

2.11.4 Likelihood Ratio Dominance

Definition 2.11.5 (Likelihood Ratio Dominance) We say that the distribu-

tion function F dominates G in terms of the likelihood ratio if for all x < y,

f(x)
g(x)

5 f(y)
g(y)

, (2.11.66)

which means that f
g is a nondecreasing function. As such, we refer to this

order as likelihood ratio dominance.

Rewriting (2.11.66) gives

f(y)
f(x)

5 g(y)
g(x)

,

and then for all x, we have

∫ b

x

f(y)
f(x)

dy 5
∫ b

x

g(y)
g(x)

dy,

which, in turn, implies that

1 − F (x)
f(y)

5 1 −G(x)
g(y)

.

Therefore, likelihood ratio dominance implies hazard rate dominance.

Similarly, rewriting (2.11.66) gives

f(x)
f(y)

5 g(x)
g(y)

,

and then for all x, we have∫ y

a

f(x)
f(y)

dx 5
∫ y

a

g(x)
g(y)

dx,

which implies that
F (y)
f(y)

5 G(y)
g(y)

.
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Therefore, likelihood ratio dominance implies reverse hazard rate domi-

nance.

Summarizing the above discussions, one can see that likelihood ratio

dominance is the strongest, which implies both hazard rate dominance and

reverse hazard rate dominance, both of which, in turn, imply first-order s-

tochastic dominance that again implies second-order stochastic dominance.

2.11.5 Order Statistics

Let X1, X2, · · · , Xn be n random variables independently and randomly

drawn from a distribution F with density f . Let Y (n)
1 , Y

(n)
2 , · · · , Y (n)

n be a

rearrangement of these, and thus

Y
(n)

1 = Y
(n)

2 = · · · = Y (n)
n ,

where Y (n)
k , k = 1, 2, · · · , n are referred to as order statistics.

Let F (n)
k denote the distribution of Y (n)

k , with corresponding probability

density function f (n)
k . If there is no confusion, we simply denote them as Yk,

Fk and fk. In auction theory, we will typically be interested in properties of

the highest and second highest order statistics, i.e., Y1 and Y2, respectively.

Highest Order Statistic

The distribution of the highest order statistic Y1 can be obtained as follows.

The event that Y1 5 y is equivalent to the event: Xk 5 y for all k. Since Xk

is independently drawn from the same distribution F , we have that

F1(y) = F (y)n.

The density function is

f1(y) = nF (y)n−1f(y).

Note that if F stochastically dominates G, and F1 and G1 are distributions

of the highest order statistics of n draws from F and G, respectively, then

F1 stochastically dominates G1.
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Second-Highest Order Statistics

The distribution of the second-highest order statistic Y2 can also be easily

derived. The event that Y2 5 y is the union of the following disjoint events:

(1) all Xk’s are less than or equal to y; and (2) n− 1 of the Xk’s are less than

or equal to y, and one is greater than y. There are n different ways in which

(2) can occur. Therefore, we have

F2(y) = F (y)n + nF (y)n−1(1 − F (y))

= nF (y)n−1 − (n− 1)F (y)n.

The probability density function is then

f2(y) = n(n− 1)(1 − F (y))F (y)n−2f(y).

Again, one can verify that if F stochastically dominates G and also F2

and G2 are distributions of the second-highest order statistics of n draws

from F and G, respectively, then F2 stochastically dominates G2.

2.11.6 Affiliation

Affiliation is a basic assumption employed to study auctions with interde-

pendent values in which random variables are non-negatively correlated.

Definition 2.11.6 Suppose that random variables X1, X2, · · · , Xn are dis-

tributed on some product of intervalsD ⊆ Rn according to the joint density

function f . X = (X1, X2, · · · , Xn) are said to be affiliated if for all x′, x′′ ∈ X ,

f(x′ ∨ x′′)f(x′ ∧ x′′) = f(x′)f(x), (2.11.67)

in which

x′ ∨ x = (max(x′
1, x1), · · · ,max(x′

n, xn))

denotes the component-wise maximum of x′ and x′′, and

x′ ∧ x′′ = (min(x′
1, x

′′
1), · · · ,min(x′

n, x
′′
n))
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denotes the component-wise minimum of x′ and x′′. If (2.11.67) is satisfied,

then we also say that f is affiliated.

Suppose that the density function f : D → R+ is strictly positive in the

interior of D and twice continuously differentiable. One can verify that f

is affiliated if and only if, for all i ̸= j,

∂2

∂xi∂xj
ln f = 0,

which means that the off-diagonal elements of the Hessian of ln f are non-

negative.

Proposition 2.11.1 LetX1, X2, · · · , Xn be random variables, and Y1, Y2, · · · , Yn−1

be the largest, second largest, ..., smallest order statistics from amongX2, X3, · · · , Xn.

If X1, X2, · · · , Xn are symmetrically distributed and affiliated, then we have

(1) variables in any subset of X1, X2, · · · , Xn are also affiliated;

(2) X1, Y1, Y2, · · · , Yn−1 are affiliated.

Monotone Likelihood Ratio Property

Suppose that the two random variables X and Y have a joint density f :
[a, b]2 → R. If X and Y are affiliated, then for all x′ = x and y′ = y, we

have

f(x′, y)f(x, y′) 5 f(x, y)f(x′, y′) ⇔ f(x, y′)
f(x, y)

5 f(x′, y′)
f(x′, y)

(2.11.68)

and
f(y′|x)
f(y|x)

5 f(y′|x′)
f(y|x′)

,

so the likelihood ratio
f(·|x′)
f(·|x)

is increasing, and this is referred to as the monotone likelihood ratio prop-

erty.

Using the same arguments as for order stochastic dominance in the pre-

vious subsection, it can be deduced that for all x′ = x, FY (·|x′) dominates
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FY (·|x) in terms of the likelihood ratio, and the other dominance relation-

ships then follow as usual. We have the following conclusions.

Proposition 2.11.2 If X and Y are affiliated, the following properties hold:

(1) For all x′ = x, F (·|x′) dominates F (·|x) in terms of hazard rate,

i.e.,

λ(y|x′) ≡ f(y|x′)
1 − F (y|x′)

5 f(y|x)
1 − F (y|x)

≡ λ(y|x).

Or equivalently, for all y, λ(y|·) is nonincreasing.

(2) For all x′ = x, F (·|x′) dominates F (·|x) in terms of the reverse

hazard rate, i.e.,

σ(y|x′) ≡ f(y|x′)
F (y|x′)

5 f(y|x)
F (y|x)

≡ σ(y|x),

or equivalently, for all y, σ(y|·) is nondecreasing.

(3) For all x′ = x, F (·|x′) first-order stochastically dominates

F (·|x), i.e.,

F (y|x′) 5 F (y|x),

or equivalently, for all y, F (y|·) is nonincreasing.

(4) For all x′ = x, F (·|x′) second-order stochastically dominates

F (·|x), i.e., for all y∫ y

a
F (r|x′)dr 5

∫ y

a
F (r|x)dr

or equivalently, for all y,
∫ y
a F (y|·) is nonincreasing.

All of these results extend in a straightforward manner to the case in

which the number of conditional variables is more than one. Suppose that

Y,X1, X2, · · · , Xn are affiliated and let FY (·|x) denote the distribution of

Y conditional on X = x. We can then also obtain the above dominance

relations.
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2.12 Biographies

2.12.1 Friedrich August Hayek

Friedrich August Hayek (1899-1992), one of the greatest economic thinkers

of the 20th century and a representative of the Austrian school, won the

1974 Nobel Prize in Economics for his contributions to the theory of money

and economic cycles, as well as his penetrating analysis of the interdepen-

dence of economic, political, and institutional phenomena. The Nobel Prize

Committee believed that Hayek’s in-depth analysis of the economic cycle

made him one of the very few economists who had warned about a possi-

ble great economic depression prior to 1929. In fact, both academically and

practically, the 20th century was characterized by competition between the

market economic system and the planned economic system, and disputes

concerning their respective advantages and disadvantages. Hayek’s pen-

etrating analysis of different economic systems led him to point out very

early that the planned economy is not feasible from the perspective of in-

formation efficiency, incentive compatibility, and resource allocation effi-

ciency. Indeed, pragmatic results proved Hayek’s extraordinary judgment

and insight. Finally, the planned economic system experienced its demise,

which made him one of the most influential economists of the 20th century.

Hayek was born in an intellectual family in Vienna and received a doc-

torate from the University of Vienna (1921-1923). When Hayek was at the

University of Vienna, he attended classes taught by Ludwig von Mises

(1881-1973). It was Mises’ thorough critique of socialism published in 1922

that eventually pulled Hayek out of the Fabian socialist ideological trend.

The best way to understand Hayek’s great contribution to economics and

classical liberalism is to analyze it from the perspective of Mises’ paradigm

of social collaboration. Hayek taught at the London School of Economic-

s and Political Science (1931-1950), the University of Chicago (1950-1962),

and Freiburg University (1962-1968). At the University of Chicago, Hayek

was a professor of social and ethical science in the“Committee on Social

Thought”and did not obtain a teaching post in the Department of Eco-

nomics. Professor Friedman, a friend of his in the economics department,
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was also critical of Hayek’s books on economics. When he first arrived

at the University of Chicago, Hayek conducted political studies and did

not engage in economics research, and he held a negative attitude towards

some research methods that were being used at the Department of Eco-

nomics. Even so, Hayek interacted frequently with some of the members

of the Chicago School of Economics, and his political views were compati-

ble with many of the Chicago School. Hayek made a remarkable contribu-

tion to the University of Chicago. He strongly supported Aaron Director,

a Chicago School economist and the founder of law and economics, to car-

ry out the “Law and Society”project at the University of Chicago Law

School. Indeed , Professor Director persuaded the University of Chicago

Press to publish Hayek’s The Road to Serfdom , which later became popular

globally. Hayek also collaborated with Friedman and others on the estab-

lishment of the International Forum of Liberal Economists.

Hayek had two profound debates in his life: one was the “socialist

controversy”in the 1920s and 1930s, which was the debate between Mises-

Hayek and Lange-Lerner on the theoretical feasibility of efficient alloca-

tions under socialism. He criticized the drawbacks of the planned econ-

omy from the perspective of information and incentives. He held that

the planned economy was theoretically impracticable, and emphasized the

importance of a spontaneous social order based on freedom, competition,

and rules. This advanced internal logic judgment was verified prior to his

death. The second was the theoretical debate with Keynes in the 1930s. He

pointedly criticized Keynes’s theoretical claims and academic viewpoints

put forward in A Treatise on Money , and thought that Keynes’s economic

proposition of achieving full employment by lowering interest rates and

increasing the money supply was fundamentally incorrect. In 1947, Hayek

advocated for the establishment of the Pilgrimage Mountain Society, an

important liberal academic organization. He advocated thorough econom-

ic freedom and opposed any form of state intervention, calling for“non-

nationalization”of currency issuance.

Hayek’s profound philosophy of revealing the importance of institu-

tions will undoubtedly continue to influence and guide the world, espe-

cially the next step of reform in China.
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2.12.2 Joseph Alois Schumpeter

Joseph Alois Schumpeter (1883-1950), an Austrian American political e-

conomist (but not a member of the Austrian School) was profoundly in-

fluential, and is hailed as the originator of the Innovation Theory. Known

as one of the greatest economists in history, his name is closely associat-

ed with most of the concepts and knowledge about market economies and

innovation. Indeed, he proposed the four most representative and well-

known economic terms, i.e., innovation, entrepreneurship, corporate strat-

egy, and creative destruction. In addition, he believed that “creative de-

struction”is a double-edged sword which can engender economic growth,

but can also impair some values that people have traditionally cherished.

He expressed this by stating,“What poverty brings is a tragic life, while it

is difficult for prosperity to maintain peace of mind.”

In 1883, Schumpeter was born into the family of a weaving factory own-

er in Triesch, Habsburg Moravia (now part of Czech, and thus Schumpeter

is sometimes considered to be a Czech-American), Austria-Hungary. He

enrolled in an elite middle school in Vienna. He studied law and sociology

at the University of Vienna from 1901 to 1906, and received his doctoral

degree in law in 1906. In 1908, he became an associate professor at the

University of Czernowitz through his instructor’s recommendation just at

the beginning of his journey as an economist. Czernowitz is a remote c-

ity, but a suitable place for learning with its tranquility outside of mod-

ern industrial civilization. Here, Schumpeter wrote his first masterpiece,

The Theory of Economic Development published in 1912, which touches on

“innovation”and its role in economic development, and had a great im-

pact in the economics community. According to statistics, the concept of

“creative destruction”proposed by Schumpeter was cited frequently, sec-

ond only to the“invisible hand”of Adam Smith. The Theory of Economic

Development has become one of the classical economic works of the 20th

century. Later, Schumpeter emigrated to the United States, and taught at

Harvard University until the end of his life.

In his famous book, History of Economic Analysis, Schumpeter argued

that the difference between an economic scientist and an average economist
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lies in the adoption of the following three elements in the process of eco-

nomic analysis. The first one is economic theory with an inherent logical

analysis. The second is history with analysis from historical perspectives.

Finally, the third is statistics with data and empirical analysis. Schum-

peter’s five innovation concepts are also frequently quoted and mentioned,

even to the extent that his name appears in almost every discussion about

innovation. Moreover, as the founder of the Innovation Theory and the re-

search of business history, Schumpeter’s influence is also currently being

“rediscovered”.

Innovation refers to an economic process that recombines and integrates

original production factors into new production methods in order to in-

crease efficiency and reduce costs. In Schumpeter’s economic model, those

who can successfully innovate can survive the dilemmas of diminishing re-

turns; whereas, those who fail to recombine production factors will be the

first to be eliminated by the market. The creative destruction of capitalism

means that when the economy cycles to the bottom, this is the time when

some entrepreneurs have to consider exiting the market and others must

innovate to survive. As long as excess competitors are excluded or some

successful“innovations”are created, the economy will improve and pro-

duction efficiency will increase. When an industry becomes profitable a-

gain, however, it will attract the investment of new competitors. Then, the

process of diminishing returns begins again and returns to the previous s-

tate. Therefore, every depression implies the possibility of another techno-

logical innovation, or it can alternatively be stated that the result of techno-

logical innovation is another expected depression. In Schumpeter’s view,

the creativity and destructiveness of capitalism are homologous. Howev-

er, Schumpeter did not believe that the superiority of capitalism is due to

its own impetus which can promote its own development continually. In-

stead, he contended that the capitalist economy will eventually collapse be-

cause it cannot withstand the energy of its rapid expansion. The business

cycle, also known as the economic cycle, is Schumpeter’s most quoted eco-

nomic term. Schumpeter’s concept of creative destruction has had a great

influence on the development of modern economics. The combination of

the dynamic market mechanism and R&D economics provides economists
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with a crucial perspective of endogenous technological change. Schum-

peter’s technological innovation has become a core element of the theory

of endogenous growth in macroeconomics.

In Capitalism, Socialism and Democracy, Schumpeter gave the following

modern definition of democracy: “the democratic method is that institu-

tional arrangement for arriving at political decisions in which individuals

acquire the power to decide by means of a competitive struggle for the peo-

ple’s vote”. He held that democracy constitutes a process in which polit-

ical elites compete for power, and that the people choose political leaders.

The essence of democracy lies in a competitive election process. Political

elites occupy political power and implement their rule, but their legitima-

cy comes from the choice of the people. Schumpeter also took the view

that, in the political market with democracy, politicians provide political

programs and policies according to the preferences of voters, and compete

freely in elections to attract voters. Schumpeter’s definition of democra-

cy symbolizes the great transformation of democratic theory from classical

democracy directly ruled by the people to the modern election democracy.

The economic development of any country needs to go through three

stages: factor-driven, efficiency-driven, and innovation-driven. The ideas

and theories of Hayek and Schumpeter play a crucial role in theoretically

guiding and clarifying the way that the two transition stages occur.

Hayek’s economic thought on the fundamental importance of the mar-

ket and institutions deeply affected economic development in the 20th cen-

tury; likewise, Schumpeter’s economic thought on the critical importance

of innovation will undoubtedly continue to exert remarkable influence, as

we have already witnessed during the first 20 years of the 21st century.

2.13 Exercises

Exercise 2.1 Consider an economy with two sectors: the industrial sector

and the monetary sector, characterized by the following equations:

Y = C + I +G,
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C = a+ b(1 − t)Y,

I = d− ei,

G = G0,

where Y,C, I and i (i is the interest rate) are endogenous variables, G0 is an

exogenous variable, and a, b, d, e and t are all structure parameters.

In the newly introduced monetary market, we have:

the equilibrium conditions: Md = Ms,

the money demand: Md = kY − li,

and the money supply: Ms = M0,

where M0 is the exogenous variable of money stock, and k and l are pa-

rameters. Given this economy, please solve the following problems: (using

Cramer’s rule)

1. Equilibrium income Y ∗;

2. Money supply multiplier;

3. Government expenditure multiplier.

Exercise 2.2 Q represents the set of rational numbers, and as a metric s-

pace, its distance is defined by d(p, q) = |p − q|, where p ∈ E = {p ∈ Q :
2 < p < 40} ⊆ Qp ∈ E = {p ∈ Q : 2 < p < 40} ⊆ Q.

1. Prove that E is closed and bounded in Q.

2. Prove that E is not compact.

3. Is E open in Q? If yes, why?

Exercise 2.3 Given a metric spaceX , consider a series of open sets {En}n∈N

in X.

1. Prove that
∪
n∈N En is an open set.

2. Prove that it may not be true that the intersection of a series of open

sets is open (please provide an example of this).

Exercise 2.4 Prove the following theorems:
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1. The difference of an open set and a closed set is also open, while the

difference of a closed set and an open set is also closed.

2. Each closed set is the intersection of a countable number of open sets;

each open set is the union of a countable number of closed sets.

Exercise 2.5 Let S ⊆ RL. Prove that the following propositions are equiv-

alent:

1. S is compact.

2. S is bounded and closed.

3. Every sequence in S has a convergent subsequence with the limit

point in S.

4. Every infinite subset of S has a cluster point in S.

5. Each closed subset of the set S with finite intersection property (i.e.,

the intersection over any finite subcollection is nonempty) is nonemp-

ty.

Exercise 2.6 Prove the following propositions:

1. Every closed subset of a compact set is compact.

2. If f : X → Y is continuous and K is compact in X , then f(K) is

compact in Y .

3. Si is compact, i ∈ I , if and only if
∏
i∈I Si is compact.

4. Si is compact, i = 1, 2, · · · ,m, if and only if
∑m
i Si is compact.

Exercise 2.7 (Shapley-Folkman Theorem) Prove the theorem: Let Si, (i =
1, · · · , n) be n non-empty subsets of Rm and S =

∑n
i=1 Si. Then, each x ∈

Co(S) has a representation x =
∑n
i=1 xi, such that xi ∈ Co(Si) for all i, and

xi ∈ Si for at least (n−m) indices i.

Exercise 2.8 Prove the following theorems:
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1. If f is a differentiable function defined on R1, then f is concave if and

only if the first-order condition f ′(x) is non-increasing.

2. If f is a twice differentiable function defined on R1, then f is concave

if and only if the second-order condition f ′′(x) is non-positive.

3. If f is a differentiable function defined on R1, then f is concave if and

only if f(y) 5 f(x) + f ′(x)(y − x) for any x, y∈R1.

Exercise 2.9 Suppose that f(x) = 1
2

xTAx+bTx+c, where x ∈ Rn, xT is the

transpose of vector x,A is an n×n symmetric matrix , b is an n-dimensional

vector, and c is a constant.

1. Prove that ifA is a positive semi-definite matrix, then f(x) is a convex

function.

2. Prove that if A is a positive definite matrix, then f(x) is a strictly

convex function.

Exercise 2.10 Determine whether Kuhn-Tucker conditions are applicable

for the following optimization problems and solve them.

max x1

s.t. x3
1 − x2 5 0,
x2 5 0.

Exercise 2.11 Solve the following optimization problems using Kuhn-Tucker

conditions.

max xyz

s.t. x2 + y2 + z2 5 6,
x > 0, y > 0, z > 0.

Exercise 2.12 The maximization problem is as follows:

max f(x)

s.t. g1(x) = 0, · · · , gm(x) = 0,
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where f : Rn −→ R and gj : Rn −→ R are increasing functions with

respect to x, and m < n. Prove that: If f is quasi-concave and all gj are

quasi-convex functions, then any local optimum is the global optimal solu-

tion.

Exercise 2.13 Let u : Rn −→ R be a function, p,x ∈ Rn, and y ∈ R.

Consider the following optimization problem:

max
x

u(x)
s.t. px = y.

Suppose that there is an optimum solution x∗(p, y) > 0, such that v(x, y) =
u(x∗(p, y)).

1. Prove that v(p, y) is homogeneous of degree zero.

2. Prove that v(p, y) is a quasi-concave function.

Exercise 2.14 Suppose that a Cobb-Douglas utility function u : R2 −→ R
is defined as:

u(x1, x2) = xα1x
β
2 , α, β > 0.

Prove:

1. If α+ β 5 1, then u is a concave function.

2. If α+ β > 1, then u is a quasi-concave function, but not concave.

3. For any α > 0 and β > 0, h(x1, x2) = ln(u(x1, x2)) is a concave func-

tion.

Exercise 2.15 Suppose that X is a nonempty, closed, and convex set in Rn,

x0 /∈ X . Prove that the following propositions are true.

1. There is a point a ∈ X , such that d(x0, a) < d(x0, x) for all x ∈ X , and

d(x0, a) > 0.

2. There is a point p ∈ Rn, p ̸= 0, ||p|| ≡ (
∑n
i=1 p

2
i )1/2 < ∞ and α ∈ R,

such that

p · x = α, for all x ∈ X and p · x0 < α.
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Specifically, X and x0 is separated by a hyperplane H = {x : p · x =
α, x ∈ Rn}.

Exercise 2.16 Consider following functions:

(1) 3x5y + 2x2y4 − 3x3y3.

(2) 3x5y + 2x2y4 − 3x3y4.

(3) x3/4y1/4 + 6x+ 4.

(4)
x2 − y2

x2 + y2 + 3.

(5) x1/2y−1/2 + 3xy−1 + 7.

(6) x3/4y1/4 + 6x.

1. Find homogeneous functions among them and determine their orders

of degree.

2. Test whether the above functions satisfy the Euler theorem.

Exercise 2.17 There is a simple application of upper (lower ) hemi-continuity

of correspondences. Suppose that f : X × Y −→ R,

G(x) = {y ∈ Γ(x) : f(x, y) = max
y∈Γ(x)

f(x, y)}.

1. Suppose thatX = R, Γ(x) = Y = [−1, 1]. For all x ∈ X , f(x, y) = xy2.

Draw the graph ofG(x) and prove thatG(x) is upper hemi-continuous

at x = 0, but not lower hemi-continuous.

2. Suppose that x = R and Γ(x) = Y = [0, 4] for all x ∈ X . Define that

f(x, y) = max{2 − (y − 1)2, x+ 1 − (y − 2)2}.

Draw the graph ofG(x) and prove that: G(x) is upper hemi-continuous

but not lower hemi-continuous, and specify at which points it is not

lower hemi-continuous.

3. Suppose that X = R+, Γ(x) = Y = {y ∈ R : −x 5 y 5 x}.

For all x ∈ X , define that f(x, y) = cos(y), then draw the graph of
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G(x) and prove that: G(x) is upper hemi-continuous but not lower

hemi-continuous, and specify at which points it is not lower hemi-

continuous.

Exercise 2.18 Let S = {x ∈ R2 :∥ x ∥= 4} be the boundary of a circle with

a radius of 2. The mapping ψ : R2 → S is defined as:

ψ(x) = arg min
x′∈S

d(x, x′),

specifically, ψ(x) contains the closest point in S to x. Discuss the upper and

lower hemi-continuity of ψ(x).

Exercise 2.19 Consider a correspondence Γ : D ⊆ Rl −→ Rk, of which the

graph is defined as

G(Γ) = {(x, y) ∈ D × Rk : y ∈ Γ(x)}.

If G(Γ) is a closed set, then we say Γ has a closed graph; if G(Γ) is a bound-

ed and closed set, we call Γ compact-valued. Suppose that Γ is compact-

valued. Prove:

1. If Γ is upper hemi-continuous, then it has a closed graph.

2. If Γ is locally bounded and its graph is closed, then Γ is upper hemi-

continuous. (Hint: The definition of locally bounded correspondence

Γ: G(Γ) = {(x, y) ∈ D×Rk : y ∈ Γ(x)} is locally bounded, if for each

x ∈ D, there is an ϵ > 0 and a bounded set Y (x) ⊆ Rk, such that for

all x′ ∈ Nϵ(x)
∩
D,Γ(x′) ⊆ Y (x).)

Exercise 2.20 Suppose that X ⊆ R+ is a nonempty compact set. Prove

that:

1. If f : X −→ X is a continuous increasing function, then f has a fixed

point.

2. Specially, suppose that X = [0, 1]. If f : X −→ X is an increas-

ing function (not necessarily continuous), does f have another fixed

point?
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Exercise 2.21 Suppose thatX is a complete metric space, and T is the map-

ping from X to X . Denote

an = sup
x̸=x′

d(Tnx, Tnx′)
d(x, x′)

, n = 1, 2, · · · .

Prove that: If
∑∞
n=1 an < ∞, then the mapping T has a unique fixed point.

Exercise 2.22 Consider n ∈ N and an nth order square matrixA = (aij)n×n.

For any x ∈ Rn, we have

Ax = (
n∑
j=1

a1jxj ,
n∑
j=1

a2jxj , · · · ,
n∑
j=1

anjxj)T .

Suppose that f is a differentiable mapping from R to R, such that

s = sup{|f ′(t)| : t ∈ R} < ∞.

Define a mapping F from Rn to Rn , namely,

F (x) = (f(x1), · · · , f(xn))T .

For a given n-dimensional vector w, we can solve the following system of

nonlinear equations:

z = AF (z) + w. (∗)

1. Prove that: if max{
∑n
j=1 |aij | : i = 1, · · · , n} < 1

s , then there is a

unique z ∈ Rn satisfying the above system of equations (∗).

2. Prove that: if
∑n
i=1

∑n
j=1 |aij | < 1

s2 , then there is a unique z ∈ Rn

satisfying the above system of equations. (∗).

Exercise 2.23 Suppose that h is a mapping from R+ to R+ , and H : R+ ×
R −→ R is a bounded function, such that there is a K ∈ (0, 1),

|H(x, y) −H(x, z)| < K|y − z|, for anyx = 0, y, z ∈ R.

Prove that there is a unique bounded function, f : R+ −→ R, such that

f(x) = H(x, f(h(x))), for any x = 0.



262CHAPTER 2. PRELIMINARY KNOWLEDGE AND METHODS OF MATHEMATICS

Exercise 2.24 Find the extremum curve of the following functional:

1. V (y) =
∫ 1

0 (t2 + y′2)dt, y(0) = 0, y(1) = 2;

2. V (y) =
∫ 1

0 (y + yy′ + y′ + 0.5y′2)dt, y(0) = 2, y(1) = 5;

3. V (y) =
∫ T

0 (1 + y′2)0.5
dt, y(0) = A, y(T ) = Z.

Exercise 2.25 Solve the following optimal control problem:

max
∫ 3

0 (x− 2)2(x′(t) − 1)2dt

s.t. x(0) = 0, x(3) = 2.

Exercise 2.26 Consider the following optimal control problem, write the

Hamilton equation, and solve the optimal function.

max
∫ 1

0 (x+ u)dt
s.t. x′(t) = 1 − u2, x(0) = 1.

Exercise 2.27 Consider the following optimization problem:

v(q) = max
x∈R+

ln(2x+ q) − 6x+ 2q,

where q ∈ (0, 2).

1. Solve v(q) and its derivative v′(q).

2. Verify that the Envelope Theorem holds.

Exercise 2.28 Find the general solution to the extremum curve of the fol-

lowing functional:

V (y, z) =
∫ b

a
(y′2 + z′2 + 3y′z′)dt.

Exercise 2.29 In the problem of functional
∫ T

0 F (t, y, z, y′, z′)dt, suppose that

y(0) = A, z(0) = B, yT = C, zT = D, T are free, and A, B, C, and D are

constants.

1. How many transversal conditions are required for the problem? Why?

2. Write these transversal conditions.
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Exercise 2.30 The integrand function of the target functional is F (t, y, y′) =
4y2 + 4yy′ + y′2.

1. Write the Euler equation.

2. Is the above Euler equation sufficient for maximization or minimiza-

tion problems? Why?

Exercise 2.31 Solve the paths of y(t) and z(t) of extremum curves of V (y, z) =∫ T
0 (y′2 + z′2)dt subject to y − z′ = 0.

Exercise 2.32 Solve the optimal paths of control variables, state variables,

and costate variables as follows:

1. max
∫ T

0 −(t2 + 2u2)dt subject to y′ = u, y(0) = 2, and y(T ) = 3, and T

is free.

2. max
∫ T

0 −(u2 + y2 + 3uy)dt subject to y′ = u, y(0) = y0, and y(t) is

free.

3. max
∫ 4

0 2ydt subject to y′ = y + u, y(0) = 3, y(4) = 200.

Exercise 2.33 Find the optimal consumption path of the following exhaustible

resource problem:

max
∫ T

0
ln qe−δtdt

s.t. s′ = −q, s(0) = s0, s(t) = 0.

Exercise 2.34 Using the revised transversal conditions expressed by the

present value Hamilton function, solve the problems

1. with the end curve yT = ϕ(t).

2. with truncated vertical end line.

3. with truncated horizontal end line.

Exercise 2.35 In a maximization problem, there are two known state vari-

ables, (y1, y2), two control variables (u1, u2), an inequality constraint, and

an inequality integral constraint. The initial state is fixed, but the final state

is free at fixed T .
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1. State the maximization problem.

2. Define the Hamilton’s equation and the Lagrange function.

3. Suppose that there is an interior solution, and then write the condi-

tions of the maximum principle.

Exercise 2.36 Consider the problem of “eating cake”as follows. The a-

gent has A0 > 0 units of the commodity for consumption in period 0 and

can save the commodity to the next period without costs, and its utility

function is
∑∞
t=0 β

t ln ct.

1. Write the Bellman equations of the problem.

2. Define the state variable and control variable.

3. Find the value function.

Exercise 2.37 Consider the following problem of“tree cutting”: the growth

of a tree can be represented by the function h, i.e., kt+1 = h(kt), where kt is

the scale of the tree at time t.

There is no cost for cutting trees, and the timber price is p = 1. Interest

rate r remains unchanged, β = 1/(1 + r).

1. Assuming that trees cannot be replanted, we write the maximization

problem of present value as v(k) = max{k, βv[h(k)]}. Under what

conditions about h is there a simple rule that can be used to describe

when to cut trees?

2. Suppose that another tree can be planted where the original tree is

cut down, and the replanting cost c = 0 remains unchanged for a

long period of time. Under what conditions about h and c is there a

simple rule that can be used to characterize when to cut trees?

Exercise 2.38 Solve the following dynamic programming problems by three

methods: value function iteration, guessing value function, and guessing

policy function, respectively:

max
{ct.kt+1}∞

t=0

∞∑
t=0

βt ln ct

s.t. ct + kt+1 = Akαt ,
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where k0 is given.

Exercise 2.39 Solve the following differential equations:

1. y′ = t2y.

2. y′′ − 4y′ + 5y = 0.

3. y′′ − 2y′ − 3y = 9t2.

Exercise 2.40 Consider the following two dimensional autonomous differ-

ential equations:

dx

dt
= x(4 − x− y),

dy

dt
= y(6 − y − 3x).

1. Solve the equilibrium of the power system.

2. Verify the stability of each equilibrium.

Exercise 2.41 Solve the following difference equations:

1. y(t+ 1) − 2y(t) = 4t.

2. y(t+ 2) + 3y(t+ 1) + 2y(t) = 0.

3. y(t+ 2) − y(t+ 1) − 6y(t) = t+ 2.

Exercise 2.42 Suppose that X1, X2, · · · , Xn are n independent and iden-

tically distributed random variables. The distribution function is F , and

the probability density function is f . Let Y (n)
1 , Y

(n)
2 , · · · , Y (n)

n be the corre-

sponding order statistics satisfying Y (n)
1 = Y

(n)
2 = · · · = Y

(n)
n .

1. Find the distribution function and probability density function of Y (n)
n .

2. Find E(Y (n)
n ) and Var(Y (n)

n ).

3. Find Cov(Y (n)
1 , Y

(n)
n ).

Exercise 2.43 Let X and Y be two random variables in the range [a, b].
Prove:
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1. IfX first-order stochastically dominates Y , thenX necessarily second-

order stochastically dominates Y .

2. If X second-order stochastically dominates Y , then EX = EY .

3. If X second-order stochastically dominates Y and EX = EY , then

Eu(X) = Eu(Y ) for all concave and twice differentiable functions

(whether increasing or not).

4. If X second-order stochastically dominates Y and EX = EY , then

V ar(X) 5 V ar(Y ).

Exercise 2.44 Suppose that X is a non-negative random variable, and the

distribution function and density function are F and f , respectively. The

risk rate of random variable X is defined as

λX : R+ −→ R+, λX(t) = f(t)
1 − F (t)

.

If λX(·) 5 λY (·), we say that the random variable X stochastically domi-

nates random variable Y in terms of risk rate. Suppose that G and g are,

respectively, the distribution function and density function of random vari-

able Y . If f(·)/g(·) is a non-decreasing function, then we say that X s-

tochastically dominates Y in terms of likelihood ratio. Prove the following

statements:

1. λX(·) 5 λY (·) if and only if 1 − G(t)/[1 − F (t)] is a non-increasing

function.

2. If X dominates Y in terms of likelihood ratio, then X must stochasti-

cally dominate Y in terms of risk rate.

Exercise 2.45 Prove that: if X1, X2, · · · , XN are correlated, and γ(·) is an

increasing function, then for x′
1 > x1, we have

E[γ(Y1)|X1 = x′
1] = E[γ(Y1)|X1 = x1].
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This part discusses game theory and market theory. Game theory has

become an extremely important subdiscipline in mainstream economics,

a core field in microeconomic theory, and one of the most important ana-

lytical tools for investigating various economic issues with strategic inter-

actions among individuals. Readers will find that the market theory in-

troduced in this part involves abundant knowledge and results in game

theory, and thus we will present them as applications of game theory. The

mechanism design theory, auction theory and matching theory studied in

the book also take game theory as a basic analytical tool, and use extensive

knowledge and results in game theory.

Game theory studies the strategic interactions between individuals. In

earlier chapters, we studied the optimal choice of an individual, such as a

firm or a consumer — the simplest case, and we assumed how individuals

make optimal decisions when they are not affected by other individuals’

decisions. However, in many situations, this is certainly not realistic. In

reality, individuals’ decisions are frequently more complicated. One aspect

is that their decisions tend to affect each other. The game theory introduced

in this part examines how interactions among individuals affect their out-

comes or payoffs. There are many aspects from which one can study inter-

actions of decision-makers. For example, one could investigate behaviors

from the perspectives of sociology, psychology, biology, etc. Each of these

approaches is useful in certain contexts. Game theory emphasizes the s-

tudy of strictly“rational”decision-making, since this may constitute the

most appropriate approach for economic behaviors and activities in which

“business is business”.

Game theory can assist us to understand the phenomenon of individ-

uals’ interaction and its underlying mechanism. In games, a stronger as-

sumption is required concerning decision-makers’ rationality. It not only

requires that a decision-maker be rational, but also requires the decision-

maker to assume that other decision-makers are rational and that others al-

so think that he or she is rational. In other words, it is common knowledge

that all decision-makers are rational. Game theory studies the strategic in-

teractions among individuals in this context.

Game theory has two branches: non-cooperative game and coopera-
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tive game (sometimes called the coalition game). These two branches are

not divided literally. The former studies non-cooperative relations of in-

dividuals, while the latter investigates cooperation among individuals. In

numerous situations, we will find that non-cooperative game frequently

studies the mechanism of cooperation of players, and cooperative game of-

ten studies non-cooperative behaviors of players. Taking cost-sharing as

an example, all players hope that the other party will bear more of the cost.

As a consequence, cooperative game and non-cooperative game are not re-

flected in research objects, but instead are reflected in assumptions.

Cooperative game assumes that individuals communicate prior to mak-

ing their decisions, and that the decisions are reflected in the choice of con-

tract. Once a contract is chosen, it will be followed by a coalition (i.e., the

group of individuals who have signed the contract). In this way, the anal-

ysis is based on the collective unit, and thus cooperative games are some-

times called the coalition games. Corresponding to this, in non-cooperative

games, players’ communication, choice of contract, and compliance with

contracts are all based on individual rational decision-making. Neverthe-

less, neither of the theories is superior or inferior to the other. Instead, they

analyze different issues on different levels of analysis and in dissimilar con-

texts. Overall, they are complementary in our understanding of practical

problems.

In the development history of game theory, John von Neumann (1903–

1957, see his biography in Section 5.8.1) is recognized as the founder of

game theory. His work with Morgenstern (1944) marked the occasion when

game theory become a subdiscipline. In its early stages, game theory was

considered more of a branch of mathematics, and especially a branch of

operations research.

Game theory has a broad range of applications. It is an abstract descrip-

tion of how individuals make rational decisions in real life, and thus can be

employed to study various aspects of the economy, society, and politics.

Any phenomenon that involves strategic interactions, such as competition

among firms in the market, voting in the political system, lobbying of in-

terested groups, war and disarmament, and even the evolution of species

in ecosystems, can be investigated using game theory. Due to its influence
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and importance, John Nash, John Harsanyi, and Reinhard Selten in 1994,

Robert J. Aumann and Thomas C. Schelling in 2006, and Lloyd S. Shapley

in 2012 were awarded the Nobel Prize in Economics, respectively. Their bi-

ographies can be found in Section 6.8.1, Section 6.8.2, Section 8.5.2, Section

8.5.1, Section 20.6.2, and Section 22.5.1.

Game theory, to be discussed in this part, is somewhat technical and

abstract. However, various game theoretical models and results are widely

used in many fields of economics, including the discussion of market theo-

ry that will be also discussed in this part. The core issue of market theory is

pricing (i.e., how to determine the market equilibrium price and quantity).

We will discuss the basic structure of four major markets: perfect compe-

tition, monopoly, monopolistic competition, and oligopoly. Subsequently,

we will examine how the actions of consumers and firms affect market ef-

ficiency when they interact in the market. Game theory is involved exten-

sively in the study of oligopolistic behaviors.

This part consists of four chapters: Chapter 6 discusses non-cooperative

games, Chapter 7 explores repeated games, Chapter 8 examines coopera-

tive games, and Chapter 9 proceeds to market theory.
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Chapter 6

Non-Cooperative Game Theory

6.1 Introduction

This chapter is organized as follows: Section 6.2 introduces basic concepts

of non-cooperative games, including the components of a game, two for-

m representations of a game, pure strategy, mixed strategies, and behavior

strategies. Section 6.3 discusses static games of complete information and

their solution concepts, including dominant strategy equilibrium, iterated

elimination of strictly dominated strategy equilibrium (IESDSE), rational-

izable strategies, Nash equilibrium, and refinements of Nash equilibrium.

Section 6.4 discusses dynamic games of complete information and their so-

lution concepts, including subgame perfect Nash equilibrium (SPNE) and

backward induction. Section 6.5 explores static games of incomplete infor-

mation and their solution concepts, including Bayesian game and Bayesian

Nash equilibrium. Section 6.6 discusses dynamic games of incomplete in-

formation and their solution concepts, including (weak) perfect Bayesian

equilibrium (weak PBE) and sequential equilibrium. Section 6.7 explores

the existence of Nash equilibrium.

6.2 Basic Concepts

This section presents basic terminologies used in game theory and discuss-

es the assumptions behind game theory. In game theory, there are usually

277
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two ways of describing the interactions of players: the normal form (also

called the strategic form) and the extensive form. These two forms possess

distinct advantages in expressing different games and are normally inter-

changeable.

To describe a situation of strategic interaction, we need to know four

things:

(1) Players: Who are involved in the game? It is assumed that players are

rational, ie., the goal is to maximize their own utilities/payoffs.

(2) Rules: Who moves and when? What information do the players pos-

sess when taking actions? What actions can the players choose?

(3) Outcomes: What is the consequence of the game for each possible set

of actions by players? A primary purpose of game theory is to deter-

mine the outcomes of games according to a solution concept, such as

those outcomes of equilibrium strategy profile, or equilibrium action

profile.

(4) Payoffs: What are the benefits or utilities over possible outcomes? A

payoff profile is the utility levels of all players under a certain out-

come.

A central concept of game theory is the notion of player’s strategy. A

strategy is a decision rule of actions or complete contingent action plan

which depends not only on players’ own actions but also on the actions of

others.

It is worth noting that strategy and action are closely related but gen-

erally are two different concepts, because a strategy is the rule of actions

but not the actions per se. However, for the normal form game of complete

information, a pure strategy is identical with an action.

6.2.1 Strategic Form Representation of Games

The strategic/normal form game is frequently used to describe players’

interactions when making choices simultaneously. Suppose that a player

could choose the player’s action only once. The strategic form of a game

has the following three basic elements:
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(1) A set of players N = {1, 2, . . . , n}.

(2) A strategy space S = S1 × S2 × · · · × Sn. Each player i ∈ N has a

set of strategies Si, and the strategic choices of all players s = (si)i∈N
constitute a strategy profile. The strategy space may be discrete or

continuum.

(3) A payoff function or utility function ui : S → R, i ∈ N . Payoffs

are usually represented by a payoff matrix if strategies are finite and

there are two players (more complicated nested payoff matrix forms

may be used if there are more than two players).

A normal form game is then denoted as

ΓN = (N,S, {ui(·)}i∈N ).

We describe below the strategic form representation of games through

examples.

Example 6.2.1 (Rock-Paper-Scissors Game) Two brothers, A and B, em-

ploy the usual Rock-Paper-Scissors game to determine ownership of the 10

dollars given to them by their parents.

The rules of the game: Each one’s hand forms one of three shapes (rock,

paper, or scissors) simultaneously to determine the winner. Rock beats s-

cissors, scissors beats paper, and paper beats rock. The winner will obtain

10 dollars, and the loser will obtain 0 dollars. If the game is tied (i.e., they

choose the same shape), then each A and B will obtain 5 dollars.

Player B
Rock Paper Scissors

Rock 5, 5 0, 10 10, 0
Player A Paper 10, 0 5, 5 0, 10

Scissors 0, 10 10, 0 5, 5

Table 6.1: Strategic Form Representation of Rock-Paper-Scissors Game.

From this game, we inspect the elements of a game. The set of players is

N = {A,B}. The set of strategies for players A and B are the same: {rock,
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paper, scissors}, and there are 9 possible strategy profiles in this game (see

Table 6.1). The corresponding payoff of each outcome is represented by the

payoff matrix shown in the table. For example, the corresponding payoff

profile of strategy profile (rock, scissors) is (10, 0), where 10 represents the

payoff profile obtained by player A under this outcome, and 0 represents

the payoff profile obtained by player B under this outcome.

Note that here we assume that each player’s utility function is ui(x(s)) =
x, i = A,B, where x is the dollars obtained. If the utility function is

ui(x(s)) = x
1
2 for i = A,B, then under the outcome of strategy profile

(scissors, rock), the payoff profile profile is (0, 10
1
2 ).

The game in this example is a constant-sum game (i.e., the sum of play-

ers’ payoff profiles is a constant); the higher payoff profile one player ob-

tains means the lower payoff profile the other player will obtain; these play-

ers are in a confrontational relationship in the game. When the constant is

zero, the game is called the zero-sum game, which is a specific case of a

constant-sum game.

In fact, the non-cooperative game can be used to describe many coop-

erative relationships, such as the following example.

Example 6.2.2 (Meet at the Restaurant) Two individuals, Tom (T) and Schelling

(S), decide to meet and have lunch together at noon. They have forgotten

the exact place to meet, and only know that there are two possible places

(i.e., Restaurant 1 and Restaurant 2). They left home so hurriedly that they

forgot to take their mobile phones. They can only choose one place. If they

happen to go to the same restaurant, they can eat together, and their utility

levels in this situation are both 10; otherwise, they can only eat alone, and

their utility levels in this situation are both 0. (see Table 6.2)

The elements of this game are: the set of players is N = {T, S}; the sets

of strategies for Tom (T) and Schelling (S) are both {Restaurant 1,Restaurant 2};

there are four possible outcomes. For example, in the outcome (Restaurant

1, Restaurant 1), the payoff profile of each player is 10.

In this example, the interaction between these two players is actually a

situation of seeking cooperation.
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Schelling
Restaurant 1 Restaurant 2

Tom Restaurant 1 10, 10 0, 0
Restaurant 2 0, 0 10, 10

Table 6.2: Strategic Form Representation of Meeting at the Restaurant.

In the above two examples, players’ actions happen to be their strate-

gies. However, in many situations, one player may make multiple decisions

in one game so as a strategy is a complete contingent action plan for a player in

all possible situations. Therefore, if there are multiple decisions, as well as a

description of the decisions of different players in different time structures,

a more effective representation is the tree-view extensive form.

6.2.2 Extensive Form Representation of Games

The extensive form representation of a game specifies players, decision

rules, outcomes, and payoff profiles: the players of the game, when each

player has the move, what each player can do at each of their moves, what

each player knows for every move, and the payoff profile (or utility level)

received by each player for every possible outcome.

An extensive form game, denoted as

ΓE = (N, N̄,W,X,Z, p,H, ι(·), {ui(·)}i∈N ),

like a tree, has the following basic elements:

(1) A set of players. In addition to the actual participantsN = {1, 2, · · · , n}
involved in the interaction, there may be some external events that are

uncertain, and we usually add an additional player “Nature”(N̄ )

who determines the probability distribution of external events, in ad-

dition to the actual players. It can be understood that which event

will occur is decided by throwing a dice.

(2) Order of moves. The order of moves in ΓE is represented by a game

tree that consists of a finite set of ordered nodes and a precedence

relation ≺⃗ on the set. The precedence relation ≺⃗ describes the order of
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the nodes, and satisfies asymmetry and transitivity (i.e., it is a partial

order). P (y) = {y′ ∈ ΓE : y′≺⃗y} is the set of all nodes preceding

y ∈ ΓE , which we call the set of predecessors of y; S(y) = {y′ ∈ ΓE :
y≺⃗y′} is the set of all nodes succeeding y, which we call the set of

successors of y; W = {y ∈ ΓE : P (y) = ∅} (∅ represents an empty

set) is the initial node of the game tree; Z = {y ∈ ΓE : S(y) = ∅} is

the set of terminal nodes of the game tree; X = {x ∈ ΓE : x /∈ Z}
represents the set of non-terminal nodes, which we call the set of

decision/choice nodes. Assume that for each x ∈ X\W , there is a

unique immediate predecessor p(x) ∈ P (x).

(3) A correspondences about moves. The set of decision nodes to the set

of players (including Nature), ι : X → {N̄ , 1, 2, . . . , n}, indicates the

player that makes a decision at each decision node.

(4) A set of action for each player. The set of a player’s choices at a de-

cision node x is called the action set at that node, denoted by A(x),

which may be a finite, infinite, or even continuum set.

(5) The collection of information sets. An information set is a set of

decision nodes among which a player cannot distinguish (i.e., for any

x ∈ X , there is a corresponding non-empty set h(x), such that if x′ ∈
h(x), then x ∈ h(x′)). Different information sets contain different

nodes. The decision nodes in the same information set are linked with

a dashed line, indicating that the player does not know exactly which

decision node to act on. The set of all information sets is denoted as

H , which forms a partition of X (i.e., for h, h′ ∈ H , either h = h′ or

h ∩ h′ = ∅.) If all information sets in a game tree are singletons, then

the game is called the perfect information game, otherwise called the

imperfect information game.

(6) Outcomes. The actions chosen by all players in each information set

determine the outcome of the game (i.e., a terminal node z ∈ Z). Each

player (except Nature) is assigned a payoff profile at each outcome

ui(·) : Z → R, ∀i ∈ N .
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(7) External events. At the initial node W , there is a probability distribu-

tion ρ : W → [0, 1], which can be interpreted as“Nature”’s choices.

In an extensive form game, a strategy is player i’s complete contingent

action plan for making decisions on each possible information set (includ-

ing information sets that cannot be achieved under the strategy), i.e., it is

an element in the set of actions:

Si = Πh∈H:ι(h)=iA(h),

where A(h) is the set of actions at information set h. Then a strategy is a

mapping from the collection of information sets to the set of actions. The

total number of pure strategies a player can choose is equal to the multipli-

cation of the numbers of pure strategies of all action sets, .i.e.,

|Si| = Πh∈H:ι(h)=i|A(h)|.

For instance, if player i has two information sets, among which one set has

three actions and the other set has two actions to choose, then the number

of pure strategies in the player’ strategy set is 6.

Below, we utilize an example to illustrate that the extensive form repre-

sentation can describe interaction behaviors in more detail.

Example 6.2.3 The following Game 1 and Game 2 describe interactions in

two different situations (See Figure 6.1).

Game 1. The set of players contains two elements: player 1 and

player 2. The game has two action stages. In the first stage,

player 1 makes a decision, and at this stage his action set

is L and R. Since player 1 only acts once, his strategy set

is exactly the action set. Then, player 2 makes a decision.

When making a decision, she can observe player 1’s differ-

ent actions, and thus player 2 has two perfect (single node)

information sets. A strategy of player 2 is constituted by de-

cisions made on each of her information sets. In each infor-

mation set, player 2’s action set is {l, r}. Therefore, there are
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four possible outcomes of strategy profiles (i.e., (l, l), (l, r),

(r, l), and (r, r)). For example, strategy profile (r, l) indicates

that player 2 selects r on her left information set and l on

her right information set. Once players 1 and 2 have cho-

sen their strategies, there will be an payoff profile profile.

For each strategy profile outcome, the corresponding payoff

profiles of players 1 and 2 are assigned. The four terminal n-

odes in Figure 6.1(a) are the payoff profile profiles (the upper

number is player 1’s payoff profile, and the lower number is

player 2’s payoff profile).

Game 2. The player set is the same as in Game 1. The game

has two action stages. The first stage is the same as in Game

1. However, the second stage differs from that of Game 1.

We link the two decision nodes of player 2 together with a

dashed line, indicating that player 2 does not know the ac-

tual action of player 1 in the first stage when making a deci-

sion. Therefore, the information that player 2 has at these

two decision nodes is indistinguishable (i.e., player 2 on-

ly has one information set). In other words, when player

2 makes a decision, she does not know whether she is at the

left or the right decision node. For this reason, a strategy

of player 2 is to choose an action in the unique information

set, and thus player 2 only has two possible strategies {l, r}.

Once players 1 and 2 have chosen their respective strategies,

an outcome will be reached, along with their corresponding

payoff profiles.

Tables (a) and (b) in Table 6.3 illustrate the strategic forms correspond-

ing to Game 1 and Game 2 in Figure 6.1. Two form representations of a

game are interchangeable.

From Table 6.3, we know that there are differences between Game 1 and

Game 2, where the key difference arises from player 2’s strategies, which

is the outcome of the information status of player 2 when making her deci-

sion.
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Figure 6.1: (a): Game 1 is a perfect information game. Player 2 knows
player 1’s choice; (b): Game 2 is a imperfect information game. Player 2’s
information set is not singleton (player 1’s actual choice is unknown to her).

In an extensive form game, the game tree is common knowledge for

each player. That is, all players know the game tree, all players know that

all players know the game tree, etc. In an extensive form game, it is usually

required to satisfy the requirement of perfect recall (i.e., players remem-

ber their own moves (decisions) that they have made and what they have

observed). Perfect recall is a strong assumption in practice. For example,

during a card game of bridge, most people can not remember the complete

bidding sequence and the complete play of the cards.

player 1

l r

player 2 player 2

L R RL

a b a b

c d c d

player 1

player 2

Figure 6.2: Game without Perfect Recall.

Figure 6.2 depicts an imperfect recall situation. In Figure 6.2, player 2

cannot distinguish between the two decision nodes when making her sec-

ond decision. This means that player 2 cannot recall whether her first deci-

sion was R or L. If player 2 has perfect recall, however, she can distinguish
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5, 0 5, -3 5, 0 5, -3

3, 0 8, 3 8, 3 3, 0

5, 0 5, -3

3, 0 8, 3

(a)  Game 1

(b)  Game 2

player 1

player 1

player 2

player 2 1a  =(l, l)2
2a  =(r, r)2 a  =(l, r)2

3 a  =(r, l)2
4

1a  1

2a 1

1a  1

2a 1

1a  = l2
2a  = r2

Table 6.3: Table (a): the strategic form representation of Game 1; Table (b):
the strategic form representation of Game 2.

them.

In addition, in an extensive form game, there may be external uncer-

tainties. Usually, we introduce “Nature”as the decision-maker to select

external uncertain events.

1/2

player 1 player 2

H T TH

H T H TH T H T

nature

1/2

player 2 player 2 player 1 player 1

-1

1

-1

1

-1

1

1

-1

1

-1

1

-1

1

-1

-1

1

1’s  payoff

2’s  payoff

Figure 6.3: “Nature”selects the order of the game.

Example 6.2.4 (Matching Pennies) There are two players 1 and 2 who play

a matching pennies game (i.e., choosing heads or tails). If these two players

have the same choice, then player 1 pays one dollar to player 2; otherwise,

player 2 pays one dollar to player 1. Suppose that the game is played as

follows: first, by tossing a coin, if the head side is face-up, player 1 choos-
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es first and then player 2 chooses; if the tail side is face-up, their selection

order is reversed. The player selecting later knows the action of the previ-

ous player. In this game, there is an external uncertainty (i.e., who chooses

first). We introduce a new player “Nature”, and let it act as a decision-

maker for external events. Figure 6.3 describes this game.

6.2.3 Mixed Strategies and Behavior Strategies

In the above, a strategy of a player is defined as a decision rule of actions

or a complete contingent plan for the player. In the Rock-Paper-Scissors

normal game, players A and B both have 3 strategies. Obviously, player i

is reluctant to let the other player know her choice. In numerous interactive

situations, player i introduces random factors to prevent the other players

from knowing her exact choice. Randomizing pure strategies with these

factors generates mixed strategies.

Definition 6.2.1 (Mixed Strategy) For a game ΓN = [N, {Si}, {ui(·)}] with

Si = {s1
i , · · · , sni

i }, a mixed strategy for player i, σi : Si → [0, 1]ni , is a prob-

ability distribution on Si = {s1
i , · · · , sni

i }, where σi(ski ) = 0 indicates the

probability that player i chooses strategy ski , which satisfies
ni∑
k=1

σi(ski ) = 1.

Consequently, a pure strategy can be seen as the degeneration of a mixed

strategy in which the probability of selecting the pure strategy is 1. The

mixed strategy for the infinite strategy space can be similarly defined, and

then should be expressed in the form of integral.

If we use an extensive-form description of a game, there is another way

that player i could randomize. Rather than randomizing over the entailed

set of pure strategies in Si, the player could randomize separably over the

possible actions at each of the player’s information sets H . This way of

randomizing actions at each information set is termed a behavior strate-

gy. While the concepts of mixed strategy and behavior strategy are very

closely related in the context of randomization, they have very different

implications.

Formally, for each information set h ∈ H , define Λ(A(h)) as the proba-

bility distribution space on action set A(h) on information set h. For each



288 CHAPTER 6. NON-COOPERATIVE GAME THEORY

player i ∈ N , the choices of probability distributions in all information set-

s constitute a behavior strategy, and the behavior strategies of all players

constitute a behavior strategy profile σ = (σh)h∈H , where σh represents the

behavior strategy of ι(h) on information set h. Starting from a behavior s-

trategy, we can define a mixed strategy for player i (i.e., σi = Πh∈H:ι(h)=iσh).

All action plans over information sets belonging to player i constitute a

mixed strategy for player i.

Thus, while a mixed strategy assigns a probability distribution over all

pure strategies (actions), a behavior strategy assigns a probability distribu-

tion over actions at each information set h. However, for games of perfect

recall which we only deal with in this chapter, the two types of randomization are

equivalent (Kuhn, 1953; see Exercise 6.27).

If all players choose mixed strategies, the expected payoff profile (utili-

ty) of player i is

Eσui(s) =
∑
s∈S

[σ1(s1)σ2(s2) . . . σn(sn)]ui(s) (6.2.1)

when S is finite

=
∫
ui(σ(s))dσ(s) (6.2.2)

when S is not finite,

that is, utility from strategy s, times the joint probability of the occurrence

of s, summed (integrated) over all s ∈ S.

In order to have an intuitive understanding how to get the players’ ex-

pected payoff profiles, consider n = 2 and the strategy space is finite. Then

the expected payoff profile of player 1 is given by

Eu1(s) =
∑n1
l=l
∑n2
k=1 σ1(sl1)σ2(sk2)u1(sl1, sk2)) (6.2.3)

= σ1(s1)′U1σ2(s2),
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where the payoff profile matrix of player 1 is

U1 =


u1(s1

1, s
1
2) u1(s1

1, s
2
2) · · · u1(s1

1, s
n2
2 )

u1(s2
1, s

1
2) u1(s2

1, s
2
2) · · · u1(s2

1, s
n2
2 )

· · · · · · · · · · · ·
u1(sn1

1 , s1
2) u1(sn1

1 , s2
2) · · · u1(sn1

1 , sn2
2 )

 .

(6.2.3) can be conveniently used to compute the expected payoff profiles

and solve equilibrium strategies of players.

Under different situations, non-cooperative games can be divided in-

to four basic types based on static games and dynamic games of complete

and incomplete information. In economics and game theory, complete in-

formation is an economic situation or game in which knowledge about

other individuals is available to all others (i.e., the players’ characteristics

such as payoff profiles, strategy space and “types”of players are com-

mon knowledge). Inversely, in a game of incomplete information, players

do not possess full information about their opponents. Also, if the strategy

space of a game has a finite number of strategy profiles, it is called the finite

game. The repeated game is a special type of dynamic game. As this type

of game exhibits a special structure, we will discuss it separately in the next

chapter.

6.3 Static Games with Complete Information

Static games of complete information are the simplest type of game, in

which knowledge about other individuals is available to all others and each

player only makes one decision. In this type of game, the action set and the

strategic set of every player are the same.

6.3.1 Dominant and Dominated Strategies

Individuals are rational in playing a game, which implies that individuals

will attempt to avoid unfavorable choices. Therefore, prior to discussing

the interactions of players, we first introduce two concepts of strategies—

dominant and dominated strategies, which indicate how a player can cir-
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cumvent adverse consequences. The dominant strategy is the strongest

solution concept of describing self-interested behavior, which means the s-

trategy chosen by a player is optimal, regardless of the choices of others.

An axiom in game theory is that players will use a dominant strategy as

long as it exists.

Example 6.3.1 (Prisoner’s Dilemma) Two prisoners have been accused of

collaborating in a crime. They are in separate jail cells and cannot commu-

nicate with each other. Each has been asked to confess, and are subjected to

a policy of being“lenient to those who confess their crimes and severe to

those who refuse to”. If both prisoners choose to deny, the prosecution’s

case will be difficult to make, and then they will be assigned a lesser charge

in the insufficiency of evidence. In this case, both will receive 2 years in jail.

If only one of them confesses, then the confessor receives lighter sentence

and the other one will be punished severely. In this situation, the confessor

will receive 1 year in jail, and the other one will go to jail for 8 years. If

both confess about the crimes that they committed, and the criminal act-

s are conclusive, then both will be assigned heavier charges. In this case,

both of them will receive 4 years in jail. The participant’s utility levels for t

years of imprisonment is −t. According to the normal-form representation

of games, Table 6.4 describes the interaction between the two suspects.

Prisoner 2
Confess Deny

Prisoner 1 Confess −4,−4 −1,−8
Deny −8,−1 −2,−2

Table 6.4: The Prisoner’s Dilemma.

At first glance, both players should choose to deny since collective ra-

tionality can make both players better. However, the individual rational as-

sumption implies that one only pursues one’s own utility maximization. It

is not difficult to see that“Confess”is always better than“Deny”because

if the other player chooses“Deny”, your choice of“Confess”will result

in a payoff profile of −1, greater than −2, which is the payoff profile if you

alternatively choose“Deny”; if the other player chooses“Confess”, y-
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our choice of“Confess”will result in a payoff profile of −4, greater than

−8, which is the payoff profile if you alternatively choose “Deny”. In

this way, regardless of what the opponent chooses, choosing“Confess”is

always in the best interest of a player. This type of strategy is called the

dominant strategy. For these two prisoners, however, it is better for them

to choose“Deny”together. This kind of collective irrationality resulting

from individual rationality is known in economics as the Prisoner’s Dilem-

ma, and sometimes is also known as the Prisoner’s Paradox.

Definition 6.3.1 (Strict Dominant Strategy) A strategy si ∈ Si is a strictly

dominant strategy for player i in game ΓN = [N, {Si}, {ui(.)}] if for all si′ ̸=
si, we have

ui(si, s−i) > ui(si′, s−i)

for all s−i ∈ S−i , S1 × · · · × Si−1 × Si+1 × · · · × Sn.

Another concept associated with this concept is termed the dominated

strategy.

Definition 6.3.2 (Strict Dominated Strategy) A strategy si ∈ Si is a strictly

dominated strategy for player i in game ΓN = [N, {Si}, {ui(.)}] if there is

another strategy si′ ̸= si, such that for all s−i ∈ S−i,

ui(s′
i, s−i) > ui(si, s−i).

In this case, we say that strategy s′
i strictly dominates strategy si.

With this definition, a strategy si ∈ Si is a strictly dominant strategy for

player i in game ΓN = [N, {Si}, {ui(.)}] if and only if it strictly dominates

every other strategy in Si.

The following is a weak version of a dominant strategy.

Definition 6.3.3 (Weak Dominant Strategy) A strategy si ∈ Si is a weakly

dominant strategy in game ΓN = [N, {Si}, {ui(.)}] if it weakly dominates

every other strategy in Si, i.e., for every si′ ̸= si,

ui(si, s−i) = ui(si′, s−i)
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for all s−i ∈ S−i with strict inequality for some s−i.

Similarly, we have

Definition 6.3.4 (Weak Dominated Strategy) A strategy si ∈ Si is weakly

dominated in game ΓN = [N, {Si}, {ui(.)}] if there is another pure strategy

si
′ ̸= si, such that for all s−i ∈ S−i,

ui(s′
i, s−i) = ui(si, s−i)

with strict inequality for some s−i. In this case, we say that strategy s′
i

weakly dominates strategy si.

If every player has a strictly dominant strategy, then we call the profile

of all players’ strictly dominant strategies a strictly dominant strategy e-

quilibrium. If every player has a weakly dominant strategy, then we call

the profile of all players’ weakly dominant strategies a dominant strategy

equilibrium. Formally, we have

Definition 6.3.5 (Strict Dominant Strategy Equilibrium) A strategy profile

(s1, s2, . . . , sn) is a strictly dominant strategy equilibrium of ΓN = [N, {Si}, {ui(.)}]
if for all i，si ∈ Si is a strictly dominant strategy.

Definition 6.3.6 (Dominant Strategy Equilibrium) A strategy profile (s1, s2, . . . , sn)
is a dominant strategy equilibrium of ΓN = [N, {Si}, {ui(.)}] if for all i，si ∈
Si is a weakly dominant strategy.

Since the players are (individually) rational, whenever there is a strictly

dominant strategy for player i in a game, player iwill choose it. In the pris-

oner’s dilemma example above, since“Confess”is a strictly dominant s-

trategy for both players, these two prisoners will choose the“Confess”strategy

in the rational interaction. Therefore, the strategy profile (“Confess”,

“Confess”) is a strictly dominant strategy equilibrium.

If a player has a strictly dominant strategy in a game, she must have on-

ly one strictly dominant strategy, and all other strategies are strictly dom-

inated strategies. As long as the player is rational, she will not choose

strictly dominated strategies. Therefore, when considering players’ op-

timal choice, we can narrow their action sets by the iterated elimination
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of strictly dominated strategies (IESDS), which is exactly what its name

suggests: we iteratively eliminate strictly dominated strategies, yielding at

each stage a smaller subset of surviving strategies. IESDS is a common

technique for solving games that involves iterated elimination of dominat-

ed strategies. We call a strategy profile s = (s1, s2, . . . , sn) that survives the

process of IESDS an iterated-elimination equilibrium.

Like the concept of strictly dominant strategy equilibrium, the iterated-

elimination equilibrium starts with the premise of rationality. In addition

to rationality, the process of IESDS builds on the assumption of common

knowledge of rationality: The first step of iterated elimination is a conse-

quence of the rationality of a player who has a dominated strategy; the sec-

ond stage follows because players know that players are rational; the third

stage follows because players know that players know that they are ratio-

nal,and this ends in a unique prediction. An attractive feature of iterated-

elimination equilibrium is that it always exists. This comes, however, at the

cost of uniqueness, and in fact there may be too many strategy profiles that

survive the process of IESDS (see Example6.3.6).

Example 6.3.2 Consider the game described at the top of Table 6.5. Play-

er 1 has three strategies {T,M,B}, and player 2 also has three strategies

{L,C,R}.

In the initial game, since M is a strictly dominated strategy for player 1,

it is impossible for player 1 to choose strategy M , and the game after elim-

inating the strictly dominated strategy is described in Table 6.5(b). In this

game, C is a strictly dominated strategy for player 2, and the game after

eliminating the strictly dominated strategy is described in Table 6.5(c). In

this game, T is a strictly dominated strategy for player 1, and the game af-

ter eliminating the strictly dominated strategy is described in Table 6.5(d).

In this game, L is a strictly dominated strategy for player 2. In the game af-

ter eliminating the strictly dominated strategy, as described in Table 6.5(e),

only one strategy profile remains, which is the iterated-elimination equilib-

rium equilibrium of the game.

Example 6.3.3 (Father Objecting Daughter’s Marriage Game) Imagine a girl

in a rich family falling in love with a poor boy. The father does not think it
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Player 2
L C R

T 1, 1 2, 0 1, 1
Player 1 M 0, 0 0, 1 0, 0

B 2, 1 1, 0 2, 2

Player 2
L C R

T 1, 1 2, 0 1, 1
Player 1 B 2, 1 1, 0 2, 2

Player 2
L R

Player 1 T 1, 1 1, 1
B 2, 1 2, 2

Player 2
L R

Player 1 B 2, 1 2, 2

Player 2
R

Player 1 B 2, 2

Table 6.5: Elimination of Strictly Dominated Strategy.

is a good match. He threatens his daughter, and says, “If you marry the

poor boy, I will sever family ties with you”. A normal-form game can be

employed to describe the game between the father and the daughter. Here,

the daughter has two strategies: “Give In”and “Don’t Give In”; the

father also has two strategies: “Agree”and “Disagree”. If the daugh-

ter chooses “Give In”and the father chooses “Agree”, then the father

gets the best of both worlds (neither losing his daughter nor accepting the

marriage), and the daughter loses her boyfriend. If the daughter choos-

es “Give In”and the father chooses “Disagree”, then the father loses

his daughter and the daughter loses everything. If the daughter chooses

“Don’t Give In”and the father chooses“Agree”, then the father has to

accept the poor boy, and the daughter gets the best of both worlds (neither
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Father: Daughter
Given In Don’t Give In

Agree the best of both, losing boyfriend enduring poor boy, the best of both
Disagree losing daughter, losing everything losing daughter, losing father

Table 6.6: Father Objecting to Daughter’s Marriage Game.

losing her boyfriend nor her father). If the daughter chooses“Don’t Give

In”and the father chooses“Disagree”, then the father loses his daughter,

and the daughter loses her father.

Therefore, the game matrix shown in Table 6.6 can be obtained. What is

the equilibrium outcome? First, it can be seen that for the daughter,“Give

In”is a strictly dominated strategy. Irrespective of what strategy the father

chooses,“Don’t Give In”is a strictly dominant strategy for the daughter.

If the daughter chooses“Don’t Give In”, then the father’s best response is

to choose“Agree”, because accepting the poor boy is always better than

losing his daughter! Then, the unique iterated-elimination equilibrium is

(“Agree”,“Don’t Give In”).

This example illustrates why in reality most fathers’ efforts to resist

their daughters’ marriage end in failure. The reason for this is that the

father’s threat of cutting off family ties is not credible. For the daughter,

“Don’t Give In”is a dominant strategy: losing her father is better than

losing everything (losing her father and her boyfriend), and the best of

both worlds is better than losing her boyfriend. Indeed, a large number

of actual phenomena in reality show that once the daughter and the poor

boy go home with a grandson, the father often forgives his daughter. This

further shows that“Don’t Give In”is the optimal strategy for the daugh-

ter whose father opposes her marriage. The ideas shown in this example

can also be utilized to study whether the threat of a price war is credible.

We will return to the discussion of credibility issues later.

Example 6.3.4 (Boxed Pigs Game) The Boxed Pigs Game is also called the

Rational Pigs Game. Imagine that two clever pigs, one Big Pig and one

Piglet, live together in a pigpen. There is a lever on one side of the pigpen

and a device that can provide food to the pigs on the other side. The device
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produces food only if the pigs press the lever. Pushing the lever by one

pig yields 10 units of food, the other pig will get the chance to run to the

food earlier. Pushing and coming back“costs”either pig 2 units of food.

Because the Big Pig is bigger than the Piglet, it eats faster too. Each pig can

choose“Push”or“Not Push”. There are four possible outcomes:

Piglet
Push Not Push

Big Pig Push 5, 1 3, 5
Not Push 9, -1 0, 0

Table 6.7: Boxed Pig Game.

(1) Both pigs choose to “Not Push”. Then, there is no food,

and the payoff profile is 0 for each pig.

(2) The Big Pig chooses to “Push”, and the Piglet chooses to

“Not Push”. The Big Pig, delayed by the action of push-

ing, eats quickly and consumes five units of food. The Piglet,

not delayed, eats slowly and also consumes five units of

food. After deducting the energy cost, the Big Pig gains 3
units of food, and the Piglet who does not pay any physical

cost gets 5 units of food as payoff profile.

(3) The Piglet chooses to “Push”, and the Big Pig chooses to

“Not Push”. When the Piglet arrives at the other end of

the pigpen, the Big Pig has already eaten nine units of food.

The Piglet can only eat 1 unit of food, but it has to pay 2 units

of energy cost. Therefore, the payoff profile of the Piglet is

−1.

(4) Both pigs choose to“Push”. In this case, the two pigs come

back to eat at the same time. The Big Pig consumes 7 units

of food, while the Piglet can only eat 3 units of food. After

deducting their costs, the Big Pig and the Piglet gain 5 units

and 1 unit of food, respectively.

Therefore, we have the payoff profile matrix shown in Table 6.7 for this
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Boxed Pigs Game.

In this example, for the Piglet,“Not Push”is a strictly dominant strat-

egy, and“Push”is a strictly dominated strategy. In other words, whether

or not the Big Pig pushes the lever, it is better for the Piglet not to push. On

the other hand, the Piglet is known not to push the lever, and thus pushing

the lever is better for the Big Pig, and thus the unique iterated-elimination

equilibrium is (“Push”,“Not Push”). The basis for the existence of the

Boxed Pig’s Game is that both sides cannot escape the coexistence situa-

tion, and that there must be a party that has to pay a cost in exchange for

the interests of both parties.

The Boxed Pigs Game has wide implications. For example, if a new

product has just entered the market and its performance and function are

not well known, and if there are other firms with more production capacity

and stronger marketing capability, then it is not necessary for small firms

to invest too much in advertising for product promotion. In this case, small

firms need simply to wait for large firms’ advertising. As another example,

if the internal incentive mechanism of an enterprise is not set properly, a

situation will occur in which big pigs do everything while piglets do noth-

ing. Indeed, this kind of situation is ubiquitous in reality: most common

tasks or public services are completed by a few people and other people

just enjoy the outcomes. There are also many examples of the Boxed Pigs

Game in society. For example: the people are big pigs and the government

is piglets; private enterprises are big pigs and state-owned enterprises are

piglets; reformers are big pigs and status-quo advocates are piglets; and

innovators are big pigs and followers are piglets.

The above Boxed Pigs Game shows that: whoever pushes the lever

will benefit the whole society, but more work does not necessarily lead to

more rewards. However, as a rational person, no one is willing to bene-

fit others all the time. In the long run, no one wants to work hard. This

phenomenon exactly happened before China’s reform and opening up. In

the era of planned economy with limited resources, everyone, no matter a

“big pig”or a “piglet”, did not push the lever but counted on others

to create a better communist society for themselves. Therefore, we need to

redesign or reform the existing institutions or the rules of the game.
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The story of the Boxed Pigs Game informs the weak participant (Piglet)

in a competition that waiting is the Piglet’s best strategy. However, as far

as the society is concerned, since piglets do not participate in competitions

and are free riders, the allocation of social resources is not optimal. Such

result is, in fact, due to the inappropriate design of the institution or the

rules of the game. Whether free-rider problems occur or not depends on

the design of the incentive mechanism, otherwise desired outcomes cannot

be achieved. Different institutional arrangements and different rules can

lead to very dissimilar behaviors of economic agents, and further different

choices and outcomes. For instance, the following variations of the Boxed

Pigs Game give us very different equilibrium outcomes.

Reduction plan: Feed only half (5 units) of the original quantity

(shortage economy). In this situation, if the Piglet pushes the

lever, the Big Pig will eat all 5 units of food. If the Big Pig

pushes the lever, the Piglet eats 4 units of food, the Big Pig

eats only one unit of food and then has the payoff profile

-1 after deducting the energy cost. If both pigs choose to

“Push”and come back together, the Big Pig eats 3 units

of food and the Piglet eats 2 units of food; after deducting

their costs, their payoff profiles are (1, 0). Then, we have the

payoff profile matrix depicted by Table 6.8.

Piglet
Push Not Push

Big Pig Push 1, 0 -1, 4
Not Push 5, -2 0, 0

Table 6.8: Food Reduction Plan for the Boxed Pigs Game.

Again,“Not Push”is a strictly dominant strategy for the Piglet.

Given the Piglet’s dominant strategy, the Big Pig’s best re-

sponse is“Not Push”. Then the unique iterated-elimination

equilibrium is (“Not Push”,“Not Push”). Whoever push-

es the lever obtains negative payoff profile when the other

does not, and then no one has the incentive to do so. As a
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result, no one pushes the lever.

Increment plan: Feed triple of the original quantity (abundant

economy). Suppose that the satiation points of consuming

food for the Big Pig and Piglet are 15 and 10 units, respec-

tively. As a result, no one can eat all units of food, leaving

enough food for the other. In this situation, we have the

following payoff profile matrix: We will see that this game

Piglet
Push Not Push

Big Pig Push 15, 10 15, 10
Not Push 15, 10 0, 0

Table 6.9: Food Increment Plan for the Boxed Pigs Game.

has three Nash equilibria: (“Push”,“Push”); (“Push”,

“Not Push”); (“Not Push”,“Push”). Whoever wants

to eat will push the lever, since the other cannot eat all the

food. The pigs here are similar to people living in a plentiful

commonwealth society with abundant resources or some-

what like some European countries with very high levels of

social welfare, so that their competition pressure may not be

very intense compared to their counterparts in the United

States.

Reduction plus displacement plan: Feed only half of the origi-

nal quantity, and move the lever next to the device. Suppose

that a pig who pushes the lever first has a small first-mover

advantage, denoted by ϵ > 0, so that the payoff profile ma-

trix is depicted in Table 6.10.

The unique strictly dominant strategy equilibrium is (“Push”,

“Push”). As a result, both the Big Pig and the Piglet des-

perately rush to push the lever, as they expect that more

work brings more returns. Regardless of whether they are

entrepreneurs or workers, as long as there are limited re-

turns and scarce food in competition, they have to adapt to
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Piglet
Push Not Push

Big Pig Push 3, 2 3 + ϵ, 2 − ϵ
Not Push 3 − ϵ, 2 + ϵ 0, 0

Table 6.10: Food Reduction Plus Displacement Plan for the Boxed Pigs
Game.

the law of the jungle and get involved in the “vicious” com-

petition. As such, one has to innovate to get rid of the situ-

ation. Without innovation, it is not possible to survive. As

mentioned in Chapter 1, there is a repeated cycle of“competition

→ innovation → monopoly profit → competition”, in which

market competition tends to achieve an equilibrium, but in-

novation disrupts it. The market continually goes through

such cycles to inspire enterprises to pursue innovation. Through

this dynamic process, the market maintains its vitality, and

greater economic development and social welfare are ob-

tained.

The differences in the above plans illustrate the crucial importance of

proper institutional design. Indeed, as China’s reformer Deng Xiaoping

pointed out,“a good institution can prevent bad people from acting arbitrarily,

while a bad institution may make good people unable to do good enough, or even

go to the opposite side.”

Since human nature, especially the nature of self-interest, can hardly be

altered, we can only adapt to human nature through institutional design,

which requires the design of rules to be forward-looking, adaptable and

effective. Therefore, we need to redesign or reform the rules of the game

carefully. The Boxed Pigs Game profoundly reveals that if an institution

is not well designed, it will damage individuals’ incentives and incur free-

rider problems everywhere in economic and social life. We will return to

the solution of free rider in Chapter 18 on the theory of mechanism design,

in which game theory displays a critical role.
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To generally and more rigorously define the strictly dominated strategy,

we should also take mixed strategies into account.

Definition 6.3.7 A mixed strategy σi is called the strictly dominated mixed

strategy of player i in game ΓN = [N, {∆Si}, {ui(.)}], where ∆Si is player

i’s mixed strategy space (i.e., all possible probability distributions in pure

strategy space Si), if there exists player i’s another mixed strategy σi′ ̸= σi,

such that for any σ−i ∈ ∆S−i , ∆S1 × · · · × ∆Si−1 × ∆Si+1 × · · · × ∆Sn,

ui(σi,σ−i) < ui(σi′,σ−i).

Can a pure strategy be strictly dominated by a mixed strategy, even if

it is not strictly dominated by any pure strategy? Can a mixed strategy be

strictly dominated, even if no player has a strictly dominated strategy? The

answers are in the affirmative.

player 2
L R

player 1 T 2, 0 −1, 0
M 0, 0 0, 0
B −1, 0 2, 0

(a)

player 2
L R

player 1 T 1, 3 −2, 0
M −2, 0 1, 3
B 0, 1 0, 1

(b)

Table 6.11: Mixed Dominated Strategies.

Example 6.3.5 Consider the two games described in Table 6.12. In these

two games, player 1 has three strategies {T,M,B}, and player 2 has two

strategies {L,R}. In Table (a), neither player has a strictly dominated pure

strategy. However, consider a mixed strategy, such as σ1, in which player

1 has the same probability 1/2 of choosing T and B. Then, M is a strictly

dominated strategy for player 1.

In Table (b), neither player has a strictly dominated strategy. However,
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consider a mixed strategy, say σ1
′, in which player 1 has the same probabili-

ty 1/2 of choosing T and M . Then, regardless of what player 2 chooses, the

utility that σ1
′ brings to player 1 is always lower than that brought by pure

strategy B. In this way, mixed strategy σ1
′ is a strictly dominated (mixed)

strategy.

In fact, since

ui(σi,σ−i) − ui(σ′
i,σ−i) =

∑
s−i∈S−i

∏
j ̸=i

σj(sj)

 [ui(σi, s−i) − ui(σ′
i, s−i)],

[ui(σi,σ−i)−ui(σ′
i,σ−i)] < 0 if and only if [ui(σi, s−i)−ui(σ′

i, s−i)] < 0. We

then have the following proposition.

Proposition 6.3.1 A pure strategy si of player i is strictly dominated in game

ΓN = [N, {∆Si}, {ui(.)}] if and only if there exists another strategy σi′, such

that for all s−i ∈ S−i,

ui(si, s−i) < ui(σ′
i, s−i)].

6.3.2 Best Response and Rationalizability

We begin with the concept of best response.

Definition 6.3.8 (Best Response) Given a game ΓN = [N, {∆Si}, {ui(·)}],
a mixed strategy σi is a best response of player i to other players’ mixed

strategy profile σ−i, if for any σi′ ∈ ∆(Si), we have

ui(σi,σ−i) = ui(σi′,σ−i).

A strategy σi is player i’s best response to σ−i, if it is an optimal choice

when the player conjectures that other players will play σ−i.

To define rationalizable strategies, we first need define the notions of

belief and never-best-response strategy. Eliminating strictly dominated s-

trategies is actually a rational choice of a player. The rational choice of play-

er i, however, is based on the player’s belief in the choices of other players.

In a static game, there is a logical consistency between rationalizability on
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players’ strategic choices and the elimination of strictly dominated strate-

gies.

Definition 6.3.9 (Belief) Give a game ΓN = [N, {∆S−i}, {ui(·)}], a belief of

player i about the strategies of other players is a probability distribution

µi ∈ ∆(S−i).

Definition 6.3.10 (Never-Best-Response) Give a game ΓN = [N, {∆Si}, {ui(·)}],
a pure strategy s′

i ∈ Si of player i is said to be a never-best-response if

there is no belief µi ∈ ∆(S−i) for which s′
i is a best response, i.e., for any

µi ∈ ∆(S−i), there exists σi ∈ ∆(Si) such that

∑
s−i∈S−i

µi(s−i)ui(s′
i, s−i) <

∑
s−i∈S−i

µi(s−i)ui(σi, s−i).

In other words, s′
i is not optimal against any belief µi(s−i) about other play-

ers’ strategies.

Obviously, if a pure strategy s′
i ∈ Si is a strictly dominated strategy,

then the strategy is a never-best-response. Conversely, for a finite game in

which its strategy space has a finite number of strategy profiles, if a pure

strategy is a never-best-response of player i, then this strategy must also be

a strictly dominated strategy (cf. Osborne and Rubinstein (1994)). Thus in

finite games, iterated elimination of never-best-response strategies yields

the same outcomes as iterated elimination of strictly dominated strategies

Now we are able to define the rationalizability of strategy.

Definition 6.3.11 For game ΓN = [N, {∆Si}, {ui(·)}], a pure strategy si ∈
Si is rationalizable, if it survives the iterated elimination of those strategies

that are never-best-response.

The following facts are clear: (1) A never-best-response strategy is not

rationalizable by definition. Thus, if player i’s strategy si is a strictly dom-

inated strategy, it is not rationalizable. (2) Although strategy si is a best

response for player i under beliefs µi, but as long as the support of all such

beliefs contains strictly dominated strategies of other players (i.e., for all

beliefs µi(·) > 0 under which si is a best response, there is some j ∈ N\{i}
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such that sj is player j’s strictly dominated strategy), then si is not rational-

izable. (3) If strategy si is the best response for player i under beliefs µi, but

the support of all such beliefs contains strategies that are not rationalizable

for other players, then strategy ai is not rationalizable.

As indicated above, for a finite game, the set of strategy profiles that

survive the process of iterated elimination of never-best-response strategies

coincides with the set of strategy profiles that survive the process of IESDS.

Then, we have the following proposition.

Proposition 6.3.2 For a finite game ΓN = [N, {∆Si}, {ui(·)}], if SIE = ×j∈NS
IE
j

is the set of strategy profiles that survive the process of IESDS, then for each player

i ∈ N , SIEi is a set of rationalizable strategies for player i.

Example 6.3.6 (Continuation of Example 6.3.5) For the game depicted in

Table 6.12 (a) in Example 6.3.5, we know that M is a strictly dominated

strategy for player 1. Eliminating strategy M from the game, we have the

following payoff profile matrix:

player 2
L R

player 1 T 2, 0 −1, 0
B −1, 0 2, 0

Table 6.12: The rationalizable strategies for two players.

There are no remaining strictly dominated strategies in the payoff pro-

file matrix. Then the set of rationalizable strategies for player 1 is SIE1 =
{T,B}, and the set of rationalizable strategies for player 2 is SIE2 = {L,R}.

Besides rationalizability of strategies, one can use the notion of best re-

sponse to identify the Nash equilibria of a game, as discussed below.

6.3.3 Nash Equilibrium

Rationalizability can assist us to restrict individuals’ choices in interactions.

However, it is a weaker solution concept of equilibrium. In many games,

there are too many rationalizable strategies such as those in Example 6.3.6.
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We then need to refine the set of rationalizable strategies, and make a

stronger assumption: The players are not only rational but also their ex-

pectations on others are mutually known. Here, we impose an additional

restriction on players’ beliefs — the rational expectation constraint, and the

associated equilibrium is called Nash equilibrium. Then at a Nash equilib-

rium, each player will no longer adjust the player’s own strategy given the

player’s rational expectation on the opponents’s strategy profile. Thus, an

important feature of Nash equilibrium is the consistency between belief and choice.

In other words, the choice based on belief is rational (optimal), and the be-

lief supporting this choice is correct (perfect foresight on the equilibrium

strategy profile of the opponents). Thus, Nash equilibrium has the charac-

teristics of predictive self enforcement. If everyone thinks this result will

happen, it will really happen.

Now, we formally define the notion of Nash equilibrium.

Definition 6.3.12 (Nash Equilibrium) Given a game ΓN = [N, {∆Si}, {ui(·)}],
strategy profile (σ∗

i ,σ
∗
−i)i∈N is a Nash equilibrium if for every i ∈ N , we have

ui(σ∗
i ,σ

∗
−i) = ui(σ′

i,σ
∗
−i)

for all σ′
i ∈ ∆Si.

That is, once a Nash equilibrium is reached, no participant has an incen-

tive to deviate from the Nash equilibrium unilaterally (self enforcement).

If strategic choices are limited to pure strategies, there will be a corre-

sponding definition for pure strategy Nash equilibrium.

Definition 6.3.13 For game ΓN = [N, {Si}, {ui(·)}], strategy profile (s∗
i , s

∗
−i)i∈N

is a pure strategy Nash equilibrium if for every i ∈ N , we have

ui(s∗
i , s

∗
−i) = ui(s′

i, s
∗
−i)

for all s′
i ∈ Si.

So far, we have introduced the solution concepts of strictly dominan-

t strategy equilibrium, dominant strategy equilibrium, Nash equilibrium,
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iterated-elimination equilibrium, and rationalizable strategy profile. It is

clear that a (strictly) dominant strategy equilibrium is a Nash equilibrium

that in turn implies that it is an iterated-elimination equilibrium and a ra-

tionalizable strategy profile, but the converse may not be true. Their rela-

tionship is in turn extended, i.e., the concept of strictly dominant strategy

equilibrium is the strongest, and the concept of rationalizable strategy is

the weakest. Of course, for a finite game, iterated-elimination equilibrium

and rationalizable strategy profile are the same. Moreover, if the set of ra-

tionalizable strategy profiles or the set of iterated-elimination equilibria is

singleton, it must be a Nash equilibrium.

Next we discuss the relationship between best response and Nash equi-

librium. It is clear that, for the game ΓN = [N, {∆Si}, {ui(·)}], a strategy

profile (σ∗
i ,σ

∗
−i) is a Nash equilibrium if and only if for every i ∈ N , σ∗

i is

a best response of player i to other players’ strategy profile σ∗
−i. Indeed,

Nash equilibrium means that given opponents’ strategic choices, no one

will choose to unilaterally deviate from the equilibrium choice and thus it

is a best response strategy profile of all players. Conversely, if σ∗ is a best

response strategy profile, it is clearly a Nash equilibrium. Thus, when a

strategy profile is a Nash equilibrium, it is an element in the intersection of

the sets of all players’ best responses.

Thus, we have the following proposition.

Proposition 6.3.3 Given a game ΓN = [N, {∆Si}, {ui(·)}], the set of Nash e-

quilibria coincides with the intersections of the sets of all players’ best responses.

Although this proposition simple, it is very useful. It can be used not

only to prove the existence of Nash equilibrium (as we will do it in the last

section of this chapter), but also to find Nash equilibria through finding the

intersections of the sets of best responses of all players. It also provides a

simple method to find Nash equilibrium for two-person game.

Example 6.3.7 There are two players 1 and 2, and their game matrix is

shown in Table 6.13.

We can find the Nash equilibrium of this game conveniently and quick-

ly by using the conclusion that the set of Nash equilibria coincides with the

set of intersections of all players’ best response sets. Consider the strategy
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player 2
L C R

T 5, 3 0, 4 3, 5
player 1 M 4, 0 5, 5 4, 0

B 3, 5 0, 4 5, 3

Table 6.13: Example of Nash Equilibrium.

of player 1, and for each strategy of player 2, find out the best responses

of player 1. Draw a horizontal line under its corresponding payoff pro-

file. Similarly, find out the best responses of player 2. The strategy profile

with both horizontal lines is (M , C), and such a strategy profile is unique.

Therefore, the strategy profile (M , C) is the unique pure strategy Nash e-

quilibrium, and its corresponding Nash equilibrium payoff profile is (5,5).

Example 6.3.8 (Chicken Game) Consider the following Chicken Game. There

are two equal-strength chickens. Each chicken has two strategies:“Continue

to Fight”and“Retreat”. If both chickens choose“Continue to Fight”,

the outcome is a lose-lose, and the payoff profile of each player is −1. If

both chickens choose “Retreat”, however, there is neither victory nor

failure, and the payoff profile of each player is 0. If one chicken chooses

“Continue to Fight”and the other chicken chooses“Retreat”, the pay-

off profile of the winning chicken is 1 and the payoff profile of the retreating

chicken is 0. In this way, the payoff profile matrix is:

Chicken B
Continue To Fight Retreat

Chicken A Continue To Fight -1, -1 1, 0
Retreat 0, 1 0, 0

Table 6.14: Chicken Game.

It can be seen that both (A Retreats, B Continues to Fight) and (A Con-

tinues to Fight, B Retreats) are pure strategy Nash equilibria.

When two chickens are fighting, it is a dilemma to make a choice be-

tween advancing and retreating, as the Nash equilibrium has given a best

strategy of one winning and the other failing. In many contests, exerting
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the utmost strength does not ensure success. This is also the logic of the fa-

mous guerrilla tactic of Mao Zedong’s“The enemy advances, we retreat;

the enemy retreats, we pursue”. General Matthew Bunker Ridgway also

used the same strategy when he found out that each Chinese soldier could

only carry food for seven days at most without logistics during the Korean

War.

This example offers some pertinent implications for two equally pow-

erful firms to get along and compete with each other. Two powerful firms

already in the market are likely to consciously follow the Nash equilibri-

um. When one side takes the offensive, the other side temporarily retreats.

Although one side may be temporarily loss, this is far superior to a lose-

lose outcome. However, to maintain this situation such as the Battle of the

Sexes game to be discussed below, it should be ensured that the next time

the earlier damaged party takes the offensive, and the other side will also

retreat.

The following equivalent definition of Nash equilibrium is based on the

optimal decision-making of subjective beliefs:

Definition 6.3.14 For game ΓN = [N, {∆Si}, {ui(·)}], a Nash equilibrium

consists of a pair of subjective belief system (assessment) µ∗ = (µ∗
1, µ

∗
2, . . . , µ

∗
n)

with µ∗
i defined on Sj , j ̸= i, and strategy profile (σ∗

i ,σ
∗
−i)i∈N , such that for

any σi′ ∈ ∆(Si), we have

Eui(σ∗
i |µ∗

i ) = Eui(σ′
i|µ∗

i );

σ∗
j = µ∗

i |Sj ,

where Eui(σ∗
i |µ∗

i ) =
∫
si∈Si,s−i∈S−i

u(si, s−i)d(σi(si))d(µi(s−i)) denotes the

expected utility of player i choosing σi under belief µi, and µ∗
i |Sj represents

the (marginal) probability distribution of belief µ∗
i on Sj . Note that if every

player’s mixed strategy is independent, then µ∗
i = ×j∈N\{i}µ

∗
i |Sj .

This definition on Nash equilibrium exactly describes the consistency

between belief and choice mentioned above. The choice based on belief is

rational (payoff profile maximization), and the belief supporting this choice

is correct (perfect foresight on the equilibrium strategy profile of the oppo-
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nents).

For some games, such as the Rock-Paper-Scissors game, there is no pure

strategy Nash equilibrium, but there may exist a mixed strategy Nash e-

quilibrium. Then, can we have a more convenient way to solve the mixed

strategy Nash equilibrium? Of course, it can be always obtained by the s-

tandard method of maximizing the expected payoff profile (say, using the

first-order condition), but this method is a little bit involved. In fact, there

is a more straightforward way.

The following proposition shows that the indifference among strategies

played with a positive probability is a general feature of a mixed strategy

Nash equilibrium.

Proposition 6.3.4 Let Si+ ⊆ Si be the set of pure strategies that player i plays

with a positive probability under the mixed strategy profile σ = (σ1, σ2, · · · , σn).

Then the strategy profile σ = (σ1, σ2, · · · , σn) is a mixed strategy Nash equi-

librium of game ΓN = [N, {∆Si}, {ui(·)}] if and only if, for every i ∈ N , we

have:

(1) ui(si,σ−i) = ui(si′,σ−i) for all si, si′ ∈ Si
+;

(2) ui(si,σ−i) = ui(si′,σ−i) for all si ∈ Si
+, si

′ /∈ Si
+.

PROOF. Necessity: Suppose by way of contradiction that one of the condi-

tions (1) and (2) above is not satisfied. Then there exists si ∈ Si
+, si

′ ∈ Si,

such that ui(si′,σ−i) > ui(si,σ−i). If player i changes the chosen strat-

egy from si to si
′, the expected payoff profile of player i can be strictly

increased, which means that σi is not the best response of σ−i.

Sufficiency: Suppose that both conditions (1) and (2) above are satis-

fied, but σ = (σ1, σ2, · · · , σn) is not a Nash equilibrium. Then, there ex-

ists at least one player i and another strategy σi
′, such that ui(σi′,σ−i) >

ui(σi,σ−i). This means that at σi′, there is at least one pure strategy ŝi cho-

sen by player i with positive probability, and thus ui(ŝi,σ−i) > ui(σi,σ−i)
is established. Since ui(σi,σ−i) = ui(si,σ−i) for all si ∈ Si

+ by condition

(1), we have ui(ŝi,σ−i) > ui(si,σ−i). However, this contradicts at least one

of the conditions (1) and (2). 2
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Thus, given the mixed strategy Nash equilibrium profile of the oppo-

nent, the expected utility of any strategy for a player is the same, and there-

fore players have no incentive to change the probabilities of choosing these

strategies (i.e., no players will unilaterally change their mixed strategies at

equilibrium). This proposition is very helpful in finding mixed strategy e-

quilibria, and thus it provides a simple method to solve for mixed strategy

Nash equilibrium.

Player B
Rock Paper Scissors

Rock 5, 5 0, 10 10, 0
Player A Paper 10, 0 5, 5 0, 10

Scissors 0, 10 10, 0 5, 5

Table 6.15: Rock-Paper-Scissors Game.

Example 6.3.9 (Rock-Paper-Scissors Game continued) Consider Rock-Paper-

Scissors Game once again. Its payoff profile matrix is given by Table 6.15

Suppose that column’s mixed strategy assigns probability weight σr to

Rock, σp to Paper and (1 − σr − σp) to Scissors. Then, using (6.2.3) leads to


5 0 10
10 5 0
0 10 5




σr

σp

1 − σr − σp

 .

Then, row’s expected payoff profile from Rock against (σr, σp, 1 − σr − σp)
is

5σr + 0σp + 10(1 − σr − σp);

row’s expected payoff profile from Paper against (σr, σp, 1 − σr − σp) is

10σr + 5σp + 0(1 − σr − σp);

row’s expected payoff profile from Scissors against (σr, σp, 1 − σr − σp) is

0σr + 10σp + 5(1 − σr − σp).
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Setting these three expected payoff profiles equal to one another leads

to σr = σp = (1−σr−σp) = 1/3. By symmetry, this is also the column’s op-

timal mixed strategy. Thus, the mixed strategy Nash equilibrium is ({Rock

with probability 1/3, Paper with probability 1/3, Scissors with probability

1/3}) for both players.

In this example, for the mixed strategy Nash equilibrium, Si+ = Si is

established for all players.

Some games have both pure strategy Nash equilibrium and mixed s-

trategy Nash equilibrium.

Example 6.3.10 (Battle of the Sexes) The Battle of the Sexes is also a clas-

sical example analyzed in game theory. A man and a woman want a date

over the weekend, but they cannot agree over what to do. The man prefers

to watch a basketball game, whereas the woman wants to watch an opera.

The payoff profile matrix is given by Table 6.16.

Male
Opera Basketball

Female Opera 2, 1 0, 0
Basketball 0, 0 1, 2

Table 6.16: Battle of the Sexes.

In this game, there are two pure strategy Nash equilibria: (Opera, Oper-

a) and (Basketball, Basketball). Using the above method, we now show that

there is also a mixed strategy Nash equilibrium : ({Opera with probability

2/3, Basketball with probability 1/3}, {Opera with probability 1/3, Basket-

ball with probability 2/3}).

Given the man’s choice of the mixed strategy (σ1, 1 − σ1), the expected

payoff profile of the woman’s choice of opera is 2σ1 + 0(1 − σ1) and the

expected payoff profile of choosing basketball is 0σ1 + 1(1 − σ1). Equal-

izing them leads to σ1 = 1/3. Similarly, given the woman’s choice of the

mixed strategy (σ2, 1 − σ2), the expected payoff profile of the man’s choice

of opera is 1σ1 + 0(1 − σ1) and the expected payoff profile of choosing bas-

ketball is 0σ2 + 2(1 − σ2). Equalizing them leads to σ2 = 2/3. Thus, the

man chooses the mixed strategy {Opera with probability 1/3, Basketball
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with probability 2/3} and the woman chooses the mixed strategy {Opera

with probability 2/3, Basketball with probability 1/3} constitute a mixed

strategy Nash equilibrium.

In the above game and also the Chicken Game, there are two pure strat-

egy Nash equilibria and one mixed Nash equilibrium. A natural question

is: How many Nash equilibria are there? A partial answer is given by the

Oddness Theorem (Wilson 1971), which shows that the pattern holds not

just for 2 × 2 games, but for almost all n× n normal form games.

Theorem 6.3.1 (Oddness Theorem) Nearly all finite normal form games have

an odd number of Nash equilibria.

Thus, as a corollary, provided a game has an even number of pure strat-

egy Nash equilibria, then there must exist an odd number of mixed Nash

equilibria.

Does there necessarily exist a Nash equilibrium in a game? As we will

show in Section 6.7, the answer turns out to be“yes”under broad circum-

stances. Especially, for a normal-form game ΓN = [N, {Si}, {ui(·)}], if for

each player i ∈ N , Si is a nonempty compact convex subset in Euclidean

space, ui is continuous on S =
∏
i∈N Si and quasiconcave on Si, then there

exists a pure strategy Nash equilibrium in the game. Since each player’s

payoff profile function is linear in probability distributions on mixed strate-

gy space ∆Si, it is quasiconcave, and thus any game with compact strategy

space and continuous payoff profile functions has a mixed strategy Nash e-

quilibrium. As a corollary, we have the following proposition whose proof

will be given in Section 6.7.

Proposition 6.3.5 Every finite normal-form game ΓN = [N, {Si}, {ui(·)}] has a

mixed strategy Nash equilibrium.

6.3.4 Refinements of Nash Equilibrium

Although the solution concept of Nash equilibrium has significantly re-

duced the number of rationalizable strategies, there may still be multiple

or even finitely many Nash equilibria in a game. The non-uniqueness of
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Nash equilibrium makes it hard to accurately predict the outcome of an in-

teraction or in some sense, some of them result in undesirable Nash equilib-

rium outcomes that should be eliminated. As such, numerous approaches

to refining Nash equilibria are proposed.

Thomas Schelling (1960) put forward the concept of focal point, which

is a solution that people tend to choose by default in the absence of com-

munication (i.e., a tacit understanding is formed). The context in which the

players are located, such as culture, tradition, and practice, will constrain

individuals’ strategic choice in the interaction process. Indeed, as Schelling

point out,“people can often concert their intentions or expectations with

others if each knows that the other is trying to do the same”in a coopera-

tive situation, and then their actions will approach a focal point which has

some kind of prominence compared with the environment.

For example, in the Battle of the Sexes game, in order to woo the woman

(man), the man (woman) usually pays more attention to the woman (man)’s

feelings in their interactions. As such, their strategy profile is more likely

to be the Nash equilibrium (Opera, Opera). If the background of their deci-

sions is that they have watched the opera last time and they pay attention

to equity, then this time they will choose the Nash equilibrium (Basketball,

Basketball). In addition, in real life, people usually communicate in ad-

vance. In the case of the Battle of the Sexes, it is far-fetched to construe the

mixed strategy equilibrium as a strategic choice in interactions, because un-

der the mixed strategy equilibrium, both players’ expected payoff profiles

are 2/3, which are less than the payoff profiles under pure strategy equilib-

rium. If the players can negotiate in advance in the process of interaction

and there is a strategy profile which is the consensus of both parties after

the negotiation and is also a Nash equilibrium, then individuals will not u-

nilaterally deviate from this outcome. If the previously negotiated strategy

profile is not a Nash equilibrium, then this ex ante agreement may not be

followed.

Many technical standards to eliminate undesirable Nash equilibria have

been introduced. One of them is the concept of trembling-hand perfec-

t (Nash) equilibrium proposed by Selten (1975), which is a refinement of

Nash equilibrium. The main idea of this concept is that a Nash equilibrium
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is stable if it is preserved against small perturbations that may have origi-

nated from individuals’ minor error in action. The trembling-hand perfect

equilibrium means that if the sequence of probability with which individu-

als make mistakes approaches zero, then the trembling-hand perfect equi-

librium is the limit of the equilibrium sequence in this process.

We can fully comprehend the trembling-hand perfect Nash equilibrium

through the concept of subjective beliefs. When a player’s subjective beliefs

in the judgment of other players’ actions have a minor error and this error

becomes infinitely small, the player’s strategy is still the best response to

rational expectations (or correct beliefs).

Given a game ΓN = [N, {∆Si}, {ui(·)}], we define a perturbed game

Γε = [N, {∆ε(Si)}, {ui(·)}] by choosing for each player i and strategy si ∈
Si a disturbance number εi(si) ∈ (0, 1) with

∑
si∈Si

εi(si) < 1, and then defin-

ing the (mixed) strategy space of player i to be

∆ε(Si) = {σi : σi(si) = εi(si),
∑
si∈Si

σi(si) = 1}.

That is, a perturbed game Γε is derived from the original game ΓN by re-

quiring that each player i play only completely (or totally) mixed strate-

gies in which every pure strategy receives positive probability not less than

εi(si).

Definition 6.3.15 (Trembling-Hand Perfect Nash Equilibrium) A Nash e-

quilibrium σ = (σ1, σ2, · · · , σn) for a game ΓN = [N, {∆Si}, {ui(·)}] is a

trembling-hand perfect Nash equilibrium, if there is a sequence of perturbed

games {Γεk}∞
k=1 that converges to ΓN = [N, {∆Si}, {ui(·)}], and some as-

sociated sequence of Nash equilibria {σk}∞
k=1 that converges to σ. Here,

convergence means that for each player i and the player’s strategy si ∈ Si,

we have limk→∞ε
k
i (si) = 0.

With the concept of the trembling-hand perfect Nash equilibrium, we

can eliminate certain strategic choices of some players. In general, the cri-

terion by the definition of trembling-hand perfect Nash equilibrium may

be difficult to work with because it requires that we compute the equilibria

of many possible perturbed games. The following characterization of the
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trembling-hand perfect Nash equilibrium by Selten (1975) provides a for-

mulation that makes checking whether a Nash equilibrium is trembling-

hand perfect Nash equilibrium much easier.

Proposition 6.3.6 A Nash equilibrium σ = (σ1, σ2, . . . , σn) of game ΓN =
[N, {∆Si}, {ui(·)}] is a trembling-hand perfect Nash equilibrium if and only if

there is a sequence of completely mixed strategy profile {σk}∞
k=1, such that limk→∞σk =

σ, and for every k and every player i ∈ N , σki is the best response to the oppo-

nents’ strategy profile σk
−i.

The proof of the proposition can be found in Selten (1975). By the defini-

tion of trembling-hand perfect Nash equilibrium and Proposition 6.3.6, we

immediately know that a trembling-hand perfect Nash equilibrium cannot

be a weakly dominated strategy.

player 2
L R

player 1 U 2, 2 0,−5
D −5, 0 0, 0

Table 6.17: Trembling-Hand Perfect Equilibrium.

Example 6.3.11 The game with two players 1 and 2 is described by Table

6.17.

In this game, there are two pure strategy Nash equilibria, (U,L) and

(D,R). Strategy D is a weakly dominated strategy for player 1, and strat-

egy R is a weakly dominated strategy for player 2. Although (D,R) is

a Nash equilibrium, it is not a trembling-hand perfect Nash equilibrium.

This is because if each player has a choice deviation, no matter how small

the probability of this deviation is, as long as this probability is positive,

choosing a weakly dominated strategy is not a player’s best response. As

such, in a perturbed game, there is only one Nash equilibrium, i.e., (U,L),

and (D,R) is not the limit of the sequence of Nash equilibria of perturbed

games.

Selten (1975) also proved that every finite normal-form game ΓN =
[N, {∆Si}, {ui(·)}] has a trembling-hand perfect Nash equilibrium.
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Trembling-hand perfect Nash equilibrium is not a unique standard to

refine Nash equilibria, but there are many other standards to refine Nash

equilibria. For instance, subgame perfect Nash equilibrium (SPNE) to be

discussed below is another typical standard to refine Nash equilibrium in

context of dynamic games.

6.4 Dynamic Games of Complete Information

The previous section studied games of complete information where all play-

ers make choices simultaneously. In many games, players make choices se-

quentially, one player observes the other players’ decisions and then makes

actions. The classic example is the game of Chess. The classic economic ex-

ample is the Stackelberg Oligopoly in which the leader firm moves first and

then the follower firm moves sequentially. This section discusses dynamic

games of complete information. For a dynamic game, we may convert such

an extensive-form game to a normal-form game, and then solve for the e-

quilibrium of the normal-form game with an equilibrium concept (such as

Nash equilibrium). However, such an approach likely result in many equi-

libria and some of them may be undesirable. We then need some criterion

to refine Nash equilibria of dynamic games.

In a dynamic game, since there is an order of decisions, there may be

a problem of credibility of“commitment”. A reasonable dynamic equi-

librium then needs to satisfy the requirement of “credible commitmen-

t”(“credible threat”), and thus we can refine equilibria. The“credible

commitment”has new requirements for a player’s rationality. It requires

that players are rational in every possible decision-making environment

(more precisely, every information set). This rationality is also called the

sequential rationality. In the study of dynamic games, in many situations,

we need to take a certain way to solve an equilibrium, usually using back-

ward induction.

We first consider the issue of commitment through an example.

Example 6.4.1 (Market Entry Game) Suppose that there are two firms in

a market, the Incumbent and the Potential Entrant. The Potential Entrant
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moves first to choose whether to enter the market, and then the Incumbent

decides whether or not to launch a price war. The payoff profiles of their

actions are shown in Figure 6.4. Table 6.18 is the normal-form represen-

tation of the game. The game has two pure strategy Nash equilibria, i.e.,

(Enter, Accommodate if Enter occurs) and (Stay out, Fight if Enter occurs).

Enter Stay out

Accommodate Fight

8

5

0

0

5

8

Potential Entrant

Incumbent

Figure 6.4: Extensive-Form of Market Entry Game.

Incumbent
Accommodate if Enter occurs Fight if Enter occurs

Potential Entrant Enter 8, 5 0, 0
Stay Out 5, 8 5, 8

Table 6.18: Strategic-Form of Market Entry Game.

It is not difficult to see that the Incumbent’strategy“Fight if Enter oc-

curs”is an incredible threat at Nash equilibrium (Stay Out, Fight if Enter

occurs). The reason is that the Potential Entrant would evaluate the gain

or loss of entering the market: if the Potential Entrant chooses to enter, he

knows that the rational Incumbent will choose to accommodate so that the

Incumbent’s payoff profile is 5; otherwise, it is 0, and then the Potential

Entrant’s payoff profile is 8. If the Potential Entrant chooses to stay out,

his payoff profile is only 5. Thus, the rational choice of the Potential En-

trant is to enter. Therefore, only Nash equilibrium (Enter, Accommodate

if Enter occurs) is sequentially rational while Nash equilibrium (Stay Out,
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Fight if Enter occurs) violates the principle of sequential rationality (i.e.,

in any possible environment, the decision-maker should make a rational

decision).

In order to eliminate Nash equilibria that violate sequential rationality,

backward induction is frequently used to solve for equilibrium of a dy-

namic game with perfect information. The equilibrium obtained through

this method is the subgame perfect Nash equilibrium (SPNE) or simply

termed as the subgame perfect equilibrium (SPE). We then need to know

what a subgame is.

6.4.1 Subgame

A subgame is a subset of an entire game, but not all subsets can be a sub-

game. If an entire game begins with a singleton information set, then the

game as a whole is also a subgame.

Definition 6.4.1 (Subgame) A subgame of an extensive-form game ΓE is a

subset of the game if it satisfies the following two properties:

(1) It begins with a singleton information set. Let x0 be the

initial decision node of the subgame. The subgame contains

and only contains all successors starting from this decision

node. If x belongs to the subgame starting from x0, and x ̸=
x0, then x /∈ h(x0), and there is a sequence y1, · · · , yn, such

that y1 = x, y2 = p(y1), · · · , yn = x0 = p(yn−1), i.e., there is a

sequence of immediate connected nodes connecting from x0

to x.

(2) The subgame does not divide any information set. If de-

cision node x is in the subgame, then every decision node

x′ ∈ h(x) is also in the subgame.

Example 6.4.2 (Continuation of Example 6.4.1) In the above Market Entry

Game, there are two subgames. The original game as a whole is a subgame.

In addition, the game described in Figure 6.5 is also a subgame of the game.
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Incumbent

Accommodate Fight

8

5

0

0

Figure 6.5: A Subgame of the Market Entry Game.

Firm E

Firm E

Firm E

Firm E

Firm E

Firm E

Firm I

Firm I

Firm I

Not a subgame

Not a subgame

Not a subgame

(a)
(b)

(c)

Figure 6.6: Non-Subgame.

None of the subsets of the game described in Figure 6.6 are subgames.

Example 6.4.3 (Non-Subgame) In the game described in Figure 6.6, the

game’s three subsets surrounded by the dashed lines are not subgames.

In Figure 6.6(a), the initial node of the subset is not a singleton informa-

tion set for firm I ; in Figure 6.6(b), the subset divides the information set

of firm I ; in Figure 6.6(c), the initial node of the subset is not a singleton

information set, and the subset divides the information set.

6.4.2 Backward Induction and Subgame Perfect Nash Equilibri-
um

As mentioned in the beginning of this section, since there is a sequence

of players’ decisions in an extensive-form dynamic game, an issue of the
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credibility of threats arises in their interaction process.

0

10

-5

-3

10

5

Firm E

Firm I

AccommodateFight

Stay out Enter

Figure 6.7: Incumbent’s Non-credible Threat.

Example 6.4.4 (Market Entry Game continued) Suppose that there are t-

wo firms I and E, in which firm I is the incumbent, and firm E is the

potential entrant. Firm E decides whether to enter the market. If firm I ob-

serves that firm E has decided to enter the market, then firm I may either

fight or accommodate. Their payoff profiles are shown in Figure 6.7. (Stay

out, Fight if firm E enters) is a Nash equilibrium. However, there is a prob-

lem with this equilibrium. Once firm E has chosen to enter the market, it is

irrational for firm I to choose to fight. In other words, firm I’s threat,“If

firm E enters, I will choose to fight”, is not credible.

The following example suggests how we identify Nash equilibrium that

satisfies the sequential rationality in more general games of imperfect infor-

mation (i.e., an information set may contain more than one node).

Example 6.4.5 As shown in Figure 6.8, firm E is the potential market en-

trant, and firm I is the incumbent. Firm E first chooses whether or not to

enter (In) or stay out (Out). Once firm E enters, firm E and firm I choose

whether to accommodate (A) or fight (F) simultaneously. The normal form

representation and the simultaneous-move game are depicted in (a) and (b)

of Table 6.4.2, respectively.

From the normal form, we see that there are three Nash equilibria (σE , σI):

(1) ((Stay out, Accommodate if entering), Fight if Enter occurs);



6.4. DYNAMIC GAMES OF COMPLETE INFORMATION 321

0
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-4

-2

2

-3

-3

-2

5

2

Firm E

Firm I

Firm E

Stay out Enter 

Fight

Fight
Fight

Accommodate

Accommodate

Accommodate

Figure 6.8: Sequential Rationality in Game with Imperfect Information.

(2) ((Stay out, Fight if entering), Fight if Enter occurs);

(3) ((Enter, Accommodate if entering), Accommodate if Enter

occurs).

However, in the simultaneous-move game, the unique Nash equilibri-

um is (Accommodate, Accommodate) after entry. Indeed, once firm E has

chosen to enter the market,“Accommodate”is a strictly dominant strat-

egy and then it is rational for firm I to choose“Accommodate”too. There-

fore, the two firms should expect that they will both play“Accommodate”after

Firm E enters. Thus the logic of sequential rationality suggests that among

three Nash equilibria, only ((Enter, Accommodate if entering), Accommo-

date if Enter occurs) strategy profile is a reasonable Nash equilibrium.

These examples reveal that a reasonable equilibrium concept of an extensive-

form game is more demanding than Nash equilibrium. The equilibrium

concept related to extensive-form games is subgame perfect Nash equilib-

rium. We then have the following formal definition.

Definition 6.4.2 (Subgame Perfect Nash Equilibrium) In an extensive-form

game with n players, a strategy profile is a subgame perfect (Nash) equilibrium

(SPNE), if it is a Nash equilibrium in every subgame.

From the definition of SPNE, it is clear that every SPNE is a Nash e-

quilibrium since the game as a whole is a subgame, but not every Nash

equilibrium is subgame perfect. In a subgame perfect Nash equilibrium,
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Firm I
A if Enter occurs F if Enter occurs

Firm E Out, A if entering 0, 3 0, 3
Out, F if entering 0, 3 0, 3
In, A if entering 5, 2 −3,−2
In, F if entering 2,−3 −4,−2

(a): The Normal Form Representation
Firm I

Accommodate Fight
Firm E Accommodate 5, 2 −3,−2

Fight 2,−3 −4,−2

(b): The Simultaneous-Move Game

Table 6.19: The normal form representation and the simultaneous-move
game.

each player’s strategy is rationalizable on every possible information set,

and each player’s choice on each information set is based on the subjective

beliefs about the information set that meet the rational expectation assump-

tion (i.e., on each information set, the choice based on belief is rational, and

the belief supporting this choice is correct).

The claim that a subgame perfect equilibrium is a Nash equilibrium

in every subgame implies that for a dynamic game of complete informa-

tion, players’ decisions are rational on each information set (i.e., they satis-

fy the requirements of sequential rationality). If an extensive-form game is

a perfect information game (i.e., each information set is a singleton), then

backward induction can be used to solve for the subgame perfect Nash e-

quilibrium of this game.

Backward induction: Start from the decision node at the bottom level,

reducing the subgames at the bottom level to equilibrium payoff profiles of

these subgames, and then advances recursively to the subgames at the up-

per level, reducing the subgames at this level to equilibrium payoff profiles

of these subgames. This process continues until the very beginning of the

game is reached.

Example 6.4.6 (Continuation of Example 6.4.4) Consider the previous mar-
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Potential Entrant

Incumbent
Incumbent

Accommodate AccommodateFight Fight

Stay outEnter

Enter Stay out

Figure 6.9: Market Entry Game (continuation).

ket entry game. Diagram (a) in Figure 6.9 is the entire game. In the market

entry game, there are two subgames: the original game (Diagram (a)), and

the subgame starting from the incumbent’s decision node (Diagram (b)).

Backward induction starts from the subgame at the lowest level (i.e., from

the game in Diagram (b)). The Nash equilibrium of the game in Diagram

(b) is the incumbent choosing to accommodate, and thus the equilibrium

payoff profile of this subgame is (8, 5), and then the entire game is reduced

to the game in Diagram (c). At this time, the game has advanced to the top-

most level (i.e., the subgame is replaced by its equilibrium payoff profile).

The Nash equilibrium of the game in Diagram (c) is the Potential Entrant

choosing to enter. Therefore, (Enter, Accommodate if Enter occurs) is the

subgame perfect Nash equilibrium of the entire market entry game.

For a finite extensive form game of perfect information, there is always

a subgame perfect Nash equilibrium stated in the following proposition.

Proposition 6.4.1 Every finite normal-form game of perfect information ΓE has

a pure strategy subgame perfect Nash equilibrium. Moreover, if no player has the

same payoff profiles at any two terminal notes, then there is a unique subgame

perfect Nash equilibrium.

The proof for the existence of a pure strategy subgame perfect Nash equi-

librium of a finite extensive form game is straightforward from the defini-
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tion of subgame perfect Nash equilibrium since every finite subgame has a

Nash equilibrium. Solving the dynamic game via backward induction, the

solution obtained is a subgame perfect Nash equilibrium. The proof for the

uniqueness of a pure strategy subgame perfect Nash equilibrium is more

involved and is referred to Mas-Colell, Whinston, and Green (1995).

In the following, we study the subgame perfect Nash equilibrium of a

dynamic game in which players make decisions alternately. As the shape

of this dynamic game’s extensive-form representation is similar to that of

a centipede, it is called the Centipede Game. This game reveals that, al-

though the total payoff profile increases after each cooperation, unfortu-

nately, this happy ending is hard to achieve (i.e., no cooperation from the

very beginning is a rational choice). Thus, like the Prisoner’s Dilemma,

the Centipede Game presents a conflict between self-interest and mutual

benefit.

Figure 6.10: Centipede Game.

Example 6.4.7 (Centipede Game) The classic Centipede Game is a dynam-

ic game problem proposed by Rosenthal (1981), and has many others in

different modified forms. The original version of the game consisted of a

sequence of a hundred moves with linearly increasing payoff profiles.

The“Centipede Game”considered here is an extensive-form game in

which two players alternately get a chance to either take the larger portion

(stop cooperation, denoted as S) of a continually increasing pile of coins

or pass to the opponent (continue cooperation, denoted as C). As soon as

a player takes, the game ends with that player getting the larger portion

of the pile while the other player gets the smaller portion. Passing strictly

decreases a player’s payoff profile if the opponent takes on the next move.
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The interactions are described by Figure 6.10.

The extensive form representation of a six-stage centipede game ends

after six rounds. Passing the pile across the table is represented by a move

of C (going across the row of the lattice) and taking a larger portion of an

increasing pile is a move of S (down the lattice). The numbers 1 and 2 at a

black circle (“decision node”) denotes a decision opportunity for player

1 and player 2. The top number at the end of each vertical line is a payoff

profile for player 1 and the bottom number is a payoff profile for player 2.

Player 1 moves first: If player 1 chooses S, player 1 gets 1 and player 2 gets

0; if player 1 chooses C, the opportunity to make a decision passes to player

2. Player 2 has the second move: If player 2 chooses S, player 1 gets payoff

profile of 0 and player 2 gets 2; if player 2 chooses C, the opportunity to

make a decision passes to player 1. And so on to the end of the game tree

after six rounds, and the income is + distributed.

What does game theory predict will happen? Game Theory predicts

that player 1 will choose S in his first move. We use the backward induc-

tion procedure to solve for the subgame perfect Nash equilibrium. For the

lowest subgame in which player 2 makes her third decision, the Nash equi-

librium is that player 2 chooses strategy S. Then, we advance recursively

to the upper level subgame. The Nash equilibrium of this subgame is that

player 1 chooses S, and player 2 chooses S. This process continues until

the topmost level of the game is reached. The subgame perfect Nash equi-

librium of the entire game is (S, S, S;S, S, S) (i.e., players 1 and 2 choose

S in each period). Therefore, no cooperation from the very beginning is a

rational choice.

This conclusion is very counter-intuitive. In practice, although coopera-

tion is difficult to last long, the willingness to cooperate is actually common

in the short run. Because of this, the Centipede Game is considered the best

example of what is known as the“backward induction paradox.”Indeed,

typical experimental results in studying actual behaviour in different ver-

sions ( a four move, six move, and high payoff profile versions) of the

centipede game by McKelvey and Palfrey (1992) found that subjects rarely

followed the theoretical predictions. In fact, in only 7% of the four-move

games, 1% of the six-move games, and 15% of the high payoff profile games
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did the first player choose to take on the first move. Similar results were

reported by Nagel and Tang (1998). There are some types of explanation

to account for the divergence. One is that not all individuals are fully (se-

quentially) rational but bounded rational. The second one is that a player’s

self-interest or players’ distrust interferes the cooperation and creates a sit-

uation where both do worse than if they had blindly cooperated. The third

explanation may be simply because of the possibility of action errors such

as pressing the wrong key.

If some enforcement or incentive mechanism could be imposed, both

players would prefer that they both cooperate throughout the entire game

as we will discuss next chapter.

The extensive-form games for solving perfect Nash equilibrium in the

above examples are all perfect information games in which every informa-

tion set is singleton. In a game with complete but imperfect information,

we can use a more general backward induction procedure to get all possible

subgame perfect Nash equilibria.

General Backward Induction: Start from the bottom level, at each level

of game tree, identify the Nash equilibria for each of subgames, and then

applies the backward induction procedure to each Nash equilibrium to get

subgame perfect Nash equilibria. If multiple equilibria are never encoun-

tered during the process, the strategy profile is a unique subgame perfect

Nash equilibrium. Otherwise, the set of subgame perfect Nash equilibria

is identified by repeating the procedure for each possible equilibrium that

could occur for the subgames in question.

Below, we discuss by example how to employ the general backward

induction procedure to solve a dynamic game of complete but imperfect

information.

Example 6.4.8 (Market Entry and Site Selection) There are two firmsE and

I . Firm E chooses whether to enter the market first. If firm E does not

enter, the game ends; if firm E enters, in the second stage, firms E and

I select their sites simultaneously. In this game, there is a non-singleton

information set, so that it is not a perfect information game. There are t-

wo subgames in this game. In addition to the original game, after firm E
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Figure 6.11: Market Entry and Site Selection.

chooses to enter, the game in which two firms move simultaneously is also

a subgame.

The subgame in which two firms move simultaneously can be described

by Diagram (a) in Figure 6.11. This subgame has two Nash equilibria:

(Large, Small) and (Small, Large), and the equilibrium payoff profiles are

(1, −1) and (−1,1), respectively, which can be used to reduce this simultane-

ous move game. Therefore, the backward induction of this step produces

two possibilities, which are given in Diagrams (b) and (c), respectively. In

the game in Diagram (b), the Nash equilibrium is firm E choosing to enter;

whereas, in the game in Diagram (c), the Nash equilibrium is firm E choos-

ing to stay out. As such, the entire game has two subgame perfect Nash

equilibria ((Enter, Large if entering), Small if Enter occurs) and ((Stay Out,

Small if entering), Large if Enter occurs).

For a finite extensive form game of complete information but not nec-

essarily perfect information, we have the following proposition.

Proposition 6.4.2 Every finite normal-form game of complete information ΓE
has a mixed strategy subgame perfect Nash equilibrium.
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Now, we use the concept of subgame perfect Nash equilibrium to dis-

cuss a classic example of economics (which is also a common situation in

practice) — the bargaining game. There are many versions of the bargain-

ing game, including the Nash bargaining game, the Rubinstein bargaining

game, and bargaining games with finite or infinite periods.

Example 6.4.9 (Rubinstein Bargaining Game, 1982) Suppose that there are

two players who conduct a bargaining on how to split a total of 1 unit of

an infinitely divisible property. Obviously, in this game, any (x1, x2) ∈
[0, 1] × [0, 1] with x1 + x2 = 1 is a Nash equilibrium, and thus there are

infinitely uncountable Nash equilibria, but the subgame perfect equilibri-

um is unique. Since backward induction is more suitable for bargaining

games with finite periods, we first discuss the bargaining game with T = 1
periods.

The bargaining process is as follows: In the 2k + 1 period, k = 0, 1, . . .,
player 1 proposes a distribution plan (in which the payoff profile received

by any player is not allowed to be negative), and player 2 chooses whether

to accept it; in the 2k period (k ̸= 0), player 2 proposes a distribution plan,

and player 1 chooses whether to accept it. Once an agreement is reached

in a certain period, at which player 1 (or player 2) chooses to accept the

distribution plan proposed by the opponent, the game ends, and the dis-

tribution of the property is determined by the distribution plan. If the two

players still have not reached an agreement in the T period, then the prop-

erty is confiscated and the two players will receive nothing. Suppose that

the time discount rate for both players is δ. Let (xt, 1 − xt) be a distribution

plan proposed by the player who has the right to make a proposal during

the t period, where xt is the amount of property distributed to player 1 and

1 − xt is the amount of property distributed to player 2.

When T = 1, player 1 has the right of proposal, and player 2 chooses

whether or not to accept it. Obviously, as long as x2 = 1 − x1 = 0, player

2 will not choose to reject the proposal. Therefore, the Nash equilibrium of

the game is that player 1 proposes a distribution plan of (1, 0), and player

2 accepts it.

When T = 2, in the last period, player 2 has the proposal right. Similar
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to the logic in the previous case, in this period, player 2’s proposal is (0, 1),

and player 1 will also choose to accept it. In this plan, the present value

of the payoff profile profile of these two players is (0, δ). Returning to the

first period, player 1 has the right of proposal. As long as x2 = 1 − x1 = δ,

player 2 will accept player’s 1 proposal, because if player 2 does not accept

player 1’s proposal, player 2’s final payoff profile is still δ in the subgame

in the last period. Therefore, in the equilibrium path of the game, player

1 proposes a distribution plan (1 − δ, δ) and player 2 accepts it in the first

period, and the game ends.

When T = 3, in the last period, player 1 has the proposal right. Similar

to the logic in the previous cases, in this period, player 1’s proposal is (1, 0),

and player 2 will also choose to accept it. Returning to the second period,

player 2 has the right of proposal, and as long as x1 = 1 − x2 = δ, player 1

will accept player 2’s proposal. Returning to the first period, player 1 has

the right of proposal, and as long as x2 = 1 − x1 = δ(1 − δ), player 2 will

accept player 1’s proposal. Therefore, in the equilibrium path of the game,

player 1 proposes a distribution plan (1−δ+δ2, δ−δ2) and player 2 accepts

it in the first period, and the game ends.

We find that in the case of T = 1, 2, 3, player 1 proposes a distribution

plan (1−(−δ)T

1+δ , 1− 1−(−δ)T

1+δ ) and player 2 accepts this plan in the first period,

and then the game ends. As a consequence, we conjecture that for all T ,

we have: player 1 proposes a distribution plan (1−(−δ)T

1+δ , 1 − 1−(−δ)T

1+δ ) and

player 2 accepts this plan in the first period, and then the game ends. This

can be proven by mathematical induction.

Let (xt(T ), yt(T )) denote the distribution plan of the t period of the

bargaining game with the deadline of T period(s), which satisfies xt(T ) +
yt(T ) = 1. First of all, when T = 1, the above conclusion holds. Assume

that when T = K, the above conclusion is also true. That is, the distribu-

tion plan (x1(K) = 1−(−δ)K

1+δ , y1(K) = 1 − x1(K)) proposed by player 1 in

the first period will be accepted by player 2.

Suppose now that T = K + 1. Consider the distribution plan in the

second period (x2(K+1), y2(K+1)). The subgame starting from the second

period is the same as the bargaining game with the deadline of K period(s)

in which player 2 proposes a distribution plan first, and thus y2(K + 1) =
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x1(K) = 1−(−δ)K

1+δ and (x2(K + 1) = 1 − x1(K), y2(K + 1) = x1(K)) will be

accepted by player 1. Returning to the first period, (x1(K+1) = 1−δy2(K+
1), y1(K + 1) = δy2(K + 1)) will be accepted by player 2. Therefore, the

distribution plan:

(x1(K+1) = 1−δ
(

1 − (−δ)K

1 + δ

)
= 1 − (−δ)K+1

1 + δ
, y1(K+1) = 1−x1(K+1))

proposed by player 1 in the first period will be accepted by player 2.

In this way, in the equilibrium path of the bargaining game with the

deadline of T period(s), player 1 proposes a distribution plan:

(
1 − (−δ)T

1 + δ
, 1 − 1 − (−δ)T

1 + δ

)

and player 2 accepts this plan in the first period, and then the game ends.

When δ < 1 and T → ∞, the subgame perfect equilibrium becomes

(x1, x2) =
( 1

1 + δ
,

δ

1 + δ

)
,

in which player 1 gets the first-mover advantage. In particular, if δ = 0,

player 1 gets the whole property. Only when the friction disappears (i.e.,

δ → 1), the shares become the same since (x1, x2) → (1/2, 1/2).

If the time discount rates for both players are different, denoted by

(δ1, δ2) ∈ (0, 1) × (0, 1), as T → ∞, the subgame perfect equilibrium is

given by

(x1, x2) =
( 1 − δ2

1 − δ1δ2
,
δ2(1 − δ1)
1 − δ1δ2

)
.

Since the proof is somewhat complicated, it is referred to Fudenberg and

Tirole (1991). As δ1 → 1 for fixed δ2, x1 → 1 and player 1 gets the whole

property, whereas player 2 gets the whole property if δ2 → 1 for fixed δ1.

Player 1 also gets the whole property if δ2 = 0. However, even if δ1 = 0,

player 2 does not get the whole property if δ2 < 1. Again, player 1 has the

first-mover advantage.

In a two-person Nash bargaining game, the Nash bargaining solution

(x1, x2) is defined as the solution that maximizes the Nash product (x1 −
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v1)(x2 − v2), where vi represents the reservation utility of player i or called

(v1, v2) the disagreement payoff profile profile since it is the payoff profile

profile if the parties fail to agree.

Now suppose that v1 = v2 = 0. Then the solution of the Nash bargain-

ing game is given by (x1, x2) = (1/2, 1/2), which is the same as the solution

of the Rubinstein bargaining game when δ1 = δ2 = δ → 1.

6.5 Static Games of Incomplete Information

Incomplete information is enormously important in game theory. In many

interactions, information is asymmetric. Individuals do not know infor-

mation about other individuals’ types or payoff profile/untility functions.

Incomplete information introduces additional strategic interactions and al-

so raises questions related to “learning”. Examples are: a bidder does

not know other bidders’ values of the auction item; a sell often does not

know the type of consumers, a firm often does not know how the exac-

t cost of their competitors in a market competition; how you should infer

the information of others from the signals they send; how much the other

party is willing to pay is generally unknown to you in bargaining situation.

However, all such incomplete information in these examples will affect the

interaction process and outcomes. In addition, even when player 1 knows

player 2’s information, player 2 may not know that player 1 knows player

2’s information (e.g., when some of the related information is not common

knowledge), and thus the Nash equilibrium concept cannot be applied to

the analysis of strategic interactions with incomplete information.

Another development milestone in game theory is then the analytical

framework proposed by Harsanyi (1967, 1968) to investigate games under

incomplete information. Harsanyi converted games of incomplete infor-

mation into games of complete (but imperfect) information. The key to

this is to convert a player’s subjective judgment about all other players’

private information into random variables which describe other player-

s’ types. The type variables of players are exogenous random variables,

which can be described by “natural”actions, while Nature’s actions are

based on type variables’ prior probability distribution, which is common
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knowledge of all players of the game. Different players may have different

signals for these type variables. These signals can also be utilized to revise

posterior beliefs. In this way, incomplete information can be converted into

complete but imperfect information by describing all unknown informa-

tion and beliefs by type variables. The complete information defined here

refers to a situation in which a player’s information state can be defined

by an information set, and this information state is common knowledge.

Nature assigns a random variable to each player, which could take values

of types for each player.

At the beginning of the game, players’ types are exogenously-given ran-

dom variables whose values are decided by Nature. A player knows her

own type, and does not know other players’ types, but knows their prior

distributions. The game after transforming from incomplete information

to complete but imperfect information is called the Bayesian game. In the

Bayesian game, belief is an essential concept, especially for dynamic games

of incomplete information, which is a player’s subjective judgment of other

players’ types distribution. If a player obtains some new information, the

player will update beliefs about other players’ types using Bayes’ rule. We

will use the concept of Bayesian-Nash equilibrium to analyze the equilib-

rium of strategic interactions in static games.

6.5.1 Bayesian Game

The Bayesian game of incomplete information is now formally defined.

Definition 6.5.1 (Bayesian Game) A Bayesian game, denoted by

ΓB = (Ñ , (Ai)i∈N , (Ti)i∈N , p, (ui(·))i∈N ),

is characterized by the following five components:

(1) A set of players: Ñ = {N,N0} is the set of players, where N0

is Nature.

(2) A set of actions for each player: Ai is the set of player i’s

actions, and A ≡
∏
i∈N

Ai is the set of action profiles of all

players.
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(3) A set of types for each player: ti is the type of player i,

t = (ti)i∈N is a profile of all players’ types, Ti is the set of

player i’s types and T ≡
∏
i
Ti is the set of all profiles of play-

ers’ types. Nature randomly selects all players’ types, and

players know their own types.

(4) A joint probability distribution: The joint probability dis-

tribution of types is p, a common prior distribution for all

players, and is denoted by p(t). Nature randomly selects

the profile of types t with the probability of p(t). After play-

er i knows her own type ti, the player’s posterior belief in

the distribution of other players’ types is determined by the

Bayes rule:

p(t−i|ti) = p(ti, t−i)
p(ti)

,

where p(ti) ≡
∑
t−i

p(ti, t−i) is the (marginal) probability of

player i’s type and t−i ≡ (t1, · · · , ti−1, ti+1, · · · , tn). In a

Bayesian game, the type of player i is the private informa-

tion that is not known to others. More generally, we could

also allow for a signal for each player, so that the signal is

correlated with the underlying type vector.

(5) A payoff profile for each player: player i’s utility function is

ui(·) : A× T → R.

Note that the Bayes’ Rule is not well-defined if there is a zero probabil-

ity event that appears in the denominator of the formula for a conditional

probability. This matters little for now, but matters a lot when requiring

sequential rationality in dynamic games of incomplete information. Al-

so, when players’ probability distributions are independent each other, we

have

p(t−i|ti) = p(t−i).

Now we are ready to define an important concept of a Bayesian game.

Definition 6.5.2 A pure strategy for player i is a map si : Ti → Ai, assigning

an action for each type of player i, i.e., si = si(ti)ti∈Ti is a complete plan
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of player i for all possible types, where si(ti) is an action plan of player i

when the player’s own type is ti.

The set of all possible strategies player i for type ti is denoted by Si(ti).

Player i’s strategy space Si ≡
∏
ti∈Ti

Si(ti) : Ti → Ai is then a correspondence

(set-valued map). The corresponding mixed strategy space is denoted as

∆Si ≡
∏
ti∈Ti

∆Si(ti).

Definition 6.5.3 A mixed strategy for player i is a map σi : Ti → ∆Si, as-

signing a probability distribution on ∆Si.

Since the payoff profile functions, possible types, and the prior prob-

ability distribution are common knowledge, the (interim) expected payoff

profiles of player i of type ti is given by

Et−iui(s′
i, s−i, ti) =

∑
t−i

p(t−i|ti)ui(si′(ti), s−i(t−i), t) (6.5.4)

when types are finite

=
∫
ui(s′

i(ti), s−i(t−i), t)dp(t−i) (6.5.5)

when types are not finite.

Here,“the interim expected utility”means that it is taken when the play-

er knows her own type but does not known others’types (i..e, information

is asymmetric). When a strategy is a mixed strategy, the expected payoff

profiles of player i of type ti is given by Ui(σ′
i,σ−i, ti).

In the following, we describe the Bayesian game with two examples.

Example 6.5.1 (Incomplete Information Prisoner’s Dilemma) Consider a

variant of the Prisoner’s Dilemma depicted by Table 6.20. In this Bayesian

game, the set of players is N = {1, 2}. Each player’s action set is {Deny,

Confess}. Player 1 only has one type. Player 2 has two types, and the set of

player 2’s types is T2 = {I, II}.

The common prior probability of player 2’s type distribution is p(I) =
p(II) = 0.5. If Prisoner 2 is of type I , the payoff profiles of Prisoner 1 and

Prisoner 2’s interaction are represented by the first matrix in Table 6.20. If
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Prisoner 2: Type I
Deny Confess

Prisoner 1 Deny −2,−2 −10,−1
Confess −1,−10 −5,−5

Prisoner 2: Type II
Deny Confess

Prisoner 1 Deny −2,−2 −10,−7
Confess −1,−10 −5,−11

Table 6.20: Prisoner’s Dilemma with Incomplete Information.

Prisoner 2 is of type II , the payoff profiles of Prisoner 1 and Prisoner 2’s

interaction are represented by the second matrix in Table 6.20.

Formally, the Bayesian game for this incomplete information prisoner’s

dilemma can be decried as

ΓB = (N, (A1, A2), (T1, T2), p, (u1, u2))

which has the following characteristics:

(1) the set of players: N = {1, 2};

(2) the set of actions: A1={Deny, Confess} and A2 ={Deny, Con-

fess};

(3) the set of types: T1 = {t1} and T2 = {I, II};

(4) the prior probability distribution is given by p(t = I) = p(t =
II) = 1/2.

(5) the utility functions ui(a1, a2; t1, t2), i = 1, 2, are given by in

the payoff profile matrixes in Table 6.20.

An auction example is discussed below. In an auction, each bidder has

incomplete information about other bidders. Auctions come in numerous

forms. Assume that the auction format employed here is the Second-Price

Sealed-Bid Auction.
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Example 6.5.2 (Second-Price Sealed-Bid Auction) Suppose that there are

n bidders {1, 2, · · · , n} participating in an antique auction. Bidder i’s value

of the antique is vi. Each bidder only knows her own value, but does not

know other bidders’ values. Each bidder’s value is independent. A bid-

der’s value of the antique is then the type of the bidder and obeys the same

probability distribution qi(·) : V → (0, 1), where V is a set of all possible

values. Therefore, each bidder’s type set is V . Let bi be the bid chosen by

bidder i. The bidder with the highest bid gets the antique, but pays the

second-highest bidding price. If there are multiple bidders at the highest

price, they will get the antique with the same probability and pay their bid

price once they win.

In this Bayesian game, the set of bidders is Ñ = {N,N0}, where N0

is Nature who determines bidders’ types based on the prior probability

distribution of other bidders’ types. Bidder i’s action set is Ai = R+. The

set of signals received by bidder i is Ti = V (i.e., all bidders know their own

types). All bidders have a common prior probability p(t) =
∏
i∈N q(ti),

where t = (ti)i∈N .

A profile of bidders’ bids is (b1, · · · , bn). If bi > bj for all j ∈ N\i, bidder

i’s payoff profile is

Πi(bi, b−i) =

 vi − maxj ̸=i bj if bi > maxj ̸=i bj
0 if bi < maxj ̸=i bj .

(6.5.6)

If bi = maxj ̸=i bj , the types shall be decided by lot (i.e., the object is ran-

domly assigned by the same probability).

We will come back to discuss their equilibrium solutions of these two

examples.

6.5.2 Bayesian-Nash Equilibrium

The basic equilibrium concept corresponding to the game of incomplete

information is Bayesian-Nash equilibrium at which every player’s interim

expected payoff profile is maximized given the strategies of others.
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Definition 6.5.4 (Pure-Strategy Bayesian-Nash Equilibrium) A strategy pro-

file s = (si(ti)ti∈Ti
)
i∈N is said to be a pure-strategy Bayesian-Nash equilibrium

of game ΓB if for all i ∈ N and all ti ∈ Ti, we have

si(ti) ∈ arg max
s′

i(ti)∈S(ti)

∑
t−i

p(t−i|ti)ui(si′(ti), s−i(t−i), t),

or in the non-finite case,

si(ti) ∈ arg max
s′

i(ti)∈S(ti)

∫
ui(s′

i(ti), s−i(t−i), t)dp(t−i).

It is clear that every dominant strategy equilibrium is a Bayesian-Nash

equilibrium, and the converse may not be true.

Definition 6.5.5 (Mixed-Strategy Bayesian-Nash Equilibrium) A strategy

profile σ = (σi(ti)ti∈Ti
)
i∈N is a mixed-strategy Bayesian-Nash equilibrium of

game ΓB if for all i ∈ N and all ti ∈ Ti, we have

σi(ti) ∈ arg max
σ′

i(ti)∈∆S(ti)

∑
t−i

p(t−i|ti)ui(σi′(ti),σ−i(t−i), t),

or in the non-finite case,

σi(ti) ∈ arg max
σ′

i(ti)∈∆S(ti)

∫
ui(σ′

i(ti),σ−i(t−i), t)dp(t−i).

Example 6.5.3 (Incomplete Information Prisoner’s Dilemma (continued))

We now find a (pure-strategy) Bayesian-Nash equilibrium of the Prisoner’s

Dilemma with incomplete information in Eexample 6.5.1. For player 1, re-

gardless of the type of his opponent, choosing“Confess”is his dominant

strategy. For player 2, if her type is I , choosing“Confess”is her dominant

strategy, and if her type is II , choosing“Deny”is her dominant strategy.

Since any dominant strategy equilibrium is a Bayesian-Nash equilibrium,

the Bayesian-Nash equilibrium of this game is (s1(t1) = Confess; s2(I) =
Confess, s2(II) = Deny).

Example 6.5.4 (Second-Price Sealed-Bid Auction (continued)) For the Second-

Price Sealed-Bid Auction, for player i, truth-telling si(vi) = vi is the play-

er’s weakly dominant strategy. To see this, consider two cases:
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Case 1. When vi > maxj ̸=i bj , bidding bi > maxj ̸=i bj and the true value

vi bring the same payoff profilef vi−maxj ̸=i bj > 0, but when bi < maxj ̸=i bj ,
the opportunity to win is lost, so that the payoff profile is less than that

brought by bidding the true value vi. Thus, when vi > maxj ̸=i bj , si(vi) = vi

is a weakly dominant strategy.

Case 2. When vi 5 maxj ̸=i bj , bidding bi 5 maxj ̸=i bj and the true

value vi bring the same payoff profile 0, but when the bidding price bi >

maxj ̸=i bj , the payoff profile vi − maxj ̸=i bj < 0 is smaller than the payoff

profile of bidding vi. Thus, when vi 5 maxj ̸=i bj , si(vi) = vi is also a weakly

dominant strategy.

Therefore, truth-telling (si(ti = vi) = vi)i∈N,ti∈Ti
is a Bayesian-Nash e-

quilibrium.

In the above examples, there is a (weakly) dominant strategy for each

type of player. In many interaction situations, there is no dominant strategy

equilibrium. The following examples illustrates how we can find Bayesian-

Nash equilibria that are not dominant strategy equilibria.

Player 2: t2 = 1
L R

Player 1 U 2,−2 −2, 2
D −2, 2 2,−2

Player 2: t2 = 2
L R

Player 1 U 3, 2 −2,−2
D −2, 2 2,−2

Table 6.21: Bayesian Game

Example 6.5.5 Consider a two-player Bayesian game in which the payoff

profiles depend on t2 and actions are as in Table 6.21. Only player 2 knows

whether t2 = 1 or t2 = 2.

The Bayesian game can be written as

ΓB = (N, (A1, A2), (T1, T2), p, (u1, u2))
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which has the following characteristics:

(1) the set of players: N = {1, 2};

(2) the set of actions: A1 = {U,D} and A2 = {L,R};

(3) the set of types: T1 = {t1} and T2 = {1, 2};

(4) the probability distribution is given by p(t2 = 1) = p(t2 =
2) = 1/2.

(5) the utility functions ui(a1, a2; t1, t2), i = 1, 2, are given by in

the payoff profile matrixes in Table 6.21.

This game has no dominant strategy equilibrium. We now show there

is a pure strategy Bayesian-Nash equilibrium. Note that a pure strategy for

player 1 is an action s1(t1) ∈ A1, and a pure strategy for player 2 is a pair

(s2(t2 = 1), s2(t2 = 2)) ∈ A2 × A2, assigning an action for each type of

player 2.

To find a pure strategy Bayesian-Nash equilibrium, suppose that player

1 chooses s1(t1) = U . Then, player 2’s best response to this strategy is

s2(t2 = 1) = R and s2(t2 = 2) = L. Now we need to verify that s1(t1) = U

is also a best response to player 2’s strategy (s2(t2 = 1) = R, s2(t2 = 2) =
L). Indeed, the expected payoff profile of player 1 from U is

Et2u1(U) = u1(U, s2(1), t2 = 1)p(t2 = 1) + u1(U, s2(2), t2 = 2)p(t2 = 2)

= u1(U,R, t2 = 1) × 1
2

+ u1(U,L, t2 = 2) × 1
2

= −2 × 1
2

+ 3 × 1
2

= 1
2
,

and the expected payoff profile of player 1 from D is

Et2u1(D) = u1(D, s2(1), t2 = 1)p(t2 = 1) + u1(D, s2(2), t2 = 2)p(t2 = 2)

= u1(D,R, t2 = 1) × 1
2

+ u1(D,L, t2 = 2) × 1
2

= 2 × 1
2

− 2 × 1
2

= 0.

Hence, Et2u1(U) > Et2u1(D) and thus U is player 1’s best response to the

strategy of player 2. Therefore, the strategy profile (s1(t1) = U ; s2(t2 =
1) = R, s2(t2 = 2) = L) is a Bayesian-Nash equilibrium.
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Example 6.5.6 (Incomplete Information Cournot) Consider a Cournot mod-

el in which two firms both produce at constant marginal cost. The market

demand is given by P (Q). Firm 1 has marginal cost equal to C which is

common knowledge. Firm 2’s marginal cost is private information. It is

equal to CL with probability β and to CH with probability (1 − β), where

CL < CH .

Then this Cournot game has 2 players, and the set of actions of each

player are qi ∈ [0,∞), but firm 2 has two types T2 = {L,H}.

The payoff profile functions of the players, after output choices are

made, are given by

u1((q1, q2), t) = q1(P (q1 + q2) − C),

u2((q1, q2), t) = q2(P (q1 + q2) − Ct),

where t ∈ {L,H} is the type of player 2.

A strategy profile can be represented as (q∗
1, q

∗
L, q

∗
H), where q∗

L and q∗
H

denote the actions of player 2 as a function of its types. We can find the

Bayesian-Nash equilibria of this game by computing the best response func-

tion and finding their intersection.

There are three best response functions and they are are given by

B1(qL, qH) = argmax
q1=0

{β(P (q1 + qL) − C)q1,

+(1 − β)(P (q1 + qH) − C)q1}

BL(q1) = argmax
qL=0

{(P (q1 + qL) − CL)qL},

BH(q1) = arg max
qH=0

{((P (q1 + qH) − CH)qH}.

The Bayesian-Nash equilibria of this game are vectors (q∗
1, q

∗
L, q

∗
H) satis-

fying the best responses of all players:

B1(q∗
L, q

∗
H) = q∗

1, BL(q∗
1) = q∗

L, BH(q∗
1) = q∗

H .

To simplify the algebra, suppose that P (Q) = Q̄−Q with Q 5 Q̄. Then we
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have

q∗
1 = 1

3
(Q̄− 2C + βCL + (1 − β)CH),

q∗
L = 1

3
(Q̄− 2CL + C) − 1

6
(1 − β)(CH − CL),

q∗
H = 1

3
(Q̄− 2CH + C) + 1

6
β(CH − CL).

Note that q∗
L > q∗

H . This reflects the fact that with lower marginal cost,

the firm will produce more.

Example 6.5.7 (First-Price Sealed-Bid Auction) There are bidders whose val-

uations are independent and follow uniform distribution G on [0, 1]. The

bidder with the higher bid wins the auction item at the bidding price. If

they submit the same biding price, each player obtains the item with equal

probability and pays the bidding price. Let v1 and v2 be the types of bidders

1 and 2 whose strategies are b1(v1) and b2(v2), respectively.

We want to solve the symmetric Bayesian-Nash equilibrium (i.e., b1(v1) =
b(v1) and b2(v2) = b(v2)). Suppose that b(v) is an increasing function, as we

will verify later. The expected utility of bidder i with type vi when she bids

bi is

Evjui(bi, vi) = (vi − bi)prob(b(vj) < bi) + 1
2

(vi − bi)prob(b(vj) = bi).

Since player j has a continuous distribution and the bid is a strictly

increasing function of the type, we have prob(b(vj) = bi) = 0 and

prob(b(vj) < bi) = prob(vj < b−1(bi) = G(b−1(bi)) ≡ Φ(bi).

Hence,

Evjui(bi, vi) = (vi − bi)Φ(bi).

The first-order condition of maximization is

−Φ(b(vi)) + (vi − b(vi))Φ′(b(vi)) = 0.

Since Φ(b(vi)) = G(b−1(bi)) = G(vi), Φ′(b(vi)) = G′

b′(vi) , and G′(vi) = 1,
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we have

G(vi)b′(vi) + b(vi)) = vi

or
d

dvi
[G(vi)b(vi)] = vi.

Thus, taking the integral from 0 to vi on the both sides and noting G(vi) =
vi, we have

b(vi) = vi
2
.

Obviously, b(vi) is a strictly increasing function. Therefore, the Bayesian-

Nash equilibrium of this First-Price Sealed-Bid Auction is b(vi) = vi
2 , i ∈ N .

It is sometimes difficult to understand mixed strategies, such as the pre-

vious Battle of the Sexes game under which both players’ expected payoff

profiles are less than the payoff profiles under pure strategy equilibrium. If

so, why do they play mixed strategies? The Bayesian game can provide a

rationalized explanation for the mixed strategy. It is because of incomplete

information.

A mixed strategy equilibrium in a game of complete information can

be constructed by the limit of a sequence of pure strategy Bayesian-Nash

equilibria for games of incomplete information. This kind of interpretation

of a mixed strategy equilibrium was first proposed by Harsanyi (1974).

Male
Opera Basketball

Famale Opera 2, 1 + x2 0, 0
Basketball 0, 0 1 + x1, 2

Table 6.22: The Bayesian-Nash Equilibrium Interpretation of Mixed Strate-
gy in the Battle of the Sexes.

Example 6.5.8 (Mixed Strategy and Bayesian-Nash Equilibrium) Consider

the Battle of the Sexes game with a mixed strategy in which the woman will

choose opera with probability 2/3 and the man will choose basketball with

probability 2/3. In real life, however, it is an extreme situation in which

players know exactly all the information of other players. For more gener-

al and practical interactions, there will always be more or less incomplete
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information. Suppose that a sufficiently small incomplete information is

introduced to the Battle of the Sexes game, as shown in Table 6.22. What

will occur when the degree of incomplete information goes to zero (i.e.,

complete information)?

Let x1 and x2 be the types of the woman and the man, respectively, and

they both obey the uniform distribution on [0, x]. When x → 0, the limit of

this incomplete information game is a complete information game, which

returns to the previous example of Battle of the Sexes. We can use pure

strategy Bayesian-Nash equilibrium of the incomplete information game

to explain mixed strategy Nash equilibrium of the complete information

game.

Suppose that the Bayesian-Nash equilibrium of this incomplete infor-

mation game has the following properties: for the woman, as long as x1

does not exceed a certain threshold c < x, she will still choose opera; oth-

erwise, she will choose basketball, because the size of x1 represents the

woman’s love for basketball. Similarly, for the man, as long as x2 does not

exceed a certain threshold d < x, he will still choose basketball; otherwise,

he will choose opera.

In this way, the woman expects that the man will choose basketball with

a probability of d
x and choose opera with a probability of 1 − d

x . Similarly,

the man expects that the woman will choose opera with a probability of c
x

and choose basketball with a probability of 1 − c
x . For women of type x1,

the expected utility for choosing opera is 2x−d
x , and the expected utility for

choosing basketball is (1+x1) dx . When x1 = c, choosing opera or basketball

makes no difference for the woman. Therefore, an equilibrium requires

(1 + c) dx = 2x−d
x or (1 + c)d = 2(x − d). In the same way, we can obtain

(1 + d)c = 2(x − c). Solving the two equations, we obtain c = d and c
x =

4√
9+8x+3 . Since limx→0

4√
9+8x+3 = 2

3 , when x → 0, the woman chooses

opera and basketball with probabilities 2/3 and 1/3, respectively. Similarly,

we can also get: when x → 0, the man chooses basketball and opera with

probabilities 2/3 and 1/3, respectively.

Thus, the above example explains why individuals choose mixed strate-

gies by introducing incomplete information. In other words, a player’s
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judgment of other players’ mixed strategies may stem from a lack of un-

derstanding them.

Similarly, we can have the existence theorems on Bayesian-Nash equi-

librium. For a Bayesian game with continuous strategy space and contin-

uous types, if strategy sets and type sets are compact subsets in Euclidean

space, payoff profile functions are continuous on the strategy spaces and

concave in own strategies, then there exists a pure strategy Bayesian-Nash

equilibrium.

For an incomplete information Bayesian game with finite strategy space

and finite types, we have the following proposition.

Proposition 6.5.1 Every finite incomplete information Bayesian game has a mixed

strategy Bayesian-Nash equilibrium.

6.6 Dynamic Games of Incomplete Information

So far, we have discussed static and dynamic games of complete informa-

tion and static games of incomplete information. Now, we discuss dynamic

games of incomplete information. This type of game is much more realis-

tic. As this type of game exhibits features of both dynamic and incomplete

information, it has more subtle factors that affect individuals’ strategic in-

teractions.

First of all, there is a new type of incomplete/asymmetric information.

When the players have several moves in sequence, their earlier moves may

reveal private information that is relevant to the decisions of players mov-

ing later on. In such a situation, the only subgame may be just the whole

game and thus the solution of subgame perfect Nash equilibrium cannot

be used to refine Nash equilibria. In addition, like a static game of incom-

plete information, the players may not know the others’ types decided by

Nature.

Then, an important factor to be considered is that players’ beliefs should

be specified and updated. Since a player can obtain information on the

opponents’ decision nodes through their previous actions (i.e., the previous

actions of the opponents may contain some signal about the opponents’
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information on moves and types), players can use both the knowledge of

the entire game as well as the actions that have previously occurred in the

game to update their beliefs about which node in the information set they

are at through Bayes’ rules.

Combining the insights of SPNE under dynamic situation and Bayesian-

Nash equilibrium in static game of incomplete information with the revi-

sion of the beliefs using Bayesian rule “whenever possible”, a natural

solution concept is the weak perfect Bayesian equilibrium (weak PBE)1 ,

or called the weak sequent equilibrium by Myerson (1991), which needs

to satisfy three requirements. The first requirement is that beliefs must be

specified. When a player has multiple decision nodes within an informa-

tion set, the player must specify a belief about which node in the informa-

tion set he is at. This is a new requirement.

The second requirement is that the strategy choices must be sequen-

tially rational. Each player must be acting optimally at each information

set given the player’s beliefs and the opponents’ subsequent strategies that

follow the information set (i.e., strategies must be best responses both to be-

liefs and to other players’ strategies). The third requirement is that the be-

liefs must be updated by Bayes’ rule at the equilibrium path (which mean-

s the information set is reached when the equilibrium strategy is played).

These three requirements together define a weak PBE.

However, the weak PBE does not impose any restriction off the equilib-

rium path. It is loosely defined by stating that players should be sequen-

tially rational given beliefs in which Bayes’ rule is applied“whenever pos-

sible.”Consequently, there may exist undesirable weak perfect Bayesian

equilibria. This is why the modifier“weak”was added here. So it is nec-

essary to make further refinements.

Then a fourth requirement is the full consistence in the sense that the off-

equilibrium-path beliefs are also determined by Bayes’ rule and the player-

s’ equilibrium strategies where possible through the means of“trembling-

hand”, i.e., playing completely mixed strategy so that the probability of

1When considering the signaling game with two players whose types are the only asym-
metry of information, it is called the perfect Bayesian equilibrium (PBE) since it is equiva-
lent to the sequent equilibrium.
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reaching any information set is positive and then beliefs on any informa-

tion set can be updated according to Bayes’ rule. These four requirements

together define the solution concept of sequential equilibrium proposed

by Kreps and Wilson (1982a) or called the strong PBE. Thus, the sequen-

tial equilibrium refines the Bayes-Nash equilibrium concept by eliminating

“noncredible threats,”and also eliminates some of the SPNE that exist

“noncredible threats”when there is imperfect information.

When the types of players are the asymmetry of information, we will

define the perfect Bayesian equilibrium and discuss the signaling game.

All these solution concepts can be further refined by imposing various re-

strictions.

In the following, we will discuss these equilibrium solution concept-

s. We will first consider the situation where earlier moves of players are

private information or the initial mover (state or type) of a player is deter-

mined by Nature. We then consider signaling games where types of players

are private information.

6.6.1 Beliefs, Sequential Rationality and Bayes’ Rule

Specification of Belief:

Below, we first introduce the concept of belief system/assessment.

Definition 6.6.1 (A System of Belief) A system of beliefs in an extensive-form

game ΓE is a function µ : X → [0, 1] that maps all actions in each informa-

tion set to a probability distribution, i.e., for each information set h ∈ H ,

we have ∑
x∈h

µ(x) = 1.

That is, a belief system means that for any information set h, the player

who moves at point h believes that she is at node x ∈ h with probability

µ(x|h). A player’s belief system on an information set is actually a sub-

jective judgment on the types of the opponents and the player’s previous

actions.
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Sequential Rationality:

In a dynamic game of incomplete information, just like in a dynamic game

of complete information, the desirability for players’ rationality is sequen-

tial rationality. Sequential rationality requires that at any point in the game,

a player will choose the optimal actions from that point on given the oppo-

nents’ strategies and her beliefs about what happened so far in the game.

Then, a behavior strategy that assigns a probability distribution over ac-

tions at each information set h should be used. Since we only deal with

games of perfect recall, as indicated before, we may simply call a behavior

strategy as a (mixed) strategy.

Definition 6.6.2 (Assessment) An assessment is a pair (σ,µ) consisting of

a strategy profile σ and a system µ.

Definition 6.6.3 (Sequential Rationality) A (behavior) strategy profile σ =
(σh)h∈H with σh ∈ ∆A(h) in an extensive-form game ΓE is sequentially ra-

tional at information set h ∈ H given a system of belief µ, if

Eι(h)[uι(h)(σh,σ−h)|h, µ] = Eι(h)[uι(h)(σ′
h,σ−h)|h,µ], ∀ σ′

h ∈ ∆A(h),

where σ−h = (σh′)h′∈H/h.

A strategy profile σ is sequentially rational given belief system µ if strategy

profile σ is sequentially rational at every information set h ∈ H given belief

system µ.

We say that an assessment (σ,µ) is sequentially rational if the strategy

profile σ is sequentially rational given belief system µ.

The sequential rationality implies that, in order to have an equilibri-

um σ, µ must also be consistent with σ, which requires that players know

which (mixed) strategies are played by the other players.

Although subgame perfect often very useful in capturing the principle

of sequential rationality, sometimes it is not enough. The following exam-

ple shows that SPNE cannot give us a direct help to eliminate those Nash

equilibria with incredible threat strategies.
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Example 6.6.1 (Non-Sequential Rationality of a SPNE) Figure 6.12 depict-

s a market entry game with two firms where firmE can have two strategies

to enter, Enter 1 and Enter 2, but firm I cannot distinguish which strategy

firm E has used if entry occurs. Then firm I’s information set contain two

nodes. Firms’ profile of strategies can be discussed in the dynamic game of

incomplete information.

0

3

-2

-2

5

0

-2

-2

3

1

Firm E

Firm I

Stay out Enter 2
Enter 1

Fight

Fight

Accommodate

Accommodate

Figure 6.12: Market Entry Game.

Firm I
Accommodate if entry occurs Fight if entry occurs

Firm E Stay out 0, 3 0, 3
Enter 1 5, 0 −2,−2
Enter 2 3, 1 −2,−2

Table 6.23: The Normal Form Representation of Market Entry Game.

There is only one subgame that is the whole game and thus all Nash

equilibria are SPNE. From the normal form representation depicted in Ta-

ble 6.23, this game has two Nsh equilibria: One is (Stay Out, Fight if entry

occurs) and the other is (Enter 1, Accommodate if entry occurs). However,

strategy profile (Stay Out, Fight if entry occurs) does not satisfy sequential

rationality since the sequential rationality for incomplete information game

requires that the actions on any information set (not merely on a subgame,

here it is the whole game) should be rational. On firm I’s information set,

regardless of what firm I’ belief is (i.e., regardless of what entry strategy
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firm E has occurred),“Accommodate if entry occurs”is always more fa-

vorable than“Fight if entry occurs”.

Therefore, the solution concept of subgame perfect can not be directly

applied to argue the sequential rationality in a dynamic game of incomplete

information. However, the logic of SPNE is applicable. Sub-game perfect

requires that an equilibrium strategy not only constitutes Nash equilibri-

um in the whole game, but also constitutes Nash equilibrium in every sub-

game. Following this logic, we require the sequential rationality for every

continuation game which may begin with an information set with multi-

ple decision nodes and also assigns beliefs (probabilities) about at which

decision node the player is. Although continuation game is kind of like a

subgame, but it is different from a subgame since a subgame begins with

the single decision node and does not divide any information set.

A reasonable equilibrium then should meet the following requirements:

given each player’s beliefs about other players’ moves (decision nodes),

the player updates the beliefs using Bayes’ rule, and the resulting strategy

profile constitutes a Bayesian-Nash equilibrium in each continuation game.

Bayes’ Rule:

Understanding Bayes’ rule is very important to understand the concept of

(weak) Bayesian perfect equilibrium. Before giving a formal definition of

weak Bayesian perfect equilibrium, we first explain Bayes’ rule with the

following intuitive example.

Example 6.6.2 (An Intuitive Explanation of Bayes’ Rule) Suppose that two

events S (Smoke) and F (Fire) can occur exclusively or together according

to some prior probability distribution P (·). P (S) denotes the prior proba-

bility of smoke (how often we can see smoke), P (F ) the prior probability

of fire (i.e., how often there is fire), and P (S ∩ F ) the prior probability that

it will be smoke with fire. When you see smoke; what can you infer about

(update) the probability of fire (without seeing the fire)?
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Since the joint probability distribution P (S ∩ F ) can be expressed as

P (S ∩ F ) = P (F ) × P (S|F )

= P (S) × P (F |S),

conditional on event S occurring, the probability that event F occurs is

P (F |S) = P (S ∩ F )
P (S)

= P (F ) × P (S|F )
P (S)

,

which tells us:

When we know how often smoke happens given that fire happens (i.e.,

P (S|F )), how likely fire is on its own (i.e., P (F )), and how likely smoke is

on its own (i.e., P (S)), then we can know how often fire happens given that

smoke happens (i.e.,P (F |S)).

P (F |S) is then called the posterior which is what we are trying to esti-

mate, and P (S|F ) the likelihood which is the probability of observing the

new evidence, given the initial hypothesis. So the formula kind of tells us

"forwards" P (F |S) when we know "backwards" P (S|F ).

For instance, dangerous fires are rare (P (F ) = 1%), but smoke is fairly

common (P (S) = 10%) due to barbecues, and P (S|F ) = 95% of dangerous

fires make smoke. We can then discover the probability of dangerous Fire

when there is Smoke:

P (F |S) = P (F ) × P (S|F )
P (S)

= 1% × 95%
10%

= 9.5%.

Thus, given the probability of S, using Bayes’ rule, we can significantly

update the probability of fire from the prior 1% to the posterior 9.5%.

Now if we interpret S and F as the sets of actions and players’s decision

nodes, respectively, since players’ previous actions reveal the information

on their moves, one can update one’s belief system on opponents’ moves

using Bayes’ rule.
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To illustrate the consistency requirement on belief to be made in the

definition of a weak perfect Bayesian equilibrium, consider a situation in

which each player plays a completely mixed strategy profile σ (i.e., each

player’s equilibrium strategy assigns a strictly positive probability to each

possible action at every information set h ∈ H). In this case, every informa-

tion set in the game can be reached with positive probability. In particular,

if an information set contains only one decision node, it is clear that the

belief on this information set is giving probability 1 to this decision node.

Then the player should sign a conditional probabilities of being at each x

of nodes in every information set h using Bayes’ rule:

prob(x|h,σ) = prob(x|σ)∑
x′∈h prob(x′|σ)

= prob(x|σ)
prob(h|σ)

. (6.6.7)

The more serious issue arises when players are not using completely

mixed strategies. In this situation, not all information sets can be reached

with a positive probability, Bayes’ rule is not well defined at which the de-

nominator in the above formula is zero. Then Bayes’ rule cannot be used to

compute conditional probabilities for the nodes in these information sets.

We refer to the information set which is not reached with positive probabil-

ity as an information set off the equilibrium path.

In the dynamic game of incomplete information, there are different e-

quilibrium concepts corresponding to different requirements for the infor-

mation sets off the equilibrium path. The solution concept of weak perfect

Bayesian equilibrium given below does not impose any restrictions on the

beliefs on information sets off the equilibrium path, but rather imposes re-

strictions only on the information sets on an equilibrium path, requiring

that beliefs are consistent with the equilibrium strategy’s sequential ratio-

nality.

6.6.2 Weak Perfect Bayesian Equilibrium

Now we formally define the concept of weak perfect Bayesian equilibrium

for a dynamic game of incomplete information.
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Definition 6.6.4 (Weak Perfect Bayesian Equilibrium) An assessment (σ,µ)
of (behavior) strategy profile and belief system constitutes a weak perfect

Bayesian equilibrium (weak PBE) of an extensive-form game ΓE if the fol-

lowing conditions are met:

(1) (Sequential rationality) Given belief system µ, the strategy

profile σ is sequentially rational (i.e., the choice based on

belief system is sequentially optimal);

(2) (Consistence) Belief system µ is derived from strategy pro-

file σ and initial beliefs (if they exist) through Bayes’ rule

whenever possible (i.e., the belief system supporting this

choice is correct). In other words, for any information set

h ∈ H , as long as the probability of reaching information set

h is positive under the strategy profile σ, i.e., prob(h|σ) > 0,

then for all x ∈ h, the belief on information set h is

µ(x) = prob(x|σ)
prob(h|σ)

.

If prob(h|σ) = 0, the concept of weak perfect Bayesian equilibrium im-

poses no s on the belief of information set h.

Note that a weak PBE is a pair but not just a strategy profile.

We illustrate the application of the weak PBE concept using the previ-

ous game depicted by Figure 6.12.

Example 6.6.3 (Solving Weak Perfect Bayesian Equilibrium) This is a con-

tinuation of Example 6.6.1. In this Market Entry Game with firmE and firm

I , we already know that Nash equilibrium (Stay Out, Fight if Enter occurs)

is not a weak PBE since it does not satisfy sequential rationality. We now

show that Nash equilibrium (Enter 1, Accommodate if Enter occurs) is a

weak PBE strategy profile.

To show this, we need to supplement these strategies with a belief sys-

tem that satisfies two conditions of the weak PBE. It is clear that probability

on firm E’s decision node is 1 since firm E’s information set contains only

one decision node. Also, given the strategy profile (Enter 1, Accommodate
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if Enter occurs), firm i’s information is reached with positive probability,

and further firm I’s beliefs must assign probability 1 to the left decision

node and 0 to the right decision node in the information set. This is be-

cause“Accommodate if entry occurs”is a dominant strategy on firm I’s

information set (i.e., irrespective of what strategy of firm E is), sequential

rationality requires that firm I chooses“Accommodate if Enter occurs”.

If firm I chooses“Accommodate if Enter occurs”, the optimal choice for

firm E is “Enter 1”, which is also an equilibrium strategy under the re-

quirement of sequential rationality. Thus, this strategy profile (Enter 1, Ac-

commodate if Enter occurs) is the unique weak PBE strategy profile.

However, sometimes there may exist some unreasonable weak perfect

Bayesian equilibria because it does not impose any restrictions on beliefs

off the equilibrium path. In some cases, a weak PBE may not even be a

subgame perfect equilibrium. Let us reconsider Example 6.4.5.

Example 6.6.4 (A Weak PBE may not be a Subgame Perfect Equcilibrium)

This is the continuation of Example 6.4.5. As shown in Figure 6.13, firm E

is the potential market entrant, and firm I is the incumbent. Firm E first

chooses whether or not to enter. Once firm E enters, firm E and firm I

choose whether to accommodate or fight simultaneously.
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Firm E

Stay out Enter 
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Fight
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Accommodate

Accommodate

Accommodate

Figure 6.13: Weak perfect Bayesian equilibrium is not a subgame perfect
Nash equilibrium.

We know that the game has three Nash equilibria:
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(1) ((Stay out, Accommodate if entering), Fight if Enter occurs);

(2) ((Stay out, Fight if entering), Fight if Enter occurs);

(3) ((Enter, Accommodate if entering), Accommodate if Enter

occurs).

A weak PBE of this game is the strategy profile (σE , σI)=((Stay out, Ac-

commodate if entering), Fight if Enter occurs) combined with beliefs for

firm I that assigns probability 1 to firm E having played “Fight if enter-

ing”, which is shown in Figure 6.13.

However, this weak PBE is not a subgame perfect equilibrium, because

in the subgame after firm E enters, the only Nash equilibrium is that both

firmE and firm I choose“Accommodate if Enter occurs”. Then, the only

subgame perfect equilibrium of this game is that firm E chooses to enter,

and once it enters, it chooses “Accommodate”and firm I also chooses

“Accommodate”after firm E enters.

The problem is that after firm E enters, firm I’s belief about firm E’s

play is unrestricted by the weak perfect Bayesian equilibrium because firm

I’s information set is off the equilibrium path.

This example shows that since there are no restrictions on beliefs off

the equilibrium path, a weak perfect Bayesian equilibrium may not be a

subgame perfect equilibrium. Firm I’s beliefs off the equilibrium path do

not match firm E’s strategy in the subgame.

The following example further illustrates that due to the lack of restric-

tions on beliefs off the equilibrium path, these beliefs become unsensible.

Example 6.6.5 In the game depicted in Figure 6.14, “Nature”randomly

selects decision node on player 1’s information set, and the probability with

which any decision node on this information set is selected is 0.5. Player 1

does not know “Nature”’s choice; player 2 on her information set does

not know“Nature”’s choice either, but her belief is that player 1’s choice

is“y”.

A weak PBE of this game is given by the strategies indicated by arrows

on the chosen branches at each information set, and beliefs are indicated

by numbers in brackets at the nodes in the information sets in Figure 6.14,



6.6. DYNAMIC GAMES OF INCOMPLETE INFORMATION 355

1

5

0

3

3

1

0

3

3

5

2

10

Nature

player 1

player 2

[0.5] [0.5]

[0.1][0.9]

Figure 6.14: Beliefs off the equilibrium path.

i.e., player 1 chooses“x”and player 2 chooses“l”given her belief that

player 1’s choice is“y. Moreover, player 1’s beliefs on his information set

are 0.5 for the left decision node and 0.5 for the right decision node, and

player 2’s beliefs on her information set are 0.9 for the left decision node

and 0.1 for the right decision node.

Obviously, given the beliefs of players 1 and 2, their strategies meet the

requirement of sequential rationality since player 2’s expected payoff pro-

file 3 of choosing the left node is greater than the expected payoff profile

1.4 of choosing the right node, and player 1’s expected payoff profile 1.5 of

choosing x is greater than the expected payoff profile 0 of choosing y. How-

ever, while player 1’s beliefs coincide with“Nature’s”selection probabil-

ities, player 2’s information set is off the equilibrium path, and there are

no restrictions on her beliefs on player 1’s information set. Moreover, these

beliefs are not sensible. Player 2’s beliefs are unsensible since it is not con-

sistent with“Nature”’s choices. Player 1 has the same probability on his

two decision nodes, once player 1 has chosen y, player 2’s beliefs on play-

er’s 1 information set should be 0.5 for both of her decision nodes, instead

of 0.9 for the left decision node and 0.1 for the right decision node. Here we

see that it is desirable to require that beliefs at lease be structurally consis-

tent off the equilibrium path.

The above two examples show that the concept of the weak PBE needs

to be strengthened and it is necessary to impose extra consistence restric-
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tions on beliefs off the equilibrium path; otherwise, a weak perfect Bayesian

equilibrium may contain unreasonable beliefs and strategy profiles. Below,

we will discuss some strengthened equilibrium concepts which impose cer-

tain consistence restrictions on beliefs off the equilibrium path. We first

consider the concept of sequential equilibrium.

6.6.3 Sequential Equilibrium

Due to the problem of weak perfect Bayesian equilibrium, a more reason-

able equilibrium concept needs to impose suitable restrictions on belief sys-

tem on information sets off the equilibrium path. Kreps and Wilson (1982a)

proposed the solution concept of sequential equilibrium that strengths both

the SPNE and the weak PBE through restricting beliefs off the equilibrium

path. In a Bayesian game, if an information set is reached with probabili-

ty 0 when an equilibrium strategy is played, Bayes’ rule cannot be used to

assess the beliefs on this information set.

In the spirit of the trembling-hand perfect Nash equilibrium in com-

plete information, the concept of sequential equilibrium is then introduced

by requiring the full consistence, i.e., taking the possibility of off the equi-

librium path into account by playing completely mixed strategy so that the

probability of reaching any information set is positive and thus beliefs on

any information set can be updated according to Bayes’ rule.

Definition 6.6.5 (Sequential Equilibrium) An assessment (σ,µ) of (behav-

ior) strategy profile and a belief system constitutes a sequential equilibrium

of an extensive-form game ΓE if the following conditions are satisfied:

(1) (Sequential rationality) Given belief system µ, the (behav-

ior) strategy profile σ is sequentially rational.

(2) (Full Consistence) There is a completely mixed strategy se-

quence {σk}∞
k=1, such that limk→∞σk = σ and limk→∞µk =

µ, where µk are the beliefs derived from strategy σk using

Bayes’ rule.

Thus, in order to identify a sequential equilibrium, one must check se-

quential rationality and full consistence of an assessment (σ,µ), i.e., one



6.6. DYNAMIC GAMES OF INCOMPLETE INFORMATION 357

must check if a strategy profile σ is a best response to belief µ(·|h) at every

information set h, and if the belief system µ is fully consistent with the strat-

egy profile σ so that each player knows which (possibly mixed) strategies

are played by the other players.

Therefore, to verify whether or not an assessment (σ,µ) of strategy pro-

file and belief system constitutes a sequential equilibrium, we need to find

a sequence of completely mixed disturbances which approaches the strat-

egy profile, and determine if the belief assessment sequence based on the

completely mixed strategy sequence and Bayes’ rule converges to the belief

assessment.

The following example from Myerson (1991) illustrates how to find

such completely mixed strategies and the calculation of belief system.
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Figure 6.15: Completely Mixed Strategy and Its Beliefs.

Example 6.6.6 (Beliefs of Completely Mixed Strategies) The extensive game

is depicted by Figure 6.15. Consider the strategy profile (z1, y2, y3), which is

a Nash equilibrium of this game. If it is disturbed into a completely mixed

strategy. Player 1 chooses strategies z1 with probability 1 − ε0 − ε1, y1 with

probability ε1 and x1 with probability ε0. When ε0 → 0, ε1 → 0, player

1’s strategies converge to pure strategy z1. Similarly, player 2 chooses s-

trategies y2 with probability 1 − ε2 and x2 with probability ε2; and player 3

chooses strategies y3 with probability 1 − ε3 and x3 with probability ε3.
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Under this completely mixed strategy profile, players’ belief assess-

ments are as follows:

Since player 1’s information set has only one decision node, the belief

probability on this decision node is 1. Player 2’s information set has two

decision nodes. According to player 1’s completely mixed strategy and

by Bayes’ rule, player 2’s belief probabilities on the top decision node and

bottom decision node must satisfy

α = ε0
ε0 + ε1

and

1 − α = ε1
ε0 + ε1

.

Similarly, player 3’s belief probabilities of the decision nodes from the

top to the bottom are

β = ε0ε2
ε0 + ε1

= αε2,

γ = ε0(1 − ε2)
ε0 + ε1

= α(1 − ε2),

δ = ε1ε2
ε0 + ε1

= (1 − α)ε2,

ζ = ε1(1 − ε2)
ε0 + ε1

= (1 − α)(1 − ε2),

respectively.

When ε0, ε1, ε2 and ε3 approach to 0, these consistent beliefs must sat-

isfy:

β = 0, δ = 0, γ = α, ζ = 1 − α,

whereαmay be any number in the interval [0, 1]. So there is a one-parameter

family of beliefs vectors that are fully consistent with the strategy profile

(z1, y2, y3).

However, it is not a sequential equilibrium since with these beliefs,

(z1, y2, y3) is not sequently rational. This is because when ε0, ε1, ε2 and ε3 al-

l approach to 0, completely mixed strategy profiles converge to (z1, y2, y3).

The fact that player 3’s choice of y3 is sequentially rational requires that the

expected payoff profile from choosing strategy x3 is lower than that from
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choosing strategy y3 when γ = α, ζ = 1 − α, β = 0, δ = 0 so that the belief

system satisfies 3α < 1 so that α < 1/3. The fact that player 2’s choice of y2

is sequentially rational requires that the belief system satisfies 3(1 − α) < 1
so that α > 2/3. Obviously, the above two inequalities cannot be satisfied

at the same time.

To find a sequential equilibrium of this example, we consider ε0, ε1, ε2

and ε3 to be real numbers that belong to [0,1], and ε0 + ε1 5 1 is satisfied.

In the belief system described above, a sequential equilibrium requires that

player 3 satisfies sequential rationality.

Player 3’s sequential rationality means:

If ε3 = 0, i.e., for player 3, the expected payoff profile from

choosing strategy x3 is lower than that from choosing strat-

egy y3. Then γ+ζ > 2β+3γ+2δ, or ζ > 2(β+γ+δ) = 2(1−ζ),

i.e., (1 − α)(1 − ε2) > 2
3 is required;

If ε3 = 1, (1 − α)(1 − ε2) < 2
3 is required;

If ε3 ∈ (0, 1), (1 − α)(1 − ε2) = 2
3 is required.

Player 2’s sequential rationality means the following:

If ε2 = 0, 2ε3 + 3(1 − α)(1 − ε3) < 1 − ε3 is required;

If ε2 = 1, 2ε3 + 3(1 − α)(1 − ε3) > 1 − ε3 is required;

If ε2 ∈ (0, 1), 2ε3 + 3(1 − α)(1 − ε3) = 1 − ε3 is required.

Beliefs need to be consistent. Suppose that ε3 = 0 is player 3’s belief

assessment in a sequential equilibrium. Then, there is (1 − α)(1 − ε2) > 2
3 .

However, 2ε3 + 3(1 − α)(1 − ε3) = 3(1 − α) > 2 > 1 − ε3 = 1 implies

that ε2 = 1, which contradicts (1 − α)(1 − ε2) > 2
3 . As such, ε3 = 0 cannot

be player 3’s belief assessment in a sequential equilibrium. Suppose that

ε3 ∈ (0, 1), i.e., choosing a completely mixed strategy, is player 3’s belief

assessment in a sequential equilibrium. Then, there is (1 − α)(1 − ε2) =
2
3 , which further requires (1 − α) = 2

3 . (1 − α) = 2
3 means 2ε3 + 3(1 −

α)(1 − ε3) > 1 − ε3, which further requires ε2 = 1, contradicting (1 −
α)(1−ε2) = 2

3 . Therefore, if a sequential equilibrium exists, player 3’s belief

assessment must inevitably satisfy ε3 = 1, and thus (1 − α)(1 − ε2) < 2
3
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must be satisfied. ε2 = 1 means 2ε3 + 3(1 − α)(1 − ε3) > 1 − ε3, and

ε2 = 1 is also compatible with (1 − α)(1 − ε2) < 2
3 . The above discussion

implies that a sequential equilibrium requires ε3 = 1 and ε2 = 1. Further,

player 1’s sequential rationality requires that player 1 chooses strategy x1,

i.e., ε0 = 1. Therefore, the game has a unique sequential equilibrium, i.e.,

strategy profile (x1, x2, x3), and the belief system satisfies α = 1, β = 1 and

γ = δ = ζ = 0.

For a second example, we consider the following game given by Rosen-

thal (1981) and adopted from Myerson (1991).

Example 6.6.7 (Sequential Equilibrium with Nature) The game is depict-

ed by Figure 6.16, which is interpreted as follows. After“Nature”chooses

the upper chance event with probability 0.95, two players alternate choos-

ing between generous (gk, k = 1, 2, 3, 4) and selfish (fk, k = 1, 2, 3, 4) ac-

tions until someone is selfish or until both have been generous twice. Each

player loses $1 each time she is generous, but gains $5 each time the other

player in generous. Everything is the same after the lower chance event,

which occurs with probability 0.05, except that player 2 is then incapable

of being selfish. Player 1 does not directly observe the chance outcome.

The numbers in the angled brackets on decision nodes indicate the belief

probabilities of the decision nodes, and the numbers in the parentheses be-

low branches indicate the move probabilities with which the corresponding

players choose pure strategies.

A sequential equilibrium of this game necessitates that the beliefs on

player 1’s information set satisfy α = 0.95. Information set 2.4 is the second

information set for player 2, and according to the requirement of sequential

rationality, player 2 chooses f4 or ζ = 0. Information set 1.3, which contains

two decision nodes, is player 1’s information set, which is the outcome

of player 1 choosing g1. Player 1 cannot distinguish between these two

decision nodes on information set 1.3. Since the probability with which

player 2 chooses g2 is γ, by Bayes’ rule, player 1’s beliefs on information set

1.3 satisfy δ = 0.95βγ
0.95βγ+0.05β = 19γ

19γ+1 .

Under this belief system, player 1’s sequential rationality requires the

following:
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.95

.05

Figure 6.16: Computing Mixed Strategy Sequential Equilibrium.

If player 1’s behavior strategy on information set 1.3 is ε = 0,

then 4 > 3δ + 8(1 − δ);

If player 1’s behavior strategy on information set 1.3 is ε = 1,

4 < 3δ + 8(1 − δ);

If player 1’s behavior strategy on information set 1.3 is ε ∈ (0, 1),

then 4 = 3δ + 8(1 − δ).

On information set 2.2, player 2’s sequential rationality requires:

If player 2’s behavior strategy on information set 2.2 is γ = 1,

then 9ε+ 4(1 − ε) > 5;

If γ = 0, then 9ε+ 4(1 − ε) < 5;

If γ ∈ [0, 1], then 9ε+ 4(1 − ε) = 5.

On information set 1.1, player 1’s sequential rationality requires the fol-

lowing:

If player 1’s behavior strategy on information set 1.1 is β = 1,

then 0.95[3γε+ 4γ(1 − ε) − (1 − γ)] + 0.05[8ε+ 4(1 − ε)] > 0;

If β = 0, then 0.95[3γε+4γ(1−ε)−(1−γ)]+0.05[8ε+4(1−ε)] < 0;

If β ∈ [0, 1], then 0.95[3γε+ 4γ(1 − ε) − (1 − γ)] + 0.05[8ε+ 4(1 −
ε)] = 0.
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Below, we describe the solution process of sequential equilibrium.

Suppose that ε = 1 holds in a sequential equilibrium. ε = 1
implies that 4 < 3δ+ 8(1 − δ), i.e., δ < 0.8, or 19γ

19γ+1 < 0.8, or

γ < 4/19. However, ε = 1 also means that 9ε + 4(1 − ε) =
9 > 5, and γ = 1, which contradicts γ < 4/19.

Suppose that ε = 0 holds in a sequential equilibrium. ε = 0
means 4 > 3δ + 8(1 − δ), and γ > 4/19. However, ε = 0
also means that 9ε + 4(1 − ε) = 4 < 5, and γ = 0, which

contradicts γ > 4/19.

As a result, in a sequential equilibrium, there must be ε ∈ (0, 1),

which requires 4 = 3δ + 8(1 − δ) or γ = 4/19. γ = 4/19
means 9ε+ 4(1 − ε) = 5, and ε = 0.2.

When ε = 0.2 and γ = 4/19, 0.95[3γε + 4γ(1 − ε) − (1 − γ)] +
0.05[8ε+ 4(1 − ε)] = 0.25 > 0, which means that β = 1.

Therefore, the only sequential equilibrium of the entire game is: the

behavior strategy profile is β = 1, γ = 4/19, ε = 0.2, ζ = 0; and the belief

system is α = 0.95, and δ = 0.8.

In a finite extensive-form game, a sequential equilibrium always exists.

Proposition 6.6.1 Every finite incomplete information extensive-form game has

a sequential equilibrium.

Readers who are interested in the proof of this proposition can refer to

the classical literature of Kreps and Wilson (1982).

6.6.4 Forward Induction

Sequential rationality and subgame perfectness are backward induction

principles. The forward induction principle may also be used in the anal-

ysis of extensive-form game with incomplete information. In some games,

the rationalization of beliefs not only requires rational backward induction,

but also rational forward induction. In this subsection, we consider two ex-

amples that are adopted from Myerson (1991).
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The first example reflects a forward induction principle would assert

that the behavior of rational players in a subgame may depend on the op-

tions that were available to them in the earlier part of the game, before the

subgame.

Figure 6.17: Forward Induction.

Example 6.6.8 In the game depicted in Figure 6.17, there are two (pure s-

trategy) sequential equilibria. One is strategy profile (a1, y1; y2), and the

belief probability of the lower decision node on player 2’s information set

2.2 is 1. The other is strategy (b1, x1;x2), and the belief probability of the

upper decision node on player 2’s information set 2.2 is 1. However, the

first sequential equilibrium does not satisfy the forward induction criteri-

on. If player 2 enters information set 2.2, player 1 has not chosen strategy

a1 on information set 1.0. If player 1 chooses a1, his payoff profile is 4. If

player 1 is rational, the goal of having not chosen strategy a1 on informa-

tion set 1.0 is to obtain a higher payoff profile in the continuation subgame

equilibrium. In consequence, the Nash equilibrium of the subgame starting

from information set 1.1 is (x1, x2).

If the Nash equilibrium of this subgame is (y1, y2), player 1 only ob-

tains a payoff profile of 3, which is not as good as choosing strategy a1 on

information set 1.0. In other words, the strategy (b1, y1) is player 1’s strictly

dominated strategy (relative to strategy a1). If player 1 knows that player

2 will reason in this way, then once the subgame starting from information

set 1.1 is entered, the Nash equilibrium will be (x1, x2). This reasoning pro-
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cess is called the forward induction. In the game shown in this example,

only the sequential equilibrium (b1, x1, x2) satisfies the forward induction

criterion. In this sequential equilibrium, the belief probability of the upper

decision node on player 2’s information set 2.2 is 1.

However, the forward induction criterion may conflict with the back-

ward induction criterion. The following example (see Figure 6.18) shows

the possibility of such a conflict.

Example 6.6.9 In this example, by backward induction, there are two Nash

equilibria (x1, x2) and (y1, y2) in the subgame that starts from information

set 1.3, and their equilibrium payoff profiles are (9, 0) and (1, 8), respective-

ly. On information set 2.2, if player 2 chooses a2, her payoff profile is only

7, and if player 2 chooses b2, she wants to obtain an equilibrium payoff pro-

file of 8 in the subgame starting from the information set 1.3 (otherwise, she

has chosen a2). Therefore, the Nash equilibrium is (y1, y2).

However, reaching information set 1.3 indicates that player 1 has cho-

sen b1 on information set 1.1. If player 1 chooses a1 on information set 1.1,

his payoff profile is only 2. As a consequence, for player 1, the purpose

of choosing b1 is to ultimately obtain a payoff profile that is no less than

2. However, when the backward induction is combined with the previ-

ous forward induction, player 1’s final equilibrium payoff profile is 1 if she

chooses b1, which contradicts the forward induction here.

Figure 6.18: Conflict between Forward Induction and Backward Induction.

Another objection to forward induction is that some irrational strategy

disturbances may be misunderstood as purposefully rational actions. As

in the previous example, player 1 originally intends to choose a1, but may
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accidentally choose b1. Therefore, player 2 may think that player 1 will

choose x1 in the subsequent subgame.

The extensive-form dynamic games we considered so far are assumed

that types of players are complete information. In dynamic games of in-

complete information, an important type of game is the so-called signaling

game, in which players’ types can be inferred through their actions. In this

kind of game, there are many sequential equilibria which call for further

refinements.

6.6.5 Signaling Game

Spence (1973) proposed a new idea when discussing the value of education.

He found that an important function of education was to deliver signals

on individuals’ productivity. In the labor market, different workers have

heterogeneous productivities. However, individual productivity is private

information so that employers usually do not know or is costly to obtain. A

simple and convenient way of judging individual productivity is through

years of education or diplomas. Different levels of education may reflec-

t different intrinsic productivity. From years of education and diplomas,

employers can speculate on potential employees’ types.

Consider a signaling game that is described by a two-stage extensive-

form game. Assume that there are two players 1 and 2, and player 1’s type θ

is his private information. The set of all possible types is denoted as Θ. The

prior distribution of types is p(·) : Θ → [0, 1], which is common knowledge.

Player 1’s action in the first stage is represented by a1, and the set of all pos-

sible actions is denoted as A1. In the second stage, after observing player

1’s action a1, player 2 chooses action a2. The set of all possible actions of

player 2 is denoted as A2. When player 1’s type θ becomes public infor-

mation, these two players’ payoff profiles are u1(a1, a2, θ) and u2(a1, a2, θ),

respectively. Let α1 ∈ ∆A1 and α2 ∈ ∆A2 represent the mixed actions of

players 1 and 2, respectively.

Player 1’s strategy σ1(·|θ) describes the probability distribution on his

action set A1 when his type is θ; player 2’s strategy σ2(·|a1) describes the

probability distribution on her action set A2 after she observes player 1’s
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action a1. Prior to taking her action, player 2 speculates that the probability

with which player 1’s type is θ is µ(θ|a1). The formation of this posterior

belief depends on player 1’s strategy a1 and Bayes’ rule.

The equilibrium concept adopted here is that of perfect Bayesian equi-

librium (PBE).

Definition 6.6.6 (Perfect Bayesian Equilibrium of Signaling Games) A per-

fect Bayesian equilibrium of a signaling game consists of a strategy profile

(σ1
∗(·|θ), σ2

∗(·|a1)) and posterior beliefs µ(·|a1), satisfying:

(1) Given a1, σ2
∗(·|a1) ∈ arg maxα2

∑
θ∈Θ

µ(θ|a1)u2(a1, α2, θ);

(2) Given θ ∈ Θ, σ1
∗(·|θ) ∈ arg maxα1u

1(α1, σ2
∗(·|a1), θ);

(3) µ(θ|a1) = p(θ)σ1∗(a1|θ)∑
θ′
p(θ′)σ1∗(a1|θ′) , if

∑
θ′
p(θ′)σ1

∗(a1|θ′) > 0; other-

wise µ(·|a1) is an arbitrary probability distribution on Θ, if∑
θ′
p(θ′)σ1

∗(a1|θ′) = 0, i.e., Bayes’ rule should be used to up-

date beliefs about players’ types whenever players’ previous

actions have positive probabilities conditional on the history

of previous play.

Although the definition of perfect Bayesian equilibrium is consisten-

t with the previous weak perfect Bayesian equilibrium, in the signaling

game, a great correlation exists between the perfect Bayesian equilibrium

and sequential equilibrium. Indeed, Fudenberg and Tirole (1991) proved

that in a two-stage or two-type signaling game, they are equivalent. In

the following, we will discuss the signaling game’s equilibrium concept

through an example.

Example 6.6.10 (Education Game) Suppose that there are two different type-

s of individuals whose intrinsic productivities are θh and θl, respectively,

where θh > θl. Productivity can be viewed as unit labor’s output value,

and the proportion of high-productivity individuals is λ (priori distribu-

tion).

The costs of education level e for different types of individuals areC(e, θ),

which satisfy C(0, θ) = 0, Ce(e, θ) > 0, Cee(e, θ) > 0, C(e, θh) < C(e, θl),
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and Ce(e, θh) < Ce(e, θl) (i.e., Ceθ(e, θ) > 0, which is called the single-

crossing property).

Assume that in the labor market, due to competition, the wage paid by

an employer equals to the expected labor productivity of the worker. In the

first stage, a job seeker chooses his education level e. In the second stage,

after observing the job seeker’s education level e, an employer’s posterior

belief on the job seeker’s type θh is µ(θh|e), and thereby the employer pays

wage:

w = µ(θh|e)θh + (1 − µ(θh|e))θl.

The employer chooses to provide a labor contract with wage w, and the job

seeker chooses whether or not to accept it. If the labor contract is accepted,

the payoff profile of the job seeker whose type is θ is given by

u(w, e|θ) = w − C(e, θ).

If the labor contract is not accepted, it is assumed that the payoff profile

of each type of job seeker is zero. Then, the labor contract should satisfy

participation constraint:

u(w, e|θ) = w − C(e, θ) = 0 for θ ∈ {θh, θl}.

The equilibrium of such a signaling game is usually divided into two

types. One is separating equilibrium, in which different types of individ-

uals choose different actions in the first stage; the other is pooling equilib-

rium, in which all types of individuals choose the same action in the first

stage.

Separating equilibrium: Let eh and el be the education levels chosen

by job seekers of type θh and θl, respectively, in the first stage and eh ̸= el.

After observing the education level e, the employer provides the labor con-

tract w(e), which satisfies wh = w(eh) and wl = w(el) in the separating

equilibrium. Since eh ̸= el, the employer’s beliefs in the separating equi-

librium are µ(eh) = 1 and µ(el) = 0. Thus, the wages provided by the

employer after observing different education levels satisfy wh = θh and

wl = θl. At the same time, for job seekers of type θl, since their type will be
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known to the employer in the separating equilibrium, the rational choic-

es satisfy el = 0. Since it is a separating equilibrium, eh ̸= 0. However,

arbitrary eh > 0 does not necessarily constitute a separating equilibrium.

First, under eh and wage w(eh) = θh, job seekers of type θl have no in-

centive to imitate the action of job seekers of type θh; otherwise, µ(eh) ̸= 1,

which contradicts separating equilibrium. As a consequence, a separating

equilibrium requires the following incentive compatible constraint be sat-

isfied for θl:

u(θh, eh|θl) < u(θl, el|θl),

i.e., θh − C(eh, θl) < θl. Let ẽ satisfy θh − C(ẽ, θl) = θl. Then, a separating

equilibrium requires eh = ẽ.

Secondly, under el = 0 and wage w(el) = θl, job seekers of type θh
have no incentive to imitate the action of job seekers of type θl; otherwise,

µ(el) ̸= 0, which contradicts separating equilibrium. As such, a separating

equilibrium requires the following incentive compatibility be satisfied for

θh:

u(θl, el|θh) < u(θh, eh|θh),

i.e., θl < θh − C(eh, θh). Let ē satisfy θl = θh − C(ē, θh). Obviously, ē > ẽ.

So, when ē = eh = ẽ, each type of job seeker has no incentive to imitate the

action of the other type of job seeker.

Therefore, the separating equilibria of this game are: el = 0, eh ∈ [ẽ, ē],
the beliefs of the employer are µ(eh) = 1 and µ(0) = 0, and the strategies

of the employer are w(eh) = θh, w(0) = θl. In all of the above separating

equilibria, el = 0, eh = ẽ, µ(ẽ) = 1, µ(0) = 0, w(eh) = θh and w(0) = θl

is a Pareto optimal equilibrium, in the sense that no one can be better off

without harming the other (a general definition of Pareto optimality will be

given in Chapter 11).

Pooling equilibrium: In this type of equilibrium, different types of job

seekers choose the same level of education (i.e., e(θh) = e(θl) = e∗). Since

employers observe only one level of education in the equilibrium, the be-

liefs of employers are the same as the initial beliefs (i.e., µ(θh|e∗) = λ). The

beliefs off the equilibrium path are µ(θh|e ̸= e∗) = 0. At this point, employ-

ers pay wp = λθh + (1 − λ)θl. In order to form a pooling equilibrium, e∗ is
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also faced with the incentive compatible constraint that no type of job seek-

er deviates from this choice. The fact that job seekers of type θl are willing

to accept employers’ labor contracts means that the participation constraint

holds:

u(wp, e∗|θl) = wp − C(e∗, θl) = 0.

Let ê satisfy wp − C(ê, θl) = 0. When e∗ > ê, job seekers of type θl will

reject employers’ contracts by the participation constraint. Consequently,

this game’s pooling equilibrium requires e∗ 5 ê.

6.6.6 Reasonable-Beliefs Refinements in Signaling Games

In the signaling games above, we obtain many (continuum) equilibria. These

equilibria are all sequential equilibrium or perfect Bayesian equilibrium.

Therefore, these equilibrium concepts need to be further refined. This sub-

section discusses several commonly used reasonable-beliefs refinements

of perfect Bayesian equilibrium and sequential equilibrium in Signaling

Games. These methods are similar to the idea of eliminating strictly domi-

nated strategies.

Consider a more general signaling game. There are N players and one

“Nature”player. First,“Nature”selects player 1’s type, θ ∈ Θ, and only

player 1 knows his own type. Other players only know a priori probabil-

ity distribution p(θ) about player 1’s type, which is a common knowledge

among players. Then, player 1 chooses his action a1 ∈ A1. After observ-

ing player 1’s action, other players i ∈ {2, · · · , N} choose their strategies

si ∈ Si simultaneously. Define S−1 = S2 × · · · ×SN . After observing player

1’s action a1, the posterior beliefs of other players i ̸= 1 are µ(θ|a1). If play-

er 1 chooses action a1 and other players choose strategy s−1 = (s2, · · · , sN ),

player 1’s utility is u1(a1, s−1, θ), and player i ̸= 1’s utility is ui(a1, s−1, θ).

Domination-Based Refinements of Beliefs

Below, we examine the refinement of beliefs. A reasonable belief of the PBE

should not assign a positive probability to a strictly dominated strategy for

a type. If a strategy is a strictly dominated strategy for a certain type of
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player, after observing this strategy, assigning a positive probability to this

type is clearly not a reasonable belief. The formal definition is as follows.

Definition 6.6.7 (Type Strictly Dominated Strategy) We say that an action

a1 is a strictly dominated strategy for type θ, if there is an action a′
1 ∈ A1, such

that:

min
s′

−1∈S−1
u1(a′

1, s
′
−1, θ) > max

s−1∈S−1
u1(a1, s−1, θ), (6.6.8)

and the updating of beliefs µ(θ|a1) = 0.

Define

Θ(a1) = {θ :̸ ∃a′
1 ∈ A1 makes the above strict inequality (6.6.8) true},

i.e., Θ(a1) presents that under types θ ∈ Θ(a1), a1 is not a strictly dominated

strategy.

In a perfect Bayesian game, reasonable beliefs need to satisfy: if µ(θ|a1) >
0, then θ ∈ Θ(a1).

Since we must also take into account all players’ strategies in equilib-

rium, we need an equilibrium related belief system for eliminating dom-

inated strategies. Let S−1
∗(Θ, a1) ≡ S2

∗(Θ, a1) × · · · × SN
∗(Θ, a1) ⊆ S−1

be all possible equilibrium responses of other players i ̸= 1 to a given be-

lief µ(θ|a1) after observing player 1’s action a1 (i.e., if si∗ ∈ Si
∗(Θ, a1), then

si
∗ ∈ arg maxsiui

∗(a1, si, θ)).

Applying the above criterion, we have the following definition.

Definition 6.6.8 (Belief System after Eliminating Dominated Strategy) Let

action a′
1 ∈ A1 be a strictly dominated strategy for type θ under S−1

∗(Θ, a1),

i.e.,

min
s′

−1∈S∗
−1(Θ,a′

1)
u1(a′

1, s
′
−1, θ) > max

s−1∈S∗
−1(Θ,a1)

u1(a1, s−1, θ). (6.6.9)

The belief system after eliminating dominated strategy Θ∗(a1) is defined

as: for any a1 ∈ A1,

Θ∗(a1) = {θ :̸ ∃a′
1 ∈ A1makes the above strict inequality (6.6.9) true}.
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Using the restrictions imposed on beliefs above, we can further refine

the education game’s separating equilibria. When e > ẽ, θh − C(ẽ, θl) < θl.

We have θh −C(ẽ, θl) = w(ẽ) −C(ẽ, θl), where w(ẽ) = µ(ẽ)θh + (1 − µ(ẽ))θl
is the employer’s equilibrium response under given belief µ(ẽ). We also

have θl 5 w(el = 0) − C(0, θl), where w(0) = µ(0)θh + (1 − µ(0))θl is the

employer’s equilibrium response under given belief µ(0). Therefore, when

e > ẽ, µ(e) = 1. Based on these beliefs, separating equilibria, including

eh > ẽ, can be refined. In this way, only el = 0, eh = ẽ, µ(ẽ) = 1, µ(0) = 0,

w(eh) = θh, w(0) = θl satisfies the above belief restriction in all separating

equilibria.

In addition, in the pooling equilibrium, if u(wp, e∗|θh) = wp−C(e∗, θh) <
θh −C(ẽ, θh) is established, such pooling equilibria can also be similarly re-

fined.

In the following, we introduce two additional criteria to further strength-

en the restrictions imposed on beliefs.

Equilibrium Domination

We now consider a further strengthening of the notion of domination, known

as equilibrium domination.

Suppose at a perfect Bayesian equilibrium ((a1
∗(θ))θ∈Θ, s−1

∗(a1), µ(θ|a1)),

the utility of the type θ player is u1
∗(θ) ≡ u1(a1

∗(θ), s−1
∗(a1

∗), θ).

Definition 6.6.9 (Equilibrium Dominated Strategy) Action a1 is said to be

equilibrium dominated or dominated strategy in equilibrium for the player

of type θ if
u1

∗(θ) > max
s−1∈S∗

−1(Θ,a1)
u1(a1, s−1, θ). (6.6.10)

If the above inequality holds, then µ(θ|a1) = 0.

Using this notion of dominance, define

Θ∗∗(a1) = {θ :̸ ∃a1 ∈ A1makes the above strict inequality (6.6.10) true}.

A perfect Bayesian equilibrium needs to have reasonable beliefs, and
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thus when µ(θ|a1) > 0, we must have θ ∈ Θ∗∗(a1). Since

u1(θ) ≡ u1(a1
∗(θ), s−1

∗(a1
∗), θ) > min

s′
−1∈S∗

−1(Θ,a′
1)
u1(a∗

1(θ), s′
−1, θ),

the dominated strategy in equilibrium imposes stronger restrictions on be-

liefs than previous belief restrictions based on eliminating dominated s-

trategies.

Applying this equilibrium dominance-based procedure to eliminate ir-

rational beliefs, we can eliminate all pooling equilibria of the education

game.

(e(θh) = e(θl) = e∗ < ê,w(e∗) = wp = λθh+(1−λ)θl, µ(θh|e∗) = λ, µ(θh|e∗) = 0)

is a pooling equilibrium.

Let e′ satisfy θh−C(e′, θl) = wp−C(e∗, θl) and e′′ satisfy θh−C(e′′, θh) =
wp−C(e∗, θh). Obviously, we have e′′ > e′. When e ∈ (e′, e′′), θh−C(e, θl) <
wp −C(e∗, θl) and θh −C(e, θh) > wp −C(e∗, θh). In other words, when the

employer observes e ∈ (e′, e′′), job seekers of type θl prefer the payoff pro-

file of pooling equilibrium instead of choosing e to obtain the maximum

possible payoff profile, while job seekers of type θh are just the opposite.

According to the restrictions of the dominated strategy in equilibrium on

beliefs, when e ∈ (e′, e′′), the employer’s posterior belief is µ(e) = 1. There-

fore, job seekers of type θh have an incentive to choose e, and the pooling

equilibrium does not satisfy the belief restrictions imposed by the dominat-

ed strategy in equilibrium.

Intuitive Criterion

Based on the above restrictions on beliefs, Cho and Kreps (1987) proposed

another refinement criterion for reducing the set of equilibria, which is in-

tuitive criterion.

Definition 6.6.10 (Intuitive Criterion) A perfect Bayesian equilibrium

((a1
∗(θ))θ∈Θ, s−1

∗(a1), µ(θ|a1)) violates the intuitive criterion if there is a
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type θ ∈ Θ and an action a1 ∈ A1, such that

u1
∗(θ) < min

s−1∈S∗
−1(Θ∗∗(a1),a1)

u1(a1, s−1, θ).

According to the above discussion of the education game, only the Pare-

to optimal separating equilibrium can pass the intuitive criterion among all

perfect Bayesian equilibria.

In the following, we refer to the example in Cho and Kreps (1987) (see

Figure 6.19) to explore how to employ the intuitive criterion to refine per-

fect Bayesian equilibria.

Figure 6.19: An Example of Intuitive Criterion.

Example 6.6.11 In the game depicted in Figure 6.19, “Nature”chooses

the type of player 1. θw denotes the type of“weak”, and θs denotes the

type of“strong”. The initial probability of the“weak”type is 0.1. Play-

er 1 chooses breakfast between “Beer”and “Quiche”. After player 2

observes player 1’s choice, she chooses an action from “Fight”(F ) and

“Not Fight”(NF ). If the“weak”type is encountered, for player 2, the

payoff profile of choosing F is greater than that of choosing NF ; if the

“strong”type is encountered, for player 2, the payoff profile of choosing

NF is greater than that of choosing F . Regardless of the type, player 1 does

not hope that player 2 chooses F .

First, we can verify that there is no “separating equilibrium”in this

game. This game has the following two classes of perfect Bayesian equilib-

rium or sequential equilibrium.

The first class: both types of player 1 choose “Beer”, and player 2
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chooses NF if she observes that player 1 has chosen“Beer”and chooses

F if she observes that player 1 has chosen “Quiche”, and µ(θw|Beer) =
0.9.

The second class: both types of player 1 choose“Quiche”, and play-

er 2 chooses F if she observes that player 1 has chosen“Beer”and chooses

NF if she observes that player 1 has chosen“Quiche”, and µ(θw|Quiche) =
0.9.

We find that the second class of perfect Bayesian equilibrium does not

satisfy the “intuitive criterion”. If player 2 observes that player 1 has

chosen “Beer”, she should be able to infer that player 1 is “strong”.

This is due to the fact that if player 1 is“weak”, his payoff profile is 3 in

Bayesian equilibrium, which is the highest payoff profile of all possible out-

comes in the game, and thus the“weak”type has no incentive to choose

“Beer”. However, for the “strong”type, choosing “Beer”can make

player 2 choose NF because she believes that“Beer”reveals that player

1 is“strong”. In this case, the“strong”type has a higher payoff profile.

In a more rigorous way, since u1
∗(θw) > maxs2 u1(Beer, s2, θw) and µ(θw|Beer) =

0, Θ∗∗ = θs. When θ = θs, we have

u1
∗(θs) = 2 < 3 = min

s2∈S∗
2 (Θ∗∗(Beer,Beer))

u1(Beer,NF, θs).

It can be verified that the first class of perfect Bayesian equilibrium does

not violate the“intuitive criterion”.

There are other criteria for refining the equilibrium of dynamic games

of incomplete information, such as the“divinity”and the“universal di-

vinity”proposed by Banks and Sobel (1987), and the concept of “stable

equilibrium”proposed by Kohlberg and Mertens (1986).

Above, we have discussed various equilibrium concepts. In the follow-

ing, we discuss the existence of equilibrium.
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6.7 Existence of Nash Equilibrium

In using game theory to examine an interaction process, the most basic and

important premise is that the game has an equilibrium solution. In the

non-cooperative game, Nash equilibrium is a crucial concept. Nash (1951)

proved the existence theorem of Nash equilibrium.

Below, we discuss some existence theorems of game equilibrium.

6.7.1 Existence of Nash Equilibrium in Continuous Games

Theorem 6.7.1 (Existence Theorem of Pure Strategy Nash Equilibrium) For

a normal-form game ΓN = [N, {Si}, {ui(·)}], if for each player i ∈ N , Si is a

nonempty compact convex subset in Euclidean space, ui is continuous on S ≡∏
i∈N Si and quasiconcave on Si, then there is a pure strategy Nash equilibrium

in the game.

PROOF. For any x−i = (x1, · · · , xi−1, xi+1, · · · , xN ), define

BRi(x−i) = {xi ∈ Si : ui(xi,x−i) = ui(x′
i,x−i), ∀x′

i ∈ Si},

i.e., BRi(x−i) is the set of best responses to other players’ strategy x−i.

Define BR(x) = ×i∈NBRi(x−i). Then, BR : S → 2S is a correspon-

dence (multi-valued mapping). Since for any i ∈ N , ui is continuous and

quasiconcave on Si, BRi(x−i) is non-empty, compact and convex for all

s−i ∈ S−i. Also, by the Maximum Theorem (Theorem 2.6.14), the corre-

spondence BRi is an upper hemi-continuous correspondence on S.2 Ap-

plying the Kakutani fixed point theorem (see Theorem 2.6.20), there is an

x∗, such that x∗ ∈ BR(x∗). x∗ is the pure strategy Nash equilibrium of the

game. 2

Since the utility function is linear on mixed strategy space ∆Ai, it is

quasiconcave. We immediately have the following corollary.

Corollary 6.7.1 (Existence Theorem of Mixed Strategy Nash Equilibrium)

For a normal-form game ΓN = [N, {Si}, {ui(·)}], if for each player i ∈ N , mixed
2F a compact set X , a correspondence F : X → X is upper hemi-continuous correspon-

dence, if for all sequences {xn} and {yn}, where xn ∈ X , yn ∈ F (xn), xn → x and yn → y,
then y ∈ F (x).
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strategy space ∆Ai is a nonempty compact convex subset in Euclidean space, ui is

continuous, then there is a mixed strategy Nash equilibrium in the game.

Since a finite game ΓN = [N, {Si}, {ui(·)}] that can be viewed as a game

with strategy sets (∆Si)i∈N and ui(σ1, σ2, . . . , σn) =
∑

ai∈Si[
∏n
j=1 σj(aj)]ui(ai)

satisfies all the assumptions of Corollary 6.7.1, there exists a mixed strategy

Nash equilibrium. Thus Proposition 6.3.5 is proved.

However, in reality, many games do not satisfy some of the above as-

sumptions. For example, in the first-price sealed-bid auction, if two bidders

bid the highest price at the same time, these two bidders obtain the auction

item with the same probability. If one of these two bidders increases the

bid slightly, the bidder’s utility level will experience a large leap. As a con-

sequence, the utility function is not continuous at this point. The classical

Bertrand (1883) price war game also has discontinuous payoff profile func-

tions.

If some of the above conditions are not satisfied, does it mean that no

equilibrium exists? In the literature, there are intensive discussions on the

existence of Nash equilibrium after appropriate relaxation of continuity

and quasiconcavity, such as Dasgupta and Maskin (1986), Baye, Tian, and

Zhou (1993), Reny (1999), and Tian (2015). Below, we introduce some char-

acterization results on the existence of Nash equilibrium given by Baye,

Tian and Zhou (1993) and Tian (2015).

6.7.2 Existence of Nash Equilibrium in Discontinuous Games

Consider a normal-form game (Γ = (N, (Xi)i∈N , (ui)i∈N )), X =
∏
iXi. We

first define upsetting a binary relation ≻.

Definition 6.7.1 For any x,y ∈ X , define upsetting the binary relation ≻
as: y ≻ x if and only if there is i ∈ N , such that ui(yi,x−i) > ui(xi,x−i).

Obviously, if a strategy profile is a Nash equilibrium, no one will upset

one’s strategy.

Define U(y,x) =
∑
i∈N ui(yi,x−i), which represents the sum of utili-

ties that each player uses strategy yi to upset strategy profile x. For any

(x,y) ∈ X × X , based on the summation of all individual utilities, we



6.7. EXISTENCE OF NASH EQUILIBRIUM 377

define a similar upsetting binary relation ≻, i.e., y ≻ x if and only if

U(y,x) > U(x,x). Obviously, if x is a Nash equilibrium, then there is

no y ∈ X , such that y ≻ x.

We introduced the diagonal transfer continuity of functionU : X×X →
R with respect to y in Chapter 2, and we now define the diagonal transfer

continuity with respect to Γ = (N, (Xi)i∈N , (ui)i∈N ).

Definition 6.7.2 A game Γ = (N, (Xi)i∈N , (ui)i∈N ) is diagonally transfer

continuous, if the function U : X×X → R is diagonally transfer continuous

with respect to y, i.e., for any x,y ∈ X , once U(y,x) > U(x,x), then

there is another strategy profile z ∈ X and a neighborhood of x, Vx ⊆ X ,

such that U(z, Vx) > U(Vx, Vx), i.e., for any x′ ∈ Vx, we have U(z,x′) >
U(x′,x′)).

Definition 6.7.3 (Diagonally Transfer Quasiconcavity) A functionU(x,y) :
X × X → R is diagonally transfer quasiconcave with respect to x, if for any fi-

nite subset Xm = {x1, · · · ,xm} ⊆ A, there is a corresponding finite subset

Y m = {y1, · · · ,ym} ⊆ C, such that for any subset {yk
1
,yk

2
, · · · ,yks} ⊆

Y m, where 1 5 s 5 m, and any yk0 ∈ co {yk
1
,yk

2
, · · · ,yks}, we have

min
15l5s

U(xkl
,yk0) 5 U(yk0,yk0). (6.7.11)

Similarly, a game Γ = (N, (Xi)i∈N , (ui)i∈N ) is diagonally transfer quasicon-

cave, if the function U : X × X → R is diagonally transfer quasiconcave

with respect to x.

Remark 6.7.1 Diagonal transfer quasiconcavity of U is a weak version of

quasiconcavity. For example, if U is quasiconcave or diagonally quasicon-

cave with respect to x, then it is diagonally transfer quasiconcave with re-

spect to x (Let yk = xk). 3

Remark 6.7.2 Let G(x) = {y ∈ C : U(x,y) 5 U(y,y)}. It is easy to verify

that U is diagonally transfer quasiconcave with respect to x if and only if

the corresponding G : A → 2C is transfer FS-convex (see Definition 3.4.4).

3A function U : Z ×Z → R is diagonally quasiconcave with respect to x, if for any finite
subset Xm of Z and x0 ∈ co Xm we have mink U(xk, x0) 5 U(x0, x0).
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In fact, the following theorem proves that diagonal transfer quasi-concavity

is a necessary condition for the existence of Nash equilibrium, and it is also

a sufficient condition under diagonal transfer continuity.

Theorem 6.7.2 (Baye, Tian, and Zhou (1993)) Suppose that a normal form game

Γ = (N, (Xi)i∈N , (ui)i∈N ) satisfies diagonal transfer continuity. Γ has a pure s-

trategy Nash equilibrium if and only if it is diagonally transfer quasiconcave.

PROOF. Necessity: Suppose that game Γ has a pure strategy Nash equi-

librium y∗ ∈ X . We need to prove that U is diagonally transfer quasicon-

cave with respect to x. For any finite subset Xm = {x1, · · · ,xm} ⊆ X ,

let the corresponding finite subset be Y m = {y1, · · · ,ym} = {y∗}. So,

for any {yk
1
,yk

2
, · · · ,yks} ⊆ Y m = {y∗}, where 1 5 s 5 m and any

yk0 ∈ co {yk
1
,yk

2
, · · · ,yks} = {y∗}, we have

min
15l5s

[U(xkl
,yk0)U(yk0,yk0)] 5 [U(xkl

,y∗)U(y∗,y∗)] =
∑
i∈I

[ui(xk
l

i ,y
∗
i )ui(y∗)] 5 0.

Therefore, U is diagonally transfer quasiconcave with respect to x.

Sufficiency: For each x ∈ Z, let G(x) = {y ∈ X : U(x,y) 5 U(y,y)}.

It is easy to verify that U is diagonally transfer continuous with respect to

x if and only if G : X → 2X is transfer closed-valued (see Chapter 2 for its

definition). Moreover, U is diagonally transfer quasiconcave with respect

to x if and only if the corresponding G : A → 2C is transfer FS-convex.

From Lemma 3.4.2, we thus know that
∩

x∈Z G(x) =
∩

x∈Z clZ G(x) ̸= ∅.

Therefore, there is y∗ ∈ X , such that U(x,y∗) 5 U(y∗,y∗) holds for all

x ∈ X . Let x = (xi,y∗
−i), then

U(x,y∗) − U(y∗,y∗) = [ui(xi,y∗
−i) − ui(y∗)] 5 0 (6.7.12)

holds for all xi ∈ Xi. Therefore, y∗ is a pure strategy Nash equilibrium of

Γ. 2

Tian (2015) further provided the sufficient and necessary topological

conditions for the existence of pure strategy Nash equilibrium in any normal-

form game. In a general game, the number of players can be finite or infi-

nite; strategy spaces are arbitrary, which can be discrete or continuous and
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can be non-compact or non-convex; and players’ utility functions can be

discontinuous or non-quasiconcave on strategy spaces. The way of proof

shown in Tian (2015) does not use any form of a fixed point theorem as

usual, but is based on a more basic mathematical result (Borel-Lebesgue

covering theorem). The following only discusses situations in which utility

functions exist. For general situations, please refer to Tian (2015).

Definition 6.7.4 A game Γ = (N, (Xi)i∈N , (ui)i∈N ) is said to be recursively

diagonal transfer continuous if, for any x,y ∈ X satisfying y ≻ x, there

exists a strategy profile y0 ∈ X (possibly y0 = x) and a neighborhood

Vx ⊆ X , such that for any z ∈ X that recursively upsets y0,4 there exists

U(z, Vx) > U(Vx, Vx).

We can similarly define m-recursively diagonal transfer continuity. A

game G = (Xi, ui)i∈I is said to be m-recursively diagonal transfer con-

tinuous if and only if “recursively upsets y0”in the above definition is

replaced by“m-recursively upsets y0”.

Based on the introduction of these concepts, Tian (2015) gave the neces-

sary and sufficient conditions for the existence of pure strategy Nash equi-

librium.

Theorem 6.7.3 (Necessary Conditions for the Existence of Nash Equilibrium)

If a game Γ = (N, (Xi)i∈N , (ui)i∈N ) has a pure strategy Nash equilibrium, then

the game must satisfy recursive diagonal transfer continuity.

PROOF. First, note that, if x∗∈X is a pure strategy Nash equilibrium of

a game G, we must have U(y,x∗) ≤ U(x∗,x∗) for all y ∈ X , which is

obtained by summing up ui(yi,x∗
−i) ≤ ui(x∗) ∀ yi ∈ Xi for all players.

If for any x,y ∈ X , there is U(y,x) > U(x,x). Let y0 = x∗ and Vx be

a neighbourhood of strategy profile x. Since U(y,x∗) 5 U(x∗,x∗), it is im-

possible to find a strategy profile y1, such that U(y1,y0) > U(y0,y0), and

of course, it is impossible to find a finite strategy profile chain, {y1,y2, · · · ,ym},

such that U(yi+1,yi) > U(yi,yi), i = 1, · · · ,m − 1. This means that the

game satisfies recursive diagonal transfer continuity. 2

4A strategy profile y0 ∈ X is said to be recursively upset by z ∈ X if there exists a fi-
nite set of deviation strategy profiles {y1, y2, . . . , ym−1, z}, such that U(y1, y0) > U(y0, y0),
U(y2, y1) > U(y1, y1), . . ., U(z, ym−1) > U(ym−1, ym−1).
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Theorem 6.7.4 (Sufficient Conditions for the Existence of Nash Equilibrium)

Suppose that the strategy profile space X of game Γ = (N, (Xi)i∈N , (ui)i∈N ) is

compact. If the game satisfies recursive diagonal transfer continuity on X , then

there is a pure strategy Nash equilibrium.

PROOF. First, note that if there is U(y,x∗) 5 U(x∗,x∗) for all y ∈ X ,

then x∗ ∈ X must be a Nash equilibrium of the game. We can let y =
(yi,x∗

−i), U(y,x∗) 5 U(x∗,x∗) means ui(yi,x∗
−i) 5 ui(x∗).

Suppose, by way of contradiction, that there is no pure strategy Nash

equilibrium. Then, for each x ∈ X , there exists y ∈ X , such that U(y,x) >
U(x,x), and thus by recursive diagonal transfer continuity, for each x ∈ X ,

there is y0 and a neighborhood of x, Vx, such that for any z that recursive-

ly upsets y0, we have U(z, Vx) > U(Vx, Vx). Since there is no equilibrium

by the contrapositive hypothesis, y0 is not an equilibrium and thus, by re-

cursive diagonal transfer continuity, such a sequence of recursive securing

strategy profiles {y0, · · · ,ym−1,ym = z} exist for some m ≥ 1, such that

U(yi+1,yi) > U(yi,yi), i = 0, · · · ,m− 1.

SinceX is compact andX ⊆
∪
x∈X Vx, there are finite strategies {x1, · · · ,xL},

such that X ⊆
∪L
i=1 Vxi . For each such xi, there is a corresponding y0i, so

that U(zi, Vxi) > u(xi, Vxi) whenever y0i is recursively upset by zi.

Since there is no equilibrium, then for each such y0i, there must be

zi ∈ X , such that U(zi,y0i) > u(y0i,y0i), and then, by 1-recursive diag-

onal transfer continuity, we have U(zi,Vxi) > U(Vxi ,Vxi). For strategy

profile {z1, . . . , zL}, we must have zi ̸∈ Vxi ; otherwise, by U(zi,Vxi) >
U(Vxi ,Vxi), we have U(zi,zi) > U(zi, zi), which is a contradiction. As

such, we must have z1 ̸∈ Vx1 . We assume that z1 ∈ Vx2 , which does not

lose generality.

Since U(z2, z1) > u(z1, z1) and U(z1,y01) > u(y01,y01), by 2-recursive

diagonal continuity, we have U(z2, Vx1) > U(Vx1 , Vx1). Similarly, since

U(z2, Vx2) > U(Vx2 , Vx2), U(z2, Vx1
∪
Vx2) > U(Vx1

∪
Vx2), from which

z2 /∈ (Vx1
∪
Vx2) is obtained. With this recursive process, for k = 3, . . . , L,

we can show that zk /∈ Vx1
∪
Vx2

∪
· · ·
∪
Vxk . When k = L, we can obtain

that zL /∈ Vx1
∪
Vx2 · · ·

∪
VxL , which contradicts X ⊆

∪L
i=1 Vxi and zL ∈ X .

Therefore, the game must have a pure strategy Nash equilibrium. 2
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In the following, we define a relatively stronger concept based on re-

cursive diagonal transfer continuity, and thus that we can identify the nec-

essary and sufficient conditions for the existence of (pure strategy) Nash

equilibrium in any game.

Definition 6.7.5 Let B ⊆ X . A game Γ = (N, (Xi)i∈N , (ui)i∈N ) is said

to satisfy recursive diagonal transfer continuity relative to B on X , if x is not

a Nash equilibrium, and then there exists a strategy profile y0 ∈ B (pos-

sibly y0 = x) and a neighborhood of strategy profile x, Vx, such that: (1)

y0 is upset by a strategy on B. (2) If for any finite strategy profile chain

{y1, · · · ,ym = z} with U(yi+1,yi) > U(yi,yi), i = 0, · · · ,m − 1, we have

U(z, Vx) > U(Vx, Vx).

Theorem 6.7.5 (Full Characterization for the Existence of Nash Equilibrium)

A game Γ = (N, (Xi)i∈N , (ui)i∈N ) has a pure strategy Nash equilibrium if and

only if there is a compact set B ⊆ X , such that the game satisfies recursive diago-

nal transfer continuity relative to B on X.

PROOF. Since the sufficiency proof of the theorem is similar to the

above, it is approximately given here. We first prove that the game has

a Nash equilibrium x∗ in strategy space B. Suppose that this is not the

case. Since game G satisfies recursive diagonal transfer continuity with re-

spect toB onX , for every x ∈ B, there exists y0 ∈ B and neighborhood Vx,

such that for any finite subsequence {y1, · · · ,ym} ⊆ B satisfying ym = z

and U(z,ym−1) > U(ym−1,ym−1), U(ym−1,ym−2) > U(ym−2,ym−2), · · · ,

U(y1,y0) > U(y0,y0), we have U(z,Vx) > U(Vx,Vx). By the assumption,

since there is no equilibrium in B, y0 is not an equilibrium in B. There-

fore, by recursive diagonal transition continuity with respect to B on X ,

for some m = 1, there exists such a recursive sequence {y1, · · · ,ym−1, z}.

SinceB is compact andB ⊆
∪

x∈X Vx, there is a finite set {x1, · · · ,xL} ⊆
B, such thatB ⊆

∪L
i=1 Vxi . For each such xi, there is a corresponding initial

deviation y0i, such that as long as y0i is recursively upset by zi through

finite strategies {y1i, · · · ,ymi} ⊆ B and ymi = zi, we have U(zi,Vxi) >
U(Vxi ,Vxi). By the same reasoning as in the previous theorem’s proof, for

all k = 1, 2, · · · , L, zk is not in the union of Vx1 ,Vx2 , · · · ,Vxk . Especially for
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k = L, we have zL ̸∈ Vx1 ∪Vx2 · · ·∪VxL and thus zL ̸∈ B ⊆
∪L
i=1 Vxi , which

is a contradiction. As a consequence, the game has a pure strategy Nash

equilibrium x∗ on B.

We now prove that x∗ must also be a pure strategy Nash equilibrium

on X . Suppose that x∗ was not a pure strategy Nash equilibrium on X .

Then, x∗ will be upset by a strategy in X \ B, and thus it is upset by a

strategy in B, which means that x∗ is not a Nash equilibrium on B, which

is a contradiction.

The proof of necessity is the same, since its proof does not rely on the

compactness of the set. 2

In Tian (2015), the sufficient and necessary conditions for the existence

of mixed strategy equilibrium and for the existence of equilibrium under

general preferences are also discussed.

6.8 Biographies

6.8.1 John Forbes Nash Jr.

John Forbes Nash Jr. (1928-2015) was an American mathematician who

made fundamental contributions to game theory. He was once a C. L. E.

Moore instructor at MIT, and later became a professor of mathematics at

Princeton University. He mainly studied game theory, differential geom-

etry, and partial differential equations. He won the 1994 Nobel Memorial

Prize in Economic Sciences for his pioneering analysis of equilibria in the

theory of non-cooperative games, and the concept of Nash equilibrium pro-

posed at the age of 22 that has had a profound influence on game theory

and economics.

He received his Ph.D. from Princeton University in 1950. His doctor-

al dissertation, entitled “Non-Cooperative Games”, comprised only 27

pages. In 1950 and 1951, his two important papers on non-cooperative

games theory completely transformed people’s views on competition and

the market. He defined the non-cooperative game and its equilibrium solu-

tion, and proved the existence of equilibrium solution (i.e., the well-known

Nash equilibrium). His research shows that making decisions based on
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maximizing individual interests does not necessarily maximize collective

interests. In other words, the maximization of individual interests and the

maximization of collective interests may conflict, thus revealing the intrin-

sic link between game equilibrium and economic equilibrium. Nash’s re-

search laid the foundation for the modern non-cooperative game theory,

and later game theory research was basically carried out along this main

line. However, Nash’s genius discovery was flatly denied by von Neuman-

n, and he had previously received an indifferent reception from Einstein.

Nash’s instinct of challenging authority made him adhere to his own ideas,

and led to his great accomplishments. He had a serious mental illness for

more than 30 years, and the Oscar-winning film A Beautiful Mind adapted

from the biography of the same name in 2001 is about his life experience.

The minimax theorem proposed by von Neumann in 1928 and the equi-

librium theorem proposed by Nash in 1950 formed the cornerstone of game

theory. The former primarily considers the zero-sum game, while the latter

considers the more general non-zero-sum game. By extending this theory

to games involving various cooperation and competition, Nash successful-

ly opened the door to application of game theory in economics, political

science, sociology, and even evolutionary biology. In 1958, Nash was iden-

tified by Fortune (magazine) as the most outstanding figure among genius

mathematicians of the modern generation for his excellent work in mathe-

matics. In 1994, he and John C. Harsanyi and Reinhard Selten jointly won

the Nobel Memorial Prize in Economic Sciences. In 1999, he was awarded

the Leroy P. Steele Prize by the Mathematical Association of America.

Although the Nobel Memorial Prize in Economic Sciences, the highest

prize in economics, brought a new life to Nash, and his physical and mental

condition seemed to be improving in the 21 years since winning the prize,

his life ended tragically. Nash won the Abel Prize in 2015, which is awarded

by the Norwegian Royal Family and rewards scientists who have made

outstanding contributions in the field of mathematics. On their way back

to the United States after attending the Norwegian Royal Family Award

Ceremony, Nash and his wife Alicia died in an automobile accident on the

New Jersey Turnpike on May 23, 2015.
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6.8.2 John C. Harsanyi

John C. Harsanyi (1920-2000) was one of the pioneers in developing game

theory as a tool of economic analysis. He made fundamental contributions

to games of incomplete information, i.e., Bayesian games. Other impor-

tant contributions included the application of game theory, and economic

reasoning in political and moral philosophy (specifically utilitarian ethic-

s). His contributions made him a co-recipient of the 1994 Nobel Memorial

Prize in Economic Sciences, together with John Nash and Reinhard Selten.

Harsanyi was born into a Jewish family in Budapest, Hungary. He fol-

lowed his parents’ wishes and studied pharmacology at the University of

Budapest. In early 1944, he received a master’s degree in pharmacy. In

March 1944, German troops occupied Hungary. Harsanyi was compelled

to join a forced labor unit from May to November. In November of the same

year, the Nazi authorities decided to deport his unit at Budapest to a con-

centration camp in Austria. Harsanyi was fortunate enough to escape from

the Budapest railway station, just before the train left for Austria. After the

end of the war, in 1946, Harsanyi returned to the University of Budapest to

obtain his Ph.D. in philosophy with minors in sociology and psychology.

As he had credit for his previous studies in pharmacy, Harsanyi received a

Ph.D. in philosophy in June 1947, after only one more year of course work

and after writing a dissertation in philosophy. From September 1947 to

June 1948, Harsanyi was an assistant professor at the University Institute

of Sociology, where he met Anne Klauber, his future wife. In June 1948,

he was forced to resign from the Institute because of openly expressing his

anti-Marxist opinions. In April 1950, Harsanyi and Anne decided to leave

Hungary. They crossed the Hungarian border over a marshy terrain, which

was less guarded, and fled to Austria before they reached Sydney, Australi-

a.

While working in a factory during the day in Sydney, Harsanyi took

economics courses at the University of Sydney in the evening and obtained

a master’s degree in economics in 1953. During his study in Sydney, he

began publishing papers in economic journals (including the Journal of Po-

litical Economy and the Review of Economic Studies). The degree allowed him
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to secure a teaching position in 1954 at the University of Queensland in

Brisbane. Harsanyi wrote a paper on game theory under the guidance of

Kenneth J. Arrow (1921-2017) at Stanford University in 1958 and received

his second doctoral degree (Ph.D. in economics) in 1959. He was appoint-

ed Professor of Economics at Wayne State University in Michigan between

1961 and 1963. In 1964, he moved to the University of California at Berkeley

and remained there until his retirement in 1990.

The second half of the 1960s witnessed the most important achieve-

ments in Harsanyi’s academic career. In 1967 and 1968, Harsanyi pub-

lished a three-part paper, entitled “Games with Incomplete Information

Played by ’Bayesian’ Players”. The paper studied games with incom-

plete information that game theory at that time could not effectively dis-

cuss. He proposed a method to convert a game with incomplete informa-

tion into one with complete but imperfect information, in order to make

it accessible to game-theoretic analysis. Currently, this method is called

the“Harsanyi Transformation”and is the standard method of analysing

games with incomplete information. Due to Harsanyi’s paper, the difficul-

ty in analysing the incomplete information was solved, and the incomplete

information game was incorporated into the analytical framework of game

theory, which markedly expanded the analysis and application scope of

game theory, and thus constituted a milestone achievement in the devel-

opment of game theory. It was because of this contribution that Harsanyi

received the Nobel Memorial Prize in Economic Sciences. In addition to

his outstanding achievements in the study of game theory, Harsanyi also

obtained important results in welfare economics and economic philosophy.

From the early 1950s to the 1990s, Harsanyi published a series of articles in

these two fields, which further established his position in the economics

profession. John Harsanyi passed away on August 9, 2000, from a heart

attack, in Berkeley, California.
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6.9 Exercises

Exercise 6.1 Consider a normal-form game. Prove that if only one strate-

gy profile survives the iterated elimination of non-best response strategies,

then it is the unique Nash equilibrium.

Exercise 6.2 Consider the following game: There are 20 students in a class.

Each of them chooses an integer between 1 and 100. Students who choose

the number closest to 1/2 of the class average will equally divide 100 dol-

lars.

1. Find strictly dominated strategies for each student.

2. Find the Nash equilibrium of the game by iterated elimination of

strictly dominated strategies.

3. Suppose that the winning rule is changed to that students who choose

the number closest to 2 times the class average will equally divide 100
dollars. Find all Nash equilibria of the game.

Exercise 6.3 There are n herdsmen in a public grassland. Herdsman i can

choose to herd gi sheep on the public grassland. The cost per head is c > 0.

One year later, each herdsman can sell his sheep at the market price v(G),

where G =
∑n
i=1 gi. Assume that v(G) is twice continuously differentiable,

and that its second derivative is less than zero.

1. Solve for the socially optimal amount of sheep.

2. Solve for the amount of sheep held by each herdsman in the Nash

equilibrium.

Exercise 6.4 Consider a normal-form game (N, (Si)i∈N ), (ui)i∈N ), where

N = {1, 2, · · · , n}. We say that the game is symmetric if it satisfies the

following conditions: (1) For any players i and j, Si = Sj ; (2) if s−i = s−j

and si = sj , then u(si, s−i) = u(sj , s−j). Suppose that for any player i and

j, σi = σj , strategy σ = (σ1, · · · , σn) is symmetric. The symmetric Nash

equilibrium refers to the Nash equilibrium whose strategy is symmetric.
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1. Determine whether any finite symmetric game has a symmetric Nash

equilibrium.

2. Prove that not all Nash equilibrium strategies are symmetric.

Exercise 6.5 Find all Nash equilibria of the following game (including pure-

strategy Nash equilibrium and mixed-strategy Nash equilibrium):

Player 2

L R

Player 1 T 0, 0 0,−2
M 3, 0 −1, 0
B 1, 0 −1, 1

Exercise 6.6 Two individuals have to decide how to allocate 100 thousand

dollars. They use the following allocation rule: Each decision-maker re-

ports a positive integer less than 100 thousand. If the sum of the number-

s reported by these two individuals does not exceed 100 thousand, then

the amount of money a decision-maker receives is the person’s own num-

ber (the extra money is discarded). If the sum of the numbers reported by

these two individuals is greater than 100 thousand and their numbers are

different, then the decision-maker who reports the smaller number receives

the amount of money that she reports, and the other decision-maker gets

what remains of the 100 thousand dollars. If the sum of the two numbers

is greater than 100 thousand and the two numbers are the same, then each

decision-maker receives 50 thousand dollars.

1. Find all pure strategy Nash equilibria of the game.

2. Find all mixed strategy Nash equilibria of the game.

Exercise 6.7 Consider the following strategic-form game:
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Player 2

L C R

T 1,−3 −3, 1 0, 0
Player 1 M −3, 1 1,−3 0, 0

B 0, 0 0, 0 2, 2

1. What is the set of rationalizable strategies for each player?

2. Find the pure strategy Nash equilibrium in this game.

3. Prove that there is no additional mixed strategy Nash equilibrium in

this game.

Exercise 6.8 Consider the following simultaneous-move game:

Player 2

L R

Player 1 T a1, a2 b1, b2

B c1, c2 d1, d2

1. Under what conditions is there a Nash equilibrium such that both of

the two players choose completely mixed strategies?

2. Under what conditions is the Nash equilibrium in question (1) the

unique Nash equilibrium of the game?

3. Find the Nash equilibrium in question (2) (where all players’ payoff

profiles are constant).

Exercise 6.9 Two players compete for one item, and each player simulta-

neously chooses a time node of giving up. If one of the two players first

gives up, the other player will receive the item; if both players give up at

the same time, then both players get the item with the same probability. Let

time be a continuous variable that starts at 0 and tends to infinity. Assume

that if player i receives the item, the player’s payoff profile is vi. For each

unit of time passed, each player needs to pay one unit cost. Let t1 and t2

represent the time node of giving up chosen by these two players.
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1. Write down the normal-form representation of the above game.

2. Write down player i’s best response function (or correspondence).

3. Suppose v1 > v2. Find the best response curves for these two players.

4. Find the Nash equilibrium.

Exercise 6.10 Prove that in game G = (I; {Si, ui}ni=1), if s∗ = (s∗
1, · · · , s∗

n)
is the only strategy profile that survives the iterated elimination of strictly

dominated strategies, then s∗ is the unique Nash equilibrium of the game.

Exercise 6.11 In the second-price sealed-bid auction with complete infor-

mation (i.e., each player knows other players’ true valuations, and the high-

est bidder obtains the auction item at the second-highest bid price), the true

valuations of players i = 1, 2, · · · , n are v1 > v2 > · · · > vn, respectively.

Find a Nash equilibrium in which the player with the highest valuation

does not obtain the auction item.

Exercise 6.12 A game in which the sum of two players’ payoff profiles is

zero is called a zero-sum game. When player 1 chooses strategy a1∈A1

and player 2 chooses strategy a2∈A2, player 1’s payoff profile is u(a1, a2).

In a zero-sum game, player 2’s payoff profile is −u(a1, a2). A1 and A2 are

strategy spaces for players 1 and 2, respectively.

1. Prove the minimax theorem, i.e., prove that the following formula

holds:

maxx miny u(x, y) = u(x∗, y∗) = miny maxx u(x, y).

2. Prove that if (m1,m2) and (m∗
1,m

∗
2) are Nash equilibria, then (m1,m

∗
2)

and (m∗
1,m2) also are Nash equilibria.

3. Prove that player 1’s payoff profile is always zero in Nash equilibrium

in a symmetric zero-sum game.

Exercise 6.13 Consider the following simultaneous-move game:
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Player B

L R

Player A T x, x 0, 0
B 0, 0 x, x

Player A knows the exact value of x, and player B only knows that the

probability of x being 5 or 10 is 0.5.

1. Describe the above game of incomplete information.

2. Find all pure strategy and mixed strategy Bayesian-Nash equilibria

of the above game.

3. Now, suppose that, after observing the value of x, playerA can choose

to play a simultaneous-move game with player B, or pay a cost of 2
to play a sequential-move game and move first. For certain values

of x, player A will choose to pay a cost of 2 and move first. Find a

Bayesian-Nash equilibrium for this dynamic game. Is this Bayesian-

Nash equilibrium a sequential equilibrium? If yes, why?

Exercise 6.14 Consider the following game with two players. There are

21 coins on the table. Player 1 and Player 2 take turns to take away 1 to

3 coins. The last player to take away the coin on the table loses the game.

Specifically, player 1 can choose to take away 1, 2 or 3 coins, and then player

2 chooses the number of coins to take away, and they will take turns until

the last player to take away the coin on the table loses.

1. Use backward induction to solve this game.

2. What is the number of coins on the table that can make player 2 al-

ways be the loser in equilibrium?

Exercise 6.15 Two players play the following game: In the first stage, play-

er 1 makes a choice between actions A and B; in the second stage, player 2
makes a choice between actions C and D after observing player 1’s choice;

in the third stage, player 1 makes a choice between actions a and b after not

observing player 2’s choice.
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1. Give the extensive-form representation of the game.

2. Is the game of perfect information or imperfect information? Why?

3. Give the strategy set for each player.

Exercise 6.16 Consider the extensive-form game shown in Figure 6.20.

P�

3

3

1

1

0

0

0

0

A B

P� P�

C D L R

C D DC

2

1

1

0

P�
P�

Figure 6.20:

1. What are the subgames?

2. For the simultaneous subgame, what are the (mixed) Nash equilibria?

3. What are the subgame perfect Nash equilibria?

Exercise 6.17 Consider the extensive-form game shown in Figure 6.21.
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1
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0

0

0

A B

P� P�

C D L R

C D DC

1

1

2

2

P�
P�

Figure 6.21:

1. How many subgames?

2. What are the Nash equilibria of the right subtree.
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3. What are all the pure and mixed strategy Nash equilibrium of the left

subtree.

4. What are all the subgame perfect Nash equilibria?

Exercise 6.18 Consider the extensive-form game shown in Figure 6.22.

1

L R

 2 2

l r l! r!
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2

6

6

2
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8

6

6

2

10

l r

Figure 6.22:

1. State the rationality/knowledge assumptions necessary for each step

in the backward induction process.

2. Write the game in normal form.

3. Find all the rationalizable strategies in this game using the normal

form of the game. State the rationality/knowledge assumptions nec-

essary for each elimination.

4. Find all the Nash equilibria in this game.

5. Find the pure strategy subgame perfect Nash equilibrium in this game.

Exercise 6.19 Consider the extensive-form game shown in Figure 6.23.

1. State the rationality/knowledge assumptions necessary for each step

in the backward induction process.

2. Write the game in normal form.

3. Find all the rationalizable strategies in this game using the normal

form of the game. State the rationality/knowledge assumptions nec-

essary for each elimination.
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Figure 6.23:

4. Find all the Nash equilibria in this game.

5. Find the pure strategy subgame perfect Nash equilibrium in this game.

Exercise 6.20 Consider the extensive-form game shown in Figure 6.24.
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Figure 6.24:

1. State the rationality/knowledge assumptions necessary for each step

in the backward induction process.

2. Write the game in normal form.

3. Find all the rationalizable strategies in this game using the normal

form of the game. State the rationality/knowledge assumptions nec-

essary for each elimination.

4. Find all the Nash equilibria in this game.

5. Find the pure strategy subgame perfect Nash equilibrium in this game.
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Exercise 6.21 In a wild grassland, there are n hungry lions that have not

eaten food for a long period of time. One of the lions has fallen into a coma

and is defenseless due to an illness. These lions have a strict hierarchy.

Only the highest-ranked lion can eat the sick lion. However, the highest-

ranked lion may become sick and slip into a coma once he has eaten the

sick lion, and may subsequently be eaten by the second highest-ranked

lion. The preferences of these lions are as follows: “eat a sick lion and not

be eaten”≻, “not be eaten”≻, and “eaten by another lion (they don’t

care whether or not they are sick)”. Use backward induction to find the

subgame perfect equilibrium of this game.

Exercise 6.22 There is a duel among three musketeers, each with a pistol.

In each round, they aim at the target and fire at the same time, and the

entire process continues until at most one person survives. It is known that

the hit rate of A is 1, the hit rate of B is 0.8, and the hit rate of C is 0.6.

1. In the first round of the duel, who should be the shooting target of A,

B, and C, respectively?

2. What are the survival rates of A, B, and C?

3. The dueling rules are now amended to the following: In each round,

C fires first, then B fires, and A fires last. In the first round of the

duel, who should be the shooting target forA,B, andC, respectively?

What is the final survival rate of each of the three musketeers?

Exercise 6.23 Consider the following pirate game: 10 pirates consider how

to allocate 100 gems, and they alternately propose a distribution plan in

order of 1 to 10, and the order is determined by a lottery. The rules of

the game are as follows: Gems can only be allocated in integer quantities.

Pirate 1 first proposes an allocation plan. If half or more of the pirates

vote to accept the plan, the plan will be implemented, and the game ends;

otherwise, pirate 1 must leave the game, and the other 9 pirates continue

the game. Next, pirate 2 proposes an allocation plan. The rules of the game

are the same as previously. Suppose that all pirates must choose to reject an

allocation plan when they are indifferent between accepting and rejecting
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this allocation plan. Solve for the subgame perfect Nash equilibrium of this

game.

Exercise 6.24 Two players A and B consider how to allocate two cakes

X and Y . Each cake is 1 unit in size. The utility function of player A is

u(x, y) = x + λy, where (x, y) is his share (i.e., x is obtained from cake X

and y is obtained from cake Y ); the utility function of player B is v(x, y) =
x+ δy, where (x, y) is Player B’s share. Suppose that δ > λ > 0. The mech-

anism for allocating cakes is as follows: First, each cake is divided into two

pieces by A (i.e., X is divided into x and 1 − x and Y is divided into y

and 1 − y), and the divided cakes are merged into two groups: (x, y) and

(1 − x, 1 − y). Then, B chooses one group first, and A gets the other group.

1. Solve for the subgame perfect Nash Equilibrium of this game with

backward induction.

2. If the roles of A and B are reversed (i.e., the cakes are divided and

grouped by B, and A chooses one group first). What is the outcome?

3. Can this“distributor chooses last”allocation mechanism result in a

fair distribution?

4. The distribution mechanism is now changed to: First, A divides the

cake X into two pieces, B chooses one piece, and A receives the other

piece; then, B cuts the cake Y into two pieces, A chooses one of them

and B gets the other one. Find the subgame perfect Nash equilibri-

um under this mechanism. Compared with the original mechanism,

which is more efficient?

Exercise 6.25 Consider the following dynamic game (arms race) with two

players (two countries that are competing with each other). In each period

t = 0, 1, 2, · · · , each player can choose to participate in or withdraw from

the competition. The cost of participating in the competition in each period

is 1. If both players choose to participate in the competition in a certain

period, then the returns of both players are 0 for the current period, and

they enter the game in the next period; if one player chooses to participate
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in the competition and the other player chooses to withdraw from the com-

petition in a certain period, then the player who chooses to participate will

receive v for the current period and the player who chooses to withdraw

will receive 0 for the current period, and the game will end (i.e., there will

be no game in the subsequent period).

1. Prove that (always participate, always withdraw) is a subgame per-

fect Nash equilibrium.

2. Find a p, such that (always participate with probability p, always

withdraw with probability p) is a subgame perfect Nash equilibrium.

Exercise 6.26 Consider a bargaining game with three players. During peri-

ods t = 1, 4, 7, · · · , the first player can propose an allocation plan (x1, x2, x3),

where xi = 0 and x1 +x2 +x3 5 1, and other players can choose whether or

not to accept the allocation plan. During periods t = 2, 5, 8, · · · , the second

player can propose an allocation plan. During periods t = 3, 6, 9, · · · , the

third player can propose an allocation plan. If all players during a certain

period accept the allocation plan, the allocation plan will be implemented;

if there is one player in a certain period who rejects the allocation plan,

these three players will perform the next round of distribution. The dis-

count rate of each player per period is δ.

1. Prove that (1/(1 + δ+ δ2), δ/(1 + δ+ δ2), δ2/(1 + δ+ δ2)) is a subgame

perfect Nash equilibrium.

2. Prove that the above equilibrium is unique.

Exercise 6.27 Prove Huhn theorem on mixed strategies and behavior s-

trategies.

1. In a finite extensive-form game that satisfies perfect recall, any mixed

strategy has an outcome-equivalent behavior strategy.

2. Show by an example: in a situation in which perfect recall fails, a

mixed strategy and a behavior strategy are not necessarily outcome-

equivalent.
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Exercise 6.28 Consider the incomplete information two-player game de-

picted by the following table, where α ∈ {−2, 2} is known by Player 1,

but not known by player 2 who only knows the probability distribution is

Pr(α = −2) = 0.6 and Pr(α = 2) = 0.4.

Player 2

L R

Player 1 U 1, α −α, 0
D α, 0 1, α

1. Write this formally as a Bayesian game.

2. Find a Bayesian-Nash equilibrium.

Exercise 6.29 Consider a two-player game depicted by the following table,

where θ1 and θ2 are the private information of players 1 and 2, respectively,

and are identically and independently distributed with uniform distribu-

tion on [−1/3, 2/3].

Player 2

L R

Player 1 U 2 + θ1, 1 θ1, θ2

D 0, 0 1, 2 + θ2

1. Write this formally as a Bayesian game.

2. Find a Bayesian-Nash equilibrium.

Exercise 6.30 Suppose that two investors decide whether to invest in a cer-

tain firm, and their returns on investment can be represented in the follow-

ing payoff profile matrix, where θ is the firm’s operating cost.

Investor 2

Invest Don’t Invest

Investor 1 Invest θ, θ θ − 1, 0
Don’t Invest 0, θ − 1 0, 0
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1. If the investors know the operating cost θ. Find all Nash equilibria.

2. If the investors do not know the operating cost θ, investor i can ob-

serve a signal xi = θ + εi on the operating cost, where εi∼N(0, σ2).

Assume that the belief of investor i prior to observing the cost signal

is that θ obeys a uniform distribution in R. The belief of investor i af-

ter observing the cost signal becomes θ|x∼N(x, σ2). Find the unique

Bayesian-Nash equilibrium of this game.

Exercise 6.31 Two households decide whether to maintain a shared facility

simultaneously. If one of these two households maintains, then each house-

hold will get 1 unit gain; if there is no maintenance, then there is no gain

for the two households. The maintenance costs for these two households

are c1 and c2, respectively.

1. Suppose that c1 and c2 are 0.1 and 0.5, respectively. What is the Nash

equilibrium of this game? What will be the outcome of this game?

2. Suppose that c1 and c2 are random variables that independently obey

a uniform distribution on [0, 1], and the true cost of each household is

only known to itself. What is the Bayesian-Nash equilibrium of this

game?

Exercise 6.32 Two hostile armies want to occupy an island. Each army can

decide whether or not to attack. The probability that the army is strong or

weak is one-half (the strength of each army is independent of each other).

Each army knows its own strength. If the island is occupied by an army,

this army gains M . If one army attacks the island and the other army does

not attack the island, the attacker will occupy the island. If two armies

choose to attack at the same time, then the stronger army will occupy the

island; if the two armies have the same strength, then no army will occupy

the island. Each attacker needs to pay a certain cost: the cost for a strong

army is s, and the cost for a weak army is w. The army that does not attack

the island will not suffer any cost. Assume M > w > s and w > M/2 > s.

Find the pure strategy Bayesian-Nash equilibrium of this game.
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Exercise 6.33 Consider the following bilateral auction. Both the buyer and

the seller quote a price simultaneously. If the seller’s price ps is less than or

equal to the buyer’s price pb, they trade at the price of p = (ps+pb)/2; how-

ever, if ps is greater than pb, no transaction occurs. The value of the auction

item for the buyer is vb, and for the seller it is vs. The value is private in-

formation for each party, and independently obeys a uniform distribution

on [0, 1]. If the buyer gets the item at a price of p, then the buyer’s payoff

profile is vb − p; if no transaction occurs, the buyer’s utility is zero. If the

seller sells the item at a price of p, the seller’s payoff profile is p − vs; if no

transaction occurs, the seller’s utility is zero.

1. Find out the objective functions for the buyer and the seller.

2. Suppose that the Bayesian-Nash equilibrium strategy of the buyer

or the seller is a linear function of the value of the item. Find the

Bayesian-Nash equilibrium.

Exercise 6.34 Consider a game with two players. Player 1 chooses from

three strategies: U , V , and W . Player 2 chooses from two strategies: L and

R. Player 2 only knows whether player 1 has chosen U while making her

decision and does not know any other information. In the case in which

player 1 has chosen U , if player 2 then chooses L, and their payoff profiles

will be (0, 2), where 0 is player 1’s payoff profile and 2 is player 2’s pay-

off profile. If player 2 then chooses R, their payoff profiles will be (2, 0).

Similarly, if these two players choose V and L one after another, their pay-

off profiles will be (−1,−1); if these two players choose V and R one after

another, their payoff profiles will be (3, 0). If these two players choose W

and L one after another, their payoff profiles will be (−1,−1); if these t-

wo players choose W and R one after another, their payoff profiles will be

(2, 1).

1. Represent this game in extensive-form.

2. Find all pure strategy weak perfect Bayesian equilibria of this game.

3. Find out all pure strategy sequential equilibria of this game and com-

pare them with the results in question 2.
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Exercise 6.35 Prove the following theorem on the trembling hand perfect

Nash equilibrium:

1. In a two-player finite strategy game, a strategy profile is a trembling

hand perfect Nash equilibrium if and only if it is a Nash equilibrium,

and no strategy is weakly dominated.

2. There is a trembling hand perfect Nash equilibrium in any finite s-

trategy game.

3. In a finite extensive-form game that satisfies perfect recall, there is a

belief system µ for each trembling hand perfect Nash equilibrium σ,

such that (σ, µ) is a sequential equilibrium of this game.

Exercise 6.36 Consider the extensive-form game shown in Figure 6.25. Find

all the sequential equilibria of this game.

 1 1

out in in out

2

0

1

1

x y

L R

4

0

4

5

1

0

0

1L R

 3/4  1/4

2

Figure 6.25:

Exercise 6.37 Consider the extensive-form game shown in Figure 6.26. Find

the sequential equilibria/equilibrium of this game.

Exercise 6.38 Consider the extensive-form game and scenario shown in

Figure 6.27.

1. Find belief probabilities that are consistent with this scenario.

2. For each player, at each of his information sets, find the sequential

value of each of his possible moves, relative to this scenario with these

consistent beliefs.
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3. Identify all irrational moves in this scenario with these consistent be-

liefs. In other words, for every information set of each player, identify

each move that has a positive move probability in this scenario but

does not maximize the sequential value for this player at this infor-

mation set.

4. Find the sequential equilibrium of this game.

Exercise 6.39 For a firm recruiting a worker, the probability of recruiting a

high-ability worker is 0.8, while the probability of recruiting a low-ability

worker is 0.2. Workers can choose whether or not to attend training. The

firm does not know workers’ abilities, but can observe whether they have

been trained. The firm can appoint the recruited worker as either a manag-

er or an employee. If a trained high-ability worker is hired as a manager,

the payoff profiles of the worker and the firm are (4, 2), and if a trained
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high-ability worker is hired as an employee, the corresponding payoff pro-

files are (2, 1). If an untrained high-ability worker is hired as a manager,

the payoff profiles of the worker and the firm are (3, 2), and if an untrained

high-ability worker is hired as an employee, the corresponding payoff pro-

files are (1, 1). If a trained low-ability worker is hired as a manager, the pay-

off profiles of the worker and the firm are (3, 1), and if a trained low-ability

worker is hired as an employee, the corresponding payoff profiles are (1, 2).

If an untrained low-ability worker is hired as a manager, the payoff profiles

of the worker and the firm are (4, 1), and if an untrained low-ability worker

is hired as an employee, the corresponding payoff profiles are (2, 2).

1. Represent this game with extensive-form.

2. Find out all pure-strategy sequential equilibria of this game.

3. In this game, are all pure-strategy sequential equilibria reasonable?

Provide an explanation for your answer.

Exercise 6.40 An investor needs to decide how much to invest in an elec-

tronics manufacturer, but she does not know this manufacturer’s true prof-

itability θ. The investor can consult an audit company. Suppose that the

audit company knows this manufacturer’s true profitability θ and can send

the investor a report m on the profitability θ. However, the objectives of

the audit company and the investor are not consistent, and the audit com-

pany does not necessarily report its true assessment result. Suppose that

the investor knows in advance that this manufacturer’s true profitability

θ ∈ [0, 1] and that its probability density function is f . The investor’s in-

vestment is a ∈ [0, 1]. The payoff profile functions of the audit company

and the investor are uS(a, θ, b) and uR(a, θ), respectively, where b represents

the difference in preferences between the audit company and the investor.

Assume that each player’s payoff profile function is continuous and twice

differentiable, and ∂2ui

∂a2 < 0 and ∂2ui

∂a∂θ > 0, where i = R,S. Therefore, there

is a unique optimal investment amount yR(θ) (yS(θ)) that maximizes the

payoff profile of the investor (the audit company).

1. Prove that there is a pooling equilibrium, in which regardless of what
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m the audit company reports, the investment amount of the investor

remains consistent.

2. Prove that if for any θ, yR(θ) ̸= yS(θ, b), then the number of equilibri-

um actions is finite. Hint: It can be proven that for any two different

equilibrium actions a1 < a2, there is ε > 0, such that a1 − a2 = ε.

3. Prove that the state space is divided into finite intervals in each equi-

librium, and in the same interval, the audit company will adopt the

same strategy that leads to the same amount of investment.

4. Prove that for any θ, such that yR(θ) ̸= yS(θ, b), there is a positive

integer N (b), such that for any positive integer k between 1 and N (b),

there is a corresponding equilibrium which divides the state space

into k intervals.

Exercise 6.41 Consider the following dynamic game of incomplete infor-

mation: Nature chooses Game 1 or Game 2 first, and the probability of

choosing Game 1 is 0.6, and the probability of choosing Game 2 is 0.4.

Game 1 is as follows:

Player 2

C D

Player 1 C 1, 2 2, 1
D 2, 0 0, 2

Game 2 is as follows:

Player 2

C D

Player 1 C 2, 1 1, 2
D 0, 2 4, 0

After observing which game Nature has chosen, player 1 chooses be-

tween actions C and D. Player 2 cannot observe Nature’s choice, and after

observing player 1’s action, she chooses between actions C or D.
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1. Prove that there is no separating equilibrium in this game.

2. Solve for the pooling equilibrium of this game.

3. If player 1 cannot observe Nature’s choice, can he receive a higher

payoff profile?

Exercise 6.42 Consider the following conspicuous consumption model: play-

er A’s wealth level is either H or L, where H > L > 0. Suppose that A

knows his own wealth level precisely, while nobody else knows it, and A

wants others to think that his wealth level is high because it will make him

more satisfied. If other players think that the probability ofA’s wealth level

being H is q, then the payoff profile of A is q.

Assume that at the beginning of a period, other players think that the

prior probability of A’s wealth level being H is p. Now, A can choose to

purchase some expensive-looking goods as a signal of being richer. Let c

be the conspicuous consumption on the expensive-looking goods, which

does not in itself bring any benefit to A. Assume that the cost of c units of

conspicuous consumption is c/w, where w is the actual wealth level of A

(i.e., w is equal to H or L).

Assume that other players can observe c and update their posterior

probability of A having a wealth level of H based on c and that the total

payoff profile function of A is q − c/w, where q is the posterior probability

of A having a wealth level of H and w is the actual wealth level of A.

1. Under what conditions does the game have a separating equilibrium?

2. Under what conditions does the game have a pooling equilibrium?

3. Which equilibria above satisfy the intuitive criterion?

Exercise 6.43 Consider the following education investment signaling mod-

el: Each employee has two possible types: θ ∈ {θH , θL}, where θH > θL.

Given i ∈ {H,L}, the prior probability of this employee being type θi is

βi. The reservation utility for each employee is u = 0. Employees of

type θ can produce θ for a firm. The firm is willing to hire an employee

at a wage of w if and only if the employee’s expected productivity can at
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least offset the wage. Employees of type θ can receive e years of education

at cost c(e, θ) = e
θ . The education investment cost function c(e, θ) satis-

fies the single-crossing property with respect to (e, θ) (i.e., if e > e′, then

c(e, θL)−c(e′, θL) > c(e, θH)−c(e′, θH)). Given wage w and education level

e, each type θ employee has a payoff profile function u(w, e|θ) = w−c(e, θ).

Consider the following sequential actions:

• An employee observes his own type, which is his private information;

• The employee chooses his education investment level;

• The firm observes the education level of the employee, but cannot

observe the employee type;

• The employee requests a raise in wage from the firm;

• The firm either rejects the request or accepts the request and employs

the employee at the wage level.

It is assumed that educational investment can promote a low-type em-

ployee to a high-type employee. Specifically, suppose that the probability

that a type θL employee becomes type θH after investing in e years’ educa-

tion is p(e), which satisfies the following properties: p(0) = 0, lime→∞ p(e) =
1, p′ > 0, p′(0) = ∞, lime→∞ p′(e) = 0 and p′′ < 0. Once an employee of

type θL has invested in education and converts to type θH , he can observe

his own type conversion prior to entering the labor market. First, assume

that there is no asymmetric information between the firm and its employ-

ees. Answer the following questions:

1. Write down the optimization problem that can solve for the first best

(the information is complete) wage and the first best education in-

vestment level.

2. Solve this problem. Prove that the type θH employee’s investment

level in education is 0, and the type θL employee’s investment level

in education is strictly positive.

3. Suppose that education investment now becomes more effective (i.e.,

the probability that a type θL employee will become type θH after
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investing in e years’ education is q(e), where q(e) > p(e) for any e >

0). What is the first best investment level in education at this time?

What is the payoff profile of type θL employee at this time? Provide

an intuitive explanation for your answers.

Exercise 6.44 Based on the previous exercise, suppose that there is asym-

metric information between the firm and its employees and that the solu-

tion concept of pure strategy perfect Bayesian equilibrium is adopted. Con-

sider separating equilibrium that satisfies eH ̸= eL. Answer the following

questions:

1. In any separating equilibrium, type θL employees choose education

level eL = eFB , where FB represents first best.

2. Characterize the investment level in education of type θH employees,

which satisfies eH ̸= eFB .

3. Explain whether or not separating equilibrium always exists.

4. Suppose that education investment now becomes more efficient (i.e.,

the probability that a type θL employee will become type θH after

investing in e years’ education is q(e), where q(e) > p(e) for any e >

0). Will type θH employees change the education investment level in

the above separating equilibrium? Explain your conclusion.

Next, consider pooling equilibrium which satisfies eH = eL = e∗. An-

swer the following questions:

1. Given the investment level in education e∗ under a pooling equilibri-

um, what is an employee’s wage?

2. Characterize the pooling equilibrium e∗.

3. Does the pooling equilibrium e∗ = 0 always exist? Does the pooling

equilibrium e∗ = eFB always exist?

4. Suppose that educational investment now becomes more efficient (i.e.,

the probability that a type θL employee will become type θH after in-

vesting in e years’ education is q(e), where q(e) > p(e) for any e > 0).
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Characterize the impact of this change on the pooling equilibrium e∗

and provide your explanation.

5. Given the efficient educational investment, is there a pooling equilib-

rium that satisfies the intuitive criterion?
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Chapter 7

Repeated Games

7.1 Introduction

In game theory, the dynamic game refers to a game in which players move

either sequentially or repeatedly. The previous chapter mainly discusses

the sequential game, in which one chooses one’s action before the others

choose theirs. Importantly, the later players must have some information

about the former player’s choice; otherwise, the difference in time would

have no strategic effect. Sequential games are thus governed by the time

axis, and represented in the form of decision trees, but the structure of dif-

ferent sub decision trees (subgames) may be different.

Although the repeated game also exhibits a dynamic structure, the d-

ifference is that the structure of its sub-decision tree is the same,, it is an

extensive form game that consists of a number of repetitions of some base

game, called the stage game (i.e., it refers to a strategic situation in which

all or some of the participants interact repeatedly). The theory of repeated

games provides a central underpinning for understanding social, political,

and economic institutions, both formal and informal. A key factor in under-

standing institutions and other long-term relationships is the role of shared

expectations of behavioral norms such as cultural beliefs, as well as the role

of sanctions in ensuring compliance with the“rules”. The repeated game

theory can be used to study these roles.

Repeated games capture the idea that one will have to take into account
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the impact of the one’s current action on the future actions of others; this

impact is sometimes called the person’s reputation. We can find many

examples of repeated games: neighbours in the countryside often inter-

act repeatedly in certain activities, such as sowing and harvesting, social

events (weddings, funerals, etc.), and borrowing. When making policies,

including fiscal and monetary policies, governments may face similar envi-

ronments repeatedly; furthermore, policy choices of governments may be

constrained by possible future interactions. In addition, firms within the

same industry may face repeated games of competition and cooperation.

Compared with one-shot interaction, these repeated interactions have

quite dissimilar impacts on individuals’ behaviors and incentives. For in-

stance, discussions about increased urban crime rates after the opening-up

of China often focus on the reason of migration. Some people behave ap-

propriately in places where they have been living for a long period of time,

while they may misbehave when visiting a location for a short period of

time. This is not due to a change of preferences, but rather attributable to

changed constraints and environments that face them. In a relatively stable

environment, information is sufficient that punishment or encouragemen-

t is relatively direct and effective. However, for a temporary stay, neither

punishment nor encouragement works well. The common logic behind

these phenomena is what the theory of repeated games is going to reveal.

The idea of the repeated game has been applied broadly in reality, with

the reputation mechanism being one of the most important applications. S-

ince individuals usually do not know much about the quality of goods that

they consume, how do they make rational decisions about them? Since dif-

ferent companies have varied reputations (e.g., their product brands), these

reputations will affect behavioral decisions regarding the quality of prod-

ucts. For example, individuals may encounter two kinds of restaurants.

One is proximal to a railway station, and the other is near residential areas.

In general, people only go to the former restaurant occasionally while vis-

iting the latter frequently. Indeed, the quality of food of the former is likely

to be inferior to that of the latter. With the idea of repeated games (e.g.,

Folk Theorem), repeated interactions will make the reputation mechanis-

m more effective. It is not difficult to understand the above phenomenon.
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The Folk Theorem actually concerns the fact that virtually any outcome of

an infinitely repeated game becomes a subgame perfect Nash equilibrium.

Expressed more simply, the theorem suggests that anything that is feasible

and individually rational is possible. This result was termed the Folk Theo-

rem because it was widely known among game theorists in the 1950s, even

though no one had published it.

In this chapter, we will focus on how multiple interactions change indi-

viduals’ incentives. The theoretical results show the reason why the mod-

ern market economy can better solve the problem of honesty. This is be-

cause honesty is not only a traditional virtue and a positive social climate,

but also an incentive mechanism, and is the long-term outcome of the law

and incentive mechanism such as market mechanism such that individuals

who are dishonest will be punished. According to the Folk Theorem, any

established social climate constitutes a social equilibrium. Indeed, once

the social norm or convention is established, as long as the discount fac-

tor is sufficiently large (i.e., the future penalty after deviation is sufficiently

large), no one has the incentive to deviate unilaterally. If the process of

strategic choices can be divided into successive steps, rational behaviors

would consider the influences of all individuals’ initial behaviors on sub-

sequent choices and final outcomes. The key issue here is credibility (i.e.,

once deviation occurs, whether or not the punishment is actually execut-

ed). In fact, this is precisely the key to establish credibility in a realistic

society.

As will be revealed in this chapter (Section 7.5.3), in a society replete

with deceit and dishonesty, even if the discount factor equals one, if a per-

son chooses to be honest, the person’s interest will be harmed. As a result,

deceiving each other is a Nash equilibrium. However, in a society in which

most people are honest, cheating is subject to legal sanctions and public

condemnation (the discount factor is greater than some lower bound), and

being honest would constitute a Nash equilibrium. If the discount factor

in the society is not particularly large, the larger is the proportion of mis-

behavior individuals in the society, the lower is the effectiveness of social

norms. This is because the lower bound of the discount factor that guar-

antees upholding the social norm is increasing with a lower proportion
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of “misbehavior people”in a society. This is the profound concept con-

tained in the Folk Theorem that tells us that if agents (usually referring to

firms in markets) live long enough, they will be in an infinitely repeated

game, rather than in a static one. When most of them are patient enough

and far-sighted enough to be honest (discount factor is close to 1), keeping

honest is a Nash equilibrium. As such, both dishonesty and honesty could

be Nash equilibria. The determinant factors are the proportion of good-

behavior people and the degree of punishment (characterized by discount

factor). As long as a mechanism is designed properly, such that the pun-

ishment of deviations is credible and the cost is sufficiently large to offset

the extra benefit of deviating behaviors, no one has the incentive to deviate

unilaterally.

Depending on the horizon, a repeated game can be either a finitely

repeated game or an infinitely repeated game that is also called the su-

pergame. In addition, based on the information distribution structure, it

can also be a repeated game with perfect monitoring, a repeated game with

imperfect public monitoring, or a repeated game with private monitoring,

resulting in conclusions that may be quite different. We will mainly focus

on the discussion of the first two kinds of repeated games.

7.2 Examples of Repeated Games

Repeated games can clearly describe not only the short-sighted incentives

for which agents do not follow the rules, but also the incentive measures to

prevent such opportunistic behaviors through appropriate norms, rewards

and punishments for future behaviors.

Firstly, we illustrate this point through examples of long-term relation-

ship and opportunistic behavior. These examples can assist us to under-

stand the basic idea behind repeated games.

Example 7.2.1 Table 7.1 describes the incentive problem in a team. Con-

sider a team with two members. If both members work hard (exert, de-

noted as “E”), each receives a payoff profile of 3; if one is lazy (shirk,

denoted as“S”) and the other works diligently, the lazy worker receives
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a payoff profile of 4 and the other receives a payoff profile of -1; if both

are lazy, each receives a payoff profile of 1. From the perspective of team

welfare, both should choose to work hard; however, from the perspective

of individual welfare, both will choose to be lazy because being lazy is a

dominant strategy for both, and it is the unique equilibrium.

Now, suppose that they will interact infinitely often, with the payoff

profile at the end of each period given by Table 7.1. At the beginning of

each period, they can observe all previous choices. Let the discount factor

be 0 < δ < 1. In such a repeated game, a player cares about the utility of

all periods. As is standard, the (normalized/average discounted) utility of

player i in the repeated game is

Ui = (1 − δ)
∞∑
t=0

δtuit,

where uit is the payoff profile obtained in period t. Note that if uit = ui for

all t, then Ui = ui.

player 2
E S

player 1 E 3, 3 −1, 4
S 4,−1 1, 1

Table 7.1: Dilemma of Work Incentives.

Is the collectively rational payoff profile (team welfare) a Nash equi-

librium payoff profile of an infinitely repeated game? Since the history

of previous actions can be observed, the choice of a player in a certain

stage game depends on the past history of other players. Suppose that the

players utilize“grim trigger strategy””” (also called the“““grim strategy”””

or “““trigger strategy”””: Play E at t = 0; thereafter play E if the play-

ers have always played (E,E) in the past, otherwise play S forever (i.e.,

any participant’s non-cooperation triggers the other party to never coop-

erate). In other words, each player chooses to work hard at the begin-

ning, but as soon as one player defects, both defect forever. If we regard

“work hard”and“be lazy”as“cooperation”and“punishment”, re-

spectively, “grim trigger strategy”means that once some player has de-
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viated from“cooperation”, both will choose to“punish the other”. In

other words, players do not forgive“treachery”.

We shall show that when δ = 1
3 , the strategy profile (Grim, Grim) is a

subgame perfect Nash equilibrium, which is a Nash equilibrium that sat-

isfies sequential rationality in any subgame (i.e., provided one player has

chosen to“be lazy”in some previous round, the opponent will choose to

“be lazy”in every future round; then, the optimal choice for the player

who triggered the punishment is also to“be lazy”). To see this, consid-

er a stage game starting in period t where both players chose to “work

hard”in all previous periods. Under the“grim strategy”profile, player

i chooses to“work hard”and earns the utility

(1 − δ)

t−1∑
s=0

δs3 + δt3 +
∑
s=t+1

δs3

 = 3.

If player i chooses to “be lazy”once and follow the “grim strate-

gy”thereafter, the player’s utility is

(1 − δ)

t−1∑
s=0

δs3 + δt4 +
∑
s=t+1

δs1

 = 3(1 − δt) + 4(1 − δ)δt + δt+1.

When δ = 1
3 , it can be shown that

3(1 − δt) + 4(1 − δ)δt + δt+1 5 3 = 3(1 − δt) + 3(1 − δ)δt + 3δt+1.

Therefore, given that the opponent chooses the grim strategy, in any

subgame player i will choose to follow the grim strategy, as well.

In this infinitely repeated game, why are players willing to give up the

best choice in the short run,“be lazy”, and instead“work hard”? The

above reasoning process of “grim strategy”shows that each player will

weigh the short-run benefits of choosing to “be lazy”and the long-run

returns of choosing to“work hard”. When each player’s extra return, 2δ,

from cooperation is greater than the short-run extra return, (1 − δ), from

non-cooperation, they both resist opportunistic behavior (i.e., not to “be

lazy”). As the discount factor δ increases, players place more weight on
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long-run returns.

In this infinitely repeated game, there are multiple subgame-perfect

Nash equilibria. One such equilibrium involves each player choosing to

“be lazy”in every period; this gives (1, 1) as the equilibrium payoff pro-

file. In fact, (t+ 3(1 − t), t+ 3(1 − t)), for all t ∈ [0, 1], are all payoff profiles

of some Nash equilibria in this infinitely repeated game. This conclusion is

called the“Folk Theorem”.

Now, instead of infinitely many periods, we allow the players to interact

for a finite horizon T < ∞. Then, under grim strategies, for any δ 5 1, the

unique subgame perfect Nash equilibrium is: “be lazy”in each period.

This is because, in the last period T , players choose to“be lazy”as there

are no future returns; in period T − 1, as the choices in this period will not

influence their choices in the next period, both players will choose to“be

lazy”, as well. By backward induction, since the choices in any period

have no effect on their behavior in future periods, they always choose their

short-run optimum (i.e., to“be lazy”).

However, this conclusion also depends on the uniqueness of Nash e-

quilibrium in the one-stage game. When there are multiple equilibria in a

stage game, the finiteness of the horizon does not fully determine players’

behavior in a repeated interaction. The key determinant is how behavior in

the current period affects future interaction. This is the case when a stage

game has more than one equilibrium. We now explain this idea with a

two-stage game.

Example 7.2.2 Suppose that there are two players, denoted {1, 2}. Each

has three choices: {L,M,R}. The payoff profiles are shown in Table 7.2.

The game is repeated twice, using the discount factor 1 for simplicity (anal-

ysis of the general situation with δ 5 1 is similar).

The single-stage game has two Nash equilibria, (L1, L2) and (R1, R2),

with payoff profiles (1, 1) and (3, 3), respectively. However, compared with

the two Nash equilibria, the action profile (M1,M2) is better off for bothe

players in terms of team welfare. The two-stage game has more than one

subgame perfect Nash equilibrium. For example, playing any of the above

Nash equilibria in each stage forms a subgame perfect Nash equilibrium.
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player 2
L2 M2 R2

L1 1, 1 5, 0 0, 0
player 1 M1 0, 5 4, 4 0, 0

R1 0, 0 0, 0 3, 3

Table 7.2: Two-Stage Repeated Game.

In addition, there is another subgame perfect Nash equilibrium: in stage 1,

players choose (M1,M2); if the choice in stage 1 is (M1,M2), in stage 2 the

players choose (R1, R2); otherwise, they choose (L1, L2) in stage 2.

We now show that the two stage strategy profile {(M1,M2), (R1, R2)}
constitutes a subgame perfect Nash equilibrium. First, in stage 2, (R1, R2)
constitutes a Nash equilibrium of the subgame. Next, we consider that in

stage 1. Given that the opponent chooses Mj , if player i chooses Mi, the

total payoff profile of two periods for the player is 4 + 3 = 7. If player

i chooses Li, the player’s total payoff profile is 5 + 1 = 6; if the player

choosesRi, the total payoff profile is 0+1 = 1. Thus,Mi is the best response

of player i in stage 1, as desired.

Why do players choose individually irrational, but collectively rational

behavior in the first stage (relative to the single stage game)? The key rea-

son is that the choice in stage 1 will influence payoff profiles thereafter. In

other words, when players make decisions, they are weighing short-run

and long-run returns. When the latter is larger, each player will choose

cooperation as an optimal choice in the long run.

In the above repeated game, a “cooperation”mechanism is used to

punish deviations. However, punishment or other mechanisms that en-

courage cooperative behavior have different levels of effectiveness in dif-

ferent situations. In the above example, players can observe all past choic-

es. If they cannot, can the outcomes that they observe assist them to infer

past behavior? If not, the punishment scheme may not effectively preven-

t deviations. In addition, the punishment scheme itself needs to satisfy

some conditions. Draconian punishment schemes may run counter to the

rationality of those who carry them out; thus, it is important to construct
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appropriate punishment schemes. Indeed, punishment schemes may also

involve cooperation among players. To this end, it may be necessary to

encourage the performers. Furthermore, cooperation during a punishment

process may involve information issues, as well. The degree of punish-

ment, or when the punishment ends, is also an important issue. There are

different solutions for different types of interaction. These will all be dis-

cussed and answered in this chapter.

Next, we start with the simplest repeated game with perfect monitor-

ing, in which players can observe previous actions. Subsequently, we will

discuss repeated games with imperfect public monitoring, in which player-

s can observe the outcome of a public behavior instead of previous actions.

We then discuss the repeated game with private monitoring, in which dif-

ferent players observe different outcomes. Finally, we examine the econom-

ic logic of the reputation mechanism. The repeated game is an important

branch in the development of game theory. This literature also proposes

and solves new problems. The most comprehensive survey of this litera-

ture is given in Mailath and Samuelson (2006), to which many discussions

in this chapter refer.
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7.3 Repeated Games with Perfect Monitoring

This section first sets up the basic structure and concepts of the repeated

game with perfect monitoring (i.e., observable previous actions), and then

focuses on providing important techniques and tools for proving the Folk

Theorem in the next section and its extensions in more general environ-

ments in the consequent sections.

A repeated game consists of repetitions of some base game (also called

a stage game). Generally, in a repeated game, the stage game is a static

game with simultaneous actions (in some repeated games, the stage game

may also be in extensive form). Let Γt be the stage game in period t. The set

of players in period t isN t, the set of actions of player i ∈ N t is (Ati), and the

utility/payoff profile function is (ui(at))i∈Nt , with at ∈ At ≡ At1 ×· · ·×AtNt

being the action profile in period t.

Let ht = (a0, a1, · · · , at−1) be the history of previous actions at period

t, indicating what have been played before t, where a0 ∈ H0 is the initial

action history. The set of action histories at period t is denoted by Ht. All

possible action histories are contained in H ≡
∪∞
t=0H

t. With perfect infor-

mation, a player can observe all previous actions of all players.

A strategy in the repeated game prescribes a strategy of the stage game

for each history ht = (a0, a1, · · · , at−1) at each date t. Then a (mixed) strate-

gy of player i at date t is σti : Ht → ∆Ati, which is a probability distribution

on the set of actions, and a strategy of player i in the whole repeated game

is denoted by σi = (σti)t∈{1,2,··· ,∞}.

Denote the strategy profile for all players by σ = (σi)i∈N = (σt)∞
t=1,

where σt = (σti)i∈N is the strategy profile of all players in period t. Thus,

a strategy in a repeated game determines a strategy in the stage game for

each history and period t. The important point is that the strategy in the

stage game at a given period can vary by histories.

If the repetition period is finite, the repeated game ΓR = (Γt)t∈T is

called the finitely repeated game; otherwise, it is called the infinitely re-

peated game. The simplest infinitely repeated game is that the game in

each stage is the same (i.e., we have N t = N and Ati = Ai).



7.3. REPEATED GAMES WITH PERFECT MONITORING 423

As the game has multiple periods, the utility of a player is, in general,

defined as the sum of intertemporal discounted utilities, and the discount

factor δ is the same for all players. Of course, in some cases, such as bar-

gaining, different players may have different discount factors.

Given the strategy profile σ = (σi)i∈N , the payoff profile for player i is

Ui(σ) = (1 − δ)
∞∑
t=0

δtui(σt).

When defined in this way, the domain of this utility is the same as that of

utility in the stage game. It is worth noting that Ui is the payoff profile of

player i in the whole repeated game, while ui is the payoff profile in the

stage game.

Each action history starts a new proper subgame, we can define the

continuation game for the repeated game. From the beginning of action

history ht at period t, for any strategy profile σ, the continuation strategy

of player i given ht is denoted as σi|ht with σi|ht(hτ ) for each hτ ∈ H .

The continuation game generated from a given action history is then a

subgame of the whole repeated game. Thus, for any strategy profile σ and

history ht, we can compute the players’ expected present values of payoff

profiles from period t onward. We shall call these the continuation payoff

profiles, denoted by

U ti (σ|ht) = (1 − δ)
∞∑
τ=t

= δτ−tui(σ|ht).

Under what conditions are there equilibria of the repeated game? What

are their properties and range? These are questions that we will answer in

the remainder of this chapter.

7.3.1 Feasible and Individually Rational Payoffs

We first give some basic concepts on the stage game and equilibrium solu-

tion concept of a repeated game.

Define F ≡ {v ∈ Rn : ∃a ∈ A, s.t. v = u(a)} as the set of pure strategy

payoff profiles of the stage game, and define F+ ≡ coF as the convex hull
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of the set F , which is the smallest convex set containing F .

Definition 7.3.1 (Feasible Payoffs) A profile of payoffs is feasible in the stage

game Γt if v ∈ F+.

Unfeasible payoffs cannot be outcomes of the game. Towards finding a

lower bound on the payoffs from pure-strategy Nash equilibria, we define

the following concept.

Definition 7.3.2 (Minmax Payoffs) In the stage game Γt, player i’s pure s-

trategy minmax payoff vpi is:

vpi ≡ min
a−i∈A−i

max
ai∈Ai

ui(ai,a−i),

i.e., it is the lowest payoff that the player can obtain regardless of all the

other players’ choices. In other words, it is the minimum of player i’s best

response over other players’s strategies.

When other players can employ mixed strategies in the stage game, the

mixed strategy minmax payoff is defined as

vi ≡ min
σ−i∈×j ̸=i∆Aj

max
ai∈Ai

ui(ai,α−i).

In the stage game, player i will never receive a payoff lower than the

minmax payoff. So we have the following concept of individual rationality

on payoffs.

Definition 7.3.3 (Individually Rational Payoffs) A pure strategy profile is

individually rational in the stage game Γt if for all i ∈ N , we have

vi = vpi ,

i.e., the pure strategy payoff of every player is not less than its pure strategy

minmax payoff. Similarly, a mixed strategy profile is individually rational in

the stage game Γt if

vi = vi

for all i ∈ N .
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Thus, a payoff profile is individually rational if it gives each player at

least the player’s guarantee.

The set of feasible and individually rational payoffs v = (vi)i∈N for

pure-strategies is defined as

F p ≡ {v : vi = vpi | v ∈ F+}.

Similarly, the set of feasible and individually rational payoff profiles for

mixed strategies is defined as

F ∗ ≡ {v : vi = vi | v ∈ F+}.

The feasibility and individual rationality of payoff profiles are very im-

portant requirements. In the next section, we will show that any feasible

and individually rational payoff profile v is an equilibrium payoff profile

of a subgame perfect Nash equilibrium.

The following is an example of calculating the minmax payoff of play-

ers.

player 2
Head Tail

player 1 Head 1,−1 −1, 1
Tail −1, 1 1,−1

Table 7.3: The Minmax Payoff of Matching Pennies Game.

Example 7.3.1 Consider the following matching pennies game.

In the matching pennies game in Table 7.3, the minmax payoff of pure

strategy for player 1 (or player 2) is vp1 = vp2 = 1. The mixed strategy

minmax payoff is v1 = v2 = 0 since optimal mixed strategy of player 1 (or

player 2) is to choose heads or tails with probability 0.5.

Next, we identify the set of feasible and individually rational payoff

profiles in the following example.

Example 7.3.2 Consider the game given by Table 7.4. It can be shown that

this game does not have a pure strategy Nash equilibrium, but there is a
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mixed strategy Nash equilibrium at which two players choose (Up, Mid-

dle) and (Left, Right) with probability 0.5, respectively, and then the mixed

strategy minmax payoff is 0. Thus, the set of feasible and individually ra-

tional payoffs, F ∗, is the intersection of the feasible set F+ ≡ coF shown

by the area of triangle and the set of all nonnegative vectors {v : vi = 0},

which is the shaded area in Figure 7.1.

player 2
Left Right

Up −2, 2 1,−2
player 1 Middle 1,−2 −2, 2

Down 0, 1 0, 1

Table 7.4: Example of Feasible Payoff.

-2 2

0,1

1,-2

The set of feasible and 

individually rational 

payoffs

Figure 7.1: Feasible individual rational payoffs.

In a repeated game, when information is imperfect, players may use

some public correlation devices to coordinate behavior among players. For

example, in the 1950s, in a collusion of bids for electrical equipment, bid-

ders used the phase of the moon as hint to coordinate their bids. Let W

be the set of public correlation devices in which w ∈ W is one of its states

that can be observed by all players, and p be a probability distribution over

W . The strategy of each player can conditional on the state of the public

correlation device (i.e., σi(·) : W → ∆Ai). With public correlation devices,
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the payoff profiles can be increased.

Example 7.3.3 Consider the game in Table 7.5. Let W = {w1, w2}, and the

probability of each state be 0.5. When w1 appears, the choices of players 1

and 2 are (Up, Right); when w2 appears, the choices of players 1 and 2 are

(Down, Left). Thus, the expected payoff profiles obtained under the public

correlation device are (3,3). However, without such a device, they cannot

achieve these payoff profiles.

player 2
Left Right

player 1 Up 2, 2 1, 5
Down 5, 1 0, 0

Table 7.5: Example of public correlation devices.

Assuming that public correlation devices exist, the set of feasible payoff

profiles in the repeated game is:

V ∗ = F+ ≡
{∑

a∈A
λ(a)u(a)

∣∣∣∣∃λ(·), λ(a) ∈ [0, 1],
∑
a∈A

λ(a) = 1
}
,

which is the convex hull of F

After introducing public correlation devices, the set of feasible and indi-

vidually rational payoff profiles can be defined as FV ∗ = {v | v ∈ V ∗, vi =
vi}. If the weak inequality is replaced by a strict inequality, it becomes the

set of feasible and strictly individually rational payoff profiles.

Similarly, for repeated games, we define Nash equilibrium.

Definition 7.3.4 (Nash Equilibrium of Repeated Games) A strategy pro-

file σ is a Nash equilibrium of a repeated game, if for any i ∈ N and any σ′
i, we

have Ui(σ) = Ui(σ′
i,σ−i).

Since a repeated game with perfect monitoring is a dynamic game with

complete information, it is natural to use subgame perfect Nash equilibri-

um.
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Definition 7.3.5 (Subgame Perfect Nash Equilibrium of Repeated Games)

A strategy profile σ is a subgame perfect Nash equilibrium of a repeated game,

if for any history ht ∈ H , σ |ht is the Nash equilibrium of the continuation

game that starts from the history ht.

An infinitely repeated game has infinitely many histories and subgames.

As a consequence, it is difficult to verify whether a strategy profile is sub-

game perfect Nash equilibrium. As such, we will provide several key tech-

niques and tools, which will be discussed in the rest of this section.

We will first introduce a criterion called the one-shot deviation princi-

ple, which can be used to identify whether a strategy profile is a subgame

perfect Nash equilibrium.

7.3.2 One-Shot Deviation Principle

The one-shot deviation principle is fundamental to the theory of dynam-

ic games. The difficulty for a finding subgame perfect Nash equilibrium

is that there are many possible deviations after many different histories.

However, since repeated games are recursive, one uses the single-deviation

principle to check whether a strategy profile is a subgame-perfect Nash e-

quilibrium. It was first proposed by Blackwell (1965) in the context of dy-

namic programming.

For player i, a one-shot deviation from σi is any strategy σ̂i ̸= σi that

agrees with σi at all histories but one, i.e., there exists a unique history

h̃ ∈ H with σ̂i(h̃) ̸= σi(h̃) such that σ̂i(h) = σi(h) for all other histories

h ̸= h̃.

Definition 7.3.6 (Profitable One-Shot Deviation) Given the strategy pro-

file σ−i of other players, one-shot deviation σ̂i of strategy σi is profitable, if

there exists some history h̃ ∈ H with σ̂i(h̃) ̸= σi(h̃), such that

Ui(σ̂i |h̃,σ−i |h̃) > Ui(σ |h̃).

Nash equilibria have no profitable one-shot deviations on their paths,

but may have profitable one-shot deviations off their paths. However, this
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is not true for subgame perfect Nash equilibria, which is characterized by

the so-called one-shot deviation principle.

The importance of the one-shot deviation principle below is that we do

not need to consider all possible deviations when solving for the subgame

perfect Nash equilibrium of a repeated game. For instance, to check if the

strategy profile σi is subgame perfect, we do not need to consider strategies

of player i that deviate in period t, again in t′ > t, etc.

Theorem 7.3.1 (One-Shot Deviation Principle) A strategy profile σ is a sub-

game perfect Nash equilibrium of a repeated game if and only if no player has any

profitable one-shot deviation.

PROOF. Here, we prove the one-shot deviation for the case of pure strate-

gies with perfect information. When mixed strategies or public correlation

devices are allowed, proofs are similar, but require more technical details.

Obviously, if a strategy profile is a subgame perfect Nash equilibrium, for

each player there are no better strategies, which includes one-shot devia-

tion strategies. Thus, the necessary condition is immediate.

Now, we prove sufficiency by way of contradiction. If a strategy profile

is not a subgame perfect Nash equilibrium, there must exist a profitable

one-shot deviation strategy.

Suppose that the strategy profile σ is not the subgame perfect Nash

equilibrium of a repeated game. Then, there exists at least one history h̃t

such that for player i, there exists a strategy σ̃i ̸= σi leading to

Ui(σ̃i |h̃t ,σ−i |h̃t) > Ui(σ |h̃t).

If σ̃i were a one shot deviation, we would be done. Suppose not. We

will first show that there must exist a profitable deviation in a finite number

of histories, and then use that deviation to construct a profitable one shot

deviation.

Define

ε = Ui(σ̃i |h̃t ,σ−i |h̃t) − Ui(σ |h̃t) > 0.

Let M = maxa ui(a) and m = mina ui(a) be the highest and the lowest

payoffs that player i can obtain in a stage game. As δ < 1, there exists a
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sufficient large T > t, such that δT (M −m) < ε
2 .

Consider a strategy σ̂i that is identical to σ̃i in the first T periods and to

σi|h̃t thereafter, i.e., for any hτ ∈ H ,

σ̂i(hτ ) =


σ̃i(hτ ), if τ < T ;

σi|h̃t(hτ ), if τ = T ,

where σi |h̃t (hτ ) is the strategy that conditions on hτ that includes h̃t.

Obviously, we have

Ui(σ̃i|h̃t ,σ−i|h̃t) − Ui(σ̂i|h̃t ,σ−i|h̃t) = UTi (σ̃i|h̃t ,σ−i|h̃t) − UTi (σ̂i|h̃t ,σ−i|h̃t)

5 δT (M −m) < ε/2,

where UTi (·) is player i’s continuation payoff function starting from T , and

then

Ui(σ̂i|h̃t ,σ−i|h̃t) − Ui(σ|h̃t) > ε/2.

Thus, for σi, if a profitable deviation σ̃i exists, there must exist a prof-

itable deviation σ̂i that deviates at only a finite number of histories.

Now we use σ̂i to construct a profitable one shot deviation.

Let ĥT−1 = (â0, · · · , âT−2) be a history of T − 1 periods induced by

(σ̂i,σ−i).

Consider the payoff difference of the one-shot deviation strategy σ̂i|ĥT −1

and the original strategy σi at the history ĥT−1:

Ui(σ̂i|ĥT −1 ,σ−i|ĥT −1) − Ui(σ|ĥT −1).

If this difference is strictly positive, then we have a profitable one-shot

deviation for player i which is at history hT−1. If this difference is weakly

negative, redefine σ̂i to coincide with σi at history hT−1; consider the T − 2
period history hT−2 induced, and evaluate the difference above (replacing

hT−1 with hT−2). If this difference is positive, we have a profitable one-

shot deviation; otherwise, continue this process iteratively. Eventually, the

difference is positive, otherwise, contradicting to the fact that there must

exist a profitable deviation in a finite number of histories. 2
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Thus, in order to show that a strategy profile σ is a subgame perfect

Nash equilibrium of a repeated game by the one-shot deviation principle,

we must check that for all histories h, σ is a subgame perfect Nash equi-

librium. Conversely, in order to show that a strategy profile σ is not a

subgame perfect Nash equilibrium of a repeated game, we only need to

find one history and one date t for which σ is not a subgame perfect Nash

equilibrium of the continuation game from t.

Example 7.3.4 (Prisoner’s Dilemma continued) Consider the problem of

cooperation during work, where each player wants to be a free-rider. The

payoff matrix in a stage game for two players is represented in Table 7.6.

player 2
E S

player 1 E 3, 3 −1, 4
S 4,−1 1, 1

Table 7.6: Incentives in the Prisoner’s Dilemma.

We first consider the strategy profile (Grim, Grim): Play E at t = 0;

thereafter play E if the players have always played (E,E) in the past, oth-

erwise, play S forever.

There are two kinds of histories we need to consider separately for this

strategy profile.

(1) Cooperation: Histories in which S has never been played by

any player.

(2) Non-Cooperation: Histories in which S has been played by

some player in the past.

First consider a cooperation history for any t. We want to show that

cooperation is best response to cooperation. If both players play E at t and

from t+ 1 on, each player will play E forever, then the continuation payoff

of each of two players starting from t is

U ti (E,E) = 3.

If player i plays S at t, according to (Grim, Grim), from t + 1 on, all the
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histories will be non-cooperation histories and the continuation payoff of

player i starting from t is

U ti (S,E) = 4(1 − δ) + δ.

The one-shot deviation principle requires that (E,E) is a Nash equilibrium

of the continuation game starting from any t, i.e.,

U ti (E,E) = U ti (S,E).

Thus, when δ = 1
3 , there is no profitable one-shot deviation.

We also need to consider non-cooperation histories and want to show

that non-cooperation is best response to non-cooperation. Consider a histo-

ry in which S has been played by some player before t. According to (Grim,

Grim), from t on, each player will play S forever. The one-shot deviation

principle for (Grim, Grim) requires that (S, S) is a Nash equilibrium of this

game, i.e., it requires

U ti (S, S) = (1 − δ) + δ = −(1 − δ) + δ = U ti (E,S),

which is clearly true for any δ ∈ [0, 1].

Thus, provided δ = 1
3 , (Grim, Grim) has no one-shot deviation at each

history, it is a subgame perfect Nash equilibrium.

Now suppose that players choose the“Tit for tat”strategy: Play E at

t = 0, and each t > 0, play whatever the other player played at t − 1. That

is, players choose to work in the initial stage and thereafter copy the oppo-

nent’s behavior in the previous period, and thus“Tit-for-tat”strategies at

t only depends on what is played at t− 1 not any previous play.

According to the Tit for tat strategy, if both players choose E at t > 0,

then starting at t+ 1 and we will have (E,E) throughout. Then, the player

i’s continuation payoff at t is

U ti (E,E) = 3.
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If (S,E) is played at t, according to (Tit-for-tat, Tit-for-tat), the sequence

of plays will be:

(S,E), (E,S), (S,E), (E,S), · · · ,

and then the player 1’s continuation payoff at t is

U ti (S,E) = (1 − δ)[4 − δ + 4δ2 − δ3 + . . .]

= (1 − δ)[
∞∑
s=0

4δ2s − δ
∞∑
s=0

δ2s]

= 4 − δ

1 + δ
.

If (E,S) is played at t, according to (Tit-for-tat, Tit-for-tat), the sequence

of plays will be:

(E,S), (S,E), (E,S), (S,E), · · · ,

and and the player 1’s continuation payoff at t is

U ti (E,S) = (1 − δ)[−1 + 4δ − δ2 + 4δ3 + . . .]

= 4δ − 1
1 + δ

.

After (S, S) at t, we will have (S, S) throughout, and then U t1(S, S) = 1.

We want to show that (Tit-for-tat, Tit-for-tat) is not a subgame-perfect

Nash equilibrium. To do so, we consider three histories in which it fails the

one-shot deviation principle:

1. Consider the history at t = 0 in which (Tit-for-tat, Tit-for-tat) pre-

scribes (E,E) (i.e., both players play E forever). The one-shot deviation

principle requires that (E,E) is a Nash equilibrium of the continuation

game starting from any t, i.e., we must have

U ti (E,E) = U ti (S,E)

or

3 = 4 − δ

1 + δ
,

which requires that δ = 1
4 .

2. Consider a history in which (E,S) is played at t − 1 with t > 1.



434 CHAPTER 7. REPEATED GAMES

According to (Tit-for-tat, Tit-for-tat), we must have (S,E) at t. The one-

shot deviation principle requires that (S,E) is a Nash equilibrium of the

continuation game starting from t, i.e.,

U ti (S,E) = U ti (E,E),

which requires that δ 5 1
4 , the opposite of the previous requirement.

3. Consider a history in which (S,E) is played at t − 1 with t > 1.

According to (Tit-for-tat, Tit-for-tat), we must have (E,S) at t. The one-

shot deviation principle requires that (E,S) is a Nash equilibrium of the

continuation game starting from t, i.e.,

U ti (E,S) = U ti (S, S),

which requires that δ = 2
3 , contradicting to the requirement in 2.

Therefore, (Tit-for-tat, Tit-for-tat) is not a subgame-perfect Nash equi-

librium for any δ ∈ [0, 1].

For a general situation, it is much complicated to show that a strategy

profile σ is a subgame perfect Nash equilibrium using the one-shot devi-

ation principle since one must check there is no profitable one-shot devi-

ation for all histories. By introducing the technique of automata, we can

transform the repeated game into normal-form games, and then we only

need to apply the one-shot deviation principle to the static games induced

by the automata, which greatly reduces the number of histories to be ex-

amined and simplifies the tests of the existence of subgame perfect Nash

equilibrium.

7.3.3 Automaton Representation of Strategic Behavior

Although the one-shot deviation principle greatly simplifies the test of sub-

game perfect Nash equilibrium, many histories need to be examined to

check whether there is no profitable one-shot deviation. A further simplifi-

cation is to divide histories into equivalence classes, such that all histories

in an equivalence class produce the same continuation strategy. If we de-
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scribe an equivalence class as a state, we can describe strategies in different

equivalence classes using an automaton.

Automata theory is the study of the mathematical properties of abstract

machines and automata, as well as the computational problems that can be

solved using them. It is a theory in theoretical computer science, which has

wide applications. An automaton is an abstract self-propelled computing device

which follows a predetermined sequence of operations automatically. The use of

automata in repeated games was pioneered by Aumann (1981). Rubinstein

(1986), Abreu and Rubinstein (1988), and Osborne and Rubinstein (1994)

describe the problem of strategic choice in repeated games using automata.

An automaton consists of a 4-tuple (Ω, ω0, f(·), τ(·)), where Ω repre-

sents all possible states (all possible equivalence classes of histories), ω0 ∈ Ω
is the initial state, f : Ω → Πi∆(Ai) is output function (decision rule) that

describes the mapping from states to action profiles ( fω(a) denotes the

probability of choosing profile a at state ω, which satisfies
∑

a∈A f
ω(a) =

1), and τ : Ω ×A → Ω is state transition function that characterizes how we

transition from the current state and the current action to the next period’s

state. Any automaton (Ω, ω0, f(·), τ(·)) induces a strategy profile σ = f(·).

If the output of f(·) is a pure strategy profile, the sequence of histories

generated by the automaton (Ω, ω0, f(·), τ(·)) is (a0,a1, · · · ) with

a0 = f(ω0),a1 = f(τ(ω0,a0)),a2 = f(τ(τ(ω0,a0),a1)), · · · .

The transition function τ : Ω ×H/{∅} → Ω is then given by

τ(ω, ht) := τ(τ(ω, ht−1),at−1),

and the induced strategy σ is given by σ(∅) = f(ω0) and

σ(ht) := f(τ(ω0, ht)), ∀ht ∈ H \ {∅}.

Thus, every strategy profile can be represented by an automaton (set Ω =
H). Based on this, we can form a one-to-one correspondence between the s-

trategy profile and the automaton: σ(ht) = f(τ(ω0, ht)) with f(ht) = σ(ht)
and ht+1 ≡ (ht,at) = τ(ht,at).
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The automaton can divide the entire history H into equivalence classes

and each equivalence class produces the same continuation strategy. The

set of states under automaton is usually a finite set. Under automaton rep-

resentation, for the strategy σ|ht after history ht, each state forms a specific

continuation strategy.

The automaton of a player can be defined as (Ωi, ω
0
i , fi, τi), and it is

interchangeable with individual strategy σi.

Example 7.3.5 (Automaton Representation of Grim Strategy) Consider the

previous example of grim strategy that implies that a player chooses to ex-

ert (E) first. If players always choose to exert (E) prior to period t, they

choose to work hard in this period, as well. If some player has chosen to

shirk (S), she chooses to shirk from then on.

In the static (one-shot) play, if each player plays S, it will result in SS

outcome (action); if player 1 plays S and player 2 plays E, it will result in

SE outcome; other outcomes can be similarly denoted. Also, since each

equivalence class produces the same continuation strategy, the state set for

the grim strategy only contains two element {EE,SS}.

Then the automaton to represent the grim strategy can be expressed as

Ω = {wEE , wSS}, f(wEE) = EE, f(wSS) = SS,

and

τ(w, a) =

 wEE , if w = wEE , a = EE,

wSS , otherwise.

The state transition function is represented by Figure 7.2.

As will be shown below, combining the one-shot deviation principle

with the automaton representation, when verifying whether or not a Nash

equilibrium is subgame perfect, we only need to make sure that in each s-

tate ω ∈ Ω, the strategy profile generated by the automaton (Ω, ω0, f(·), τ(·))
is a Nash equilibrium of the induced normal-form games. This simplifies

the analysis substantially because one only needs to check whether a strat-

egy profile is a Nash equilibrium of the induced normal-form game.

In the case of incentives in the Prisoner’s Dilemma, it is easy to prove
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Figure 7.2: Automaton Representation of Grim Strategy.

that when δ = 1/3, as we did before, the grim strategy profile is a subgame

perfect Nash equilibrium.

7.3.4 Credible Continuation Promises

In order to analyse repeated games using automata, we need characterize

the set of equivalence classes of states. At every stage, a player needs to

consider not only the player’s payoff in the current period, but also the im-

pact of the payer’s decision on future states. We know that the future is

a powerful incentive mechanism, but it is difficult to understand what re-

peated games can achieve when the space of strategy profiles themselves

are infinite-dimensional spaces, especially in the context of infinitely re-

peated games. We now discuss some powerful techniques for characteriz-

ing the set of subgame perfect Nash equilibria.

Abreu, Pearce, and Stacchetti (1986, 1990) proposed a method to de-

scribe the state. Specifically, they suggested using the continuation (expect-

ed) discounted value to describe the state; thus, the state determines not on-

ly a player’s incentives in the stage game, but also the player’s payoff from

the continuation game. The idea of this approach comes from the dynamic

programming method that transforms the dynamic optimization problem

into Bellman equation, which breaks a dynamic optimization problem in-

to a sequence of simpler subproblems. So is here: the decision problem of

the dynamic game is transformed into a sequence of (correlated) static de-

cision subproblems of stage games, i.e., establishing a recursive structure

to analyze repeated interactions among players and check whether a strat-
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egy profile is a Nash equilibrium of the reduced stage game using one-shot

deviation principle. This approach together with automata method has be-

come a standard approach to solving repeated games. The current and next

subsections will discuss the logic behind this approach.

Given an automaton (Ω, ω0, f(·), τ(·)), let Vi(ω) be player i’s value start-

ing from state ω. In other words, if players make strategic choices according

to the automaton (Ω, ω0, f(·), τ(·)), then starting from ω, (Ω, ω0, f(·), τ(·))
will generate a strategic sequence, and Vi(ω) is player i’s value that is gen-

erated by the strategy sequence that comes from the automaton under state

ω.

When the output of f(·) is a pure strategy profile, Vi(ω) at each state

ω ∈ Ω is determined by

Vi(ω) = (1 − δ)ui(a) + δVi(τ(ω,a)), (7.3.1)

where Vi(τ(ω,a)) is player i’s continuation present value of future payoffs

Vi(τ(ω,a)) at τ(ω,a). The automaton (Ω, ω0, f(·), τ(·)) then induces the

sequences:

ω0 := ω, a0 := f(ω0) = a

ω1 := τ(ω0,a0) a1 := f(ω1)

ω2 := τ(ω1,a1) a2 := f(ω2).
...

...

Thus, we have

Vi(ω) = (1 − δ)ui(f(ω0)) + δVi(τ(ω, f(ω0))),

= (1 − δ)ui(a0) + δ{(1 − δ)ui(a1) + Vi(ω2)}
...

= (1 − δ)
∞∑
t=0

δtui(at), (7.3.2)

which shows that the optimization problems determined by equations (7.3.1)

and (7.3.2) are equivalent. At any date, the set of possible actions depends
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on the current state; we can write this as a ∈ A(ω). Thus, when Vi(ω) is

maximized, we have the conventional Bellman equation:

Vi(ω) = max
a∈A(ω)

{(1 − δ)ui(a) + δVi(τ(ω,a))} (7.3.3)

by noting that the stage utility function is (1 − δ)ui(·).

More generally, if strategic choices are mixed strategies, the probability

of choosing the action profile a in state ω is fω(a). Based on the action

profile a and the current state ω, the transition function selects the new

state τ(ω,a), from which results in a continuation (expected) present value

of future payoff Vi(τ(ω,a)). Then, Vi(ω) is determined by

Vi(ω) = (1 − δ)
∑
a∈A

ui(a)fω(a) + δ
∑
a∈A

Vi(τ(ω,a))fω(a). (7.3.4)

Definition 7.3.7 The state ω ∈ Ω of an automaton (Ω, ω0, f(·), τ(·)) is reach-

able from ω0 if ω = τ(ω0, ht) for some history ht ∈ H . Denote the set of

states reachable from ω0 by Ω(ω0).

Definition 7.3.8 An induced strategy profile σ with σ(ht) = f(τ(ω0, ht))
for all ht ∈ H or the automaton (Ω, ω0, f(·), τ(·)) is a subgame perfect Nash

equilibrium if for all states ω ∈ Ω(ω0) and all i, σi maximizes Vi(ω).

In other words, the claim that the strategy generated by (Ω, ω0, f(·), τ(·))
is a subgame perfect Nash equilibrium means that, given that other play-

ers follow the automaton, Vi(ω) starting from any state is the highest for a

player when the player follows the recommendations of the automaton. As

such, no one will deviate unilaterally.

If Vi(ω) is an optimal value, it is credible in a subgame perfect Nash

equilibrium since, given any a′
i ∈ supp(fi(ω)) ≡ {ai | fω(a) > 0}, for any
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âi ∈ Ai, we have

Vi(ω)=(1 − δ)
∑

a−i∈A−i

ui(a′
i,a−i)fω(a′

i,a−i)

+δ
∑

a−i∈A−i

Vi(τ(ω, (a′
i,a−i)))fω(a′

i,a−i)

= (1 − δ)
∑

a−i∈A−i

ui(âi,a−i)fω(âi,a−i)

+δ
∑

a−i∈A−i

Vi(τ(ω, (âi,a−i)))fω(âi,a−i).

We call the payoff Vi(ω) that satisfies the above inequality as credible

continuation promises of player i. On the basis of credible continuation

promises, we can have the one-shot deviation principle in the automaton

representation, which re-characterize the subgame perfect Nash equilibria

of repeated games.

Proposition 7.3.1 The strategy σ induced by automaton (Ω, ω0, f(·), τ(·)) is a

subgame perfect Nash equilibrium if and only if for all reachable ω ∈ Ω(ω0) that

can be reached from ω0, f(ω) is a Nash equilibrium of the normal-form game

(state game) G = (N,Ai, Ui(·) = gωi (·))i∈N , where

gωi (a) = (1 − δ)ui(a) + δVi(τ(ω,a)).

PROOF. We prove this conclusion only in the case of pure strategies.

Sufficiency: Let strategy σ be generated by an automaton (Ω, ω0, f(·), τ(·)).

By the one-shot deviation principle, if there is no profitable one-shot devia-

tion, σ is a subgame perfect Nash equilibrium. Suppose by way of contra-

diction that there exists a profitable one-shot deviation σ̂. In other words,

there exists a history ĥt, such that σ̂i is a profitable one-shot deviation for

player i. Let ω̂ = τ(ω0, ĥt), âi = σ̂i(ĥt) ̸= σi(ĥt) = f(ω̂) = ai. Since σ̂i is a

profitable one-shot deviation for player i, then

Ui(σ̂i|ĥt ,σ−i|ĥt)=gω̂i (âi,a−i) = (1 − δ)ui(âi,a−i) + δV (τ(ω̂, (ai,a−i)))

> (1 − δ)ui(ai,a−i) + δV (ω̂, (ai,a−i))

=gω̂i (ai,a−i) = Ui(σi|ĥt ,σ−i|ĥt),
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contradicting the fact that f(ω) is a Nash equilibrium ofG. Therefore, there

is no profitable one-shot deviation, and σ is a subgame perfect Nash equi-

librium.

Necessity: If σ is a subgame perfect Nash equilibrium, then no player

has a profitable one-shot deviation. Furthermore, there does not exist ĥt,

such that Vi(ω̂) = Ui(σi|ĥt ,σ−i|ĥt) < Ui(σ̂i|ĥt ,σ−i|ĥt) for player i and σ̂i,

which means that for any σ̂i and âi = σ̂i(ĥt) = f(ω̂) = ai, we always have

(1 − δ)ui(âi,a−i) + δV (τ(ω̂, (âi,a−i))) 5 (1 − δ)ui(ai,a−i) + V (τ(ω̂, (ai,a−i))).

Therefore, f(ω) is a Nash equilibrium of G for gωi (a) = (1 − δ)ui(a) +
δVi(τ(ω,a)). 2

Example 7.3.6 (Incentives in the Prisoner’s Dilemma (continued)) Consider

the two automaton representations for playing the repeated game based on

the stage game in Table 7.6. The first is the “tit for tat”strategy profile,

and the second is the grim strategy profile.

The automaton representation of the “tit for tat”strategy profile is:

Ω = {wEE , wSE , wES , wSS}, w0 = wEE , f(wa1a2) = a1a2, τ(wa1a2 , a
′
1a

′
2) =

wa′
2a

′
1
.

If the “tit for tat”strategy profile is a subgame perfect Nash equilib-

rium, it is a Nash equilibrium of the normal form game induced by the

automaton and thus we have:

V1(wEE)=(1 − δ)3 + δV1(wEE) = (1 − δ)4 + δV1(wES) (7.3.5)

V1(wSE)=(1 − δ)4 + δV1(wES) = (1 − δ)3 + δV1(wEE) (7.3.6)

V1(wES)=(1 − δ)(−1) + δV1(wSE) = (1 − δ)1 + δV1(wSS) (7.3.7)

V1(wSS)=(1 − δ)1 + δV1(wSS) = (1 − δ)(−1) + δV1(wSE). (7.3.8)

Then,

V1(wEE) = 3, V1(wSS) = 1, V1(wSE) = 4 − δ

1 + δ
, V1(wES) = 4δ − 1

1 + δ
.

Inequality (7.3.5) implies that δ = 1/4; inequality (7.3.6) implies that

δ 5 1/4; inequality (7.3.7) implies that δ = 2/3; obviously, there does not
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exist any δ ∈ [0, 1] that simultaneously satisfies inequalities (7.3.5), (7.3.6)

and (7.3.7). Therefore, the “tit for tat”strategy profile is not a subgame

perfect Nash equilibrium.

For the grim strategy, the automaton has been described earlier. Now,

we study when it will be a subgame perfect Nash equilibrium. As

V1(wEE)=(1 − δ)3 + δV1(wEE) = (1 − δ)4 + δV1(wSS), (7.3.9)

V1(wSS)=(1 − δ)1 + δV1(wSS) = (1 − δ)(−1) + δV1(wSS), (7.3.10)

we obtain V1(wEE) = 3 and V1(wSS) = 1. Therefore, inequality (7.3.10)

holds naturally. Moreover, if inequality (7.3.9) holds, δ = 1/3. In other

words, when δ = 1/3, the grim strategy is a subgame perfect Nash equilib-

rium. This result is consistent with the previous one.

To construct equilibria of repeated games, Abreu, Pearce, and Stacchet-

ti (1986, 1990) proposed the concept of the self-generating set of payoffs.

Again, for simplicity, we only discuss the case of pure strategies below.

7.3.5 Enforceability, Decomposability, and Self-Generation

In contrast to the previous analysis, we will think not in terms of strate-

gies, but in terms of payoffs. We decompose repeated games into games in

which behavior today is implemented with self-enforcing payoffs tomor-

row, i.e., generated from equilibria in the repeated game (analogous to the

incentive compatibility issues studied in mechanism design). The idea is

that to “enforce”certain actions at time t, we will attach continuation

payoffs from time t + 1 on to each time t outcome. This decomposition

of subgame perfect Nash equilibrium payoffs into flow payoffs today and

promised utility tomorrow further greatly simplifies the study of repeated

interaction and solving for SPNE.

First, let Ep be the set of payoff profiles of all subgame perfect Nash

equilibria. For every v ∈ Ep ⊆ Rn, let σv be a subgame perfect Nash equi-

librium that results in payoff profile v. From the previous subsection, we

know that this profile σv generates a specification of continuation promised

payoffs γ : A → Ep, such that vi = (1 − δ)ui(a∗) + δγi(a∗). Since σv is a
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subgame perfect Nash equilibrium, it satisfies:

vi = (1 − δ)ui(a∗) + δγi(a∗) = (1 − δ)ui(ai,a∗
−i) + δγi(ai,a∗

−i).

As γ(·) ∈ Ep, it is the present value of future payoffs of the subgame

perfect Nash equilibrium, as well. After generating the action a∗, σv al-

so generates a continuation subgame perfect Nash equilibrium strategy

σγ(a∗) ≡ σv|h0,a∗ . The equilibrium present value generated by σγ(a∗) is

γ(a∗). Then, the process continues recursively. This approach ingeniously

divides an optimization problem with infinitely many periods into a se-

quence of one-stage optimization problems. What connects these problems

is a sequence of subgame perfect Nash equilibrium payoffs. The discount-

ed value of each continuation subgame equilibrium payoff is called a state.

The equilibrium strategy, which is generated by the state, transitions the

previous state to the subsequent one.

More generally, consider a function γ : A → W ⊆ Rn. We may regard

γi(a) as the payoff that player i obtains when the action profile is a. The

payoffs do not happen immediately but in the future. Their values deter-

mines the strength of the incentives that they create.

Definition 7.3.9 (Enforceable Action Profiles) An action profile a∗ ∈ A is

enforceable onW ⊆ Rn if there is some specification of continuation promis-

es γ : A → W , such that a∗ is a Nash equilibrium of the normal form game

with payoff function gγi : A → Rn, where

gγi (a) = (1 − δ)ui(a∗) + δγi(a∗),

i.e., for any player i ∈ N and for any ai ∈ Ai, we have

(1 − δ)ui(a∗) + δγi(a∗) = (1 − δ)ui(ai,a∗
−i) + δγi(ai,a∗

−i).

This definition depicts the incentive of continuation equilibrium dis-

counted payoffs (or state) for a player to choose (equilibrium) strategy.

Next, we will propose several related concepts of equilibrium payoff.

Definition 7.3.10 (Action Decomposable Payoffs) A feasible payoff v ∈ F ∗
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is action decomposable on W ⊆ F ∗, if there is an enforceable action profile a∗

on F ∗, i.e.:

vi = (1 − δ)ui(a∗) + δγi(a∗) = (1 − δ)ui(ai,a∗
−i) + δγi(ai,a∗

−i),

in which γ(a∗) is a credible continuation promise function of enforceable

action profile a∗. Here, the payoff profile v is decomposed by a∗ on F ∗.

Definition 7.3.11 (Self-Generating Set of Payoffs) A set W ⊆ F ∗ is pure-

strategy self-generating if every v ∈ W is action decomposable.

The notion of a self-generating set of payoff profiles is closely related to

the payoff set of subgame perfect Nash equilibria. The following proposi-

tion characterizes their relationship.

Proposition 7.3.2 The pure-strategy self-generating set of payoff profiles W ⊆
F ∗ is a subset of pure strategy SPNE payoff profiles, i.e., W ⊆ Ep.

PROOF. Let payoff set Ω = W ⊆ F ∗ be the set of states of the automaton. W

is a pure-strategy self-generating set of payoff profiles, which implies that:

for arbitrary v ∈ W , there exists a corresponding pure action profile a(v)
and continuation promises γv : A → W . Consider the following automaton

set {(W,v, f, τ) : v ∈ W} that satisfies: for all v ∈ W , f(v′) = a(v′); and for

all v ∈ W,a ∈ A, τ(v′,a) = γv′(a).

We show that for any v ∈ W , the automaton {W,ω0 = v, f, τ} describes

a subgame perfect Nash equilibrium with payoff profile v. For every state

vi = Vi(v), Vi(v) is the equilibrium payoff of player i under state v. Since

each v ∈ W is decomposable, let v0 = v, and thus a sequence of payoff-

action profiles can be generated as follows:

v0 = v,a0 = f(v0),vk = τ(vk−1,ak−1) = γvk−1(ak−1),ak = f(vk).

Thus,

vi=(1 − δ)ui(a0) + δv1
i = (1 − δ)ui(a0) + δ((1 − δ)ui(a1) + δv2

i )

= · · · = (1 − δ)
t−1∑
s=0

δsui(as) + δtvti .
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As vti is bounded, when t → ∞, vi = (1 − δ)
∑∞
s=0 δ

sui(as), we have

vi = Vi(v). 2

The above proposition can be extended to a corollary: the set of payoff

profiles of pure strategy subgame perfect Nash equilibria, Ep, is the largest

pure-strategy self-generating set. Furthermore, Abreu, Pearce, and Stac-

chetti (1990) proved that Ep is a compact set.

Example 7.3.7 (Incentives in the Prisoner’s Dilemma (continued)) Returning

to the Prisoner’s Dilemma, we analyse under what conditions both players

working hard in each period is a subgame perfect Nash equilibrium. Then,

the problem becomes under which conditions a self-generating set of pay-

off profiles, W , contains the payoff profile (3,3). Furthermore, if such a

W ⊆ F ∗ exists, action profile (E,E) in W is enforceable. This implies that:

(1 − δ)3 + δγ1(E,E)= (1 − δ)4 + δγ1(S,E),

(1 − δ)3 + δγ2(E,E)= (1 − δ)4 + δγ2(E,S).

Moreover, γ(E,E) = vi = 1, γ1(S,E) = vi = 1, γ2(E,S) = vi = 1. In

addition, (S, S) is a Nash equilibrium of the normal form game G, which

enures γ(S, S) = 1 belong to Ep. When γ1(S,E) = γ2(E,S) = 1 and

γ1(E,E) = γ2(E,E) = 3, the above two inequality constraints are the

weakest. Thus, the condition to guarantee the two inequalities is δ = 1/3,

and W = {(1, 1), (3, 3)} is a self-generating payoff set. In this situation,

working hard in every period is a subgame perfect Nash equilibrium for

both players.

Using the above method, we can solve for the equilibrium payoffs in re-

peated games. However, empirical research is more concerned with analysing

interactive behavior in repeated games. Dynamic inconsistency (or time in-

consistency) is a difficulty usually faced by governments in the process of

policy-making. Much research focuses on this topic, such as the dynam-

ic inconsistency of monetary policy by Kydland and Prescott (1977). For

such a problem, people will think of the credibility of the government. For

example, the government can fix such decisions in the form of a rule that

cannot be changed at will, or give the relevant decision-making power to
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certain people or groups with specific preferences. The idea of a repeated

game can also deal with other problems conveniently. Consider the follow-

ing example of public goods provision (see Samuelson, 2006).

Example 7.3.8 Consider an infinitely repeated game with two types of

players: the first type of player is a government, while the second type of

player comprises consumers (a continuum of measure 1). For simplicity,

assume that consumers are homogeneous. Each consumer is negligible rel-

ative to society, which means that his behavior has little influence on the

society, and he will choose an action to maximize his short-run benefit. As-

sume that in every period, a consumer has 1 unit of endowment that he

can consume or invest. Suppose that the return on investment is R > 1,

and that the consumption amount is c; then, the benefit from investmen-

t is R(1 − c). The government’s tax rate on investment is t, and then the

consumer’s revenue is tR(1 − c). Suppose that all of the revenue is used

for provision of public goods. Each unit of revenue can provide γ units of

public goods, and letR−1 5 γ 5 R. For simplicity, suppose that there is no

savings across periods, and the problem of dynamic inconsistency occurs

within each period.

The utility function of a consumer is:

c+ (1 − t)R(1 − c) + 2
√
G,

in which G is the pubic good provided by the government.

Since everyone is negligible to society, everyone’s contribution to the

financing of the good is also trivial. If the amount of public good provided

by the government is G, the optimal decision for a consumer is: if t < R−1
R ,

there is c = 0; otherwise, c = 1.

The goal of the government is to maximize social welfare, which in this

case is the total utility of all consumers. Therefore, the government’s deci-

sion is to choose the tax rate t to maximize social welfare:

c+ (1 − t)R(1 − c) + 2
√
γtR(1 − c).

Then, combining with consumers’ decisions, the government’s choice of
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tax rate is: t(c) = γ
R(1−c) .

The best response functions for consumers and the government are

shown in Figure 7.3. Since R > 1, the most efficient consumption arrange-

ment is c = 0 (i.e., all endowments are utilized for investment). In this

situation, tax revenue is t = γ
R , which is point B in Figure 7.3. From Figure

7.3, we can find that there is a unique equilibrium c = 1, t = 1 in this (stage)

game, which is pointA. This equilibrium does not optimize the goal of con-

sumers or the government. This conclusion is somewhat surprising since,

in this model, both the consumers and the government have identical goal-

s. However, in equilibrium, they choose a strategy that is unfavourable for

both of them.

Figure 7.3: The Best Reaction Functions for Consumers and the Govern-
ment.

Since every individual has very little influence on society, the individual

will not consider the consequences of her actions, and each will choose

the strategy to optimize her short-run benefit. Considering the behavior

constraints of consumers (i.e., consumers always make a best response to

the government’s decision), the optimal strategy profile in this economy is

point C in Figure 7.3. The highest tax rate which is compatible with the

best consumption decision is R−1
R .
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Let v1 be the utility of the government (this is also the consumers’ u-

tility) in this profile. If the government can make a prior commitment to

the tax rate, it can obtain revenue v1. If the government cannot promise in

advance, it will be faced with a problem of policy commitment. However,

in a repeated game, the government can solve the problem of commitmen-

t even if it cannot make a commitment to the tax rate in advance. If the

government is sufficiently concerned about its future benefits, once the tax

rate that is chosen by the government is not R−1
R , the future interaction will

revert to the single-stage Nash equilibrium permanently (i.e., c = 1 and

t = 1). This can ensure that the government chooses an efficient tax rate for

society.

Therefore, using the idea of repeated games, we can conclude that there

exists a lower bound of time discount factor δ, such that when the time dis-

count factor of the government satisfies δ ∈ [δ, 1], there is a subgame perfect

Nash equilibrium in which the choices for the government and consumers

are t = R−1
R and c = 1, respectively, which is given by point C in Figure 7.3.

7.4 Folk Theorems with Perfect Monitoring

There are generally many equilibria in a repeated game. Intertemporal in-

centives allow for not only efficient outcomes, but also inefficient outcomes,

as well as very unreasonable outcomes. In fact, repeated games allow vir-

tually any payoff to be an equilibrium outcome. These results are referred

to as“Folk Theorems”since they were believe to be true before they were

formally proved.

There are different versions of Folk Theorems for repeated games, which

can be clarified into two types of Folk Theorems. One type of Folk The-

orems is the Folk Theorem for Nash equilibrium, which assesses that any

feasible and strictly individually rational payoff profile can be supported in

a Nash equilibrium of the repeated game provided players are sufficient-

ly patient (i.e., with sufficiently large δ). This is a weaker version of Folk

Theorem since it is only for Nash equilibria.

Another type of Folk Theorems is Folk Theorems for SPE, which were

first studied in Friedman (1971) using“Nash threats,”which shows that
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any feasible and strictly rational payoffs above the static Nash payoffs is

a subgame perfect Nash equilibrium payoff profile of repeated game; and

then comprehensively studied in Fudenberg and Maskin (1986), which as-

sesses that for any feasible and individually rational payoff profile v, if

players are sufficiently patient, then there is a subgame perfect Nash e-

quilibrium with payoff v. Consequently, the theorems imply that efficient

payoffs are consistent with equilibrium (then collective rationality can be

consistent with individual rationality), so are many other payoffs and asso-

ciated behaviors. Moreover, multiple equilibria may be consistent with the

same payoff.

We first discuss the Folk Theorem for Nash equilibrium.

Theorem 7.4.1 (Nash Folk Theorem) Suppose that v is a feasible and strictly

individually rational payoff profile. Then, there exists δ < 1 such that for any

δ ∈ [δ, 1), there is a Nash equilibrium of repeated game with payoff profile v.

PROOF. Suppose that there is a pure action profile a such that ui(a) = vi.

Consider the following strategy for each player i:

1. Cooperation Phase: Play ai in period 0 and continue to play

ai as long as (i) the realized action profile in the previous pe-

riod was a, or (ii) the realized action in the previous period

differed from a in two or more components.

2. Punishment Phase: If in some previous period player i was

the only one not to follow profile a, then in each period, each

player j plays her component of a mixed strategy that makes

player i attain his minmax payoff vi.

Only behavior in the Cooperation Phase that corresponds to t = 0 and

(i) need to satisfy incentives; the other histories are off the equilibrium. We

now show that incentives are indeed satisfied.

In the period in which player i deviates, the player receives at most

maxa′
i
ui(a′

i,a−i) and since his opponents will minimax him forever after,

he will obtain vi in all periods thereafter. Thus, if player i deviates in period
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t, the continuation payoff he can obtain is at most

(1 − δ) max
a′

i

ui(a′
i,a−i) + δvi.

Then, when δ → 1, this strategy profile a is a Nash equilibrium since

(1 − δ) max
a′

i

ui(a′
i,a−i) + δvi < vi.

Thus, there exists a δ such that for any δ ∈ [δ, 1), this strategy profile is a

Nash equilibrium.

If there is no such pure strategy profile a, such that ui(a) = vi, a public

correlation device can be introduced. Let W be the set of public states (i.e.,

everyone observes it). Let p be a probability distribution on W , such that∑
w∈W ui(ai(w)) p(w) = vi. Then, the pure action profile above, a, can be

replaced by the action profile a(w)w∈W using the public correlation device

that yields expected payoff profile v. The punishment phase incentives are

unaffected.

When δ → 1, we have

(1 − δ) max
a′

i∈Ai

ui(a′
i,a−i(w)) + δvi < vi,

which shows that this strategy profile a(·) is a Nash equilibrium. 2

Thus, Nash Folk Theorem states that essentially any payoff profile can

be supposed as a Nash Equilibrium when players are patient enough. How-

ever, the corresponding strategies involve this non-forgiving punishments,

which may be very costly for the punisher to carry out (i.e., they represen-

t non-credible threats). This implies that the strategies used may not be

subgame perfect.

Now we discuss the Folk Theorems for SPE. The simplest Folk Theorem

for SPE was attributable to Friedman (1971).

Theorem 7.4.2 (Nash Threats Folk Theorem for SPE (Friedman, 1971)) Let

a∗ be the Nash equilibrium of a stage game, and its equilibrium payoff profile be

e. Let F p be the set of all feasible and individually rational profiles. Then, for any

v′ ∈ {v|vi > ei,v ∈ F p}, there is δ, such that for all δ ∈ [δ, 1), there exists a
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subgame perfect Nash equilibrium of the repeated game with payoff profile v′.

PROOF. Suppose that there is a pure action profile a, such that ui(a) =
v′
i. Consider the following strategy for each player i:

1. Cooperation Phase: If t = 0 or t = 1 and a was played in

every prior period, then player i ∈ N still chooses ai.

2. Punishment Phase: If any other action profile is played in

any prior period, player i plays a∗
i for every subsequent pe-

riod.

We show that this is a SPE. When δ → 1, this strategy profile a is a Nash

equilibrium since

(1 − δ) max
a′

i

ui(a′
i,a−i) + δei < v′

i.

Thus, there exists a δ, such that for δ ∈ [δ, 1), this strategy profile is

a Nash equilibrium. As for any subgame off the equilibrium path, a is

always a Nash equilibrium, and this equilibrium is naturally a subgame

perfect Nash equilibrium. The case in which there is no action profile such

that ui(a) = v′
i is tackled as in the previous theorem.

2

The set of payoffs supportable in SPE by Nash threats is generally less

than the set of feasible and strictly individually rational payoffs that are

supportable in Nash equilibrium. Consequently, some payoff profiles that

can be realized in Nash equilibrium of the repeated game cannot be sup-

ported by Nash threats. Excises in the chapter give such examples.

For a more general Folk Theorem, it is only required that each player’s

payoff is greater than the minmax payoff, and is not necessarily greater

than the equilibrium payoff of the stage game. Next, we prove this Folk

Theorem for two players first, and then prove it in a more general situation.

Theorem 7.4.3 (Subgame Perfect Folk Theorem for Two Players) Suppose that

n = 2. For any feasible and individually rational payoff profile v ∈ F p, there

always exists δ, such that for any δ ∈ [δ, 1), there is a subgame perfect Nash

equilibrium of repeated game with payoff profile v.
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PROOF. Suppose that there is a pure action profile ã, such that ui(ã) =
v. Let M = maxa∈A ui(a) < ∞. Define a mutually punishing strategy

â = (aji , aij), i ̸= j by

ui(âii, âi−i) = min
a−i

max
ai

ui(ai,a−i) = vpi ,

which is the minmax strategy for both players. Note that ui(â) 5 vpi . Con-

sider the following strategy: players choose a(0) = ã. If in previous stages

both players choose a(0), they choose a(0) in this stage, as well; however,

if in the last stage a player has deviated from a(0), a punishment process

that lasts L periods begins at this stage. During the punishment process,

players choose â.

Meanwhile, if some player deviates from â, from the next stage onward-

s a new punishment process that lasts L periods starts again. If during the

punishment process both players choose â, it returns to the initial choice

a(0) when the punishment process is over. This strategy can be expressed

as the following automaton.

The state set of the automaton is Ω = {w(l) : l = 0, · · · , L}, and the

initial state is ω0 = w(0). The strategy action function is

f(w(l)) =

 ã, if l = 0,
â, if l = 1, 2, · · · , L.

The state transition function is

τ(w(l),a) =


w(0), if l = 0,a = ã or l = L,a = â,

w(l + 1), if 0 < l < L,a = â,

w(1), otherwise,

where â = (â1
2, â2

1).

Let L such that

Lmin
i

(ui(ã) − ui(â)) > M − min
i
ui(ã). (7.4.11)
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When δ is sufficiently large (i.e., δ → 1), we have

ui(ã) = (1 − δ)M + δv∗
i , (7.4.12)

where v∗
i = (1 − δL)ui(â) + δLui(ã). Substituting v∗

i into inequality (7.4.12),

we have:

(1 − δL+1)ui(ã) = (1 − δ)M + δ(1 − δL)ui(â).

Dividing both sides of the inequality by (1 − δ), we have

L∑
t=0

δtui(ã) =M +
L−1∑
t=0

δtui(â). (7.4.13)

Obviously, when (7.4.12) holds, (7.4.13) holds, as well. In other words,

there exists a δ, such that for δ ∈ [δ, 1), (7.4.13) holds. Consequently, the s-

trategy generated by this automaton is a Nash equilibrium. If the deviation

is profitable during the punishment stage off the equilibrium path, it will

also be profitable under w(1). This is because in the punishment stage, de-

viation from the first stage is more profitable than deviation in later stages.

If there is no deviation under w(1), the payoff is v∗
i ; if there is a devia-

tion, the player obtains a payoff in the current stage which is no more than

vpi < v∗
i (since the other player chooses the minmax action) and a continua-

tion payoff v∗
i . Consequently, deviation cannot increase the player’s payoff.

Therefore, the above strategy is a subgame perfect Nash equilibrium.

If there does not exist such a pure action profile ã, such that ui(ã) = v,

by the payoff structure, there exists a mixed action α that assigns probabili-

ty α(a) to the pure action profile a, such that
∑
a∈A ui(a)α(a) = vi for all i.

Then, we can use a public correlation device to describe the strategy using

an automaton (Ω, µ0, f, τ), where Ω = {wa}a∈A ∪ {w(l), l = 1, · · · , L}, µ0 is

the probability distribution induced by α on {wa : a ∈ A},

f(w) =

 a, if w = wa,

â, if w = w(l) for l = 1, · · · , L;
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and

τ(w,a′) =


α, if w = wa,a′ = a or w = w(L),a′ = â,

w(l + 1), if w = w(l) for 0 < l < L,a′ = â

w(1), otherwise.

After replacing w(0) by {wa}a∈A, and the initial state w0 by µ0, the re-

mainder of the proof is similar to the previous one and is thus omitted. 2

The intuitive meaning of the Folk Theorem is that if a player is suf-

ficiently patient, the increase in payoff from a one-shot deviation in any

stage game will be offset by the loss in payoff from the punishment stage

in the future. In other words, the penalty concerning future payoff exceeds

what a player can currently obtain by a deviation. Therefore, players have

no incentive to deviate from the equilibrium.

In the previous proof, the punishment that is employed to guarantee

no deviation from the equilibrium path applies to all players. However, in

repeated games with more than two players, the punishment is aimed at

the player who deviated most recently.

To describe this idea, we now state a more general Folk Theorem based

on the classic paper by Fudenberg and Maskin (1986). In the proof, three

stages were introduced. The first stage is equilibrium path; the second is

the punishment stage, in which the player who deviated most recently is

punished; and the last stage is the one in which players who carried out the

punishments required by the equilibrium are rewarded.

Theorem 7.4.4 (Fudenberg-Maskin Subgame Perfect Folk Theorem) Suppose

that the dimension of feasible and individually rational payoff set FV ∗ equals the

number of players (which is also called the full dimensionality). Then, for any

v ∈ FV ∗, there exists a δ, such that for arbitrary δ ∈ [δ, 1), there is a subgame

perfect Nash equilibrium with payoff profile v.

PROOF. Here, we only consider the case of pure strategies both on and off

the equilibrium path. In particular, we assume that there exists a, such that

the payoff u(a) = v holds. The case of mixed strategies and the case in
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which a public correlation device exists can be analyzed similarly; we refer

the reader to Fudenberg and Maskin (1986) for details.

Their proof imposes a condition about feasible and individually ratio-

nal payoffs, i.e., a full dimensionality requirement is imposed on the fea-

sible and individually rational payoff set. This means that for arbitrary

v ∈ FV ∗, when vi < v′
i < vi for any i ∈ N , we can find ε > 0, such that the

payoff v′(i) = (v′
1 +ε, · · · , v′

i−1 +ε, v′
i, v

′
i+1 +ε, · · · , v′

n+ε) is in FV ∗ for each

i. Note that if v is on the lower boundary of the feasible and individually

rational set, we can construct the points differently following Abreu, Dutta

and Smith (1994).

To avoid introducing a public correlation device, we assume that for

any i ∈ N , there is a pure action profile a(i), such that u(a(i)) = v′
i. Let

wji = ui(mj), where mj is a minmax strategy profile for player j: it gives j

the minmax payoff when j is making a best response:

max
aj

uj(mj
−j , aj) = uj(mj) = vj .

Furthermore, assume that for each j, the action profile mj is pure. Finally,

pick a natural number k satisfying

k >
maxa∈A ui(a) − v′

i

v′
i − vi

∀i.

Such a number k exists because, by construction, both the numerator and

denominator of the fraction above are strictly positive.

Consider the following strategy profile. Interaction starts at stage I: in

stage I, players choose a, such that u(a) = v. If only player j deviates

from the strategy profile, the interaction enters stage IIj ; whereas, in other

situations (e.g., more than one player deviates, or no player deviates) the

interaction remains in stage I.

StageIIj : players choose mj . If no one deviates or more than one player

deviates from mj , stage IIj lasts for k periods, followed by stage IIIj . In

stage IIj , if only one player i ∈ N deviates from mj , the interaction enters

IIi. Note that the construction of stage IIj makes sense only if mj is a pure

strategy. We will discuss the case of a mixed strategy below. Stage IIj can
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be regarded as the punishing stage for player j.

Stage IIIj : players choose strategy profile a(j) all the time unless some

player deviates from a(j) unilaterally. If there is some player i ∈ N that

deviates from this strategy, it enters stage IIi starting from the next period.

Next, we prove that this strategy profile is a subgame perfect Nash e-

quilibrium. We only need to prove that in each subgame, no one deviates

unilaterally.

In stage I, if player i deviates, the payoff that the player can obtain is no

more than

(1 − δ) max
a∈A

ui(a) + δ(1 − δk)vi + δk+1v′
i.

Obviously, when δ → 1, the best deviation payoff above converges to v′
i,

which is strictly less than the payoff vi of following the equilibrium path.

Therefore, no player i has a profitable one-shot deviation in this stage.

In stage IIIj , by following the strategy constructed above, player i ̸= j

receives a payoff v′
i + ε. If the player deviates from it, the payoff is at most

(1 − δ) max
a∈A

ui(a) + δ(1 − δk)vi + δk+1v′
i.

Obviously, when δ → 1, this converges to v′
i, which is strictly less than

the payoff v′
i + ε. Thus, player i does not have a profitable one-shot devia-

tion in this stage. In stage IIIi, to ensure that there is no profitable one-shot

deviation for player i, it suffices to show that

(1 − δ) max
a∈A

ui(a) + δ(1 − δk)vi + δk+1v′
i < v′

i.

Rearranging and dividing by the factor (1 − δ), this inequality becomes

max
a∈A

ui(a) + δ(
k−1∑
τ=0

δτ )vi < (
k−1∑
τ=0

δτ )v′
i.

As δ → 1, this last inequality clearly reduces to the same inequality that

was used to choose k.

In stage IIj , consider player i ̸= j. When kt 5 k periods of this stage are
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left, the payoff is

(1 − δk
t)wji + δk

t(v′
i + ε).

If deviating unilaterally, the player receives the minmax payoff for the next

k periods, and then the game enters stage IIIi; thus, the payoff from devia-

tion is no more than

(1 − δ) max
a∈A

ui(a) + δ(1 − δk)vi + δk+1v′
i.

When δ → 1, this payoff converges to v′
i, while the payoff from not deviat-

ing converges to the strictly higher value v′
i+ε. In stage IIi, consider player

i. When kt 5 k periods are still left, if the player follows the equilibrium

strategy, the payoff is

qi(kt) = (1 − δk
t)vi + δk

t
v′
i;

otherwise, the payoff is

qi(k) = (1 − δk)vi + δkv′
i.

Obviously, v′
i > vi and kt 5 k imply that qi(kt) = qi(k) (i.e., it is not prof-

itable to restart one’s own punishment).

As a consequence, no player i has a profitable one-shot deviation from

the constructed three-phase strategy profile, which is therefore a subgame

perfect Nash equilibrium. 2

For mixed strategies, the discussion is more complex, and details can be

found in Fudenberg and Maskin (1986).

A popular explanation of the Folk Theorem is that as long as individu-

als are sufficiently patient, an arbitrary outcome in which the utility of each

player exceeds the individually rational level can be obtained in a Nash e-

quilibrium. This result with an infinite number of equilibria is considered

as being negative for repeated games because if a theorem contains all pos-

sible outcomes. However, this constitutes a misunderstanding. Folk Theo-

rems provide a highly profound explanation for the crucial importance of
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a long-term institutional environment, such as culture and social norms, so

that different (good or bad) environments will lead to different (good or

bad) outcomes.

Firstly, research on long-run relationships can assist us to understand

opportunistic behavior among individuals’ and how institutions respond

to them. In different institutional environments, including different cul-

tures, habits, social norms, etc., individuals behave differently in long-run

relationships. If a theory can ignore the institutional environment and ob-

tain an explicit and a unique result, it is not necessarily a good theory since

different institutional details tend to determine different equilibrium out-

comes of long-run interactions. Secondly, regarding the Folk Theorem as

a reference system, many theorists focus on conditions that invalidate this

theorem. If individuals are not patient enough, or the identification of op-

portunism is not very accurate, or some players only interact in the short

run, how would these changed conditions affect individuals’ behavior in

the long run? We discuss these factors in the following section.

7.5 Some Variations of Repeated Games

In the above discussion of repeated games, we assumed that players and

action sets are the same in every period. Now, we introduce three examples

to examine three variations—the case with short-run players, the case with

entry and exit of players, and the case of social norms that constrain the

behaviour of players.

7.5.1 Long-Run Players and Short-Run Players

In some multi-period interactions, players in different stage games may be

different. For example, a seller meets different customers in different peri-

ods. In such a game, players can be divided into two categories: long-run

players and short-run players. A short-run player only takes part in one

round of play, and thus his goal is to maximize short-run payoff. However,

a long-run player’s goal is the aggregate payoff over periods, and thus she

aims at long-run payoff maximization.
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Let i ∈ {1, 2, · · · , L} be a long-run player, and j ∈ {L+ 1, L+ 2, · · · , n}
be a short-run player.

Let B :
∏L
i=1 ∆Ai →

∏n
j=L+1 ∆Aj be the best response of short-run

players to the (mixed) strategy of long-run players. Based on this, the min-

max payoff vi of long-run player i needs to be redefined as:

vi = min
α∈graph(B)

max
ai

ui(ai,α−i),

where graph(B) ⊆
∏n
i=1 ∆Ai is the corresponding graph of B, which satis-

fies the following: for j > L, αj(α−j) = argmaxaj
uj(aj ,α−j). However, in

the situation with short-run players, there exists an upper bound in the re-

peated game that constrains the feasible and individually rational payoffs

of long-run players. Define

v̄i = max
α∈graph(B)

min
ai∈support(αi)

ui(ai,α−i),

in which support(αi) denotes that those pure actions ai have strictly posi-

tive probability in the mixed action αi of player i.

Example 7.5.1 (Short-Run Players and Long-Run Players) Consider a re-

peated game with short-run players. Player 1 (row) comprises a single

long-run player, and player 2 (column) comprises a sequence of short-run

players, each of whom interacts with the long-run player in only one pe-

riod. In other words, the discount factor of player 2 is 0. The two-player

stage game is represented in Table 7.7.

graph(B) = {(αT1 , L) : αT1 = 2/3} ∪ {(αT1 , R) : 1/3 5 αT1 5 2/3}

∪{(αT1 , C) : αT1 5 1/3},

in which αT1 is the probability with which the long-run player 1 chooses T .

We obtain v1 = 1 and v̄1 = 6.

In this game, the minmax payoff of the long-run player is 1, which e-

quals the player’s payoff from the Nash equilibrium (T, L) of the stage

game; meanwhile, the upper bound of payoff 6 is equal to the payoff of

player 1 when the (mixed) Nash equilibrium (0.5, R) is played in the stage
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Player 2
L C R

T 1, 3 0, 0 6, 2
Player 1 B 0, 0 2, 3 6, 2

Table 7.7: Interaction between long-run player and short-run player.

game. Therefore, in this example, for player 1 the payoff is v1 ∈ (1, 6), and

we can construct a public correlation device. For example, let the space W

be {w1, w2}, and let p = prob(w = w1) and 1 − p = prob(w = w2), such

that p + 6(1 − p) = v1. We construct the following strategy profile: under

w1, players choose (T, L); under w2, they choose (0.5, R). If player 2 ob-

served that player 1 deviated from this strategy in previous stages (by not

choosing T after w1), they play (T, L) henceforth. For player 1, there is a

lower bound of time discount factor δ, such that when δ ∈ [δ, 1), the above

strategy is a subgame perfect Nash equilibrium where the payoff of player

1 is v1.

In a more general situation, Fudenberg, Kreps and Maskin (1990) and

Fudenberg and Levine (1994) proved the Folk Theorem for games with

short-run and long-run players.

Theorem 7.5.1 (Folk Theorem on Long-Run and Short-Run Players) Let the

dimension of the payoff space for the long-run players equal the number of long-

run players L. If payoff profile v = (v1, · · · , vL) of the long-run players satisfies

vi < vi < v̄i, i ∈ {1, 2, · · · , L}, then there exists a lower bound of the time

discount factor, δ, such that for any δ ∈ [δ, 1), there is a subgame perfect Nash

equilibrium of the repeated game in which the payoff profile of the long-run players

is v.

7.5.2 Overlapping Generations Games

Some interaction involves players entering or exiting the game, and there

is some time limit for everyone to interact with others. In this situation,

no player interacts with others forever, and different types of players face

different periods of interaction. In reality, such examples are very com-

mon, especially in organizations. In fact, most members in an organization
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will face retirement, and new ones will join. For different members, the

time that they stay in the organization is different, and their career expec-

tations are also dissimilar. This situation is called a repeated game with

overlapping generations of finite-lived players. Next, we use an example

(Cremer, 1986) to explore interactions and incentives of such individuals.

Consider an organization in which every one stays for T years (which

can be regarded as age at retirement). For simplicity, assume that in this

organization, the measure of individuals with different ages is 1. In ev-

ery period, there is 1 member (length of service is T ) retiring and a new

member joining (length of service is 1). Every member who stays in the

organization for the next period increases the member’s length of service

by 1. Consider the cooperative interactions between members. Everyone

can choose to work hard or to be lazy, and the individual cost of working

hard is 1. The output of the organization is determined by the number of

members who choose to work hard. At the same time, each member gets

the same proportion of output (i.e., there is a possibility of free-riding).

Assume that, except player i, the number of the players who choose to

work hard is k. Let s be the output efficiency of working hard and assume

1 < s < T . If player i chooses to work hard, the player’s utility is s(k+1)
T −1;

otherwise, it is sk
T . Obviously, if the interaction lasts for only one period,

all rational players choose to be lazy. However, the outcome is completely

different in a repeated game. For simplicity, assume that the discount factor

is δ = 1. Next, we consider the incentives of members in the organization.

Obviously, the player who has length of service T stays in the organiza-

tion only for the last period. Therefore, she has no incentive to work hard.

Consider the following strategy profile for organization (players): the play-

ers that have length of service T choose to be lazy; if no one whose length

of service is not T has ever chosen to be lazy, then these players choose to

work hard; if someone whose length of service is not T has ever chosen to

be lazy, then all players choose to be lazy. In the following, we prove that

this strategy is a subgame perfect Nash equilibrium.

Firstly, for players whose length of service is T , to be lazy is a dominant

strategy. Then, consider the incentive of players who have length of ser-

vice T − 1. Assume that all other players follow the above strategy profile.
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If only one player chooses to be lazy, the player’s payoff is s(T−2)
T in the

current period and 0 in the next period. The total payoff is s(T−2)
T ; if the

player chooses to work hard, the player’s payoff is s(T−1)
T − 1 in this period

and s(T−1)
T in the next period. The total payoff 2 s(T−1)

T − 1 > s(T−2)
T since

s > 1. As a consequence, for a player with length of service T − 1, there is

no incentive to deviate unilaterally.

We consider the player whose length of service is T − k, in which k ∈
1, 2, · · · , T − 1. If the player deviates from this strategy, the player’s payoff

is s(T−2)
T in current period and 0 for the next period. Her total payoff is

s(T−2)
T . If this player follows the strategy, the player’s payoff is k s(T−1)

T −
(k − 1) > s(T−2)

T . Thus, the player with length of service T − k does not

deviate from the strategy profile, as well. In addition, off the equilibrium

path where some players whose length of service is not T choose to be lazy,

the strategy profile is that everyone chooses to be lazy forever afterwards.

This is exactly a Nash equilibrium in the stage game from which no player

will deviate unilaterally. Therefore, the above strategy profile is a subgame

perfect Nash equilibrium.

Of course, it is not necessary to restrict attention to δ = 1. In the above

inference, we can find a lower bound δ for time discount factor, such that

when δ ∈ (δ, 1], the above strategy profile is still a subgame perfect Nash

equilibrium.

7.5.3 Community Constraints and Social Norms

In many repeated games, players interact randomly. For example, people

encounter different opponents at different times when they purchase some-

thing. As a result, punishment cannot be implemented by the participant

who loses from a deviation, but by other participants. Also, punishment in

many situations is costly. Then, other mechanisms are needed to constrain

the punishment process. Here, we focus on discussing the constraining

mechanism of social norms.

Assume that society consists of an even number M of players. In each

period, each player randomly interacts with one of the other players by

choosing “cooperation”or “non-cooperation”, and the payoff of the
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stage game is given in Table 7.8. If M is sufficiently large, the probabili-

ty that anyone encounters the previous opponent is quite small. How can

we stimulate individuals to cooperate with others in such a situation? So-

cial norms are a general way to achieve this. Social norms consist of two

elements: a renewal function of individual social labels, and strategies de-

pendent on the label. A renewal function of individual social labels is a

transition function for labels. When the labels of player i and the opponent

are x and z, respectively, and player i chooses ai, the (updated) social label

in the next period is τi(x, z, ai). A social label dependent strategy σi(x, z)
denotes the strategy of player i when the social labels of player i and the

opponent are x, z, respectively.

player 2
C D

player 1 C 4, 4 0, 5
D 5, 0 1, 1

Table 7.8: Social Norm.

Consider the social norm below, with the set of social labels being {G,B}:

τi(x, z, ai) =

 G, if (x, z, ai) = (G,G,C) or (G,B,D) ,

B, otherwise.

σi(x, z) =

 C, if x = z = G ,

D, otherwise.

In the above, the definitions of social label and social label dependent

strategy are quite intuitive: we can regard individuals who have social la-

bel G as a“good person”and those who have B as a“bad person”. If

a person with the label “good person”faces another one with the label

“good person”, choosing cooperation (C) maintains the person’s social

label as a“good person”; if his rival is a“bad person”, choosing non-

cooperation (D) keeps the person a“good person”; in any other case, his

social label becomes a “bad person”. In other words, the social norm

requires that to be a good person one should cooperate if one encounters

another good person, but not if one encounters a bad one; otherwise, under
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social norms, the social label for this person is a“bad person”. For a bad

person, the social norm always regards him as a bad person, which is sim-

ilar to the grim strategy in that there is no forgiveness. We shall show that

when δ → 1, no matter how large M is, the social norm described above is

a subgame perfect Nash equilibrium.

Suppose that at the initial state the social label of every one is G. First,

we prove that on the equilibrium path, no player deviates unilaterally. If a

player deviates, the discounted payoff is 5(1−δ)+δ; if the player follows the

equilibrium path, the player’s discounted payoff is 4. As long as δ > 1/4,

no player deviates unilaterally.

Next, consider a situation off the equilibrium path. Assume that the

proportion of individuals with social labels G and B are α > 0 and 1 − α,

respectively. Let V (G) and V (B) denote the equilibrium utilities of players

with social label G and B, respectively, prior to knowing the type of the

current opponent.

For the individual with social label B, since (D,D) is the Nash equilib-

rium in a stage game, his optimal choice is D given that all others follow

the above social norms.

For the individual with social label G, when encountering an opponent

with social labelB, following the social norm gives the expected payoff (1−
δ) + δV (G); if the individual does not follow the social norm, his expected

payoff is 0 + δV (B). When encountering an opponent with social label G,

if the individual follows the social norm, the expected payoff is 4(1 − δ) +
δV (G); whereas, the expected payoff is 5(1 − δ) + δV (B) if she deviates

from the norm. Clearly, V (B) = 1. Therefore, we have V (G) = (1 − δ)[α4 +
(1 − α)] + δV (G), which yields V (G) = 1 + 3α > V (B).

Therefore, off the equilibrium path, an individual with label G will fol-

low social norms when the individual meets an opponent with label B,

since (1 − δ) + δV (G) > 0 + δV (B). When the individual’s opponent has

social label G, she strictly prefers to follow the social norm if

4(1 − δ) + δV (G) = 4(1 − δ) + δ(1 + 3α) > 5(1 − δ) + δV (B) = 5 − 4δ,

which is equivalent to δ > δ = 1
1+3α . Thus, as long as α > 0, no matter
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what the distribution of good persons and bad persons is initially, the above

norm is always a subgame Nash equilibrium as δ → 1.

In the above proof, we find that when the discount factor δ of a player

is not very large, the greater is the proportion of“bad people”in society,

the lower will be the effectiveness of social norms; especially, in a society

replete with deceit and dishonesty, even if the discount factor is close to

one, if a person chooses to be honest, his interest will be harmed. This is

because the lower bound of the discount factor that guarantees upholding

the social norm is δ ≡ 1
1+3α , and this is increasing with a smaller α. When

α < 1−δ
3δ , the above social norm is no longer a Nash equilibrium (i.e., the

social norm will collapse. As such, both dishonesty and honesty can be

Nash equilibria). The determinant factor is which equilibrium is in the ma-

jority. In the development of a society, there are various kinds of traps. In

addition to resource endowment, social culture, which takes trust as a key

element, has become a crucial constraining factor.

The long-run interaction of players discussed in this section is based

on the extreme assumption that the previous behaviors of players will be

accurately identified by themselves and their opponents. Correspondingly,

in order to maintain cooperation among players, an important mechanism

is punishment. In general, we can obtain the following conclusion: the

more severe is the punishment for deviating from cooperative behavior, the

easier it is for players to maintain cooperation. Some extreme punishment

approaches, such as the grim strategy, play an important role in this kind

of repeated game.

However, once we relax the perfect observation of players’ behavior

histories, many conclusions may need to be revised. For example, in the

presence of observation errors, extreme punishment often destroys coop-

eration, and if minor disturbances occur, long-run cooperation between

players will vanish. The example of imperfect public monitoring to be

discussed in the next section illustrates this point. Under the punishmen-

t mode of grim strategy, all individuals choose to be lazy, while under

the relatively loose punishment mode, they choose to work hard. There-

fore, when maintaining long-term cooperative relations, it is critical that
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the mechanism offers forgiveness (to some extent) in addition to punishing

opportunistic behavior. In many experiments, researchers also found that

“tit for tat”is usually a more effective way to maintain cooperation than

strategies such as the grim strategy.

7.6 Repeated Games with Imperfect Public Monitor-

ing

The study of repeated games above assumes that players can observe all

previous actions, which is a very strong assumption in real life. For many

repeated interactions, individuals are unable to observe previous actions,

but can only observe certain outcomes, the distribution of which depends

on individuals’ actions. In order to support the cooperation outcome, play-

ers can punish actions highly related to noncooperation outcomes, and thus

indirectly punish opportunistic behavior, although they cannot directly im-

pose punishments on players who deviate.

Repeated interactions that cannot be accurately observed can be fur-

ther divided into two categories, according to the outcomes that player-

s observe. One is that the outcomes observed by the players are public.

For example, when firms cannot directly observe their opponents’ previ-

ous pricing behaviors, it is possible to observe the aggregate demand in the

market (e.g., industry reports issued by trade associations), and the size

of aggregate demand depends on the pricing behaviors. The other is that

the outcomes observed by players are private. For example, firms cannot

observe the overall market demand, but can observe their own demands.

This section focuses on the situation of publicly observable outcomes.

7.6.1 Basics of Repeated Games with Imperfect Public Monitor-
ing

Compared to the model with perfect public monitoring discussed above,

the model of repeated games with imperfect public monitoring differs pri-

marily in the players’ knowledge of histories.
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First, we discuss the structure of repeated games with imperfect public

monitoring, in which the outcomes are publicly observable.

In the stage game, each player i ∈ N ≡ {1, 2, · · · , n} chooses ai from

action set Ai simultaneously. Each action a ∈ A ≡
∏
iAi generates a proba-

bility distribution on the outcome set Y , πy(a), y ∈ Y , which represents the

probability of outcome y conditional on the action a. The realized payoff

of player i is ri(ai, y), which means that the payoff does not directly de-

pend on the actions of other players. Under action a, the expected utility of

player i in the stage game is ui(a) =
∑
y πy(a)ri(ai, y).

In repeated games, the common information at the beginning of stage

t is ht = (y0, y1, · · · , yt−1), because no player’s action is known to others,

and each player has different information; specifically, player i knows zti =
(a0
i , a

1
i , · · · , at−1

i ), all previous own actions, at the stage t. In the stage t, the

information of the player i is hti = (ht, zti), the set of all possible information

is Ht
i , and the strategy of players in the stage t is σti(·) : Ht

i → ∆Ai.

A repeated game with perfect monitoring is a special case of repeated

game with imperfect monitoring, in which the common information set is

ht = (a0, a1, · · · , at−1) (i.e., the publicly observable outcomes of previous

actions of all players).

In repeated games with perfect monitoring, we employ the idea of dy-

namic programming, which means that the whole dynamic game is trans-

formed into a sequence of normal form games (i.e., establishing a recursive

structure to analyze repeated interactions among players). Similar recur-

sive structures can be established in repeated games under imperfect mon-

itoring. However, one of the important factors in the recursive structure

is the existence of some factors that can coordinate the interaction of play-

ers. Therefore, the equilibrium solution of repeated games with imperfect

monitoring is concentrated in public strategy equilibrium (i.e., the player’s

strategies rely only on public outcomes). Through public outcomes, the

whole game can be converted into a sequence of (correlated) static deci-

sions. In terms of private strategy, we will utilize examples to illustrate the

differences between them.

Definition 7.6.1 (Public Strategy) Strategy σi is a public strategy, if at any
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stage t, for any common history ht, and any two different private histories

zti and z̃it, we have σi(ht, zti) = σi(ht, z̃it).

For public strategy, we have the following conclusion: if all players oth-

er than i choose a public strategy, player i can best respond with a public

strategy. The logic behind this conclusion is simple: the rational behaviour

of player i depends on his belief of the behavior of other players, while the

behavior of other players depends only on public outcomes; thus, player i’s

belief in the behavior of other players is independent of the private infor-

mation of other players (i.e., their previous actions). Therefore, the player

has a best response on the basis of public outcomes only.

Although not all pure strategies are public strategies, the choice of pub-

lic strategies has a certain degree of universality. This is because for any

pure strategy equilibrium σ, there is an equivalent public strategy equilibri-

um σ̂. Two strategies σi and σ̂i are (outcome) equivalent for player i means

that for the strategies of other players σ−i, the distributions of common out-

comes induced by action profiles (σi, σ−i) and (σ̂i, σ−i) are the same. The

following lemma reveals this idea.

Lemma 7.6.1 In the game with imperfect public monitoring, each pure strategy

has an (outcome) equivalent pure public strategy.

PROOF. Let σi be the pure strategy of player i, and a0
i = σi(∅) be the action

in the first stage, where ∅ is the empty set. In the second stage, given the

public outcome y0, player i chooses a1
i (y0) = σi(y0, a0

i ) = σi(y0, σi(∅)).

The rest can be done in the same manner. In stage t, public history is ht =
(y0, y1, · · · , yt−1), and the history of player i is

ati(ht) ≡ σi(ht, a0
i , a

1
i (y0), · · · , at−1

i (ht−1)).

Therefore, for any public outcome h, the pure strategy gives a probabili-

ty of 1 to (a0, a1(y0), · · · , at(ht), · · · ). Therefore, pure strategy σi is outcome

equivalent to a public strategy of player i (choosing ati(ht) in stage t). 2

The logic behind this lemma is as follows: in a pure strategy equilibri-

um, each player perfectly anticipates the actions of other players. Player
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i chooses a0
i in stage 1, and chooses σ1

i (a0
i , y

0) in stage 2. Since the action

a0
i in stage 1 was previously determined, the dependence of the strategy in

stage 2 on a0
i becomes redundant. We can replace the strategy σ1

i of player

i with the public strategy σ̂i1(y0) = σ1
i (a0

i , y
0), and then the public strategy

of the other stage is constructed in a similar way.

On the basis of public outcomes, we can give concepts and tools similar

to those in repeated games with perfect monitoring. First, under imperfect

public monitoring, an automaton consists of the following elements: state

set Ω, initial state ω0, output function f : Ω →
∏
i ∆(Ai), and state transition

function τ : Ω × Y → Ω.

The second is the concept of equilibrium. When all individuals adop-

t public strategies, given public history ht, they agree on the distribution

of future actions and outcomes (common knowledge). Similar to repeated

games with perfect monitoring, we can define the continuation payoffs of

a given public history, the public strategy associated with the continuation

payoffs, and discuss what kind of public strategy profile is a Nash Equilib-

rium after stage t. Since there is such a structure at every possible stage, the

equilibrium discussed here is perfect public equilibrium.

Definition 7.6.2 (Perfect Public Equilibrium) A strategy σ = (σi)i∈N or

the automaton (Ω, ω0, f, τ) is a perfect public equilibrium, if it satisfies the

following two conditions:

(1) Each σi is a public strategy.

(2) The strategy profile is a Nash equilibrium of the continuation game

starting at any public history ht.

Under imperfect public monitoring, subgame perfect equilibrium would

not be restrictive. Starting from stage 2 of the game, the information set has

no singleton information sets, and there is only one subgame in the repeat-

ed game. When players only adopt public strategies, the private informa-

tion of the player’s own actions will not have a direct impact on the strat-

egy. Consequently, the perfect public strategy is an extension of subgame

perfect equilibrium for repeated games with imperfect public monitoring.
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There is also a similar profitable one-shot deviation principle for perfect

public equilibrium. The one-shot deviation strategy means that for player

i’s public strategy σi and another strategy σ̂i ̸= σi, we have a unique public

history h̃t ∈ Y t with σ̂i(h̃t) ̸= σi(h̃t), and for other history h̃τ ̸= h̃t, we have

σ̂i(h̃τ ) = σi(h̃τ ). A profitable one-shot deviation refers to the fact that under

such a deviation, the discounted payoff of player i is higher. The follow-

ing proposition shows the relationship between perfect public equilibrium

with imperfect public monitoring and profitable one-shot deviation.

Proposition 7.6.1 A public strategy σ or the automaton (Ω, ω0, f, τ) is a perfect

public equilibrium if and only if there is no profitable one-shot deviation, i.e., for

all public histories ht ∈ Y t, σ(ht) is a Nash equilibrium of the normal-form game

with the payoff:

gi(a) = (1 − δ)ui(a) + δ
∑
y∈Y

Ui(σ|ht,y)πy(a),

where Ui(σ|ht,y) is the (expected) continuation value of player i under public his-

tory ht and public strategy σ with outcome y.

The proof of this proposition is similar to the previous one, and thus

omitted. By adopting the automaton representation for repeated games,

the following equivalent formulation of a perfect public equilibrium can be

obtained (the proof is similar to the previous one with perfect monitoring,

and thus omitted).

Proposition 7.6.2 For the automaton (Ω, ω0, f, τ), let Vi(w) is the discounted

payoff of player i from state w. A public strategy σ is a perfect public equilibrium

if and only if for any state w ∈ Ω that can be reached from the initial state ω0,

f(w) is an equilibrium of the following normal-form game with payoff:

gi(a) = (1 − δ)ui(a) + δ
∑
y∈Y

Vi(τ(w, y))πy(a).
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7.6.2 Decomposability and Self-Generation in Imperfect Moni-
toring

Public strategies can be analysed with dynamic programming techniques

developed under perfect public monitoring, i.e., the concepts of enforce-

ment and self-generation can be used to construct a recursive structure

for repeated games with imperfect monitoring. A major conceptual break-

through of the techniques is to focus on continuation values in the descrip-

tion of equilibrium, rather than focusing on behavior directly. This yields a

more transparent description of incentives, and an informative characteri-

zation of equilibrium payoffs.

First, we introduce enforceable actions and payoffs with imperfect mon-

itoring.

Definition 7.6.3 (Enforcement under Public Outcomes) A profile of (mixed)

actions and payoffs (α∗,v) is enforceable under a discount factor of δ and on

a feasible payoff set W ∈ Rn, where α∗ ∈
∏
i ∆(Ai), if there are continu-

ation promises established on the public outcomes γ : Y → W , such that

(α∗,v) is a Nash equilibrium of the normal form game with payoff function

v : A → Rn, where

vi = (1 − δ)ui(α) + δ
∑
y

πy(α)γi(y),

i.e., for any player i ∈ N and any αi ∈ ∆(Ai), we have

(1−δ)ui(α∗)+δ
∑
y

πy(α∗)γi(y) = (1−δ)ui(αi,α∗
−i)+δ

∑
y

πy(αi,α∗
−i)γi(y).

We call the α∗ that satisfies the above conditions as enforceable on pay-

off set W , and v as decomposable on W and being self-generated from

(W, δ). All payoff profiles that can be generated from (W, δ) are denoted by

B(W, δ).

The following defines the self-generating set of payoff profiles.

Definition 7.6.4 (Self-Generating Set of Payoffs) A set W ⊆ Rn is self-

generating at discount factor δ if W ⊆ B(W, δ).
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Let EPPE(δ) be the set of all perfect public equilibrium payoff profiles

at the discount factor δ. Abreu, Pearce, and Stachetti (1986, 1990) proved

the following theorem.

Theorem 7.6.1 If W is a bounded and self-generating set, then W ⊆ B(W, δ) ⊆
EPPE(δ).

The theorem is similar to the one under perfect monitoring. More generally,

for the case of mixed strategy, see the proof of Proposition 7.3.1. in Mailath

and Samuelson (2006).

PROOF. Let W be self-generating, and fix v ∈ B(W, δ). By definition

of B(W, δ), we can find an action profile α and the continuation promises

γ : Y → W that leads to payoff profile v. Suppose that the strategy in pe-

riod 0 is σ0 = α0(v), and for each outcome y0 in stage 0, v1 = γ0(y0) ∈ W .

Then, we have v = (1 − δ)u(α0) + δ
∑
y∈Y πy(α0)γ0(y). In addition, since

v1 ∈ W and W is a self-generating set, we have v1 ∈ B(W, δ); thus, v1 is

also decomposable by an action profile α(v1) and a continuation promise

γ1(y1). Let the strategy be the following in period 1: σ1(y0) = a1(γ0(y0)).

Furthermore, for any sequence y0, y1, let v2 = γ1(γ0(y0))(y1). Continuing

the above construction, we can obtain a public strategy profile. For any t,

the payoff of this public strategy profile can be written as the discounted

sum of t action profiles and a continuation payoff profile; since this contin-

uation payoff profile is discounted and in a bounded set W , the discounted

sum of the actions converges to v.

Finally, it is necessary to check that there is no incentive to unilateral-

ly deviate from any stage of this public strategy profile. In essence, this

follows from the incentive compatibility conditions imposed by the notion

of enforcement (and thus by self-generation) and the one-shot deviation

principle mentioned earlier. Therefore, the constructed strategy profile is a

perfect public equilibrium. 2

Abreu, Pearce, and Stacchetti (1990) also proved that the set of all per-

fect public equilibrium payoffs is self-generating:

EPPE,δ = B(EPPE , δ);

they also showed that it is the largest set with this property.
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We now present some examples to explore incentives and punishments

in repeated games with imperfect public monitoring.

Example 7.6.1 (Prisoners’s Dilemma with Noisy Monitoring) There are t-

wo players who choose to work hard (also known as the cooperation, E) or

noncooperation (shirk, S). Their actions are not observed by the other play-

er, but their actions affect the distribution of the observed public outcomes.

Suppose that there are two public outcomes ȳ and y representing high or

low output, respectively. The relationship between actions and public out-

comes is as follows:

πȳ(a) =


p, if a = EE,

q, if a = SE or a = ES,

r, if a = SS,

where 1 > p > q > 0, 1 > p > r > 0. Obviously, high outcome ȳ is

more likely under cooperation between both parties, while low outcome y

is more likely to be the outcome of one or both parties being lazy.

We can show that the parameters of the game can be specified to yield

ex-ante payoffs given by Table 7.9.

player 2
C D

player 1 C 2, 2 −1, 3
D 3,−1 0, 0

Table 7.9: The Stage Game of the Prisoner’s Dilemma.

Here, we consider different types of punishment: one is the grim strat-

egy, in which the occurrence of low output y triggers a permanent punish-

ment stage for both players; the other is a relatively tolerant punishment

mode, in which the two sides return to cooperation if the outcome of the

previous period was the high output.

First, consider the grim punishment mode: Choosing cooperation at

the beginning (i.e., E). Once there is a state of low output, all players will

not choose to cooperate (i.e., S). The strategies of the two players can be

described by an automaton with two states (see Figure 7.4).
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Figure 7.4: Automaton Representation of the Grim Strategy.

The state space is Ω = {wEE , wSS}, the initial state is wEE , the automa-

ton action function is f(wEE) = EE, f(wSS) = SS, and the state transition

function is

τ(w, y) =

 wEE , if w = wEE , y = ȳ,

wSS , otherwise.

A value function is assigned to the sum of expected discounted payoffs

of players in different states:

Vi(wEE)=(1 − δ)2 + δ{pVi(wEE) + (1 − p)Vi(wSS)},

Vi(wSS)=(1 − δ)0 + δVi(wSS).

We then obtain Vi(wEE) = 2(1−δ)
1−δp , Vi(wSS) = 0 from the above two e-

quations. If the above grim strategy is a Nash equilibrium, the incentive

compatibility conditions (i.e., players have incentives to follow the automa-

ton) need to hold:

Vi(wEE)= (1 − δ)3 + δ{qVi(wEE) + (1 − q)Vi(wSS)},

Vi(wSS)= (1 − δ)(−1) + δVi(wSS).

To make the above two inequalities be satisfied, it is necessary to satisfy

the condition 3p − 2q = 1
δ . If 3p − 2q = 1

δ , then {(2(1−δ)
1−δp ,

2(1−δ)
1−δp ), (0, 0)} is

a self-generating set of payoff profiles. Since the state wSS is an attractor

(i.e., once we enter this state, there is no way to leave), the state wEE will

eventually be attracted towSS . In the grim strategy, everyone will choose to

be lazy eventually. In this way, we find that when players are sufficiently

patient (i.e., δ → 1), we have Vi(wEE) = 2(1−δ)
1−δp → Vi(wSS) = 0. In oth-
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er words, under the grim strategy, the player’s payoff profile of (2, 2) per

period cannot be the payoff profile of this repeated game.

The following considers another mode of interaction, i.e., the relative-

ly tolerant punishment mode (also known as the punishment mode under

one-term memory). If the previous state has a high outcome, then this pe-

riod returns to the cooperation state; otherwise, it enters the punishment

period.

The above strategy is described by an automaton (see Figure 7.5).

Figure 7.5: Automaton with One-term Memory Punishment.

The state space is Ω = {wEE , wSS}, the initial state is wEE , and the

payoff function is:

f(wEE) = EE, f(wSS) = SS.

The state transition function is:

τ(w, y) =

 wEE , if y = ȳ,

wSS , if y = y.

Similarly, if {(V1(wEE), V2(wEE)), (V1(wSS), V2(wSS))} is the self-generating

set of payoffs from the above tolerant strategy, then it satisfies:

Vi(wEE)=(1 − δ)2 + δ[pVi(wEE) + (1 − p)Vi(wSS)] (7.6.14)

= (1 − δ)3 + δ[qVi(wEE) + (1 − q)Vi(wSS)],

Vi(wSS)=(1 − δ)0 + δ[rVi(wEE) + (1 − r)Vi(wSS)] (7.6.15)

≥ (1 − δ)(−1) + δ[qVi(wEE) + (1 − q)Vi(wSS)].
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we then have

Vi(wEE) = 2(1 − δ(1 − r))
1 − δ(p− r)

, Vi(wSS) = 2δr
1 − δ(p− r)

.

Meanwhile, inequality (7.6.14) means δ = 1
3p−2q−r , and inequality (7.6.15)

means δ 5 1
p+2q−3r . To make the above two inequalities hold simultaneous-

ly, we need p−q = q−r. In addition, the above two inequalities have some

mutual restriction, satisfying the incentive compatibility of state wEE , re-

quiring the players to have enough patience (high discount factor); howev-

er, the incentive compatibility of state wEE requires that the patience can-

not exceed a certain degree. Moreover, p− q = q − r means that the signal

(payoff) requires a higher degree of accuracy in reflecting effort.

In the tolerant punishment, unlike the grim punishment pattern, the

player will not eventually enter the mutual punishment state, and the value

of maintaining the cooperation exceeds that of the grim mode, namely

2(1 − δ(1 − r))
1 − δ(p− r)

>
2(1 − δ)
1 − δp

.

Then, the conclusion in this example is different from the one in repeat-

ed games with perfect monitoring: under the grim strategy punishment

mode, all individuals choose to shirk; whereas, under the relatively loose

punishment mode, they choose to work hard.

Through the above discussion, we find that under the above two pun-

ishment modes, the highest possible ex-ante expected payoff of the prefect

public equilibrium is less than the ex-ante expected payoff of the coop-

eration between two parties. Under the punishment model of one-term

memory (i.e., 2(1−δ(1−r))
1−δ(p−r) < 2), which means that in repeated games with

imperfect monitoring, the Folk Theorem may fail in many cases.

7.6.3 Potential Efficiency Loss in Repeated Games with Imperfect
Monitoring

The following example reveals the potential inefficiency in repeated games.
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Example 7.6.2 The following is a discussion of incentive issues among

players in Example 7.6.1. Here, we focus on the strongly symmetric pure

strategy equilibrium (i.e., in each possible history, all players choose the

same action), and discuss the maximum possible discounted payoff that

can be supported by the player’s interaction in a symmetric case (or the

most efficient symmetric pure strategy equilibrium payoff). Suppose that a

public correlation device can be used, and thus we can consider automata

of the sort shown in Figure 7.6.

Figure 7.6: Automaton Representation in Symmetric Strategies.

This can be represented as an automaton: Ω = {wEE , wSS}, f(wEE) =
EE, f(wSS) = SS, τ : Ω × Y → Ω:

τwEE (w, y) =


1, if w = wEE , y = ȳ,

ϕ, if w = wEE , y = y,

0, if w = wSS ,

where τwEE (w, y) is the probability of state wEE in the next stage. In the

above state transition function, increasing ϕ reduces the difference between

the observable signal and the payoff function; however, if ϕ is too high, it

will impede players’ incentive to work hard. The following discusses how

automaton should be chosen to obtain the maximum possible payoff. If

ϕ = 0, it corresponds to the previous grim strategy.

The following focuses on the value V (wEE) for players’ cooperation.

From

V (wEE)=(1 − δ)2 + δ[pV (wEE) + (1 − p)(ϕV (wEE) + (1 − ϕ)V (wSS))]

= (1 − δ)3 + δ[qV (wEE) + (1 − q)(ϕV (wEE) + (1 − ϕ)V (wSS))],
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and

V (wSS)=(1 − δ)0 + δV (wSS)

= (1 − δ)(−1) + δV (wSS),

we have that V (wSS) = 0, V (wEE) = 2(1−δ)
1−δ(p+(1−p)ϕ) , the incentive com-

patibility conditions are satisfied, and the larger is the ϕ, the greater is the

V (wEE).

To achieve the above automaton, it is necessary to have:

δ(1 − ϕ)(p− q)V (wEE) = 1 − δ.

The maximum possible ϕ to satisfy the above inequality is ϕ = δ(3p−2q)−1
δ(3p−2q−1) .

Substituting the above solution into V (wEE), we obtain the maximum pos-

sible payoff: V (wEE) = 2 − 1−p
p−q < 2. The maximum possible symmet-

ric equilibrium payoffs are not dependent on the discount factor δ, and it

is strictly less than the most efficient symmetric equilibrium payoff under

perfect monitoring (i.e., (2, 2)).

The efficiency losses in a repeated game are due to the fact that some

strategies need to be implemented by mutual punishment under certain

conditions (observed public outcomes), which reduces the players’ expect-

ed discounted payoffs. This conclusion is analogous to the one in the principle-

theory we will systematically discuss in the part of mechanism design:

there is a tradeoff between allocative efficiency and the extraction of in-

formation rent. To avoid the decrease in payoffs due to punishment for

all players, there is a need for more accurate signals that allow speculation

on individual behavior, thus linking the state (observed public outcomes)

more directly to individual behavior. In other words, sufficient information

is needed to identify and punish opportunistic players, while avoiding ac-

cidental injury to“innocent”players.

Fudenberg, Levine and Maskin (1994) systematically discussed the con-

ditions for Folk Theorem in repeated games with imperfect monitoring (i.e.,

infer players’ actions probabilistically from public outcomes). For different

public outcomes, the appropriate punishments or rewards are applied to
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different players to support some of the interactive patterns to a greater ex-

tent. As the proofs of such theorems are relatively complex, the discussion

is omitted here, and readers are referred to their original work.

7.6.4 Private Strategies in Games with Perfect Public Equilibria

The cases discussed above are based on public strategies of players. This

implies that any pure strategy has an (outcome) equivalent public strate-

gy. Does this then mean that the private strategy (i.e., the strategic choices

of players are based not only on the history of the public outcomes, but

also on the history of one’s own actions) irrelevant? The answer is nega-

tive. The following is an example from Mailath and Samuelson (2006) that

discusses the difference between private strategies and public strategies. It

shows that perfect public equilibrium payoffs do not cover the full set of

equilibrium payoffs, even when signals are public, as some equilibria may

rely on players using private strategies.

Example 7.6.3 Consider a two-stage repeated game. Based on the decom-

position of repeated game payoffs, an infinitely repeated game can be re-

duced to a two-stage game in which the second stage payoff can be viewed

as a continuation discounted payoff on the basis of public outcomes (see

Table 7.10).

player 2
E S

player 1 E 2, 2 −1, 3
S 3,−1 0, 0

player 2
R P

player 1 R 8
5 ,

8
5 0, 8

5
P 8

5 , 0 0, 0

Table 7.10: Left table: payoff in the first stage; Right table: payoff in the
second stage.

In the second stage, R can be understood as a reward behavior, while P

is a punishment behavior. Let the discount factors of both players be δ = 25
27 .

The set of public outcomes is Y = {y, ȳ}. Actions affect the distribution of

public outcomes according to the following:
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πȳ(a) =



p = 9
10
, if a = EE ;

q = 4
5
, if a = SE or a = ES ;

r = 1
5
, if a = SS.

The following considers the choices of different strategies by players.

First, consider the case of pure strategies without public correlation de-

vice. Without loss of generality, we consider public strategy under pure

strategy, and we focus on pure public strategy equilibrium. Symmetric e-

quilibrium payoffs are: in the first and second stages, the stage payoffs of

two players are (2, 2) and (8
5 ,

8
5). If two players choose strategy (E,E) in

the first stage, and the public outcome in the second stage is ȳ, then they

choose the strategy (R,R); otherwise, they choose (P, P ). Since in the sec-

ond stage, the strategic choice given above under all possible public out-

comes is a Nash equilibrium, we only need to consider the first stage. Giv-

en each other’s strategy, if player i chooses the above strategy, the payoff

is:

2(1 − δ) + δp
8
5

= 40
27
,

and if she changes the strategy, the payoff is:

3(1 − δ) + δq
8
5

= 38
27
.

Obviously, the strategic choice above is an equilibrium.

Second, consider the pure strategy with public correlation devices. Sim-

ilar to the examples discussed earlier, a good symmetric equilibrium is:

choosing (E,E) in the first stage. If the public outcome of the first stage is

ȳ, then choose strategy (R,R) in the second stage. If the public outcome

of the first stage is y, then choose strategy (R,R) with probability ϕ, and

choose strategy (P, P ) with probability 1−ϕ in the second stage. While sat-

isfying the incentive compatibility (i.e., players have incentives to choose

E in the first stage), it is possible to improve ϕ. The conditions for the first

stage of incentive compatibility are:

2(1 − δ) + δ
8
5

[p+ (1 − p)ϕ] = 3(1 − δ) + δ
8
5

[q + (1 − q)ϕ],
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The highest ϕ that satisfies the above inequality is seen to be ϕ = 1
2 . As a

consequence, with a public correlation device, the best symmetric equilib-

rium payoff is

2(1 − δ) + δ
8
5

[
p+ (1 − p)1

2

]
= 42

27
.

Again, consider a mixed public strategy (with public correlation de-

vices). In this example, comparing with the situation in which player i

chooses to “work hard”, if the player is “lazy”(S), public action out-

comes better reflect player j’s action. This is because when player i is

“lazy”, if player j is also “lazy,”then the probability of r = 1
5 in the

public outcome distribution is ȳ; if player j chooses to“work hard”, the

probability of q = 4
5 is ȳ, and the difference is q − r = 3

5 . When player i

chooses to work hard, if player j is“lazy”, the probability of ȳ is q = 4
5 ;

if player j chooses to “work hard”, the probability of ȳ is p = 9
10 . Fur-

thermore, the difference is only p − q = 1
10 . Therefore, choosing a mixed

strategy in the first stage will make it easier to solve incentive compatibility

issues.

Consider a symmetric mixed strategy: in the first stage, the probability

of choosing E is α; if the public outcome of the first stage is ȳ, choose strat-

egy (R,R) in the second stage. If the public outcome of the first stage is y,

in the second stage choose strategy (R,R) with probability ϕ, and strategy

(P, P ) with probability 1 − ϕ. The condition for the above strategies to be

an equilibrium is:

α

{
2(1 − δ) + δ

8
5

[p+ (1 − p)ϕ]
}

+ (1 − α)
{

(−1)(1 − δ) + δ
8
5

[q + (1 − q)ϕ]
}

= α

{
3(1 − δ) + δ

8
5

[q + (1 − q)ϕ]
}

+ (1 − α)
{

(0)(1 − δ) + δ
8
5

[r + (1 − r)ϕ]
}
.

The highest outcome is ϕ(α) = 11−10α
12−10α >

1
2 . When α ∈ (0, 1), it will decrease

as α increases. Substituting this into the above equation, the expected pay-

off is 224−152α−30α2

27(6−5α) , which is maximum at α ≈ 0.969. This maximum payoff

approximately equals to 1.5566 > 42
27 .

Finally, consider private (mixed) strategies. The public outcome better

reflects the action of player j when player i is “lazy”(S). Therefore, it

is a natural consideration to punish player j under the outcome y (which
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makes it more likely that player j chose to be “lazy”) when player i is

“lazy”. This strategy obviously takes advantage of the private strategy

of player i to solve the incentive problem for j. Due to symmetry, similar

considerations apply when i and j are swapped.

Consider the following symmetric private strategy. Suppose that player

i chooses a mixed strategy in the first stage. If the outcome is ȳ in the first

stage, then the player chooses R in the second stage; if the outcome is y

and the player chose to be“lazy”in the first stage, she will choose P with

a strict positive probability in the second stage; if the player chooses to

“work hard”in the first stage but the outcome is y, she will still choose R

in the second stage.

Let α be the probability that player i chooses E in the first stage, and

ξ be the probability that player i chooses R in the second stage if she ob-

serves the outcome y and chose to be“lazy”in the first stage. Figure 7.7

describes the private strategy of each player by the automaton below.

Figure 7.7: An Automaton Representation of Private Strategies.

Getting player i to mix (α ∈ (0, 1)) in the first stage requires that the

player is indifferent regarding the two actions:

α

{
2(1 − δ) + δ

8
5

}
+ (1 − α)

{
(−1)(1 − δ) + δ

8
5

[q + (1 − q)ξ]
}

= α

{
3(1 − δ) + δ

8
5

}
+ (1 − α)

{
(0)(1 − δ) + δ

8
5

[r + (1 − r)ξ]
}
.

Substituting δ = 25
27 , q = 4

5 , r = 1
5 into the above equality, we obtain

ξ(α) = 11−12α
12−12α . Substituting this, it can be checked that a player’s expected

payoff is 2
9(α+ 56

9 ). To maximize this, we maximize α subject to ξ(α) ∈ [0, 1);

this requires α = 11
12 , ξ = 0, which gives a maximum expected utility of
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approximately 1.5864.

Since 1.5864 > 1.5566 > 42
27 >

40
27 , in the above four symmetric equilibri-

um cases, the private strategy can support a higher degree of cooperation

than a mixed strategy with a public correlation device. The pure strategy

with a public correlation device, when compared to the pure strategy, can

support a higher degree of cooperation.

There are other types of repeated games, such as repeated games with

private monitoring (i.e., players can only observe their own signals, and

there is no public signal). It is more difficult to establish the previous re-

cursive structure under this type of repeated game. However, for repeat-

ed games with private monitoring, Ely, Horner, and Olszewski (2005) pro-

posed a new concept of equilibrium with stronger constraints -–“belief-

free equilibrium”– to reconstruct a recursive structure. Mailath and Samuel-

son (2006) systematically discuss this type of repeated games, and their

monograph is considered to constitute an encyclopedia of repeated games

and reputation mechanisms to be discussed below.

7.7 Reputation Mechanism

Below is a practical application related to repeated games, i.e., how players

develop a reputation for a particular behavior pattern in multiple-period

interactions. In contrast to the previous repeated games, the reputation

mechanism has privately-informed players in long-term interactions. Some

players will use specific actions to influence their opponents’ beliefs. The

intuition behind it is that if a player always takes the same action, the op-

ponents would expect the player to take similar actions in the future. An

important question is under what conditions can the players develop and

maintain the reputation that they want to achieve. For example, companies

attempt to build a reputation for product quality; and policy-makers hope

to build a credible reputation for a policy. In this section, the basic principle

of reputation mechanism is discussed mainly through an example.
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The Chain Store Paradox

A long-lived company has chain stores in multiple markets that are inde-

pendent. There is a sequence of short-lived players, each of whom is a

potential entrant in a different market. Each short-run player observes all

previous actions. Each potential entrant decides whether or not to enter

the market. If he does not enter, then the incumbent in the market is a mo-

nopolist with payoff a > 0. If the potential entrant enters, the incumbent

decides whether to fight or accommodate to the entry. If the incumbent

fights, the incumbent’s payoff is −1; if not, the incumber’s payoff is 0. The

incumbent’s goal is to maximize the sum of expected discounted payoffs

with δ < 1 as the discount factor.

Suppose that there are two types of potential entrants: with probability

q ∈ (0, 1) the short-run player is tough and will enter in any case, while

with the remaining probability the short-run player is weak and receives

a payoff of 0 if the player does not enter (so this type will perform a cost-

benefit analysis when deciding whether or not to enter). If the potential

entrant enters and the incumbent fights back, then the entrant’s payoff is

−1; if the incumbent accommodates and accepts the entry, then the entran-

t’s payoff is b > 0. The type of the potential entrants is private information,

while the types of different potential entrants are independent. Assume

that this is a finitely repeated game, in which the number of repetitions equals

the number of markets. In each stage game, there is a unique equilibrium:

potential entrants will enter, while the incumbent will choose to accommo-

date.

Selten (1978) noted that from a theoretical point of view, there exists a

unique sequential equilibrium in this finitely repeated game, in which po-

tential entrants enter in each period, and the incumbent chooses to accom-

modate to each entry. However, this equilibrium seems counter-intuitive

given that there are multiple markets, and the incumbent can fight entrants

in certain markets and create a tough image that discourages entry into

other markets. Selten referred to this contrast between the theoretical pre-

diction and the intuitive view as the chain store paradox.

Market entry is a key issue in industrial organizations because it influ-
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ences the competition and efficiency of a market. Much work has been car-

ried out to solve the Chain Store Paradox. Kreps and Wilson (1982b), Mil-

grom and Roberts (1982), and Kreps, Wilson, Milgrom and Roberts (1982)

solved this paradox by introducing incomplete information.

Now, suppose that the incumbent also has private information. Specifi-

cally, the long-lived incumbent has a probability p0 of being an irrational or

hard type who will always fight an entrant; the incumbent has a probabil-

ity of 1 − p0 to be rational, when the incumbent’s payoff equals that of the

incumbent described earlier. The following argument demonstrates that

even if p0 is small, as long as the duration of the repetition is sufficiently

long, the incumbent will always maintain a hard-line attitude toward entry

(i.e., the incumbent will establish a reputation for being irrational when it

comes to responding to entry).

We now discuss the mechanism of reputation. If there is only one pe-

riod, as long as the potential entrant enters, the rational type incumbent

will choose to accommodate, and the tough type incumbent will choose to

fight. If (1 − p0)b − p0 < 0 , or p0 > p̄ ≡ b
b+1 , a weak potential entrant will

choose to not enter; otherwise, the entrant will choose to enter.

Consider two periods of interaction now. Potential entrants 1 and 2

make decisions for markets 1 and 2, respectively. Player 1 firstly faces the

entry choice, then player 2 chooses after seeing the outcome of market 1.

The following focuses on the behaviour of the rational type incumbent and

the weak type of potential entrants.

In period 1, if the incumbent chooses to accommodate when faced with

market entry, the incumbent is revealed as the rational type. Therefore,

in period 2, the potential entrant will definitely choose to enter market 2.

The following focuses on the consideration of the rational type incumben-

t. If faced with entry in the first period, the cost of choosing to fight is 1.

However, the benefit is to build the reputation of the hard type to discour-

age potential weak entrants. At this time, her revenue is at most δ(1 − q)a
so that her total expected revenue is −1 + δ(1 − q)a. In this case, when

q > q̄ ≡ aδ−1
aδ , the incumbent will not choose to fight.

When q 5 q̄, if the fight in market 1 can make weak potential entrant

2 quit, then reputation can produce value. However, player 2’s decision-
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making depends on his belief in the type incumbent.

Consider the case of p0 > p̄. Since the tough type incumbent always

chooses to fight, the probability of the rational type incumbent choosing

to fight is not more than that of the tough type. After observing the fight

in market 1, the potential entrants in market 2 believe that the probability

of the tough type will not be lower than p0. At this time, the weak type

player 2 will not choose to enter; this, in turn, means that the rational type

incumbent will establish reputation through fighting in market 1. In this

way, potential weak entrants will choose to not enter market 1.

Consider the case of p0 5 p̄. We prove that the incumbent will not

choose a pure strategy. First, consider the pooling equilibrium and show

that the rational type incumbent will not choose to fight entry into market

1. Under pooling, if there is a fight in market 1, the posterior belief of the

potential entrant of market 2 is the same as the initial belief. Therefore,

the weak entrant 2 will also choose to enter, which means that the rational

type incumbent should definitely not choose to fight in market 1. Second,

consider the separating equilibrium, in which the rational type incumbent

will certainly choose to accommodate in market 1. If instead the incumbent

deviates from this strategy and fights in market 1, the potential entrant in

market 2 will think that the incumbent is tough and the potential entrant

will choose to not enter. The rational type incumbent then has an incentive

to fight entry in the market.

Therefore, the only possible equilibrium is the semi-separation (also

called the partial-pooling) equilibrium (i.e., one type of a player may play

a pure strategy while the other plays a mixed strategy). We assume that

the rational type incumbent chooses a mixed strategy to fight in market

1. Let β < 1 be the probability that rational type incumbent chooses to

fight. Because the rational type incumbent adopts a strictly mixed strategy,

choosing to fight and choosing to accommodate must bring the same ben-

efits, which means that weak entrants must also choose mixed strategies.

After observing the fight in the market, the posterior belief of the potential
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entrant in market 2 satisfies

prob(tough|fight) = p0

p0 + (1 − p0)β
= p̄ = b

b+ 1
,

and thus it follows that β = p0

(1−p0)b . In market 1, the probability of the

potential entrant facing a fight with the incumbent is

p0 + (1 − p0) p0

(1 − p0)b
= p0(1 + b)

b
.

If p0 > ( b
b+1)2 = p̄2, weak potential entrants in market 1 will not choose

to enter, the ex-ante expected payoff of the rational type incumbent is greater

than zero; if p0 < p̄2, weak potential entrants in market 1 will inevitably en-

ter.

The following continues to discuss the presence of chain stores in three

markets. If p0 > p̄2, the rational type incumbent facing an entrant in market

1 will definitely choose to fight, while the weak potential entrants of market

1 will not choose to enter. If p0 ∈ (p̄3, p̄2), the rational type incumbent

chooses a mixed strategy when facing entry in market 1, while the weak

potential entrants in market 1 will not choose to enter. If p0 < p̄3, the weak

potential entrants in market 1 will definitely enter.

More generally, the incumbent has N chain stores. If p0 > p̄k, k < N ,

then the weak potential entrants from market 1 to marketN−k will not en-

ter, and the incumbent will certainly build strong reputation in these mar-

kets by choosing to fight should there be entry. In addition, note that as

N → ∞, we obtain that p̄N → 0, and thus p0 > p̄N holds for sufficiently

large N . This means that the first potential entrant will not enter, and if

there is entry the rational type incumbent has a strong motivation to fight

it to build a strong reputation. Therefore, as long as there is incomplete in-

formation, even if the degree of incomplete information is small, long-run

players can build their reputations through certain behavior.

In different contexts, reputation operates differently and performs dis-

similar roles. Fudenberg and Tirole (1991) and Mailath and Samuelson

(2006) provide systematic introductions to the rich literature in this field;

the latter also reviews some recent literature on the reputation mechanism.
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7.8 Biographies

7.8.1 John Richard Hicks

John Richard Hicks (1904—1989), one of the founders of the general e-

quilibrium theory, made great contributions to microeconomics, macroe-

conomics, economic methodology and economic history, and shared the

Nobel Memorial Prize in Economic Sciences with Kenneth Joseph Arrow

in 1972.

He was educated at Clifton College (1917-1922), and later obtained a

scholarship to study mathematics at Balliol College, Oxford (1922-1926). In

1923, he moved to Philosophy, Politics and Economics, the“new school”that

was just being started at Oxford, and graduated with second-class honors.

During 1925 and 1926, he studied labor economics under Cole’s guidance.

From 1926 to 1935, Hicks worked as an assistant and later as a lecturer at

the London School of Economics, during which time he received a Ph.D.

degree from the University of London in 1932. In the same year, he pub-

lished The Theory of Wages. During the time in the London School of Eco-

nomics and Political Science, Hicks learned a great deal about economics,

and gradually developed from a beginner to an accomplished economist

who published a series of important academic papers, including A Recon-

sideration of the Theory of Value (1934) with Roy Allen and A Suggestion for

Simplifying the Theory of Money (1935). In the summer of 1935, Hicks left

the London School of Economics, and became a researcher and lecturer

at Gonville and Caius College of the University of Cambridge until 1938.

During this period, his main achievement at the University of Cambridge

was the book entitled Value and Capital. In addition, he wrote two influen-

tial book reviews of Keynes’s The General Theory of Employment, Interest, and

Money, in which the article Mr. Keynes and the “Classics”￡oA Suggested

Interpretation had far-reaching effects.

Hicks is one of the founders of the general equilibrium theory in microe-

conomics. The general equilibrium theory was originally characterized by

normative analysis, but in his most famous work, Value and Capital pub-

lished in 1939, he abandoned this tradition and gave a powerful empirical
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implication to this theory. He put forward a complete economic equilib-

rium model with markets for commodities, factors of production, credit,

and money. There are many innovations in the model, including perfecting

the original consumption and production theory, clarifying the conditions

of the stability of the market, extending the application scope of the static

analysis, considering the dynamic analysis, and adopting the capital theory

based on the assumption of profit maximization. The well-known Hicksian

demand in microeconomics describes the minimum consumption expendi-

ture under a given level of utility, which, together with the traditional Mar-

shallian demand, is one of the two optimal solutions to a dual problem.

Deeply rooted in consumer theory and producer theory, the Hicks mod-

el provides much greater possibilities for performing comparative static

analyses than previous models in this field, and thus many important eco-

nomic theorems were established using this model. His model is also an

important link between the general equilibrium theory and the prevailing

business cycle theory.

The most notable contributions of Hicks to welfare economics were the

standard analysis of comparing different economic conditions and the re-

vision of the concept of consumer surplus. He proposed the Kaldor-Hicks

efficiency test, which is another well-known criterion for comparing differ-

ent public policies and economic states besides the efficiency criterion of

Pareto improvement. He also perfected the theory of marginal utility ex-

plained by the ordinal utility theory and indifference curve, and developed

the general equilibrium theory. He systematically studied and clarified the

general equilibrium theory based on the theories of Walrasian, Pareto, etc.

In his theoretical system, general equilibrium was divided into static and

dynamic general equilibrium, and its contribution was primarily to estab-

lish the dynamic general equilibrium theory, based on previous theory. He

proposed the IS-LM model and used it to analyze the simultaneous equi-

librium of goods market and money market, the simultaneous determina-

tion of national income and interest rate, as well as the interrelationships

between them. This model combines the general equilibrium analysis of

neoclassical economics with the Keynesian theory of national income de-

termination, and becomes the theoretical hallmark model of modern Key-
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nesian macroeconomics.

Hicks used the accelerator multiplier interaction for building up a new

theory of business cycle. The theory holds that the increase of output and

income will lead to acceleration of investment through the acceleration ef-

fect. Moreover, due to the multiplier effect, the growth of investment caus-

es output and income to increase accordingly by a magnified amount, and

thus production capacity expands rapidly. When expansion reaches the

limit of the cycle, it shifts to economic contraction. During the contraction,

due to the role of acceleration, the decline in investment will lead to output

and income decline in a certain proportion, and this decline is limited by

the lower bound of the cycle. The economy starts to rebound again when

it reaches the bottom of the cycle. Hicks discovered a regular cyclical fluc-

tuation of 7-10 years, based on a study of the economic history of the past

one and a half century.

7.8.2 Thomas Schelling

Thomas C. Schelling (1921-2016) was an American economist, an expert

on foreign affairs, national security, nuclear strategy and arms control, and

one of the founders of the theory of limited war. He was born in California

in April 14, 1921 and received a Ph.D. degree in economics from Harvard

University in 1948. He won the Frank E. Seidman Distinguished Award in

Political Economy in 1977 and the Nobel Prize in Economics for“having

enhanced our understanding of conflict and cooperation through game-

theory analysis”in 2005.

Unlike conventional game theory, which has traditionally used math-

ematics extensively, Schelling’s main research field is called the “non-

mathematical game theory”. Schelling and Aumann further develope-

d the non-cooperative game theory and began to deal with some major

problems in the field of sociology. They came from different perspectives—

Aumann mainly from the perspective of mathematics while Schelling pri-

marily from the perspective of economics—and both thought that it was

possible to reconstruct the analytical paradigm of human interaction us-

ing game theory. More importantly, Schelling pointed out that many social
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interactions with which people are familiar can be understood from the

perspective of non-cooperative games; Aumann also found that some long-

term social interactions can be analyzed deeply with formal non-cooperative

game theory.

Schelling’s game theory was based on the breakthrough of the analyti-

cal method of neoclassical economic theory, different from the mainstream

game theory in research method and focus, thereby improving, enriching

and developing the modern game theory. In his classic book, The Strategy

of Conflict, Schelling first defined and clarified concepts, such as deterrence,

credible commitment, strategic mobility, etc., began to study social science

issues using a unified analytical framework of game theory, and made a de-

tailed analysis of the bargaining and conflict management theory. Bargain-

ing theory is the primary contribution of Schelling’s early-period research.

Although he did not deliberately set out to establish a formal model, many

of his views were later shaped by the new development of game theory.

The concepts that he defined are also the most basic in game theory, e.g.,

the non-credible threat of perfect equilibrium.

His fruitful work contributed to the new development of game theory

and accelerated the application of game theory in the field of social sci-

ence. In particular, his research on strategic commitments explains many

phenomena (e.g., the firm’s competitive strategy, and the mandate of po-

litical decision-making). In 1988, the American Economic Association gave

him the“Distinguished Fellow Award”, and stated“Schelling’s theory

about social relations and his application of the theory are derived from

his fruitful integration of theory with practice. He has an unusual talent,

which enabled him to capture the nature of the social and economic situa-

tions in which the participants share the same or different interests, and to

vividly describe the nature.”The Nobel committee evaluated him as fol-

lows, ”Schelling, a self-described ‘errant economist’, has been proven to

be a very distinguished and pioneering explorer.”
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7.9 Exercises

Exercise 7.1 Consider a three-player symmetric infinitely repeated game:

the discount factor is δ, and the stage game is (1, 2, 3, Ai, ui), where Ai =
[0, 1]. For any (a1, a2, a3) ∈ A1 ×A2 ×A3, we have

ui(a1, a2, a3) = a1a2a3 + (1 − a1)(1 − a2)(1 − a3).

1. Find the set of feasible payoff profiles of the stage game.

2. Prove: for any discount factor δ ∈ (0, 1), the payoff of any player in a

subgame perfect Nash equilibrium (SPNE) in the repeated game is at

least 1/4.

Exercise 7.2 Consider the following game:

buyer

B D

seller H 1, 1 −1, 2
L 2,−1 0, 0

The seller can choose to work hard (H) or to be lazy (L), and the buyer

can choose to purchase (B) or not (D).

1. Find the set of feasible payoff profiles and the set of individually ra-

tional payoff profiles.

2. Suppose that the game is repeated infinitely, and the discount factor

for both players is δ. Find a SPNE such that, for some range of δ, the

path of the repeated game is (H,B)∞. Solve for the range of δ.

3. Now, suppose that in the stage game, the buyer could observe the

effort of the seller prior to making a purchasing decision. Then, solve

question 2.

Exercise 7.3 There is a static game with complete information between play-

er 1 and player 2, and the strategy space for both is {A,B}. If both choose

A, then each obtains α; if both choose B, then each obtains β; if they choose

A and B, respectively, then the player with action A receives γ, and the

player with action B receives λ.
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1. Give the normal form of the above game.

2. If it is a Prisoner’s Dilemma game, give the range of parameter.

3. With the answer from question 2, suppose that the game is repeated

infinitely, and the discount factor is δ. Prove that if δ = δ̄, then the

grim strategy can resolve the Prisoner’s Dilemma. Solve for δ̄.

Exercise 7.4 Consider a two-player, two-stage repeated game, , and the

stage game is the following: Prior to stage two, both players could ob-

player 2
d e f

a 3, 1 0, 0 5, 0
player 1 b 2, 1 1, 2 3, 1

c 1, 2 0, 1 4, 4

serve the outcomes of stage one, and there is no discount factor. Is there

an SPNE, such that the payoff profile in stage one is (4, 4)? If yes, give the

corresponding strategy. If no, explain why.

Exercise 7.5 Consider the following infinitely repeated game with the stage

game:

player 2
L C R

T 1, 1 −1,−8 6,−8
player 1 M −8, 1 −4,−4 1,−4

B −8, 6 −4, 1 3, 3

Solve for the range of discount factor δ, such that the following strategy

is an SPNE.

State 1: first choose (B,R); if no one deviates, then continue to choose

(B,R); otherwise, change to state 2;

State 2: choose (T,L); if no one deviates, then continue to choose (T,L);

otherwise, change to state 1.

Exercise 7.6 Consider the infinitely repeated Prisoner’s Dilemma game with

the stage game:
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player 2

candor(C) disavow(D)

player 1 candor (C) 1, 1 −1, 2

disavow(D) 2, −1 0,0

Let the discount factor be δ.

1. Prove: if δ = 0.5, then there is an SPNE, such that the strategy pro-

file in every stage is (C,C). Find the complete strategies of the two

players in this equilibrium.

2. Prove the following Folk Theorem: if δ is sufficiently close to 1, then

any feasible and individually rational payoff profile is subgame per-

fect Nash equilibrium payoff profile.

Exercise 7.7 Consider the following infinitely repeated Prisoner’s Dilem-

ma with the discount factor δ and the stage game:

player 2

candor(C) disavow(D)

player 1 candor (C) 3, 2 −1, 4

disavow(D) 6, −1 0, 0

1. Solve for the minimum SPNE payoff profile for players, and prove

that there is no lower equilibrium payoff.

2. Solve for the minimum discount factor δ∗ in SPNE where cooperation

can be realized.

3. If the discount factor is lower than δ∗, is there an SPNE such that the

payoff profile is bigger than (0, 0)?

Exercise 7.8 Consider the following infinitely repeated Prisoner’s Dilem-

ma game with the stage game:

player 2

candor(C) disavow(D)

player 1 candor (C) 1, 2 −1, 3

disavow(D) 2, −4 0,0



7.9. EXERCISES 495

Let the discount factor be δ.

1. Prove: if δ < 0.5, in pure strategy SPNE, the maximum payoff profile

of players is 0; if δ = 0.5, then there is a pure strategy SPNE, such that

the payoff profile of players is 1.

2. Now suppose that a player plays the above game withN players, and

the payoff in one period is the sum of payoff in all N games. Then,

will the result in question 1 change? Explain your answer.

Exercise 7.9 Consider the following infinitely repeated Prisoner’s Dilem-

ma, where 2a > b+ c, and the discount factor is δ:

player 2

candor(C) disavow(D)

player 1 candor(C) a, a b, c

disavow(D) c, b 0, 0

1. If the grim strategy is an SPNE, then what is the range of discount

factor?

2. Prove that if δ = 1, then the“tit-for-tat”strategy is not an SPNE.

Exercise 7.10 In the Cournot model of n firms, the inverse demand func-

tion is p = 1 − 2q, and the marginal cost and fixed cost of all firms are zero.

Consider the infinitely repeated game of this stage game:

1. Solve for the minimum δ such that a firm can maintain monopoly

output through the grim strategy in SPNE.

2. If δ is too small to maintain monopoly output through the grim strat-

egy, then solve for the SPNE in which the grim strategy leads to profit

maximization.

Exercise 7.11 Consider a game between a firm and a labor union. The u-

nion determines the wage level, and the firm decides the number of em-

ployees. The union’s utility function is u(w, l), where w is wage, l is em-

ployment, and u(w, l) is an increasing function of w and l. The firm’s prof-

it function is π(w, l) = R(l) − wl, where R(l) is the enterprise’s revenue,
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which is an increasing and concave function. The time sequence of the

game is: the union first gives the salary level; the firm observes and accepts

the salary level, and then chooses the number of employees. u∗ and π∗ rep-

resent the union’s utility and the firm’s profit, respectively, by backward

induction of a one-shot game. Consider another wage-employment combi-

nation (w, l) and the corresponding utility-profit combination (u, π), where

the discount factor for both is δ. Solve for the condition that (w, l) satisfy:

(u, π) is Pareto superior to (u∗, π∗); and (u, π) is the outcome of a subgame

perfect Nash equilibrium for an infinitely repeated game, where as long as

any deviation occurs, it permanently shifts to (u∗, π∗).

Exercise 7.12 (Shapiro and Stiglitz, 1984) Consider the following stage game:

in the first stage, the firm sets wage level w for a worker; in the second

stage, the worker chooses to accept or reject the wage. If rejected, the work-

er chooses a self-employment salary of w0; if accepted, the worker chooses

to work hard or to be lazy. Hard work will result in a negative utility of

f , while laziness does not have a negative effect. The firm cannot observe

the worker’s effort, but the firm and the worker can observe the level of the

worker’s output, with a low output of 0 and a high output of y > 0. The

worker who works hard can inevitably achieve high output, while the lazy

worker gets high output with probability p and low output with probability

1 − p.

Suppose y − f > w0 > py, and consider the following combination

of strategies in an infinitely repeated game: the firm’s strategy is to set

the wage level w∗ for the first stage, and if at each subsequent stage, the

outcome of the game is (w∗, y), then continue the wage level w∗; otherwise,

change the wage level to be w = 0; the worker’s strategy is if w = 0, then

accept the firm’s wage (or choose self-employment), and if the outcome in

each stage of the game is (w∗, y), then work hard (otherwise choose to be

lazy). Solve for the conditions under which the above strategies form a

subgame perfect Nash equilibrium.

Exercise 7.13 Consider the following infinitely repeated game of two play-

ers with the discount factor δ and the stage game:
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player 2

candor(C) disavow(D)

player 1 candor (C) 2, 3 1, 6

disavow(D) 0, 1 0, 1

Prove that if δ satisfies a certain condition, then (C,C), (C,C), · · · is not the

equilibrium path of an SPNE, and solve for the range of δ in this case.

Exercise 7.14 Prove that in a repeated game, if there is an SPNE for each

player where the equilibrium payoff is the player’s minmax payoff, then

every Nash equilibrium payoff is an SPNE payoff.

Exercise 7.15 Prove that if (wk)∞
k=1 is a sequence of the SPNE payoff profile

of an infinitely repeated game with discount factor δ, and it converges to

w∗, then w∗ is an SPNE payoff profile for this repeated game.

Exercise 7.16 In a symmetric finitely repeated game, suppose that there is a

symmetric minmax strategy profile m∗, where the pure strategy m satisfies

maxai g(ai,m∗
−i) 5 v. Prove that if public randomization is possible, then

for sufficiently large discount factors, the minimum strongly symmetric e-

quilibrium payoff e can be obtained by the following strategy: in state A,

players choose m∗; if players do not deviate in state A, then change to state

B; if players deviate, then remain in state A with probability 1. In state B,

the game is played by strategies with maximum equilibrium payoff.

Exercise 7.17 Consider a repeated game between a long-term player 1 and

other players in an infinite sequence. Each player in the sequence only

exists for one period and knows the previous actions of player 1. Player

1 evaluates the payoff sequence by limit of time-average, and any of other

players only considers the payoff for the period in which she is present.

1. If two players in each period perform the Prisoner’s Dilemma game

as follows, solve for the set of subgame perfect Nash equilibria of the

game.
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player 2

candor (C) disavow (D)

player 1 candor (C) 3, 3 0, 4

disavow( D) 4, 0 1, 1

2. If the payoff of (C,D) is changed to 0 for each player in each period,

prove that for each x ∈ [1, 3], there is a subgame perfect Nash equilib-

rium, in which the average (normalized) discounted payoff for player

1 is x.

Exercise 7.18 Consider the following game:

player 2
a b c

a 4, 4 0, 5 0, 0
player 1 b 5, 0 2, 2 0, 0

c 0, 0 0, 0 3, 3

1. Suppose that the game proceeds in two periods, and the discount

factor is δ. Find a subgame perfect Nash equilibrium, such that for a

range of δ, the first stage can achieve the payoff profile of (a, a). Solve

for the range of δ.

2. Suppose that the game repeats T > 2 periods, and the discount factor

is δ. Find a subgame perfect Nash equilibrium, such that for some

range of δ, the payoff profile of (a, a) can be achieved in the previous

T − 1 stage. Find the range of δ and equilibrium payoffs for each

player.

3. Suppose that the game repeats infinite periods, and the discount fac-

tor is δ. Is there a subgame perfect Nash equilibrium where for some

δ, every T −1 stage can achieve the payoff profile of (a, a)? If it exists,

find the range of δ and the equilibrium payoff for each player; if it

does not exist, provide the corresponding proof.

Exercise 7.19 Workers will face off season and peak seasons each year. In

the off season, they will receive wage w∗. During the peak season, they will
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receive wage w∗, and w∗ > w∗. Workers cannot save, and their utility func-

tion u is a strictly concave function defined in each period of consumption.

The discount factor between different periods is δ. Each season is a period.

1. Suppose that the wage cannot be used for saving or borrowing. Write

the worker’s lifelong utility.

2. Suppose that an employer provides a contract (x∗, x
∗) to the worker,

where x∗ and x∗ are the worker’s wage levels in the off season and the

peak season, respectively. Set the utility of the employer as a linear

function and assume that the employer keeps its promise to perform

the contract, while the worker can choose to break the contract. Once

the worker defaults, the employer can continue or cease providing

the contract. As a result, the wages of the worker are still determined

by w∗ and w∗.

(a) The relationship between workers and employers is represent-

ed by a repeated game. Is the payoff function of each period

continuous? Explain your answer.

(b) Suppose that the employer provides the contract in the off sea-

son. What are the two constraints that need to be met, such that

the workers accept and perform the contract?

(c) Prove that δ2u′(w∗) > u′(w∗) is the sufficient and necessary con-

dition for the existence of an incentive compatible contract in

which both parties can make a profit.

Exercise 7.20 Consider the following stage game:

player 2

C D

player 1 C 5, 5 3, 6

D 6, 3 4, 4

This stage game is repeated infinitely, and two players in each period

fully know the history of the previous stages. Both have a discount factor

0 < δ < 1. Answer the following questions:
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1. Consider the following trigger strategy: both parties choose C in

stage 0. In any subsequent stage game, if the outcome of each previ-

ous stage is (C,C), then both parties continue to choose C; otherwise,

they choose D. Find the range of δ, where the trigger strategy is the

subgame perfect Nash equilibrium.

2. Consider another trigger strategy: in the 0-stage game, player 1 choos-

es C, and player 2 chooses D. In any subsequent game, if the history

of outcomes is the following sequence: (C,D), (D,C), (C,D), (D,C),
(C,D), (D,C), · · · , then they continue to follow the sequence (i.e.,

player 1 chooses C in even periods, and chooses D in odd periods;

player 2 chooses C in odd periods, and D in even periods); other-

wise, they choose D. Find the range of δ, where this trigger strategy

is a subgame perfect Nash equilibrium.

3. According to the Subgame Perfect Folk Theorem, as long as δ is suf-

ficiently close to 1, the range of payoff profiles can be achieved by

reasonably choosing trigger strategies in an infinitely repeated game.

Illustrate this using figures.

Exercise 7.21 Consider the two-player game:

player 2

L R

player 1 T 2, 3 1, 5

B 0, 1 0, 1

1. Find the Nash equilibrium of the game.

2. Suppose that this game repeats infinitely. According to the Nash

Threats Folk Theorem, what are the payoff profiles that can be achieved

in subgame perfect Nash equilibrium? Does it depend on the choice

of the common discount factor δ?

3. Suppose that this game repeats infinitely. According to the Nash Folk

Theorem, what are the payoff profiles that can be realized in Nash

equilibrium?
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Exercise 7.22 Consider the two-player game:

player 2

L R

player 1 T 2, 1 0, 0

B 0, 0 1, 2

1. Suppose that this game repeats infinitely. According to the Nash

Threats Folk Theorem, what are the payoff profiles that can be achieved

in subgame perfect Nash equilibrium?

2. Give a subgame perfect Nash equilibrium that can achieve the payoff

profile (3
2 ,

3
2), and give the requirement for common discount factor

δ.

3. Suppose that this game repeats infinitely. According to the Nash Folk

Theorem, what are the payoff profiles that can be realized in Nash

equilibrium?

Exercise 7.23 Consider the two-player game:

player 2

C D

player 1 C 3, 3 k, 1

D 1, k 2, 2

Suppose that the new round of probability that the stage game contin-

ues is p, and this probability is independent of the number of repetitions of

the stage game.

1. If k = 4, under what conditions does a“tit-for-tat”strategy form a

Nash equilibrium?

2. Consider the definition of a “tit-for-tat”strategy. They choose co-

operation in the first round. After that, they adopt the action of the

opponent in the previous round (betrayal or cooperation). Prove that

if k is sufficiently large, the alternate strategy defined below is bet-

ter than the “tit-for-tat”strategy. At this time, does the alternate
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strategy constitute Nash equilibrium? If not, what strategy is a Nash

equilibrium?

The alternate strategy is defined as follows. Cooperation in the first

round. Since then,

if both cooperated with each other last time, then you will defect this

time;

if you defected the last time but the other party chose cooperation,

then you will cooperate this time;

if you cooperated last time but the other side defected, then you will

defect this time;

if both sides defected last time, then you will cooperate this time.

Exercise 7.24 Consider the two-player game:

player 2

C D

player 1 C 3, 3 1, 4

D 4, 1 2, 2

1. Suppose that the two players know in advance that the stage game

will only repeat for 3 rounds. What is the SPNE of this repeated

game?

2. Let this game repeat infinitely. According to the Subgame Perfect Folk

Theorem, what are the payoff profiles that can be achieved in SPNE?

Exercise 7.25 Consider the two-player game:

player 2

C D

player 1 C 3, 3 1, 4

D 4, 1 2, 2

Describe the following strategies using the automaton representation

of strategies, and use Proposition 7.3.1 to verify whether it is a subgame

perfect Nash equilibrium.
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1. Trigger strategy: both parties first choose to cooperate (C). At period

t, if the previous participants all chose to work hard (C), then they

choose to work hard; if anyone had chosen to defect (D), then they

choose to defect from this time forward.

2. “Tit-for-tat”strategy: both sides choose to cooperate (C) in the first

round. At period t, both choose the opponent’s action in the previous

round (defect or cooperation).

3. Alternate strategy (defined in Exercise 7.23).

Exercise 7.26 (Product Choice Game) Player 1 is the manufacturer, and play-

er 2 is the consumer. The manufacturer can choose either high effort (H)

or low effort (L). The consumer can choose from two products, high-end

products (h) or low-end products (l). The payoff matrix of the game is

shown in the table:

player 2

h l

player 1 H 2, 3 0, 3

L 4, 0 1, 1

1. If the game is played for a finite period, what is the subgame perfect

Nash equilibrium?

2. If the game is played for 3 rounds, is there another Nash equilibrium

besides the subgame perfect Nash equilibrium derived in question 1?

If yes, give one.

3. Suppose that this game repeats infinitely. According to the Nash

Threats Folk Theorem, what are the payoff profiles that can be achieved

in subgame perfect equilibrium?

4. Suppose that this game repeats infinitely. According to the Nash Folk

Theorem, what are the payoff profiles that can be realized in Nash

equilibrium?

5. Suppose that this game repeats infinitely. According to the Subgame

Perfect Folk Theorem, what are the payoff profiles that can be realized

in Nash equilibrium?
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Exercise 7.27 (Product Choice Game) There are two types of manufactur-

ers. The probability of being effort type is p, who can only use strategy H ;

the other type of manufacturers is called the common type, and the prob-

ability of being such type is 1 − p. The discount factor for both types is δ.

The payoff matrixes are as follows:

Common type:

player 2

h l

player 1 H 2, 3 0, 2

L 3, 0 1, 1

Effort type:

player 2

h l

player 1 H 2, 3 0, 2

1. For the common type of manufacturers, if the type is ex-ante public

knowledge, what is the strategy of a subgame perfect Nash equilibri-

um in a finitely-repeated game?

2. Suppose that the type is private information, and the game repeats for

2 periods. Under what conditions can manufacturers of the common

type benefit from the existence of effort type? What is the specific

strategy? (Hint: the common type can maintain the confidentiality of

their type by adopting strategy H in the first period).

3. Suppose that the type is private information, and the game repeats

for n periods (n = 3). What is the equilibrium strategy?

4. If the game repeats infinitely, what is the equilibrium?

Exercise 7.28 (Reputation Mechanism) Consider the chain store model giv-

en in this chapter. Suppose that the incumbent has chain stores in 3 mar-

kets. Answer the following questions:
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1. For market 2, suppose that the rational type incumbent has not re-

vealed her own type in market 1 (fight when facing an entrant). Dis-

cuss her strategies for different ranges of q and p0. (Hint: it is the

same as the case of 2 markets).

2. For market 2, suppose that the rational type incumbent has already

revealed her own type in market 1 (did not fight when faced with

entry). Then, obviously her subsequent strategy is not to fight for

any entry, while tough or weak type potential entrants will choose to

enter. Based on this and the conclusion in question 1, use backward

induction to discuss the strategy of the rational type incumbent for

different ranges of q and p0 in the market 1. Provide the reasoning

process.

3. Give equilibrium strategies for this game, i.e., provide strategies for

the rational type incumbent and weak potential entrants in these mar-

kets.

Exercise 7.29 (Reputation Mechanism) Consider the general case of the chain

store model in this chapter. Suppose that the incumbent has chain stores in

N markets, and potential entrants are tough with probabilities q1, q2, · · · , qN ,

respectively. If the incumbent does not fight, then the benefits of entry

are b1, b2, · · · , bN , respectively. The incumbent is rational with probability

1 − p0.

1. First, suppose that qi = q and bi = b for any i ∈ {1, 2, · · · , N}. Use

backward induction to find a market equilibrium strategy.

2. Is it true that no matter how small the p0 is, as long as N is suffi-

ciently large, then the rational type incumbent will always choose to

fight in the first few markets to establish a tough reputation? Is there

such a conclusion when qi and bi are not exactly equal across these N

markets?
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Chapter 8

Cooperative Game Theory

8.1 Introduction

This chapter discusses cooperative games, also known as the coalitional

games. The so-called coalition is a nonempty subset of players. The ba-

sic elements of the non-cooperative game discussed in the previous two

chapters are based on each player’s actions and preferences for possible

outcomes. In cooperative games, the basic elements are coalitions consist-

ing of players and the coalitional actions that they take. Although the ac-

tions are chosen by the coalition, it is also based on individual preferences.

Similar to the equilibrium solution of the non-cooperative game, the equi-

librium of a cooperative game must also satisfy stability (i.e., the stability

of stable coalition and outcome).

Compared with non-cooperative games, cooperative games pay more

attention to group choices rather than individual choices, and meanwhile

ignore details of the interaction within a group. These two types of in-

teractions reflect different strategic considerations. Game theory increas-

ingly looks at the connection between the two, such as providing non-

cooperative game foundations for solutions to cooperative games.

511
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8.2 The Core

The core is a basic solution concept to coalitional games. It reflects that

there is no other coalition that can bring better outcomes to the players in

the coalition, and thus such an outcome is stable. Judging by whether or

not payoffs can be transferable among members of the coalition, coalition-

al games can be divided into coalitional games with transferable payoff

and coalitional games without transferable payoff. Our discussion main-

ly focuses on the former in the current chapter. We will discuss coalitional

games without transferable payoff somewhat in detail when examining the

core property of competitive equilibrium in Chapter 12.

8.2.1 Coalitional Game with Transferable Payoff

The coalitional game with transferable payoff concerns the payoff obtained

by a group of players, and the payoff is allocated among the members with-

out restriction.

Definition 8.2.1 (Coalitional Game with Transferable Payoff) A coalition-

al game with transferable payoff or simply a coalitional game consists of the

following two elements: a set of players N , and a value v(S) assigned to

each coalition (i.e., a non-empty subset of N , S ⊆ N ). v(S) that is called the

characteristic function can be viewed as the total payoff of the coalition S to

be assigned among its members.

A coalitional game with transferable payoff is denoted by ⟨N, v⟩. The

payoff that a coalition can obtain is usually dependent on the actions of

other players, and thus v(S) can be interpreted as the highest payoff that

coalition S receives independently of other coalitions N\S. We can utilize

the strategic form of a non-cooperative game Γ = (N, (Ci)i∈N , (ui)i∈N ) to

discuss the payoff of a coalition in the coalitional game, where Ci is the

choice space of player i, and ui is the utility function of player i. Von Neu-

mann and Morgenstern (1944) defined the characteristic function as:

v(S) = min
σN\S∈∆(CN\S)

max
σS∈∆(CS)

∑
i∈S

ui(σS ,σN\S).
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We usually assume v(∅) = 0, where ∅ denotes the empty set. The def-

inition of coalitional payoff is based on a pessimistic judgment of actions

of players outside of the coalition (i.e., they will choose the most unfavor-

able actions against coalition members). There are also other ways to define

coalitional payoff. Different judgment criteria of players’ actions outside of

the coalition will lead to dissimilar definitions.

Myerson (1991) proposes using defensive-equilibrium representation to

define the group’s payoff in a coalitional game. The entire group is then

divided into the coalition and its complement. Their respective values are

equivalent to Nash equilibrium payoffs. Formally, define

σ̄S =argmaxσS∈∆(CS)
∑
i∈S

ui(σS , σ̄N\S);

σ̄N\S =argmaxσN\S∈∆(CN\S)
∑

j∈N\S
uj(σ̄S ,σN\S);

v(S)=
∑
i∈S

ui(σ̄S , σ̄N\S);

v(N\S)=
∑

j∈N\S
uj(σ̄S , σ̄N\S).

In addition, Harsanyi (1963) proposed to define characteristic function-

s by Nash’s rational-threats criterion. Here, the payoff to the coalitional

group is similar to the idea of coalitional group in Myerson (1991), except

that the goal of each group is to maximize the difference between the pay-

offs of its own and its opponent. Formally, we define

σ̄S =argmaxσS∈∆(CS)

∑
i∈S

ui(σS , σ̄N\S) −
∑

j∈N\S
uj(σS , σ̄N\S)

 ;

σ̄N\S =argmaxσN\S∈∆(CN\S)

 ∑
j∈N\S

uj(σ̄S ,σN\S) −
∑
i∈S

ui(σ̄S ,σN\S)

 ;

v(S)=
∑
i∈S

ui(σ̄S , σ̄N\S);

v(N\S)=
∑

j∈N\S
uj(σ̄S , σ̄N\S).
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We employ an example to illustrate the characteristic function in differ-

ent meanings.

Example 8.2.1 (Characteristic Function) Consider a three-person coalition-

al game with transferable payoff. Suppose that each player has two actions,

Ci = {ai, bi}, i ∈ {1, 2, 3}, which represent“generosity”and“selfishness”,

respectively. The payoff matrix for their actions is shown in Figure 8.1.

Figure 8.1: Characteristic Function.

Under the definition of characteristic function by von Neumann and

Morgenstern (1944), we will have:

v({1, 2, 3}) = 12, v({1, 2}) = v({1, 3}) = v({2, 3}) = 4, v({1}) = v({2}) = v({3}) = 1.

Under the definition of defensive-equilibrium by Myerson (1991), the

characteristic function is then:

v({1, 2, 3}) = 12, v({1, 2}) = v({1, 3}) = v({2, 3}) = 4, v({1}) = v({2}) = v({3}) = 5.

In the sense of rational-threats of Harsanyi (1963), the characteristic
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function is:

v({1, 2, 3}) = 12, v({1, 2}) = v({1, 3}) = v({2, 3}) = 2, v({1}) = v({2}) = v({3}) = 1.

Thrall and Lucas (1963) extended the characteristic function and pro-

posed the concept of partition function, which can deal with the externali-

ty between coalitions in a more general framework. The coalitional games

discussed later are based on the condition that each coalition has a corre-

sponding characteristic function, thereby placing the focus on what kind

of coalition the player will choose. We assume that the coalitional games

satisfy the cohesive condition.

Definition 8.2.2 (Cohesive condition) A coalitional game with transferable

payoff is said to be cohesive, if for each partition S1, · · · , SK of the set of all

players N , we have v(N) =∑K
k=1 v(Sk).

The cohesive condition means that the coalition consisting of all players

is optimal.

A stronger condition is the superadditive condition.

Definition 8.2.3 (Superadditive Condition) We say that the characteristic

function is superadditive, if for any two disjoint subsets S and T (i.e., S∩T =
∅) of the set of players N , we have v(S ∪ T ) = v(S) + v(T ).

Superadditivity means that if coalitions S and T act together, they can

do at least as good as when they act separately.

We next discuss the solution concept of the coalitional game with trans-

ferable payoff. The idea is similar to the Nash equilibrium of a non-cooperative

game: for a certain outcome, if there is no deviation for improvement, then

the outcome is stable. Core is a fundamental equilibrium concept in cooper-

ative games. Core (payoff allocation for all players) means that no coalition

can increase the payoffs of its members. In the coalition with transferable

payoff, since free transfers can be made among members, a stable condition

is that the sum of payoffs obtained by any member in the coalition cannot

exceed the sum of payoffs corresponding to the core. Then, we have the

concept of feasible payoff allocation below.
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Definition 8.2.4 (Feasible Payoff Allocation) Let ⟨N,v⟩ be a coalitional game

with transferable payoff. For any payoff allocation (xi)i∈N and any coali-

tion S, define x(S) =
∑
i∈S xi. We say that (xi)i∈S is an S-feasible allocation if

x(S) = v(S). We say that (xi)i∈N is a feasible (payoff) allocation when S = N .

Definition 8.2.5 (Core) We say that a feasible allocation (xi)i∈N is in the

core of a coalitional game with transferable payoff, if there exists no coali-

tion S and an S-feasible allocation (yi)i∈S , such that yi > xi for any i ∈ S.

Thus, an payoff allocation (xi)i∈N is in the core of ⟨N, v⟩ if and only if∑
i∈S xi = v(N) and x(S) = v(S) for all S ⊆ N . We say a coalition S can

improve on an payoff allocation x if the participants in S can obtain a S-

feasible payoff allocation (yi)i∈S such that yi > xi, i ∈ S. Then, if x is in the

core, there is no such an improvement.

Remark 8.2.1 In a strict sense, the core defined above should be a weak

core. A strong core means that there exist no subset S of N and an S-feasi-

ble payoff allocation (yi)i∈S , such that yi = xi for any i ∈ S and yj > xj for

at least one j ∈ S. This is similar to the difference between strong Pareto

efficiency and weak Pareto efficiency (see Chapter 11). Obviously, a strong

core implies a weak core, but the opposite may not be true. However, un-

der continuous transfers, the concepts of weak core and strong core are

equivalent. The transferable payoffs discussed in this chapter are mostly

payoffs that can be transferred in a continuous manner, and thus a weak

core implies a strong core.

The following example discusses the core of the coalitional game under

different rules.

Example 8.2.2 (Coalitional game with collective allocation) There are three

players, and a total of 300 units of resources that are available for allocation.

Suppose that there are three different allocation rules. Rule 1: the allocation

plan must win consent from all of the three players; otherwise, no one will

receive any resource. Rule 2: the allocation plan can be passed with major-

ity consent. Rule 3: if all players agree upon the allocation plan, then all of

the resources can be allocated; if only two players agree upon the allocation
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plan, the resources available for allocation are 2/3 of the total resources; if

only one player agrees upon the allocation plan, then no resource is avail-

able for allocation.

Under Rule 1, the coalitional game ⟨N, v⟩1 can be described as N =
{1, 2, 3}, v(N) = 300, and if S ̸= N , then v(S) = 0. By the definition of

core, every feasible payoff allocation is in the core. This is because for any

feasible payoff allocation (xi)i∈N , we have x1 +x2 +x3 = 0, and there exists

no other feasible payoff allocation (yi)i∈N , such that yi > xi for any i.

Under Rule 2, the coalitional game ⟨N, v⟩2 can be described as N =
{1, 2, 3}, and v(N) = 300 when S ⊆ N and |S| = 2 (here the function

| · | represents the number counting function); v(S) = 0 when S ⊆ N and

|S| = 1. If a feasible payoff allocation (xi)i∈N is in the core, then there

must exist i, such that xi > 0. However, at this time, there exists a coalition

S = N/i satisfying |S| = 2 and x(S) < 300 = v(S), and thus (xi)i∈N cannot

be in the core. Consequently, the core is an empty set in this coalitional

game.

Under Rule 3, the coalitional game ⟨N, v⟩3 can be described as: when

S = N = {1, 2, 3}; v(N) = 300, and v(S) = 200 when S ⊆ N and |S| = 2;

v(S) = 0 when S ⊆ N and |S| = 1. In this game, (xi)i∈N = (100, 100, 100)
is a unique allocation in the core. The reason for this is that if there exists

an i, such that xi > 100, then there must exist a coalition S = N/i satisfying

|S| = 2 and x(S) < 200 = v(S).

Example 8.2.3 (Transactions in a Market with Indivisible Commodities)

In a market with an indivisible commodity, the set of consumers is denot-

ed by B, and the set of sellers is denoted by L. Each seller has one unit

of indivisible commodity. Each consumer can purchase one unit of com-

modity at most. The reserve prices of the commodity for consumers and

sellers are 1 and 0, respectively. For a coalition S ⊆ B ∪ L, its characteristic

function is v(S) = min{|S ∩ B|, |S ∩ L|}. In this game, the payoff alloca-

tions of consumers and sellers are denoted by xb and xl, respectively. We

can verify that: when |B| > |L|, only one allocation is in the core, which

is given by (xi)i∈N , where N = B ∪ L, satisfying xi = xb = 0, i ∈ B;

xi = xl = 1, i ∈ L. When |B| = |L|, the set of allocations in the core features
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xi = xb = α, i ∈ B; and xi = xl = 1 − α, i ∈ L, α ∈ [0, 1].

In the examples above, the core is not always nonempty. Next, we dis-

cuss the conditions for the existence of nonempty cores.

8.2.2 The Existence Theorem on Nonempty Cores

According to the definition of core, if a feasible allocation is in a core, it

needs to satisfy a series of inequalities. First, we introduce some related

concepts.

The set of all coalitions is denoted by C = {S|S ̸= ∅, S ⊆ N}. 1S ∈ RN

is called the characteristic vector of coalition S, satisfying

(1S)i =

 1, i ∈ S;
0, otherwise.

Definition 8.2.6 (Balanced Collection of Weights) (λS)S∈C , λS ∈ [0, 1], is

called a balanced collection of weights if
∑
S∈C λS1S = 1.

Example 8.2.4 The set of players is {1, 2, 3, 4}. If |S| = 3, λS = 1/3; if

|S| ̸= 3, λS = 0. Then, (λS)S∈C is a balanced collection of weights. In

addition, if |S| = 1, λS = 1; if |S| ≠ 1, λS = 0. Then, such defined (λS)S∈C

is also a balanced collection of weights.

To interpret the balanced collection of weights, we can consider the

players’ time allocation. Suppose that the total time of player i is 1 unit.

Her time is allocated among all coalitions that include the player, and the

total amount is feasible:
∑
S∈C(1S)iλS = 1.

Definition 8.2.7 (Balanced Game) ) A game ⟨N, v⟩ is said to be balanced, if

for each balanced collection of weights (λS)S∈C , we have

∑
S∈C

λSv(S) 5 v(N).

We can comprehend the balanced game as the allocation of all feasible

time of the player, in which, taking time allocation as weights, the sum of

payoffs received by the player in all coalitions is less than what she will
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receive in the biggest coalition that includes all players. Bondereva (1963)

and Shapley1 (1967) characterized the relationship between balanced game

and nonempty core based on linear programming and duality theorem.

Theorem 8.2.1 (Bondereva-Shapley Theorem) A sufficient and necessary con-

dition for the existence of nonempty core in a coalitional game with transferable

payoff is that the game is balanced.

PROOF. Necessity: Let (xi)i∈N be a payoff allocation in the core, while

(λS)S∈C is one of its balanced collections of weights. Then,
∑
S∈C λSv(S) 5∑

S∈C λSx(S) =
∑
i∈N xi

∑
i∈S λS =

∑
i∈N xi = v(N).

The inequality is attributed to the definition of the core; the first equal

sign is attributed to different orders of summation of the equivalence; the

second equal sign comes from the definition of balanced weights; the last

equal sign comes from the definition of feasible payoff allocation.

Sufficiency: ⟨N, v⟩ is balanced, and thus there exists no balanced weight-

s (λS)S∈C satisfying
∑
S∈C λSv(S) > v(N). Therefore, the convex set {(1N , v(N)+

ε) : ε > 0} and the convex cone {y ∈ RN+1 : y =
∑
S∈C λS(v(S) + 1S),

∀S ∈ C, λS = 0} are disjoint. Using the hyperplane separation theorem,

there exists a non-zero vector (aN , a) ∈ RN+1, such that for any y, ε > 0,

we have (aN , a)y = 0 > (aN , a)(1N , vN + ε). Since (1N , vN ) is in the convex

cone, this inequality implies that a < 0. We construct x = aN/(−a). In addi-

tion, since for any S ∈ C, (1S , v(S)) belongs to the above convex cone, then

from the above inequality, we have (aN , a)(1S , v(S)) = a(−x1S + v(S)) =
a(−x(S) + v(S)) = 0, and thus x(S) = v(S). Since for any ε > 0, we

have (aN , a)(1N , v(N) + ε) < 0 and (aN , a)(1N , v(N)) = a(−x1N + v(N)) =
a(−x(N) + v(N)) = 0. Then, we have x(N) = v(N), and thus the x con-

structed above is a payoff allocation in the core. 2

In the following, we discuss why some cores exist and some cores may

be empty in the previous coalitional game with collective allocation.

Example 8.2.5 (Coalitional Game with Collective Allocation) It is clear un-

der rule 1 that the coalitional game described by v(S)S∈C is a balanced

game, because when S = N , v(S) = 300; when S ̸= N , v(S) = 0. There-

fore, for any i ∈ N ,
∑
i∈S λS1S = 1, we have

∑
S∈C λSv(S) 5 v(N).

1See the biography of Lloyd S. Shapley(1923—2016) in Section 22.5.1.
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Under rule 2, consider the following balanced collection of weights. If

|S| = 2, then λS = 1
2 ; otherwise, λS = 0. However,

∑
S∈C λSv(S) = 450 >

300 = v(N), and thus the coalitional game under rule 2 is not a balanced

game.

Under rule 3, when |S| = 2, v(S) = 200, v(N) = 300; when |S| = 1,

v(S) = 0. At this time, for any balanced collection of weights (λS)S∈C ,

since it is a balanced collection of weights, it satisfies:

λ{1,2} + λ{1,3} + λ{1,2,3} 5 1,

λ{1,2} + λ{2,3} + λ{1,2,3} 5 1,

λ{1,3} + λ{2,3} + λ{1,2,3} 5 1,

so we have λ{1,2}+λ{2,3}+λ{1,3} 5 31−λ{1,2,3}
2 .

∑
S∈C λSv(S) = λ{1,2,3}300+

(λ{1,2} + λ{2,3} + λ{1,3})200 5 300 = v(N).

To further understand the existence theorem on the core, we now dis-

cuss the issue based on linear programming and duality theorem, as in

Bondereva (1963) and Shapley (1967).

Consider the following problem: what is the minimum utility transfer

required under the constraint that no coalition can improve its members’

payoffs? This problem can be expressed as the following linear program-

ming:

minx∈RN

∑
i∈N xi

s.t.
∑
i∈S xi = v(S), ∀S ⊆ N.

The duality problem of the above linear programming is:

max
λ∈RC

+

∑
S∈C

λSvS

s.t.
∑
S∋i

λS = 1, ∀i ∈ N.

According to the duality theorem of linear programming, if these two

problems have solutions, then they are the same.
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8.2.3 Coalitional Game without Transferable Payoff

For a coalitional game without transferable payoff, allocations among its

members are not arbitrary. In other words, within each coalition, given its

total payoff, not all possible allocations can be implemented in the coalition.

As such, for the characteristic function of the coalition, instead of giving

a certain value v(S), it gives a set of allocations v(S). We can consider

the coalitional game with transferable payoff as one special case, in which

v(S) ≡ {x ∈ RN |
∑
i∈S xi = v(S), xj = 0, ∀j ∈ N\S}.

A coalitional game without transferable payoff usually includes the fol-

lowing components: the set of players N ; the set of allocations X ; a set

v(S) ⊆ X given for any nonempty subset S of N , which can be understood

as possible allocations under coalition S; and the preference relation ≻i of

each player on X .

Accordingly, the core of the coalitional game without transferable pay-

off ⟨N,X, v(·),≻i⟩ can be defined as: for all x ∈ V (N), there exists no coali-

tion S ⊆ N and a feasible allocation y, such that yi ≻i xi, ∀i ∈ S. Scarf

(1967) provided the condition for the existence of nonempty cores of the

coalitional game without transferable payoff.

In the general equilibrium theory to be discussed in Part IV, the mar-

ket exchange can be regarded to some extent as the formation of coalitions

among players (i.e., the transactions among them in a coalition without

transferable payoff). Relevant content will be discussed in depth in Chap-

ter 12.

8.3 Application of the Core: Market Design

In the following, we consider the application of the concept of core and

its importance, especially the application of matching theory that will be

highlighted in the last part of the textbook. We first consider the exchange

of goods (or resources), including the exchange of homogeneous goods and

that of heterogeneous goods. The discussion here deals primarily with the

transaction of a single indivisible commodity. The transaction of multiple

types of (divisible) commodities are discussed in more detail in the general
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equilibrium theory in Part IV. We then provide a brief introduction to the

problem of matching. Matching theory has numerous applications, includ-

ing matchings in the marriage market, labor market, etc. Relevant discus-

sions largely concern the problem of equity and efficiency of educational

opportunities, especially the application in the reform of the school admis-

sion approach. These examples are adopted from Osborne (2004) and Peter

(2008). A detailed discussion of the basic results of matching theory and its

applications will be presented in the last chapter of the textbook.

8.3.1 Transaction of Homogeneous Goods

Suppose that there are some homogeneous and indivisible goods, such as

horses of the same type. Different individuals have different values or re-

serve prices or willingness to pay for the horses. In addition, in this e-

conomy, some individuals have horses, while others do not. We denote

the group of individuals who own horses (owners) as L, |L| = L, and

those without horses (non-owners) as B, |B| = M . To simplify the dis-

cussion, everyone has at most one horse. At the same time, each individual

i ∈ N ≡ L ∪ B has a value vi for having the first horse and no extra value

for having more horses, which means that the demand is at most the unit

demand. We rank the values of non-owners for horses from the top to the

lowest, β1, · · · , βM , and the values of owners for horses from the lowest

to the top, σ1, · · · , σL. We denote k∗ = max{k|βk > σk}. When k 5 k∗,

βk > σk, the top k∗ highest values of non-owners for horses are higher than

the top k∗ lowest values by owners. During the transaction, the horses are

transferred from the owners to the non-owners. In this way, both parties

can benefit when the transaction occurs between high-value non-owners

and low-value owners.

We denote the group of individuals who have sold horses (the seller

group) as L∗ ⊆ L, and the group of individuals who do not own horses

initially but have purchased horses now as B∗ ⊆ B. Assume that during

the entire process of transaction, ri, i ∈ L is the income of the horse seller i,

and pj , j ∈ B is the payment of the horse buyer j. The payoff allocation of
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players corresponding to this transaction outcome is

x = (max{βj − pj , 0},max{σi, ri})i∈L, j∈B.

We now discuss below what conditions x should be satisfied to become the

core of this transaction.

First, for x, we must have pj = 0 for j ∈ B\B∗. In other words, for

the individual who does not participate in the transaction, the individual’s

payment or income is zero. Obviously, for j ∈ B\B∗, if pj > 0, this means

that even though agent j does not participate in the transaction, he still

needs to make extra payment pj . Obviously, this outcome will be improved

by the coalition of the economic agent j alone because he does not need to

make the extra payment in this way.

If pj < 0, this means that other economic agents need to give agent

j an extra positive payment −pj > 0. Obviously, this outcome will also

be improved by the coalition of other players that excludes j, because the

coalition of other players that excludes j has the same amount of horses and

positive revenue −pj > 0 relative to this outcome. They can evenly allocate

this amount of money to each player in the coalition, so that the payoff of

each member of the coalition can be improved. As a consequence, the only

possible outcome is pj = 0. Similarly, we can also determine the income

of the owner who is not involved in the transaction (i.e., i ∈ L\L∗) to be

ri = 0.

Secondly, for the owners or non-owners who participate in the transac-

tion, the income of each seller and the payment of each buyer must be the

same (i.e., ri = pj for any i ∈ L∗, j ∈ B∗). Indeed, this is true. If there

is a set (i, j), such that ri < pj , then players i and j can form a coalition

{i, j}, who can have the same amount of horses relative to outcome x, but

increased benefits of pj − ri > 0. This additional increase can be evenly

allocated among them, so that the coalition improves the outcome x. As a

result, we must have ri = pj .

Because buyers and sellers of horses are equal in number, the total

amount paid to purchase horses must be the same as the total amount of

income from selling horses (because the buying and selling process consti-
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tutes a closed system). In other words,
∑
i∈L∗ ri =

∑
j∈B∗ pj , and thus we

must have ri = pj = p∗.

Next, we discuss the value range of p∗. We want to verify that x, which

satisfies k∗ = |L∗| = |B∗| and p∗ ∈ [max{βk∗+1, σk∗},min{βk∗ , σk∗+1}] is in

the core (See Figure 8.2).

Figure 8.2: The Core of Market Transactions.

In a market transaction, for non-owners, if their valuation βk = p∗, they

will participate in the transaction; and for owners, if their valuation σk 5
p∗, they will participate in the transaction. A transaction that maximizes the

overall benefit will bring about all profitable transactions. In the previous

setting, there are k∗ non-owners who have higher values than k∗ owners.

Therefore, in all transactions of benefit maximization, there are k∗ buyers

and k∗ sellers. In other words, the top k∗ non-owners who have the highest

values constitute the buyer group, and the top k∗ owners who have the

lowest values form the seller group. In order to prevent non-owners who

have the (k∗ + 1)th highest value or below from joining the buyer group,

we have p∗ = βk∗+1; at the same time, in order to prevent owners who

have the (k∗ + 1)th lowest value and above from joining the seller group,

we have p∗ 5 σk∗+1. Consequently, the transaction price that maximizes

the overall benefits must have p∗ ∈ [max{βk∗+1, σk∗},min{βk∗ , σk∗+1}]. The
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outcome of this transaction is:

xi=max{vi, p∗}, i ∈ L,

xj =max{vj , p∗} − p∗ = 0, j ∈ B.

To verify that the outcome x satisfying the above conditions is in the

core, it is necessary to show that there are no coalitions whose member-

s’ benefits can be improved. For any coalition, the optimal arrangement

for members is to allocate the horses to members with the highest valu-

ations and transfer payoffs between the corresponding members, so that

each member’s payoff can be improved. For coalition S, we denote l as the

number of owners in S and b as the number of non-owners in S. Let S∗ be

the top l members who have the highest values for horses in S, and thus

|S∗| = l and |S\S∗| = b. When the coalition optimally allocates the horses,

the total benefit of the coalition S is v(S) =
∑
i∈S∗ vi.

For the initial x,

x(S)=
∑
i∈S

max{vi, p∗} − bp∗

=
∑
i∈S∗

max{vi, p∗} +
∑

i∈S\S∗

max{vi, p∗} − bp∗

=
∑
i∈S∗

vi = v(S).

Since the above coalition S is arbitrary, x is in the core.

8.3.2 Matching of Heterogeneous Goods

In the following, we discuss the exchange of indivisible items, such as the

allocation problems of houses and offices. These problems are called the

housing market problem in matching theory. For a more formal and rigor-

ous discussion, see Section 22.3.1.

Now, we consider a group of individuals, each of whom owns a house.

The houses are different. The values of the houses are also different to d-

ifferent players. If we do not consider the monetary factor (i.e., there are

no transfers), then what would be a stable allocation that can maximize
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the welfare of the individuals? A stable allocation means that there is no

coalition that can improve the situation of its members through exchanges

within the coalition. If an allocation does not maximize individuals’ wel-

fare, it is possible to improve their welfare by forming coalitions to obtain

new allocations. The concept of core happens to possess such property.

In the previous section, we already have the existence theorem of core.

However, in reality, what we need more is to determine how to find the

specific allocations in the core. In the exchange of indivisible heterogeneous

items where money is not the medium of exchange, there is an algorithm

that can be utilized to find a core allocation in finite steps. This method is

called the top trading cycle mechanism. It first appeared in Shapley and

Scarf (1974),2, but they gave credit for it to David Gale.

The top trading cycle mechanism can be described as follows. In step

1, everyone ranks all goods in order; everyone’s most preferred good is

owned by someone in this group, and everyone’s most preferred good is

different from others’ (thus constituting strict orderings of goods). Let ev-

ery one point to the owner’s most preferred good. Since there are only

finitely many participants, there will be cycle(s) which are called the top

trading cycles. Note that a participant pointing to herself also constitutes a

cycle. Let participants in cycles exchange and remove them. In step 2, with

the remaining participants and goods, rank participants’ preference for the

goods and search for another top cycle. Subsequently, in each step, partici-

pants and goods in previous cycles are removed, until all of the participants

and items have participated in top trading cycles (of different steps).

We now argue that there exist top trading cycles for all exchanges that

involve a finite number of participants and goods. Let N = {1, · · · , n}
denote the set of players; for player i, the initial endowment owned by the

player is denoted by hi; the set of all initial endowments is H . In order to

simplify the discussion, it is assumed that participant i’s preference for the

set of goods is strict (i.e., player i is not indifferent between any two items),

and is denoted by ≻i. In this way, we rule out the possibility of a tie. In the

case of dealing with indifferent preference, more sophisticated techniques

2For the biographies of Lloyd S. Shapley (1923-2016) and Herbert Scarf (1930-2015), see
Sections 22.5.1 and 12.5.2, respectively.
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are required. Participant i can rank the items in setH in order of preference

from the highest to the lowest. If |{h′ ∈ H|h′ ≻i h}| = k − 1, which means

for player i, only k − 1 goods are preferred to h in the set of goods, then

participant i is ranked k in h, denoted by h = Ri(k).

Definition 8.3.1 (Top Trading Cycle) We say that {i1, · · · , iK} constitutes

a K-loop top trading cycle, if for any k < K, we have hik+1 = Rik(1) and

hi1 = RiK (1).

In the following, we show that if every agent has only one good, then

there must be a top trading cycle.

First, consider N = 2. If i ∈ {1, 2} and hi = Ri(1). Obviously, {i} is a

top trading cycle; otherwise, h1 = R2(1) and h2 = R1(1) must hold, and

thus {1, 2} is a top cycle.

Next, consider N = 3. If i ∈ {1, 2} and hi = Ri(1), obviously, {i} is a

top cycle; otherwise, for player 1, we have h2 = R1(1) or h3 = R1(1). When

h2 = R1(1), consider the preference list of player 2. If h1 = R2(1), then

{1, 2} is a top cycle; if h3 = R2(1), consider the preference list of player 3.

If h2 = R3(1), then {2, 3} is a top cycle; if h1 = R3(1), then {1, 2, 3} is a top

cycle. When h3 = R1(1), we will obtain similar results. Therefore, when

N = 3, a top cycle exists, as well.

Mathematical induction shows that within finitely many individuals, if

each agent owns only one good, then there must be a top trading cycle.

Of course, we can also relax the assumption of each agent having only one

good and let agents have different numbers of items.

We next examine why the outcome of such a top trading cycle mecha-

nism is a core allocation. As we know, if an outcome is a core allocation,

then there exists no improvable coalition. During the operation of the top

trading cycle mechanism, it is impossible for any individual in top trad-

ing cycles of the first step to improve the individual’s welfare through any

other allocation. As a consequence, coalitions that are likely to improve

welfare must not include participants in top trading cycles of the first step.

Second, for the participants in top trading cycles of the second step, no al-

location can possibly improve their welfare by reallocation in the coalition

without the participation of the individuals in top trading cycles of the first
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step. Therefore, if all of the individuals in top trading cycles of the first step

do not participate in a certain coalition, the individuals in top trading cy-

cles of the second step will also not participate in the coalition. By analogy,

if participants in top trading cycles of previous steps do not participate in

a coalition, this coalition will not improve the welfare of participants in top

trading cycles of the current step. As a result, there is no coalition that can

improve the welfare of its members.

In the following, we discuss the top trading cycle mechanism through

an example.

Example 8.3.1 (Exchange of Houses) Consider a group of four members.

The house owned by player i is denoted by hi. The values of houses by

each player are shown in Figure 8.3.

Figure 8.3: The Top Trading Cycle of the First Step.

Each player’s ordering of houses is from top to bottom, and the horizon-

tal lines“—”appearing in the figure indicate that these parts of orderings

can be arbitrary, which is not our concern here.

In the first step, {1, 2} constitutes a top trading cycle, while player 1

and player 2 make exchanges. In the second step, player 1 and player 2

have been removed, and player 3 and player 4 remain. Their preferences
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are shown in Figure 8.4.

Figure 8.4: The Top Trading Cycle of the Second Step.

In the second step, {3, 4} constitutes a top trading cycle, and thus player

3 and player 4 exchange. The outcome of the whole exchange is that player

1 owns the house of player 2, player 2 owns the house of player 1, player 3

owns the house of player 4, player 4 owns the house of player 3, and there

does not exist any improved coalition for this allocation outcome.

For a more detailed discussion of the top trading cycle, see one-sided

matching in Chapter 22, where we present a systematic discussion of the

matching mechanism of players and indivisible goods, as well as the effi-

ciency and incentive characteristics of different mechanisms. In addition,

the one-sided matching mechanism has a broad range of applications in

school admissions (Abdulkadiroglu and Sonmez, 2003) and organ trans-

plantation (Roth, Sonmez and Unver, 2004). These problems are discussed

in depth in Chapter 22.

8.3.3 Two-sided Matching: Marriage Market

Gale and Shapley (1962) published a paper in The American Mathematical

Monthly that discussed the matching problem in the marriage market, and

opened up an entirely novel field of research, i.e., matching among different

groups. This mechanism has a very wide range of applications, such as

matching between companies and laborers in the labor market, matching
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between hospitals and interns, matching between universities and scholars

in the realm of education, matching between donees and donors in the field

of organ donation, etc. Roth and Sotomayor (1992) and Abdulkadiroglu

and Sonmez (2013) made comprehensive reviews of relevant literature in

two different periods of time.

Here, we introduce one of the simplest matching problems (i.e., one-to-

one matching), such as the matching of men and women in the marriage

market (e.g.,“Blind Dating”shows frequently seen on television).

We assume that there are two groups that correspond to two sets of a-

gents: M = {m1, · · · ,mn} and W = {w1, · · · , wk}, one for men and the

other for women. The preference of member i is defined on the opposite

set of agents and herself. To simplify the discussion, assume that the pref-

erence is strict (i.e., there exist no agents that are indifferent and denoted

by ≻i).

Definition 8.3.2 (Matching) A mapping µ : M ∪ W → M ∪ W is called a

matching, if

(1) for all i ∈ M , µ(i) ∈ W
∪

{i},

(2) for all j ∈ W , we µ(j) ∈ M
∪

{j},

(3) µ(i) = j implies that µ(j) = i.

We can understand that, in the matching of marriage, the matching of

a man is either a woman, or himself (which can be understood as being

single), and the matching of a woman is similar. We say that for a man

m ∈ M , a woman w is unacceptable if m ≻m w. We discuss below what

kind of matching µ is stable.

Definition 8.3.3 (Stable Matching) A matching µ is stable if it satisfies the

following conditions:

(1) there exists no pair (m,w) with m ∈ M and w ∈ W , such

that w ≻m µ(m) and m ≻w µ(w);

(2) for i ∈ M
∪
W , if µ(i) ̸= i, then µ(i) ≻i i.

Stable matching means that if the mate of an agent is not the agent self,

then the mate is surely acceptable to the agent; at the same time, there are



8.3. APPLICATION OF THE CORE: MARKET DESIGN 531

no two agents of the opposite groups who would both rather have each

other than their current matching mates. The stability of matching is con-

sistent with the concept of the core. First, if one’s matching is unacceptable,

then according to the definition of the core, the coalition of one’s own can

improve one’s benefit. Second, for the matching problem, there are only

two types of meaningful coalitions: one is a coalition of one agent, and the

other is a coalition of a man and a woman.

In the matching, we rule out the possibility of polygamy, polyandry, or

group marriages (shared husbands and wives), i.e., a coalition of multiple

men and multiple women. Consequently, in a coalition formed by a man

and a woman in the matching problem, stable matching is consistent with

the core. However, the pertinent question is, how can we find the stable

matching? Gale and Shapley (1962) proposed a deferred acceptance algo-

rithm. The deferred acceptance algorithm introduced here is from Roth

(2010).

There are two steps for each stage. We start with the first stage.

In the first step, each agent in the proposing group (e.g., a male

agent) proposes to his most preferred choice (e.g., a female

agent) in the proposed group (if there is anyone acceptable;

otherwise, no proposal is made).

In the second step, each agent in the proposed group first re-

moves the proposals of those unacceptable agents. If there

are any remaining ones, choose the most preferred and reject

the rest.

At stage k: an agent in the proposing group who was rejected at stage

k−1 can propose to the agent’s most preferred agents among the acceptable

ones who have not yet rejected the agent. If no acceptable choice remains,

he or she makes no proposal. Each agent of the proposed group chooses

the most preferred agent after comparison between the retained proposal

in the last stage and the new proposals (if any) received at the current stage

and reject the rest.

Stop stage: no new proposal occurs. In this stage, the agent in the pro-

posed group is matched to the agent who he or she has retained. If an agent
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of the proposing group does not receive any acceptance, or an agent of the

proposed group does not receive any offer, the agent is matched with the

agent self.

Gale and Shapley (1962) proved that there always exists a stable match-

ing in the marriage market. We will discuss in detail the logic behind this

in Chapter 22. Next, we use an example to understand the operation of the

deferred acceptance algorithm.

Example 8.3.2 (Men Proposing Deferred Acceptance Algorithm) Consider

marriage matching between three men and three women. Each agent’s

preference for agents in the opposite side is as follows (any unacceptable

man/woman is removed from the ordered list of preference):

p(m1) = w2, w1, w3; p(w1) = m1,m2,m3;

p(m2) = w1, w2, w3; p(w2) = m3,m1,m2;

p(m3) = w1, w2, w3; p(w3) = m1,m2,m3.

The procedure for the deferred acceptance algorithm is shown in the ta-

ble below, in which the underlined proposals are being held without com-

mitment.

Stage w1 w2 w3

1 m2,m3 m1

2 m1,m3

3 m1,m2

4 m2,m3

5 m2

The marriage matching outcome between men and women is:

µDAM =

 w1 w2 w3

m1 m3 m2

 .
It is easy to verify that this matching outcome satisfies the stability condi-

tion.
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Of course, with different groups as the proposing group, the match-

ing outcome of the deferred acceptance algorithm may be dissimilar. For

instance, the matching outcome with male (or female) as the proposing

group is the best matching outcome for the male (or female) group in al-

l possible stable matchings. Simultaneously, the set of stable matchings

coincides with the set of cores. In addition, stable matching is not strategy-

proof (by manipulatively reporting preference information) (Roth, 1982).

These conclusions are discussed in detail in Chapter 22.

Environmental changes or information asymmetry will cause the rup-

ture of some initial stable matchings, and thus matching can also be highly

dynamic. If employment is viewed as matching between firms and work-

ers, while unemployment is regarded as the rupture of matching, then we

can use the matching method to study employment and unemployment.

In many matching problems, there exists a medium of exchange, such

as money. Moreover, the matching process may be accompanied by some

contracts, such as labor contracts in the matching between workers and

firms that provide terms, including wages, duties, etc. Kelso and Crawford

(1982) introduced contracts in the analytical framework of matching, and

this analytical framework is combined with the auction mechanism (Hat-

field and Milgrom, 2005). For a more in-depth discussion of these issues,

see Chapter 22.

We next discuss the concept of other stable allocations in the coopera-

tive game.

8.4 Stable Set, Bargaining Set, and Shapley Value

The stability of the core comes from blocking any deviations. However, the

deviation itself may be unstable, and the deviation can lead to new devia-

tions. The initial deviation may also bring worse outcomes to the deviant.

Therefore, the concept of stability needs a reasonable justification. In the

following, we will further explore stability in the cooperative game by con-

straining the deviation. We will introduce some related concepts based on

different constraints, including stable set, bargaining set, and the Shapley

value. Here, we focus on the type of coalitional game with transferable
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payoff. Furthermore, the bargaining mechanism plays an important role

in the process of formation of coalition. Ray (2006) employed the method

of (cooperative and non-cooperative) game theory to discuss in depth the

mechanism of coalition formation.

8.4.1 Stable Set

Von Neumann and Morgenstein (1944) proposed the concept of the stable

set. This concept is related to the negotiation process. Assume that a fea-

sible allocation disappoints some players who, therefore, may propose a

blocking that is favorable for them. If their blocking is inherently unstable,

there will be subsequent reactions. If the final stable outcome is not as good

as the previous allocation, then it is not a meaningful deviation to the coali-

tion. In other words, what a coalition S puts forward should be a credible

blocking. The so-called credibility means that the blocking is stable (i.e.,

no new blocking or possibly chain of blockings will be triggered, such that

eventually some members of the coalition are worse off than previously).

In this way, a set of stable outcomes need to satisfy two conditions: first,

for each unstable outcome, there is a coalition that can present a credible

blocking; second, for any stable outcome, there is no other credible block-

ing. Therefore, the solution concept is discussed in terms of sets. By the

concept of stable set, we can divide the feasible outcomes into a stable set

and an unstable set.

Definition 8.4.1 (Blocking of Coalition) An allocation x is called a block-

ing of coalition S against allocation y if for any i ∈ S, we have xi ≻i yi and

x(S) 5 v(S), denoted by x ≻S y.

Definition 8.4.2 (Stable Set) We say that a subset Y of the feasible alloca-

tion set X of the coalitional game with transferable payoff ⟨N,v⟩ is a stable

set, if it satisfies the following two conditions:

(1) (Internal Stability) No allocation y ∈ Y is blocked by any allocation

z ∈ Y .

(2) (External Instability) Every z ∈ X/Y is blocked by some allocation

y ∈ Y .
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Von Neumann and Morgenstein explained that each stable set consti-

tutes a behavior pattern, and the allocations of different stable sets corre-

spond to different behavior patterns.

The following proposition summarizes the relationship between the

core and the stable set, and the property of the stable set.

Proposition 8.4.1 The core is a subset of every stable set; no stable set is a proper

subset of another stable set; if the core forms a stable set, then it is the only stable

set.

In the following example, the core is empty, but there are multiple stable

sets.

Example 8.4.1 (Continued from Example 8.2.2) There are three players, and

a total of 300 units of resources that are available for allocation. The rule

is: the allocation plan can be passed with majority consent. The expres-

sion of their coalition: for coalitional game ⟨N, v⟩, N = {1, 2, 3}, if S ⊆ N

and |S| = 2, then we have v(S) = 300 (here the function |·| represents the

number counting function); if S ⊆ N and |S| = 1, then we have v(S) = 0.

Y1 = {(150, 150, 0), (150, 0, 150), (0, 150, 150)} is a stable set. For this sta-

ble set, its behavior pattern is that the coalition members allocate the coali-

tion income evenly. Firstly, for each element of Y1, there exists no deviation

in Y1. For any z ∈ X/Y1, whereX = {(x1, x2, x3)|xi = 0, x1+x2+x3 = 300},

obviously there exists i ̸= j, zi < 150, zj < 150 and a coalition S = {i, j},

such that in Y1, (yi = yj = 150, yk = 0) is a blocking in Y1 to z.

Yk,c = {(yi)i∈N |yk = c ∈ [0, 300], ∀i ̸= k, yi = 0,
∑
i∈N yi = 300} is also

a stable set. Its behavior pattern is that the player k gets a fixed value c.

Therefore, there are infinite stable sets in this coalitional game.

Next, we verify that Yk,c is a stable strategy. Firstly, the outcome zk > c

will be improved with an outcome y in Yk,c by the coalition {i, j}, i ̸= k, j ̸=
k formed by other players, for example, y = (yk = c, yi = zi + zk−c

2 , yj =
zj + zk−c

2 ). If zk < c, then there always exists an i ̸= k, such that zi > 0, and

thus {k, j}, j ̸= k, j ̸= i can be improved with any outcome y in Yk,c, for

example, y = (yk = c, yi = 0, yj = 300−c). In addition, for any outcomes in

the set Yk,c, there does not possibly exist any coalition, such that the choice
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of other outcomes within Yk,c will improve the situation of the coalition

members.

8.4.2 Bargaining Set, Kernel, and Nucleolus

We can also utilize the bargaining method to restrict blocking in the nego-

tiation process. Under this method, the deviation chain generated by each

blocking is divided into two steps. The stability condition means that for

each blocking, there is a counter-blocking constraint. The idea here is that,

if a certain set is stable, then there exists no stable blocking. Stability here

is reflected in the way that if a player raises a blocking against other play-

ers and the blocking increases the player’s payoff, then players suffering

a loss because of this blocking can always put forward a counter-blocking

against the previous objector. Therefore, the previous blocking is not a sta-

ble blocking, because the previous objector’s payoff will eventually become

worse.

In the following, we discuss the two stages of three types of blocking

and counter-blocking coalitions. Different types correspond to the solution

concepts of different stable outcomes.

The first type of blocking and counter-blocking:

Blocking: We say that a 2-tuple (y, S) is a blocking to x that

player i proposes against player j, if: i ∈ S, j /∈ S, y is a

feasible payoff allocation for S that improves the payoff of

each coalition member (i.e., ∀k ∈ S, yk > xk).

Counter-blocking: We say that a 2-tuple (z, T ) is a counter-

blocking that player j proposes against player i’s blocking

(y, S), if j ∈ T, i /∈ T , and z is a feasible payoff allocation for

T , such that ∀k ∈ T\S , zk = xk, and ∀l ∈ T ∩ S , zl = yl. In

other words, for members who are in the counter-blocking

coalition T but not in blocking coalition S, their payoffs un-

der counter-blocking will not be worse than under the ini-

tial allocation. For members who are in both blocking and

counter-blocking coalitions, their payoffs will not be worse
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than the allocation under blocking. These are the necessary

conditions for the members of T to join the coalition.

The second type of blocking and counter-blocking:

Let e(S,x) = v(S)−x(S), which we call the excess of coalition S relative

to allocation x. When e(S,x) < 0, it reflects the gain of coalition S, and

when e(S,x) > 0, it reflects the sacrifice made by the coalition.

Blocking: We say that a coalition S is a blocking to x that player

i proposes against player j, if i ∈ S, j /∈ S, and xj > v(j).

This condition reflects the fact that the player j gets more

resources xj > v(j) in allocation x than in the player’s own

coalition, and the coalition S excludes j to reduce the plaer’s

benefit.

Counter-blocking: We say that a coalition T is a counter-blocking

that player j proposes against player i’s blocking S, if i /∈
T, j ∈ T , and e(T,x) > e(S,x). This condition reflects that

player j can find a counter-blocking coalition T that includes

the agent self but does not include player i, such that the

counter-blocking coalition which supports the allocation x

can get less or sacrifice more.

The third type of blocking and counter-blocking:

Blocking: We say that a 2-tuple (y, S) is a blocking against fea-

sible allocation x, if e(S,x) > e(S,y) (i.e., y(S) > x(S)).

This means that the blocking coalition S obtains more in the

blocking allocation y than in the initial allocation x.

Counter-blocking: We say that a coalition T is a counter-blocking

against blocking (y, S), if e(T,y) > e(T,x) (i.e., x(T ) >

y(T )) and e(T,y) > e(S,x). This means that the counter-

blocking coalition T can get more in allocation x than the

initial allocation y, while the counter-blocking coalition T

sacrifices more to support the blocking allocation y than the

blocking coalition S does in the initial allocation x.
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The above two conditions are for the blocking coalition that

deviates from the stable allocation, but not for any specif-

ic member of it.

These three types of different blocking and counter-blocking coalitions

can form three associated stable solution concepts.

Definition 8.4.3 (Bargaining Set) We say that a set of coalitional game with

transferable payoff is a bargaining set, if: (1) its element x is a feasible allo-

cation; and (2) under the first type of blocking and counter-blocking, for a

blocking (y, S) of any player i to x against another player j, there always

exists a counter-blocking of player j against player i’ blocking (y, S).

Definition 8.4.4 (Kernel) We say that a coalitional game with transferable

payoff is a kernel, if: (1) its element x is a feasible allocation; and (2) un-

der the second type of blocking and counter-blocking, for a blocking S of

any player i to x against another player j, there always exists a counter-

blocking of player j against player i’s blocking (y, S).

For any two players i and j and any allocation x, define si,j(x) =
maxS∈C{e(S,x) : i ∈ S, j /∈ S}, where C = {S : S ̸= ∅, S ⊆ N}, which

is the maximum surplus of coalition S including i, but not including j. The

following definition of the kernel is in accordance with the above. If x is

a feasible kernel element of N , then for any pair of players i and j, either

sj,i(x) = Si,j(x), or it satisfies xj = v({j}) for all j ∈ N .

The kernel models a stable arrangement of the group, making each

member have the following collective logic about the allocation x in it: if

player i proposes a blocking to the allocation x and establishes a coalition S

including the player self, then the coalition excludes player j who receives

more benefits under the initial allocation than the payoff of the player self.

The blocking was raised because player i was dissatisfied with the payoff

from the previous allocation x. Player j could raise a counter-blocking and

create a coalition T that includes the player self (player j), but does not

include the blocker (player i). This coalition sacrifices more or gains less

than the blocking coalition S under the allocation x. In other words, if the
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initial allocation x is blocked, players can obtain more than in the previous

blocking coalition by forming the counter-blocking coalition T .

Definition 8.4.5 (Nucleolus) We say that a coalitional game with transfer-

able payoff is a nucleolus if: (1) its element x is a feasible allocation; and (2)

under the third type of blocking and counter-blocking, for a blocking (S,y)
to x, there always exists a counter-blocking to block (S,y).

The idea of the nucleolus is closely related to the idea of the kernel. If

the coalition S is not satisfied with allocation x, measured by e(S,x), the

coalition believes that it contributes too much. In the kernel, blocking is

raised by one of the players; whereas, in the nucleolus, it is raised by the

coalition. A blocking (S,y) can be interpreted as such opinion of the coali-

tion: “In allocation x, our contribution is too big, and thus we propose a

relatively less contributing allocation y.”The nucleolus depicts that one of

the other coalitions, T , can raise such a counter-blocking: “Your opinion

is not justified because we have contributed more in allocation y than in al-

location x, and our contribution in allocation y is more than what you (i.e.,

the coalition S) contribute in allocation x.”Therefore, the idea of the nu-

cleolus reflects the concept of equity (i.e., how much contribution players

should make in the group).

In the following, we discuss the allocations (sets) corresponding to these

three concepts through some examples.

Example 8.4.2 (Continued from Example 8.2.2 (2)) There are three player-

s, and a total of 300 units of resources that are available for allocation. For

coalitional game ⟨N, v⟩, N = {1, 2, 3}, if S ⊆ N and |S| = 2, then we have

v(S) = 300; if S ⊆ N and |S| = 1, then we have v(S) = 0.

First, we solve for the bargaining set of the coalitional game. In this

example, the set is a singleton whose allocation is (xi = 100, ∀i ∈ N). To see

this, let feasible allocation x be in the bargaining set. If (y, S) is a blocking

of player i to x against player j, then she will propose S = {i, h}, i ̸= h ̸= j,

satisfying: yh > xh, yi > xi, and yh 5 300 − yi, getting yh 5 300 − xi, and

thus player i and player h receive more benefits in the blocking coalition.

Since x is in the bargaining set, player j can always propose a counter-

blocking (z, T ). Let T = {j, h}, and z satisfies: zh = yh, zj = xj , and
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zh 5 300 − zj . Therefore, we have: zh 5 300 − xj . Thus, if x is a bargaining

set, then as long as yh < 300 − xi, we will have yh 5 300 − xj ; otherwise,

zh = yh > 300−xj . Therefore, 300−xi 5 300−xj (i.e., xj 5 xi). Since i and

j are arbitrary, we have xi = xj = xh and xi+xj +xh = 300. Consequently,

the only bargaining set is a singleton (i.e., the allocation (xi = 100, ∀i ∈ N)).

Suppose that the feasible allocation x is the kernel. Then, it can always

be ranked as xi = xj = xh, i = j = h. We now verify that if one of the

above inequalities is a strict inequality, then the allocation is not possible in

the kernel. If at least one of the above is a strict inequality, then xi > xj ,

and xi > 100 > 0 = v(i). For the blocking of player j to x against player i,

in coalition S = {h, j}, h ̸= i, we have sji(x) = e(S,x) = 300 −xj −xh, and

thus there exists no counter-blocking T = {i, h}, h ̸= j of i to the blocking

of j because sij(x) = e(T,x) = 300 − xi − xh 5 Sji(x). Therefore, the

allocation in the kernel must satisfy xi = 100, ∀i ∈ N .

For nucleolus: consider feasible allocation xi = xh = xj . If at least one

is a strict inequality, then xi > xj and xi > 100. Consider a blocking to

x, S = {j, h}, and y = (100, 100, 100). Since e(S,y) = 300 − 200 = 100 <
300 − xj − xh = xi = e(S,x), there exists no counter-blocking coalition T ,

such that e(T,y) > e(T,x) and e(T,y) > e(S,x).

|T | ̸= 3; otherwise, e(T,y) = e(T,x) = 0. Meanwhile, |T | ̸= 1; oth-

erwise, e(T,y) 5 0. If |T | = 2, then e(T,y) = 300 − 200 < e(S,x).

Therefore, xi > xh cannot be in the nucleolus. It is easy to verify that

y = (100, 100, 100) is in the nucleolus.

Note that the sets of solutions for these three concepts are not neces-

sarily identical. The following example shows that the kernel is a proper

subset of the bargaining set.

Example 8.4.3 (Simple Game) A simple game refers to a coalitional game

with transferable payoff whose characteristic value is either 1 or 0. Consid-

er the following simple game consisting of four players, N = {1, 2, 3, 4}, if

and only if S = {2, 3, 4}, or {1, i} ⊆ S, for any i ∈ {2, 3, 4}. In this game, we

can verify that no core exists. Player 1 is in a stronger position relative to

other players; other than the player, every other player is in equal position.

Do the allocations under the three solution concepts (i.e., bargaining set,
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kernel, and nucleolus) discussed above also reflect their positions?

Firstly, we discuss the bargaining set. If x is an element in it, we must

have x2 = x3 = x4; otherwise, for i, j ∈ {2, 3, 4}, we have xi < xj . Then,

player i can propose a blocking against j (i.e., (T = {1, i}, y)), satisfying

y1 = 1 − yi, yi = xi + xj−xi

2 , and player j does not have a corresponding

counter-blocking, and thus we must have x2 = x3 = x4 = α. In addition, α

also has upper and lower bounds. If α is high, player 1 will have a credible

blocking. For example, the player may raise a blocking (y, S = {1, 3})
against player 2, y1 > 1 − 3α, y3 = 1 − y1 < 3α, and yj > α. If player

2 cannot raise a counter-blocking (z, T = {2, 3, 4}), z2 = α, z3 = y3, and

z4 = α, then it must satisfy α+ 3α+ α > 1, or α > 1
5 . Meanwhile, α cannot

be too low; otherwise, player 2 can propose a blocking against player 1:

(y, S = {2, 3, 4}) and y2 > α. As such, j, k ∈ {3, 4}, and yj 5 yk, and thus

we must have yj < 1−α
2 . If player 1 cannot propose a counter-blocking

(z, T = {1, j}), then it satisfies z1 = 1 − 3α and zj = yj , and we must

have 1 − 3α + 1−α
2 > 1, or α < 1

7 . As a consequence, the bargaining set is

{(1 − 3α, α, α, α) : 1
7 5 α 5 1

5}.

Now, we discuss the set of the kernel. Firstly, if allocation x is in the

kernel, we must have x2 = x3 = x4; otherwise, without loss of generality,

suppose that x2 = x3 = x4 and x2 > x4. Thus, x2 > 0 = v({2}), player

4 can propose a blocking against player 2 (i.e., s4,2(x) = e({1, 4} and x) =
1 − x4) such that player 2 cannot propose a credible counter-blocking. This

is because, for s2,4(x) = e({1, 2},x) = 1 − x2 < s4,2(x), we must have

x2 = x3 = x4 = α and x1 = 1 − 3α. Secondly, if allocation x is in the

kernel, then we have x1 = 2
5 and x2 = x3 = x4 = 1

5 . This is because

when allocation x is in the kernel, if x2 > v({2}) = 0 (i.e., α > 0), for

s1,2(x) = e({1, 3},x) = 2α and s2,1(x) = e({2, 3, 4},x) = 1 − 3α, we have

s2,1(x) = s1,2(x) or α 5 1
5 ; if x1 > v({2}) = 0 or α < 1

3 , then we have

s2,1(x) 5 s1,2(x) or α = 1
5 . Therefore, α = 1

5 .

Osborne and Rubinstein (1994) depicted the relationship between the

above three concepts in the following way: the kernel is a subset of the bar-

gaining set, and the nucleolus is a subset of the kernel. They also demon-

strated that in any cohesive coalitional game with transferable payoff, the
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nucleolus is always nonempty, and it consists of a single point. For a more

detailed discussion, one can refer to their book.

8.4.3 Shapley Value

The previous solution concepts are all based on a single game, while the

Shapley value discussed below is based on a series of games. In all games,

the marginal contributions of a player to the coalition and the payoff that

its average value assigns to the player reflect some kind of equity, which

means that one’s revenue is associated with one’s contribution. The Shap-

ley value is widely adopted and has good properties.

Let ⟨N, v⟩ be a coalitional game with transferable payoff. We call the

⟨S, vS⟩ a subgame of the coalitional game, where S ⊆ N , if for any T ⊆ S,

we always have v(T ) = vS(T ). Let ψ be a value that is a feasible payoff allo-

cation to the coalitional game with transferable payoff. For i ∈ S, ψi(S, vS)
characterizes the payoff of player i in the subgame ⟨S, vS⟩.

The blocking of player i to j is against the feasible payoff allocation x

of the whole coalitional game ⟨N, v⟩.

There are two types of blocking:

The first type: player i requests more benefits; otherwise, the

player will leave the initial game, making player j’s payoff

decrease from xj to ψj(N/{i}, vN{i}).

The second type: player i requests more benefits; otherwise, the

player will join the others to exclude player j. During this

process, player i’s payoff increases from xi toψi(N/{j}, vN/{j}).

For the two types of blocking of player i, player j has two correspond-

ing types of counter-blocking:

The first type of counter-blocking: although the payoff of player

j decreases after blocker i’s leaving, player j’s leaving will

lead to a greater decrease in the payoff of blocker i (i.e., xi −
ψi(N/{j}, vN/{j}) = xj − ψj(N/{i}, vN/{i})).

The second type of counter-blocking: player j proposes that if

she joins other players to exclude player i, the increase in
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the payoff is greater than that when i excludes player j (i.e.,

ψj(N/{i}, vN/{i}) − xj = ψi(N/{j}, vN/{j}) − xi).

Under the solution concept of the previous coalitional game, a stable so-

lution means that each blocking corresponds to a counter-blocking. Thus, if

for any group of players, i, j ∈ N, i ̸= j, we always have ψj(N/{i}, vN/{i})−
xj = ψi(N/{j}, vN/{j}) − xi, then x is stable.

It is noted that in the Shapley value, blocking and counter-blocking in-

volve the subgames of the entire coalitional game, and the previously dis-

cussed blocking and counter-blocking are limited only to the entire game.

We first have the following definition.

Definition 8.4.6 (Balanced Contribution) We say that a solution ψ satisfies

the property of balanced contribution, if for i, j ∈ N, i ̸= j,

ψj(N, v) − ψj(N/{i}, vN/{i}) = ψi(N, v) − ψi(N/{j}, vN/{j}).

Shapley (1953) proposed the concept of the Shapley value, which is

based on individuals’ marginal contributions. The marginal contribution

of player i to the coalition S is defined as ∆i(S) = v(S ∪ i) − v(S).

The Shapley value is defined asψj(N, v) = 1
|N |!

∑
R∈ℜ ∆i(S(R)), in which

R is a permutation of the set of players N , the number of all possible per-

mutations is |N |!, the set of all permutations is denoted by ℜ, and S(R) is

all players before player i in permutation R.

Therefore, the payoff that the Shapley value assigns to each player e-

quals the average of the player’s marginal contribution to all possible coali-

tions.

It can be shown that the Shapley value is the only solution that satisfies

the property of balanced contribution and, in addition, satisfies the follow-

ing three properties.

(1) Symmetry (SYM): for any S ⊆ N, i /∈ S, j /∈ S, ∆i(S(R)) = ∆j(S(R))
implies φi(N,n) = φj(N,n);

(2) Dummy players (DUM): if ∆i(S) = v(j) for any S ⊆ N, i /∈ S, then

φi(N,n) = v(i);
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(3) Additivity (ADD): for any two games ⟨N, v⟩ and ⟨N,w⟩, and for any

i ∈ N , we have

φi(N, v + w) = φi(N, v) + φi(N,w),

where ⟨N, v + w⟩ is defined as: for any S ⊆ N , (v + w)(S) = v(S) +
w(S).

Now, we show how to solve for the Shapley value through some exam-

ples.

Example 8.4.4 (Continued from Example 8.2.2 (3)) There are three player-

s, and a total of 300 units of resources that are available for allocation.

For coalitional game ⟨N, v⟩, N = {1, 2, 3}, if S ⊆ N and |S| = 2, then

v(S) = 300; if S ⊆ N and |S| = 1, then v(S) = 0.

By the definition of the Shapley value, there are six possible permuta-

tions of the set of players N (i.e., there are only two possible permutations

in which each player i can have a positive marginal contribution of 300).

Consequently, the Shapley value of this game is φ(N,n) = (100, 100, 100).

The Shapley value can also be obtained with symmetry. Because the con-

tribution of each player in the coalition is symmetric, the payoffs that they

receive are also the same.

Example 8.4.5 (Weighted Majority Game) A weighted majority game is a

kind of simple game, in which the weight of player i is defined as wi, and

the fixed amount q represents the lower bound of weight required to be-

come the winning coalition:

v(S) =

 1,
∑
i∈S w(i) = q,

0, otherwise.

Assume that the set of players is N = {1, 2, 3, 4}, and their weight is:

(wi) =

 0.2, i = 1,
0.4, otherwise.

In the 24 possible permutations, calculate the average of the players’
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marginal contribution, and we obtain the Shapley value of the entire game:

φ⟨N,n⟩ =
{1

2
,
1
6
,
1
6
,
1
6

}
.

Example 8.4.6 Consider the previous simple game, N = {1, 2, 3, 4}. It is a

simple game if and only if S = {2, 3, 4}, or {1, i} ⊆ S, for any i ∈ {2, 3, 4}.

We know that the game’s kernel and nucleolus allocation outcome is x1 =
2
5 , x2 = x3 = x4 = 1

5 . Next, we calculate the Shapley value of this game. In

all 24 possible permutations, player 1’s marginal contribution is 1 in 12 of

them and 0 in the rest; the other players’ marginal contribution is 1 in 4 of

them and 0 in the rest. In this way, the Shapley value for the entire game is:

φ⟨N,n⟩ = {1
2 ,

1
6 ,

1
6 ,

1
6}.

It can be seen that the Shapley value is different from the allocation

of the nucleolus discussed earlier. They establish blocking and counter-

blocking mechanisms based on different environments, and thus have dif-

ferent applicability under various environments. Moreover, the coalition-

al games discussed above are based on transfers. For coalitional games

without transferable payoff, there are also corresponding solution concept-

s, which usually involve a more mathematical and technical background.

Readers can refer to certain books, such as Myerson (1991) and Peleg and

Sudholter (2007).

8.5 Biographies

8.5.1 Robert J. Aumann

Robert J. Aumann (1930— ), an Israeli-American economist, made funda-

mental contributions to decision theory and played an important, or even

indispensable, role in the formation of game theory and many other eco-

nomic theories. In 2005, he shared the Nobel Memorial Prize in Economic

Sciences with Thomas C. Schelling (see his biography in section 20.6.2), a

Professor at the School of Public Policy of the University of Maryland, Col-

lege Park, for“having enhanced our understanding of conflict and coop-

eration through game-theory analysis”.
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In June 1930, Robert Aumann was born in a traditional Jewish family

in Frankfurt am Main, Germany. He moved to the United States in 1938,

received a bachelor’s degree from the City College of New York, and re-

ceived a Ph.D. degree in mathematics from the Massachusetts Institute of

Technology in 1955. He then served as a strategic advisor and did two years

of post-doctoral research at Princeton University. After that, he moved to

Israel. Aumann was elected as a Fellow of the American Academy of Arts

and Sciences in 1974; received the Harvey Prize in Science and Technol-

ogy from the Technion–Israel Institute of Technology in 1983; has been a

Member of the U.S. National Academy of Sciences since 1985; has been a

Member of the Israel Academy of Sciences and Humanities since 1989; and

received the Israel Prize for Economics in 1994. He is currently a Profes-

sor at the Center for the Study of Rationality at the Hebrew University of

Jerusalem in Israel.

Aumann is the first to define the concept of correlated equilibrium in

game theory, which is a type of equilibrium in non-cooperative games and

more flexible than the classical Nash equilibrium. He has also proposed a

market model with a continuum of traders, the most natural mathematical

model for a market with perfect competition, and demonstrated that the

core of such a market coincides with the set of its equilibrium allocations.

The introduction of “continuum”has a great influence on the develop-

ment of economics. Aumann points out that continuum can be viewed as

an approximation to the true situation where there is a great, but finite,

number of particles (or economic agents, strategies, or possible prices). Us-

ing continuum as a rough approximation makes it possible to apply a pow-

erful, precise method called the“mathematical analysis”, while a discrete

method would be more difficult or even useless.

Aumann has also made numerous important contributions in the field

of set-valued functions (i.e., functions map to multiple points rather than

a single point), such as the“Aumann Measurable Choice Theorem”and

the theory of integration of set-valued functions. Most of the problems that

he investigated arise from the study of different game theories and eco-

nomic models, while the continuum of economic agents and mathematical

theory constitute important tools for the evolution and analysis of these
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models. The results obtained by Aumann regarding general equilibrium,

optimal allocation, nonlinear programming, control theory, measure theo-

ry, fixed-point theory, etc., are fundamental, and they are applied to nu-

merous fields, such as economics, mathematics, operations research, etc.

In addition, Aumann has extended the equilibrium outcome of the Kuhn’s

theorem on optimal behavior strategies in finite games of perfect recall to

an infinite situation, overcoming complex technical difficulties.

8.5.2 Reinhard Selten

Reinhard Selten (1930-2016) was the founder of the subgame perfect Nash

equilibrium, the founder of experimental economics, and winner of the

1994 Nobel Memorial Prize in Economic Sciences.

Selten was born in Breslau, a German city that became part of Poland

and was renamed Wroclaw after World War II. In 1951, Selten graduated

from high school, and although he had considered studying economics or

psychology in university, he finally decided to study mathematics. In 1951,

Selten was admitted to the Department of Mathematics at Goethe Universi-

ty Frankfurt. He graduated in 1957 with a master’s degree in mathematics,

and was later engaged in academic research in game theory and its applica-

tions, experimental economics, etc. In 1961, Selten received a Ph.D. degree

in mathematics from Goethe University Frankfurt. In the early 1960s, Sel-

ten conducted experiments on an oligopoly game; from 1967 to 1968, he

was a visiting professor at the University of California, Berkeley. He trans-

ferred to work at the University of Bielefeld in Germany in 1972 and began

working at the University of Bonn in Germany in 1984. In 1994, Selten re-

ceived the Nobel Memorial Prize in Economic Sciences for his“pioneering

analysis of equilibria in the theory of non-cooperative games”.

Having obtained the master’s degree in 1957, Selten was hired as an as-

sistant by Professor Heinz Sauermann, an economist at Goethe University

Frankfurt. Sauermann was among the first economists to advocate Keyne-

sianism in Germany. At first, Selten was arranged to study the application

of game theory to industrial organization, but he soon became fascinat-

ed with economic laboratory experimentation. His work received support
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from Sauermann. Then, Selten and several colleagues started working on

experimental research of economics. In 1959, Selten published his first aca-

demic paper together with Sauermann -“An Oligopoly Experiment”. At

that time, the discipline of experimental economics did not yet exist.

In conducting experiments on an oligopoly game, Selten found there

were many equilibria in this game. In order to solve the problem of mul-

tiple equilibria, Selten introduced the concept of subgame perfectness, and

published his most famous paper of game theory in 1965 -“An Oligopoly

Model with Demand Inertia”. Selten did not expect that his article would

often be quoted, almost exclusively for the definition of subgame perfect-

ness which laid the foundation for his winning the Nobel Prize in Eco-

nomics. In 1964, Selten published the paper“Valuation of n-Person Games”.

This is an important paper on game theory, and it is another major contribu-

tion to game theory. In 1975, Selten published another well-known paper,

“Reexamination of the Perfectness Concept for Equilibrium Points in Ex-

tensive Games”. In this paper, Selten proposed the concept of“trembling

hand perfect equilibrium”. As the University of Bielefeld encouraged

cross-disciplinary research, in exchange with biologists, Selten realized that

game theory could be applied to the study of biology. Selten familiarized

himself with the notion of evolutionary stability and developed a strong

interest in biological game theory. He investigated evolutionary stability in

extensive games and wrote a series of papers.
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8.6 Exercises

Exercise 8.1 In a cooperative game with transferable payoff, use linear pro-

gramming and the duality theorem to prove the Bondereva-Shapley Theo-

rem: a sufficient and necessary condition for the existence of a nonempty

core in a coalitional game with transferable payoff is that the game is bal-

anced.

Exercise 8.2 In a two-person bargaining game, x = (x1, x2) represents a

payoff allocation, F represents the feasible set of allocations, and v repre-

sents the reservation utility profile or the disagreement payoff profile. The

Nash bargaining solution (x1, x2) is defined as the solution that maximizes

the Nash product (x1 − v1)(x2 − v2).

1. Verify whether the Nash bargaining solution satisfies individual ra-

tionality and Pareto efficiency.

2. Let (F, v) be an allocation of 100 dollars between two players. If the t-

wo players cannot reach an agreement, then they will receive nothing;

if an agreement can be reached, then player 1 receives x, and player

2 receives 100 − x. Assume v1(x) = x and v2(100 − x) =
√

100 − x.

Solve for the Nash bargaining solution of the problem.

Exercise 8.3 Suppose that two players perform a bargaining game on 1 u-

nit of divisible goods. The utility functions for player 1 and player 2 are

u1(α) = α/2 and u2(β) = 1 − (1 − β)2, respectively, where α, β ∈ [0, 1].

1. Derive the set of feasible utilities and represent them with figures.

2. Derive Nash bargaining outcome, and provide the allocation plan of

the goods and the utility of each player.

3. Suppose that the player’s utility has a discount factor of δ ∈ [0, 1). De-

rive Rubinstein bargaining outcome (i.e., the subgame perfect Nash

equilibrium solution of the infinite alternating-proposal bargaining

game).
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4. Use the results of questions 2-3 to derive the solution to the Rubin-

stein bargaining problem when δ approaches 1 .

Exercise 8.4 Suppose that two players perform a bargaining game on 1 u-

nit of divisible goods. The utility functions for player 1 and player 2 are

u1(α) = α and u2(β) = β
1
2 , respectively, where α, β ∈ [0, 2]. Assume that

they have a discount factor of δ ∈ [0, 1).

1. Derive Rubinstein bargaining outcome.

2. According to the result of question 1, derive Nash bargaining out-

come.

3. Suppose that player 2’s utility function is unchanged, but player 1’s

utility function become:

u1(α) =

α, if α ∈ [0, 1],

1, if α ∈ [1, 2].

Derive Nash bargaining outcome, and provide the allocation plan of

the goods and the utility of each player.

Exercise 8.5 (Weighted Majority Game) A weighted majority game is a sim-

ple game ⟨N, v⟩, such that for some q ∈ R and weights w ∈ RN
+ ,

v(S) =

1, if w(S) = q,

0, if w(S) < q,

where w(S) =
∑
i∈S wi. wi can be interpreted as the number of votes that

player i owns, and q is the number of votes needed to win. A weighted

majority game is homogeneous if w(S) = q for any minimum winning

coalition; it is zero-sum if for each coalition, either v(S) = 1 or v(N) = 1,

but the two cannot hold at the same time.

Consider a zero-sum homogeneous weighted majority game ⟨N, v⟩, where

for each player i who does not belong to any minimum winning coalition,

wi = 0. Prove that the core of ⟨N, v⟩ includes all allocations that satisfy

xi = wi/w(N) for any i ∈ N .
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Exercise 8.6 Given the following men and women (3 women and 5 men)

marriage market preference structure:

Women’s preferences are as follows:

A B C D E

a 1 1 2 3 3
b 2 3 1 1 2
c 3 2 3 2 1

Men’s preferences are as follows:

A B C D E

a 2 1 3 4 5
b 3 1 2 5 4
c 3 1 4 2 5

1. Use women-proposing Gale-Shapley algorithm to find out a stable

matching.

2. Which women do not have a spouse in this stable matching? Do these

women get spouses in other stable matchings? Please explain.

Exercise 8.7 Consider the following leader-follower game:

⟨I, J,Xi, Yj , fi, gj⟩,

where I is the finite set of leaders i, J is the finite set of followers j,Xi is the

action set of leader i, Yj is the action set of follower j, fi : X × Y −→ R is

the payoff function of leader i, and gj : X × Y −→ R is the payoff function

of follower j.

In the multi-leader-follower game, the leaders make decisions first, and

then the followers play the game after obtaining information about the

leaders’ action. For the leaders’ action x ∈ X , let C(x) represent the cooper-

ative equilibrium core of the followers’ game. It becomes a correspondence

relationship C : X ⇒ Y , i.e., y ∈ C(x) means that for anyB ⊆ J , there exists

no uB ∈ Y B satisfying:

gj(x, uB, v−B) > gj(x, y), ∀v−B ∈ Y −B, ∀j ∈ B.
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In the multi-leader-follower game, a coalition B ⊆ I is considered to

block x ∈ X , if there exists uB ∈ XB , such that:

fi(uB, z−B, y) > fi(x, y), ∀y ∈ C(x), ∀z−B ∈ X−B, ∀i ∈ B.

We say that action x ∈ X is the cooperative equilibrium of the multi-

leader-follower game, if there exists no coalition B ⊆ I that can block x.

Prove the following theorem:

For the multi-leader-follower game

⟨I, J,Xi, Yj , fi, gj⟩,

it satisfies the following conditions:

(1) For each i ∈ I and each j ∈ J , both Xi and Yj are nonempty

compact convex subsets in normed linear spaces.

(2) For each i ∈ I , fi is continuous on X × Y .

(3) For each i ∈ I and each y ∈ Y , fi(·, y) is quasi-concave on X .

(4) For each j ∈ J , gj is continuous on X × Y .

(5) For each j ∈ J and each x ∈ X , gj(x, ·) is quasi-concave on

Y .

Then, the set of cooperative game equilibrium solutions of this multi-leader-

follower game is not empty.

Exercise 8.8 Determine if true or false for the following three propositions

and provide corresponding explanations.

1. The core is a subset of each stable set.

2. A stable set may be a proper subset of another stable set.

3. If the core is a stable set, then there is no other stable set.

Exercise 8.9 An allocation set of a three-person game can be geometrical-

ly represented as an equilateral triangle with a height of v(N). Each side

represents a player, and each point in the triangle represents an allocation.

The distance from a point to each side represents the payoff of everyone in
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the allocation (for example, the vertex corresponds to the allocation that u-

niquely assigns v(N) to the player who is represented by the opposite side

of this vertex).

1. Use this figure to find the general form of stable set of the following

three-person game: v(1, 2) = β < 1, v(1, 3) = v(1, 2, 3) = 1, and

v(S) = 0 for any other subset S.

2. We can interpret the game in question 1 as a market in which player

1 is the seller, while player 2 and 3 are buyers with reserve prices of β

and 1, respectively. Explain the stable set of this game in terms of this

market.

Exercise 8.10 Three cities can establish connections with a new power source,

P , to increase power supply. The utilities of increased power supply for the

three cities A, B, and C are uA = 100, uB = 140, and uC = 130, respective-

ly. Suppose that any established connection has the transmission capacity

to meet the requirement of simultaneous power supply for the three cities,

and the costs of establishing a direct connection between two points are as

follows:
Connection AB BC CA AP BP CP

Cost 50 20 30 100 140 130
The net value of power transmission for each city equals vi = ui − ci for

i = A,B,C.

1. Use a cooperative game to set up this problem.

2. Solve for the core, give the set, and draw figures to represent it.

3. Solve for the Shapley value. Is it in the core?

4. Solve for the nucleolus. Is it in the core?

Exercise 8.11 There are three players, each denoted by Z, M , and H . Each

of them has a different skill: Z is strong, M moves fast, and H has good s-

tamina. They plan to work together to hunt antelopes. They need to decide

how to share the work and allocate the reward with antelope as the unit of

measurement. Antelopes can be used for transfers, and their coalitions and
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payoffs are shown in the table below.

Coalition Payoff

{ZMH} (6)

{ZM }{H} (4)(1)
{ZH}{M} (3)(1)
{MH}{Z} (3)(2)

{Z}{M}{H} (2)(1)(1)

1. Write the characteristic function of the coalition, and verify that it is

superadditive.

2. Write the core allocation of the game.

3. Derive the Shapley value, and check whether it is in the core.

Exercise 8.12 Three players, A, B, and C, consider establishing a company.

A is good at technology, B is good at design, and C is good at sales. The

characteristic function of the coalitional game is shown in the following

table.

A, B, C 50
A, B 25
B, C 20
A, C 30
A 15
B 10
C 5

Use the core concept of cooperative game to answer the following ques-

tions:

1. Which coalitions may appear? Why?

2. Someone suggests that members of the coalition should divide their

income equally. Is this a stable allocation?

3. Find the Shapley value, and show whether it is in the core.
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Exercise 8.13 Three individuals,A,B, andC, make appointments for treat-

ment at a clinic on Monday, Tuesday, and Wednesday, respectively. The u-

tility of their treatment at each time is given in the following table:

Monday Tuesday Wednesday

A 2 4 8
B 10 5 2
C 10 6 4

Everyone can benefit by exchanging their time for doctor visits. In this

case, consider the following questions:

1. Use the cooperative game to model this problem.

2. Solve for the core and give the set.

3. Solve for the Shapley value. Is it in the core?

4. Solve for the nucleolus. Is it in the core?

Exercise 8.14 Consider a three-person coalitional game with transferable

payoff. For each real number a and va, given the following:

va(i) = 0, i = 1, 2, 3;

va({1, 2}) = 3, va({1, 3}) = 2, va({2, 3}) = 1;

va({1, 2, 3}) = a.

Answer the following questions:

1. What is the minimum value of a, such that the core of this cooperative

game is nonempty?

2. Calculate the Shapley value for a = 6.

3. What is the minimum value of a, such that the Shapley value is in the

core?
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Exercise 8.15 Consider a company with multiple shareholders, two of whom

have 1
3 shares each, and the other n − 2 shareholders own the remaining

shares evenly. First, model this situation as a weighted majority game.

Then, answer the following questions:

1. When n approaches infinity, what are the limits of the Shapley values

for these two major shareholders?

2. According to the Shapley value, is it desirable for the n − 2 small

shareholders to form the only coalition?
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Chapter 9

Market Theory

9.1 Introduction

In Part II, we studied the rational behavior of individual consumers and

firms when market prices are taken as given and beyond individuals’ con-

trol. In this chapter, we explore the consequences of that behavior when

consumers and firms come together in markets. We will also consider the

determination of equilibrium price and quantity in a single market or a

group of related markets under different market structures.

The key insight of Adam Smith’s The Wealth of Nations is simple: if an

exchange between two parties is voluntary, it will not take place unless

both parties believe that they will benefit from it. How is this also true for

any number of parties and for production cases? The price system is the

mechanism that performs this task well without government intervention

in many situations. In Chapter 1, we have already highlighted that price

performs three functions in organizing economic activities in a free market

economy: (1) it transmits information about production and consumption

in an efficient manner; (2) it provides appropriate incentives. The subtle-

ty of a free price system is that the price that transmits the information

also provides incentives for individuals who receive the information to ad-

just demand and supply accordingly. (3) It determines the distribution of

income. When price is utilized to transmit information and provide incen-

tives, it will inevitably affect the distribution of income. If one’s income

561
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does not depend on prices, what incentive does she have to seek out price

information or to respond to that information?

This chapter focuses on partial equilibrium analysis that involves a sin-

gle market or a group of related markets, implicitly assuming that changes

in the markets under consideration do not change the prices of commodi-

ties in other markets. We will treat all markets simultaneously in general

equilibrium theory in the next part. Here, we mainly discuss the market

behavior of firms, focusing on how they determine the price at which they

will sell the output or at which they are willing to purchase the input. In

fact, this is the main focus of microeconomics, which can be essentially

characterized in one word — pricing. Price-taking behavior may be a rea-

sonable approximation to some optimal behaviors, but there are numerous

other cases in which we have to explore the price-setting process.

A firm has the power of free pricing only when the market competi-

tion is imperfect. In an imperfectly competitive market, firms can influence

demand, and thus have the ability to determine prices and quantities of

the products that they produce. Such ability is known as market power

or the ability to influence the market, or as a competitive advantage. Such

market power may come from unique resources, intellectual property, gov-

ernments, product differentiation, or cost advantages from economies of

scale.

The main feature of an imperfectly competitive market is that the de-

mand curve faced by a single firm is downward, and its elasticity is related

to the market structure (degree of competition). Imperfect competition in-

cludes monopoly (seller’s and buyer’s), oligopoly (seller’s and buyer’s),

and monopolistic competition. We will first consider the situation of per-

fect competition as a benchmark and then, based on this benchmark market

structure, turn to investigate situations in which individuals have the mar-

ket power. These situations include several market structures (i.e., pure

monopoly, monopsony, monopolistic competition, and oligopoly).
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9.2 Perfect Competition

We begin by considering a perfectly competitive market, which constitutes

an ideal and extreme market structure. Just like free fall in physics, al-

though it basically does not exist in reality, it is crucial to fully comprehend

and study a competitive market, as it serves as a benchmark for investigat-

ing more realistic market structures.

The basic feature of a perfectly competitive market is that many firms

sell homogeneous products in the market, and each consumer or produc-

er, irrespective of how much she consumes or produces, does not have an

impact on the market price. From the perspective of maximizing social

welfare, it is the most efficient market.

For perfectly competitive markets, we make the following assumptions:

(1) A large number of buyers and sellers that take prices as

given.

(2) Unrestricted mobility of resources among industries: no

barrier to entry into, or exit from, the market.

(3) Homogeneous product: the products of all of the firms in an

industry are identical to consumers.

(4) All relevant information is common knowledge: firms and

consumers have all of the information necessary to make op-

timal economic decisions.

9.2.1 The Competitive Firm

The above four assumptions portray the basic nature of firms in a perfectly

competitive market (i.e., the firm’s impact on the market is zero). Next, we

discuss the characteristics of firms in a perfectly competitive industry.

A competitive firm is free to set whatever price that it wants and pro-

duce whatever quantity that it is able to produce. However, since all prod-

ucts are homogeneous, each firm that sells the product must sell it at the

same price, and thus the inverse demand function is a horizontal line par-

allel to the consumption axis. If any firm attempted to set its price at a level
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higher than the market price, it would immediately lose all of its customer-

s; if it sets its price at a level below the market price, all of the consumers

would immediately come to it, but it can also sell its output at a higher

price. Therefore, as a profit-maximizing firm, it must use the market price

for its products. When making supply decisions, each firm must take the

market price as given, and thus price is an exogenous variable.

Next, we analyze the behavior of perfectly competitive firms. The anal-

ysis of firms’ market behavior is usually based on the short-run or long-run

time frame, according to the scope and degree of firms’ decision-making.

Short-run analysis means that certain production factors of the firm, such as

manufacturing plants and production lines, are constrained, and thus the

scope of its decision-making is also constrained accordingly. In the short-

run, the structures of firms in the market are immutable. In the long-run,

all production factors can be changed. For example, a firm can expand its

factory buildings, set up new production lines, and establish new business

outlets. It can also decide whether to enter or exit from a market. In the

long-run, the structures of firms in the market are variable.

9.2.2 The Competitive Firm’s Short-Run Supply Function

Assuming that a firm only produces one product, we want to know how

its supply function and the market equilibrium price are determined. Since

a perfectly competitive firm must take the market price as given, its profit

maximization problem is simple. The firm only needs to choose an output

level y to solve:
max
y

py − c(y),

where p is the price of the product, and c(y) is the cost function of produc-

tion.

The first-order condition (FOC for short) for the interior solution of the

above optimization problem gives:

p = MC(y),

i.e., the market price equals the marginal cost.
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In the first-order condition of profit maximization, the marginal rev-

enue equals the marginal cost. In a perfectly competitive market, the rev-

enue is R = py, and the marginal revenue is MR = dR
dy = p. Therefore,

MR = MC means p = MC(y).

The second-order condition for the above optimization problem is c′′(y) >
0, which means that the associated production function is concave.

The above two conditions determine the supply decision of the com-

petitive firm. At any price p, the firm will supply an amount of output

y(p). According to the first-order condition, we have p = c′(y(p)). Fur-

ther derivation yields 1 = c′′(y)y′(p). From the second-order condition, we

know that y′(p) > 0, which means that the law of supply holds.

When the market price p is sufficiently low, the firm may not produce.

The firm’s short-run cost function is c(y) = cv(y) + F , where F denotes

the fixed cost. If py(p) − cv(y) − F = −F , then the firm should choose

to produce a positive amount of output. This means that p = cv(y(p))
y(p)

≡

AV C. In other words, in the short-run, the necessary condition for the

firm to produce is that the market price of the product is not less than the

minimum average variable cost (see Figure 9.1).

In general, the supply curve for the competitive firm is given by:

y =


(c′)−1(p), if p = cv(y(p))

y(p)
,

0, otherwise,

where (c′)−1 is the inverse function of c′.

As long as the price is greater than the average variable cost, the firm’s

supply curve coincides with the upward sloping portion of the marginal

cost curve. If the price is lower than the (smallest) average variable cost,

the firm’s supply is zero.

Suppose that there are J firms in the market. The industry supply func-

tion is simply the sum of all firms’ supply functions (i.e., ŷ(p) =
∑J
j=1 yj(p),

where yj(p) is the supply function of firm j). Since each firm chooses a lev-

el of output at which price equals marginal cost, each firm that produces a

positive amount of output must have the same marginal cost. The industry

supply function measures the relationship between industry output and
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the common marginal cost of producing this output.

Quantity

Cost

Figure 9.1: Firm’s supply curve, AC, AVC, and MC curves.
The bold curve is the supply curve.

The industry aggregate demand function measures the total output de-

manded at any price, which is given by x̂(p) =
∑n
i=1 xi(p), where xi(p)

is the demand function of consumer i, and n denotes the number of con-

sumers.

9.2.3 Single-Commodity Market Equilibrium

The market price of a commodity is determined by the requirement that the

total quantity of output that the firms wish to supply is equal to the total

quantity of output that the consumers wish to consume. Formally, we have

the following definition.

Definition 9.2.1 (Equilibrium Price) The market equilibrium price p∗ of a s-

ingle product in a perfectly competitive market is a price at which the ag-

gregate quantity demanded equals the aggregate quantity supplied, i.e., it

is the solution of the following equation:

n∑
i=1

xi(p) =
J∑
j=1

yj(p).

Once this equilibrium price is determined, we can go back to look at the

individual supply schedules of each firm and determine its output level,

revenue, and profit. In Figure 9.2, we have depicted cost curves for three

firms. The first has positive profit, the second has zero profit, and the third

has negative profit. Even though the third firm has negative profit, it may
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make sense for it to continue production as long as its revenues cover its

variable costs (i.e., p = AV C); otherwise, it will suffer even greater losses

(which equals the fixed cost).

Figure 9.2: Positive, zero, and negative profits.

9.2.4 Competitive Market and Returns to Scale of Production Tech-
nology

From the producer theory, we know that the feature of returns to scale of

technology can be inferred from the cost function. If the average cost de-

creases (increases or remains unchanged) as the output increases, then the

technology exhibits increasing (decreasing or constant) returns to scale.

The following cost function exhibits the typical feature of increasing

returns to scale:

C(q) =

F + cq, if q > 0,

0, if q = 0.

The corresponding average cost function is AC(q) = F

q
+ c. Figure 9.3

illustrates the average cost and the marginal cost of the technology: the

average cost decreases with the increase in output; and when the output

goes to infinity, the average cost converges to the marginal cost.

However, a technology with increasing returns to scale is not compati-

ble with a perfectly competitive market. Let us use an example to demon-

strate this statement.
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Figure 9.3: Increasing returns to scale of production technology.

Let the market demand function be P (Q) = a− bq,, where b > 0, a > c.

Suppose that the equilibrium of the competitive market exists, and let

the equilibrium price be pe. Then, there are only two possibilities for the

equilibrium price: either pe 5 c or pe > c.

When pe = pe1 5 c, for any positive amount of output q, pe = pe1 5
c <

F

q
+ c, the firm’s profit and the producer surplus are both less than

zero. For a firm that pursues profit maximization, its production can only

be zero. However, if the firm’s output is zero, the price pe1 cannot be the

market equilibrium, because at pe1 the market demand is greater than zero,

while the market supply is zero.

When pe = pe2 > c, when output q exceeds a certain limit, we will have

pe2 >
F

q
+ c = AC(q), and

d(pe2 −AC(q))
dq

> 0. Thus, at market price pe2,

the competitive firm that pursues profit maximization will choose infinite-

ly large output (because the producer surplus is greater than zero at any

output). At this point, the market supply is infinitely large. However, at

pe2, the market demand is limited. Therefore, pe2 can also not be the market

equilibrium price.

In conclusion, if the firm’s production technology displays increasing

returns to scale, the market structure cannot be perfectly competitive. In

the following chapter on general equilibrium theory, we will discuss the

incompatibility between increasing returns to scale and perfectly competi-

tive market equilibrium from a different perspective.
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9.2.5 Long-Run Equilibrium

The long-run behavior of a competitive industry is determined by two ef-

fects. Consider that all firms can choose other firms’ production technolo-

gies, or that production technologies are common knowledge. If produc-

tion technology cannot be replicated, in the case of patents for example,

then the market structure is not a perfectly competitive market in the typi-

cal sense. The first effect is free entry and exit that make the long-run profits

of all firms zero. If a firm is making negative profits, it would eventually

exit from the market. Conversely, if a firm is making positive profits, oth-

er firms would enter the industry. If we have an industry characterized

by free entry and exit, all firms surely will make the same level of profits

in the long-run. As a result, every firm makes zero profit at the long-run

competitive equilibrium as illustrated in Figure 9.4.

The second effect on the long-run behavior of a competitive industry

is that of technological adjustment. In the long-run, firms will attempt to

adjust technologies and so their fixed factors in order to produce the equi-

librium level of output in the least expensive way. If every firm attempts to

do this, the equilibrium price will change.

Cost

Quantity

Figure 9.4: Long-run competitive equilibrium where every firm makes zero
profit.

In the case of free entry or exit, the equilibrium number of firms is deter-

mined by the following principle: at the equilibrium, the entry of new firms

will make the profits of all firms less than zero. In other words, when free

entry and exit makes the profits of firms approach zero at the equilibrium

price, the number of firms is determined.
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Example 9.2.1 c(y) = y2 +1. The equilibrium level of output is the solution

of the following equation:

AC(y) = MC(y).

Therefore, at y = 1, the average cost reaches its minimum, which is 2. If

the price is higher than 2, the firm is making a positive profit. If the price

is lower than 2, its profit is less than zero. The supply function satisfies

p = MC(y) = 2, and thus we have y = p

2
.

Suppose that the demand is linear: D(p) = a−bp. Then, the equilibrium

price will be the smallest p∗ that satisfies the condition: p∗ = a

b+ J/2
= 2,

and thus J∗ = [a− 2b], where [·] is a rounding function that takes a number

to the nearest integer. If j > J∗, the entry of firms would make the market

price less than 2, and firms’ profits less than zero; if j < J∗, firms entering

the market would make positive profits.

9.2.6 Social Welfare under Perfect Competition

In a single-commodity market, participants are consumers and produc-

ers, whose social welfare is made up of the net benefits of these partici-

pants. In consumer theory, as previously discussed, the concept for the

net benefit of the consumer in market transactions is consumer surplus; in

producer theory, the concept for the net benefit of the producer in mar-

ket transactions is net profit (equal to producer surplus minus fixed cost).

Given J firms in a certain market, at market price p, we define social wel-

fare as W (p) = CS(p) +
∑J
j=1 PS(p). In the long-run, since the fixed

cost is zero, the producer surplus equals the profit of the firm, so that

W (p) = CS(p) +
∑J
j=1 πj(p).

In the perfectly competitive market, the market equilibrium is the re-

sult of market transactions with maximum social welfare. Therefore, it is

frequently adopted as a benchmark to analyze the loss or change of social

welfare in other market structures.

We employ a simple example to illustrate this. Let the unit cost (or

marginal cost) of production be c and the market demand be P (Q) = a−bq,
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where b > 0, a > c. Figure 9.5 depicts the market demand curve and the

marginal cost curve. At market price p = p0 and market transaction quanti-

ty Q0, the consumer surplus is α, the firm’s producer surplus or profit is β,

and social welfare is α+ β. We find that in the process when the price falls

from p0 to the marginal cost c, the consumer surplus increases, the firm’s

profit declines, and social welfare also increases. When the price equals c,

the consumer surplus is α+β+γ, the firm’s profit is zero, and social welfare

is α + β + γ. When the price falls further, we find that the decrease of the

firm’s profit exceeds the increase of the consumer surplus, and thus social

welfare decreases. As a consequence, when price equals marginal cost, so-

cial welfare reaches the maximum at the perfectly competitive equilibrium

where the market price equals the marginal cost.

Figure 9.5: Social welfare in the perfectly competitive market.

The market price describes consumers’ willingness to pay for extra prod-

uct, while the marginal cost is the cost that a firm spends to produce extra

product. As long as the social welfare generated by the production of an

extra product (depicted by the consumer’s willingness to pay) exceeds the

social cost (depicted by the marginal cost if there is no externality) of it,

trading this extra product will increase social welfare. When consumers’

willingness to pay is lower than the marginal cost, trading this extra prod-

uct in the market will reduce social welfare. When consumers’ willingness

to pay equals the marginal cost, the market transaction is optimal. The per-

fectly competitive market happens to be the place where the two are equal.

In other market structures, firms have the ability to make the market price

higher than the marginal cost, which means that firms possess the market
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power to make consumers’ willingness to pay higher than firms’ marginal

cost. As a result, social welfare is lower than that of the perfectly com-

petitive market, and thus social welfare loss results. In the remainder of

this chapter, we further discuss social welfare in imperfectly competitive

markets.

9.3 Pure Monopoly

The other extreme of market structure that is the opposite of perfect compe-

tition is pure monopoly, referred to as monopoly . In the monopoly market,

there is only one seller. If there is only one buyer in the factor market, it is

called the monopsony market, which will be discussed later. The sources

of monopoly are from: (1) economies of scale; (2) barriers to market entry;

and (3) exclusive possession of rare factors of production. In this section,

we classify monopoly into two categories: monopoly in the product mar-

ket; and monopsony in the factor market. Monopolies in the two types

of markets have different characteristics. We first discuss monopoly in the

product market, and then discuss monopoly (i.e., monopsony) in the factor

market.

9.3.1 Monopoly in the Product Market

A monopolistic firm of a single commodity faces two types of decisions

(i.e., how much to produce and at what price it should sell this output).

Of course, the two decisions of the monopolist are interrelated. Different

from a competitive firm, who takes the market price as given and decides

its output at the price, the monopolistic firm needs to choose the output

and price of its product. The price is determined by the demand function

q(p) together with the marginal cost function of production. Sometimes,

it is more convenient to consider the inverse demand function p(q), which

indicates the price that consumers are willing to pay for the output of the

monopolist. We have already given conditions under which the inverse

demand function exists in Chapter 3. The revenue that the firm receives

can be expressed as a function of the output (i.e., R(q) = p(q)q).
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The production cost of the firm also depends on the quantity of output.

We have studied in depth the characteristics of the cost function in produc-

er theory. Here, we assume that the factor market is perfectly competitive,

and thus the factor price can be set as constant (we will discuss below that

in a monopoly market of factors, the factor prices are determined by the

monopoly buyer), and so the conditional cost function can be written as a

function of the level of output of the firm.

The profit maximization problem of the firm can then be written as:

max
q
R(q) − C(q) = max p(q)q − C(q).

The first-order condition for profit maximization is that marginal rev-

enue equals marginal cost, or p(q∗)+p′(q∗)q∗ = C ′(q∗), for positive produc-

tion, the left side of which is the marginal revenue.

The economic implication of this condition is the following: if the mo-

nopolist considers producing one extra unit of output, then, on the one

hand, the sale of more goods (when the price is greater than the marginal

cost) will increase the monopolist’s revenue; on the other hand, according

to the law of demand, the increase of demand will force the price down,

thereby reducing the monopolist’s revenue. The sum of these two effects in

opposite directions gives the marginal revenue. When the output is small,

the former effect dominates, and revenue increases with output. When the

output is large, the latter effect dominates, and revenue decreases with out-

put. If the marginal revenue exceeds the marginal cost of production, the

monopolist will expand production; otherwise, the output will be reduced

until the marginal revenue and the marginal cost balance out.

The first-order condition for profit maximization can be reformulated

through the use of the price elasticity of demand.

The price elasticity of demand is defined as ε(q) = p

q(p)
dq(p)
dp

, which is

always a negative number since
dq(p)
dp

< 0.

Simple algebra shows that the condition for marginal cost to equal marginal
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revenue can be expressed as:

p(q∗)
[
1 + q∗

p(q∗)
dp(q∗)
dq

]
= p(q∗)

[
1 + 1

ε(q∗)

]
= C ′(q∗),

or

p(q∗) = C ′(q∗)

1 + 1
ε(q∗)

.

Since ε(q∗) < 0, in order to ensure that the price is non-negative, the

firm needs to produce within the arrangement of the elastic demand (i.e.,

ε(q∗) < −1). Therefore, we have [1 + (1/ε(q∗))] 5 1, which implies that the

price is not less than the marginal cost at profit maximization.

This formula is very useful, and provides a basic pricing formula for

any market. It shows that the equilibrium price of a product depends on

its marginal cost and price elasticity of demand. It should be noted that the

price is dependent on the price elasticity of demand. When the marginal

cost remains unchanged, the optimal pricing of the product is inversely

proportional to the price elasticity of demand, which means that the small-

er is the elasticity, the bigger is the market power and thus the higher is

the price. When the market is perfectly competitive, the price elasticity of

demand is infinitely large, and thus the price equals the marginal cost.

For a monopoly market, the monopoly price equals the marginal cost

multiplied by a markup. This markup is a decreasing function of the price

elasticity of demand. Meanwhile, the smaller is the absolute value of the

prive elasticity, the stronger is the monopoly power of the firm and the

higher is the markup. Price elasticity measures the substitutability of a

product. The smaller is the absolute value of price elasticity, the lower is

the consumer’s sensitivity to the price of the product, like in the case of

salt. If such commodity as salt is subject to monopoly pricing, its price

could be very high (e.g., salt monopolized by the government in China’s

feudal society). This is because there are no other substitutes, and firms are

not concerned that price increases may bring about decline in sales.

A graphical illustration of the profit maximization condition is shown

in Figure 9.6. Suppose for simplicity that the inverse demand function is

linear (i.e., p(q) = a − bq). Therefore, the revenue function is R(q) = qp(p),
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and the marginal revenue function is R′(q) = a − 2bq. The marginal rev-

enue curve has the same vertical intercept as the demand function, but the

former is twice as steep as the latter. Figure 9.6 illustrates the relationship

between price elasticity and monopoly price. Figure (a) shows the case of

low price elasticity of demand, in which the difference between monopoly

price and marginal cost is large; Figure (b) shows the case of high price e-

lasticity of demand, in which the difference between monopoly price and

marginal cost is small.

(a) Low elasticity demand (b) High elasticity demand

Figure 9.6: Low price elasticity of demand and high price elasticity of de-
mand.

9.3.2 Monopoly in the Long Run

We have seen how the long-run and the short-run behavior of a compet-

itive industry may differ due to changes in technology and entry. There

are similar effects in a monopolistic industry. The technological effect is the

simplest: the monopolist will choose the level of fixed factors in order to

maximize the monopolist’s own long-run profits. Therefore, she will op-

erate where the marginal revenue equals the long-run marginal cost. The

entry effect is slightly more subtle. Presumably, if the monopolist is earning

positive profits, other firms would like to enter the industry. If the monop-

olist remains a monopolist, there must be some sort of barrier to entry for

the industry, so that it still can make positive profits even in the long run.

These barriers to entry may be of a legal sort, but often they are due to

the fact that the monopolist owns some unique factor of production. For
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example, a firm might own a patent on a certain product, or might own

a certain proprietary process or factor of production, such as in the case

of South Africa having the largest diamond supply in the world. If the

monopoly power of the firm is due to a unique factor, we must be especially

careful when measuring the monopoly profit. Indeed, because this factor

has an opportunity cost, we need to deduct all explicit or implicit costs

when calculating the profit.

9.3.3 Disadvantage of Monopoly: Social Welfare Losses

We say that a situation is Pareto efficient if there is no way to make one

agent better off without making the others worse off. Pareto efficiency is

a major theme in the discussion of welfare economics. Here, we only pro-

vide a simple illustration of this concept. In partial markets, according to

the social welfare function as previously defined, although social welfare

maximization and Pareto efficiency are distinct, a link exists between the

two. If an allocation maximizes social welfare, then it must be Pareto op-

timal when the social welfare function is strictly increasing in individuals’

utilities. This means that the allocation in the competitive market is a Pare-

to optimal allocation, but the reverse may not necessarily be true.

Because the monopoly price of firms exceeds the marginal cost, from

the previous discussion of social welfare in a competitive market, it can

be inferred that monopoly markets suffer social welfare losses. According

to the Pareto criterion, the monopoly allocation is a Pareto inefficient al-

location, which means that there is a way to improve the situation of the

monopolist without negatively affecting the situation of the consumers.

To illustrate this, we consider the production decision of a monopolist.

At a monopoly price of pm, its sales volume is qm. Assume that the mo-

nopolist intends to produce a quantity of extra output ∆q and sell it to

consumers. How much will consumers pay for this extra output? Clearly,

they will pay a price p(qm + ∆q). What is the additional cost of producing

this extra output? The answer is the marginal cost MC(q). Under such

changes in production, the consumers are at least not worse off, while the

monopolist is better off since she sells the extra output at a price that is
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greater than the cost of production. Here, we allow the monopolist to dis-

criminate in pricing (we will further discuss differential pricing later). She

firstly sells an output of quantity qm at a certain price, and then sells more

at some other (lower) price.

How long will this process continue? Once the output reaches the com-

petitive level, the firm will not be able to improve its situation further. At

this point, the competitive levels of price and output are Pareto efficient

for this industry. The welfare losses of the monopolist relative to the com-

petitive market are revealed by Figure 9.7. At the monopoly price pm, the

consumer surplus is the area of the triangle DEC, the monopoly profit is

the area of the trapezoid CEFA, and the total social welfare is the area of

the trapezoid DEFA. In a competitive market, the total social welfare is

the area of the triangle DGA. Therefore, the loss of social welfare resultant

from monopoly is the area of triangle EGF .

Consumer surplus

Welfare loss

 

Marginal revenue

P(q)=Demand

C(q)=Marginal cost

Figure 9.7: Social welfare losses of monopoly.

9.3.4 Advantage of Monopoly: Corporate Innovation

From the above discussion, we know that monopoly means that firms pos-

sess market power in setting prices. They can use their monopoly power

to raise the price of their products above the competitive equilibrium price,

and make their output lower than that of the perfectly competitive mar-

ket. As such, this results in Pareto inefficient allocations, incurring certain

social welfare loss. Government regulations may then be needed, such as

anti-trust laws, to increase market competition. However, because some in-

dustries are naturally monopolistic due to economies of scale, technology
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innovation, or other reasons, even if private firms are allowed to produce,

the problem of monopoly pricing remains. In order to achieve economies

of scale, some market entities frequently monopolize the market by means

of alliances, mergers, and acquisitions, thereby distorting the market com-

petition mechanism and preventing it from playing a spontaneous and ef-

ficient role in resource allocation. Nevertheless, the problem can be solved

through government regulations to realize compatibility of firms’ interest

and social welfare.

However, monopoly is not without certain merit. In terms of resource

allocation efficiency of the entire society, since monopoly generates efficien-

cy loss, competition is clearly a superior choice. Nonetheless, in the view

of firms, they hope to achieve a monopoly. Since their profits decrease as

competition increases, due to the profit-seeking incentive of private firms,

they often have a strong incentive to innovate continuously to conduct re-

search and develop new products, and thus they can set the price of new

products above the competitive equilibrium price to obtain great profits.

Once doing so, other firms in the same industry will soon develop similar

products to share the market and profits. Such market competition leads

to the decline of firms’ profits, and thus forces firms to engage in further

innovation.

Corporate innovation then leads to monopoly profits, and considerable

profits will attract other firms to enter and compete again. In this way, mar-

ket competition leads to the decrease of profits and firms obtain monopoly

profits through innovation, which forms a repeated cycle of competition-

innovation-monopoly-competition. In this cycle, market competition pro-

duces market equilibrium, while innovation disrupts this equilibrium. This

repeated game in the market motivates firms to constantly pursue innova-

tion. Through this repeated game process, the market economy maintains

long-term vitality, increases social welfare and promotes economic devel-

opment, revealing the unique beauty and power of the market system. Of

course, in order to encourage innovation, the government should enact in-

tellectual property protection laws. At the same time, to encourage compe-

tition and form externalities of technology innovation, the protection given

by anti-monopoly laws and intellectual property rights legislation should
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not be permanent, but rather for a limited time, in case fixed or permanent

oligopolies and monopolies may appear.

Overall, competition and monopoly are two sides of the same entity,

like supply and demand, the two of which can become an awe-inspiring

dialectical unity of opposites under market forces, showing the beauty and

power of the market system. Without competition, just like state-owned en-

terprises with a government monopoly, they would not possibly have the

incentive to innovate. Entrepreneurs’ pursuit of reasonable profit consti-

tutes the power source for market progress. Where does the pricing power

come from? The monopoly of a product generates pricing power. On what

does the ability of a monopoly rely? In addition to government protection,

which can lead to monopolies and thus produce low efficiency and incen-

tive distortions, innovation and unique products are needed to gain the

preemptive advantage.

Schumpeter’s (see his biography in section 2.12.2) “Innovation The-

ory”informs us that valuable competition is not a price war, but instead

competition of new products, technologies, markets, sources of supply, and

combination forms. The root of the long-term vitality of the market econ-

omy lies in innovation and creativity, which originates from entrepreneur-

ship and entrepreneurs’ constant “creative destruction”of market equi-

libria. Apple Inc., a thriving company today, was once on the verge of

bankruptcy in the late 20th century. What did Steve Jobs rely on to turn

the tide when he returned to Apple as its CEO? It was innovation that met

and stimulated demand in the market. Its series of products that combined

human aspects with science and technology profoundly affected people’s

consumption preferences and lifestyle. Innovation is the result of flashes of

inspiration, yet it cannot be simply achieved from a single brainstorming

session. Essentially, innovation comprises many existing ideas. Therefore,

entrepreneurs are crucial, but “it is not part of his function to ‘find’ or

‘create’ new possibilities. They are always present, abundantly accumulat-

ed by all sorts of people”. The function of an entrepreneur is to put those

possibilities into practice before they disappear by conceiving and devel-

oping new combinations of factors.

It should also be pointed out that innovation mainly relies on private
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firms. Because innovation means breaking with routines, it inevitably im-

plies high risk. High-tech innovation, in particular, is a high-risk venture

with a very low success rate. However, once it succeeds, there may be

parabolic profits, which will then attract additional funds for investment.

For state-owned enterprises (SOEs), however, due to the congenital lack of

risk-taking incentive mechanisms, the SOE leaders are neither courageous

nor able to assume such responsibility. Moreover, irrespective of how great

the profit is, SOE leaders themselves do not profit from it, and thus they

have no incentive to take such high risks, and it is unrealistic to look to

SOEs for innovation.

The private economy, on the other hand, is the most willing to take

risks because of the strong incentive to pursue self-interest, and thus the

most innovation-driven. Therefore, as shown clearly from the situations

in different countries, the main agents of innovation (non-basic scientific

research) are all private firms. For instance, the most widely-recognized in-

novative companies even in China, such as Alibaba, Tencent and Huawei,

are also private firms. The emergence of Internet finance, such as Yu’ebao,

is the result of barring the private economy from entering the financial in-

dustry under the control of state-owned enterprises, and thus private firms

have no choice but to resort to financial technology innovation for survival.

9.3.5 Price Discrimination of Monopolies

The pricing of firms discussed above is uniform price, but in reality, firm-

s usually adopt differential pricing, known as price discrimination. Un-

der differential pricing, the firm may charge varied prices to different cus-

tomers or different purchase quantities, even though the production cost

is the same. The premise of differential pricing is that the purchase of the

demander will generate consumer surplus. In the analysis of monopoly

pricing, the firm obtains monopoly profit by setting a uniform price, while

different consumers also obtain consumer surplus to some extent. To fur-

ther increase profits, a monopolist may obtain some, or even all, of the

consumer surplus through price discrimination.

There are many ways that price discrimination appears in the real world.
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For instance, magazines offer discounts to students; airlines charge differ-

ent prices at different times of purchase; some associations, such as the

American Economic Association, charge membership fees according to the

category of their members; many stores offer discounts or coupons on hol-

idays; some product packages offer coupons, which allow consumers to

purchase the product at a lower price next time and enable sellers to charge

first-time customers a higher price than repeat visitors; for telecommuni-

cations services, there are many kinds of packages and different charging

standards in different time periods. These are all various forms of price

discrimination.

However, as Dennis W. Carlton and Jeffrey M. Perloff (1998) pointed

out,1 movies and television shows often portray, as great heroes, physicians who

charge poorer patients lower rates. In very old movies, a country doctor may accept

a chicken as payment, instead of insisting on cash. Are doctors selfless creatures or

profit maximizers who engage in price discrimination? Certainly, some physicians

see indigent patients at no cost or nominal fees as an act of altruism. Others,

however, may be engaging in price discrimination.

There are many broadly adopted forms of price discrimination.

The first kind is two-part tariff. The firm first charges the consumer a

fixed fee (the first charge); after paying the fee, the consumer then has the

right to purchase the goods at a specified price, such as monthly charges by

cell phone service providers in many countries. Some amusement parks,

as another example, charge an admission fee first and then a surcharge for

each event.

The second is quantity discount. In this case, different unit prices are

set according to the quantity of purchase. For instance, the sales of nu-

merous products discriminate between group purchasing and individual

purchases.

The third is tie-in sale. In this case, a firm only sells the product to the

customers they want to purchase when they also buys some other produc-

t(s) at the same time. For example, when a consumer wants to purchase

a durable machine, the consumer must purchase the maintenance service

1An excerpt from Dennis W. Carlton and Jeffrey M. Perloff (1998), Chapter 11, Page 640.



582 CHAPTER 9. MARKET THEORY

or maintenance parts together. When selling copiers, the firm may require

that the customer purchase ink, copy paper, etc., at the same time. When

the consumer buys a cell phone, she also needs to purchase a charger from

the seller. Indeed, it is sometimes the case that consumers have no choice

due to technological compatibility requirements, as in the case of chargers

for Apple products.

The fourth is quality discrimination. Quality discrimination may occur

when a firm offers commodities with different profiles of price and quali-

ty. For example, a firm can offer high-quality products at a high price to

some customers who greatly value quality and low-quality products at a

low price to the others, thus dividing the customers into two markets. As

another example, airline tickets are divided into first class, business class,

and economy class. A similar situation is found in the case of train and

performance tickets. In the following, a real-world example in Dupuit’s

discussion of railroad tariffs is given:

It is not because of the few thousand francs which would have to be spent

to put a roof over the third-class carriages or to upholster the third-class seats

that some company or other has open carriages with wooden benches.... What the

company is trying to do is prevent the passengers who can pay the second-class

fare from traveling third-class; it hits the poor, not because it wants to hurt them,

but to frighten the rich.... And it is again for the same reason that the companies,

having proven almost cruel to third-class passengers and mean to second-class

ones, become lavish in dealing with first-class passengers. Having refused the poor

what is necessary, they give the rich what is superfluous.2

In addition, it should be noted that not every non-uniform pricing con-

stitutes price discrimination. There are numerous other reasons that firms

would charge different consumers varied prices. For example, when firm-

s offer quantity discounts to consumers, it may be due to cost savings of

large orders that firms would return to bulk buyers. Sometimes, even for

the same price, price discrimination can also exist. For example, a firm may

charge consumers at different locations the same price for a home delivery

service, in which the price cannot fully reflect the cost difference, which

2An excerpt from Tirole (1988), Chapter 3, Page 150.
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comprises the cost of production and transportation.

Principle of Price Discrimination

As mentioned above, the increment of revenue of a monopolist generated

by one extra unit of production is the summation of two effects. One is

the incremental revenue p generated by selling one extra unit of product at

price p. The other is the reduction in the total revenue resulting from the

lowered price, the amount of which is Q∆p. Consequently, when the total

revenue is p(Q)Q, its marginal revenue is p(Q) +Q
dp(Q)
dQ

.

If a monopolist only needs to lower the price of the extra product, then

the firm will constantly expand production as long as the price of the last

unit of product is higher than the marginal cost. Until the price of the

last unit is equal to the marginal cost, the monopolist will stop produc-

ing and turn to differential pricing for additional profits. In fact, all kinds

of price discrimination can be viewed as a marketing design of the firm to

reduce the negative impact of the second effect of expanding production

on marginal revenue.

Conditions of Price Discrimination

It is not unconditional for a firm to practice price discrimination because

consumers can arbitrage between different prices to undermine the inten-

tion of the firm. The important conditions for price discrimination are as

follows.

Firstly, the firm must possess certain power to manipulate the market

(or the ability to obtain profit by setting the price above the marginal cost);

otherwise, the firm cannot charge consumers a price that is higher than that

in a competitive market.

Secondly, the firm needs to know or infer consumers’ willingness to pay

for each unit of product, which varies with consumers and sales volume. In

other words, the firm should be able to determine which type of consumers

can be charged a high price.

Thirdly, the firm should be able to prevent or restrict resale. Resale

means that low-price buyers sell the commodities to customers who are
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willing to pay a higher price. If it is easy to resale, then the firm’s attempt to

charge higher prices to one consumer group than the other will not succeed.

Moreover, in the case of quantity discount, the firm has to prevent bulk

buyers from reselling the commodities to small buyers.

Resale can be prevented or reduced in the following ways.

(1) Service. The vast majority of services cannot be resold.

(2) Guarantee. Taking after-sale service as an example, a firm may an-

nounce that only first-time buyers will be provided a guarantee or free

after-sale service. For example, black market electronic products sold vi-

a unauthorized channels are apparently not guaranteed.

(3) Mixture. A firm may include certain other substances in a prod-

uct, so that the product cannot be used for other purposes. For instance,

medicinal alcohol cannot be converted into alcoholic beverages.

(4) Transaction costs. A large transaction cost can be charged for resale.

Taking the resale of coupons (which allows consumers to purchase a prod-

uct at a lower price) as an example, it costs too much to search for buyers

without coupons.

(5) Contract remedy. The firm may ban resale as a condition of sale in

the purchase contract. For example, if one uses a student sports game tick-

et, one needs to present one’s student ID. In addition, in some universities,

students and teachers can purchase computers below the market price, but

resales are banned.

(6) Vertical integration. Upstream firms can integrate some downstream

firms to charge higher prices than do other downstream firms.

Three Typical Price Discriminations

Price discrimination can be divided into three types.

(1) First-degree price discrimination, also known as perfect

price discrimination. By charging a different price for each

unit of product, the producer can obtain the entire consumer

surplus. Such price discrimination generally requires the

producer to know the reserve price of each consumer, and

to prevent resale or arbitrage between consumers.
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(2) Second-degree price discrimination. The firm prices the

same product differently based on the quantity of purchase.

In reality, the two conditions above for perfect price discrim-

ination are rarely fully satisfied. At this time, the produc-

er can design different profiles of quantity and price from

which the consumer can freely choose. The producer can

still obtain the consumer surplus (more than that of uniform

pricing).

(3) Third-degree price discrimination. The firm divides the

market into two or more groups, and prices the product for

each group. The producer can observe certain signals relat-

ed to consumer preferences (e.g., age, occupation, location,

etc.), and utilize these signals to divide customers into dif-

ferent markets for differential pricing.

The difference between second-degree and third-degree price discrimi-

nation is that in third-degree price discrimination, firms can take advantage

of the signals of consumer types to divide the market into many indepen-

dent markets for differential pricing; in second-degree price discrimination,

because firms cannot observe the signals of consumer types, there is only

one market, and thus firms implement price discrimination by setting dif-

ferent purchase contracts from which consumers can choose.

Besides, we also have the two-part tariff that is related to price discrim-

ination and provides another means of extracting consumer surplus. A

two-part tariff consists in charging consumers with a lump sum fee for the

right to purchase the product and then a uniform price per unit consumed.

9.3.6 First-Degree (Perfect) Price Discrimination

First-Degree Price Discrimination means to price each unit of commod-

ity differently. Let us consider a simple case. There is only one type of

consumer in the market, and they all have unit demand (purchasing either

nothing or 1 unit of product). Let their valuation of unit product be V .

Then, the monopolist can obtain all of the consumer surplus by setting the

price p = V .
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Now, consider an extended case. There are n types of consumers in the

market, consumers of each type all have unit demand, and their valuation

of the unit product is Vi, i = 1, · · · , n. Then, the monopolist can price,

respectively, for the n types of consumers. For consumers of type i, the

price is set as Vi. Similarly, the monopolist can extract all the consumer

surplus.

For the case of non-unit demand, suppose that there are n consumers

in the market. The market demand function is D(p), and each consumer’s

demand function is
D(p)
n

. If only uniform price is allowed, the maximum

profit obtained by the monopolist is pmD(pm) − C(D(pm)), where pm is

the monopoly price. If a more flexible pricing strategy can be adopted, the

monopolist will be able to make greater profits.

Figure 9.8: Perfect price discrimination.

Suppose that the monopolist adopts a two-part tariff which is quite the

same as first-degree price discrimination, which charges a fixed fee and a

same unit price (i.e., T (q) = A+ pq). If the monopolist adopts competitive

pricing, then T (q) = pcq. At this point, the net surplus of all consumers

is Sc =
∫ qc

0 [p(q) − pc] dq, where qc = p−1(pc), and the net surplus of each

consumer is Sc

n . If A = Sc

n , p = pc, the two-part tariff T (q) = A+ pq will be

accepted by the consumer, at which the net surplus left for the consumer is

0, and the monopoly profit equals the optimal social welfare. Setting aside

the issue of allocation and equity, and only taking efficiency into considera-

tion, perfect price discrimination increases social welfare, and the decrease

of consumer surplus is offset by the increase of producers’ profits. Figure
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9.8 shows the change of consumer surplus and firm profit under perfect

price discrimination.

We can extend the above analysis to the case of n types of consumers.

Each type of consumers’ demand function is Qi(p). In this way, each type

of consumer makes one separate market. Similar to the previous analysis,

if different two-part tariffs are adopted for each type of consumer, then in

each market, the unit price corresponds to the competitive market price,

while the fixed fee is the surplus of consumers of each type corresponding

to the competitive price.

A serious information problem exists in perfect price discrimination, as

the firm does not know the consumers’ type, and the consumers are also

reluctant to disclose their type in most cases. In this situation, perfect price

discrimination is impossible, and the firm cannot obtain all of the consumer

surplus.

9.3.7 Second-Degree (Self-Selection) Price Discrimination

Second-Degree Price Discrimination means to price the same product d-

ifferently based on the quantity of purchase. If the information of the con-

sumer’s type cannot be observed, the monopolist can also design various

consumption bundles from which consumers can choose.

Suppose that there are two types of consumers in the market, whose

valuations of the commodity are θiV (q), i = 1, 2. Figure 9.9 describes the

demands of the two types of consumers and their consumer surplus.

Figure 9.9: Demands of two types of consumers and their consumer sur-
pluses.
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θi is the preference parameter which characterizes type i consumers’

preferences for commodities. Assume that in the market, the proportion of

consumers with preference θ1 is λ, and the rest are consumers with prefer-

ence θ2. Let θ2 > θ1, V (q) = 1 − (1 − q)2

2
. The firm cannot identify the type

of consumers, and the marginal cost is c.

We first look at the demands of different types of consumers.

First, for type i of consumers, in the face of the market price p, their

decision is to solve the following maximization problem

max θiV (q) − pq.

Its first-order condition is

θiV
′(q) = p,

i.e.,

θi(1 − q) = p.

Therefore, the demand function of type i consumers is

Di(p) = 1 − p

θi
.

The consumer surplus of type i consumers is

Si(p) = θi

[
1 − (1 −Di(p))2

2

]
− pDi(p) = (θi − p)2

2θi
.

The market demand function is

D(p) = λD1(p) + (1 − λ)D2(p) = 1 − p

θ
,

where
1
θ

≡ λ

θ1
+ 1 − λ

θ2
.

Now, we discuss how firms can implement second-degree price dis-

crimination for consumers. Assume that a two-part tariff is adopted for

differential pricing. In order to understand the difference between second-

degree price discrimination and other types of price discrimination, we

use perfect price discrimination and uniform monopoly pricing as a bench-
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mark.

In the previous discussion of perfect price discrimination, we know that

the firm gains the revenue of perfect price discrimination by setting various

types of two-part tariffs for different consumers. In perfect price discrim-

ination, for type i of consumers, the corresponding two-part tariff set by

the monopolist is Ti(q) = Ai + cq, satisfying pfd = c and Ai = Si(c). The

monopolist gains all consumer surplus, and the monopolist profit is

πfd = λ
(θ1 − p)2

2θ1
+ (1 − λ)(θ2 − p)2

2θ2
.

If the monopolist adopts uniform monopoly pricing, then the monopoly

price can only be a linear price (i.e., T (q) = pq). The monopolist’s best

choice of price is to solve the following maximization problem

max(p− c)
(

1 − p

θ

)
.

The monopoly price and profit are pm = c+ θ

2
and πm = (θ − c)2

4θ
, respec-

tively.

When the monopolist does not know the type of the consumer, how

should it implement second-degree price discrimination? We start with a

simple way of using a single two-part tariff for second-degree price dis-

crimination (i.e., T (q) = A+ pq). Since the firm cannot distinguish the type

of consumers, this pricing is for consumers of all types.

When the unit price is p, consumers with preference θ1 may still pur-

chase, and the maximum fixed fee that they are willing to pay is A = S1(p).

Then, the consumer surplus of consumers with preference θ1 is completely

extracted, but consumers with preference θ2 still have positive consumer

surplus. Since S1(p) > 0, given the price p, the optimal fixed fee is A =
S1(p). The subsequent question is how much the unit price p should be.

For the monopolist, the most profitable two-part tariff is found by solv-

ing the following optimization problem,

max
p
S1(p) + (p− c)D(p) = (θ1 − p)2

2θ1
+ (p− c)

(
1 − p

θ

)
.



590 CHAPTER 9. MARKET THEORY

The first-order condition is,

−θ1 − p

θ1
+
(

1 − p

θ

)
− p− c

θ
= 0,

so the optimal unit price in second-degree price discrimination is,

psd = c

2 − θ/θ1
,

and the profit is denoted by πsd.

Obviously, c < psd < pm, and πfd = πsd = πm (i.e., the profit of perfec-

t price discrimination is higher than that of second-degree price discrim-

ination, the latter of which is higher than the monopoly profit under u-

niform pricing). Social welfare under perfect price discrimination is the

highest. For second-degree price discrimination and uniform monopoly

pricing, given any price p, social welfare is

TW (p) = λS1(p) + (1 − λ)S2(p) + (p− c) [λD1(p) + (1 − λ)D2(p)] ,

where

TW ′(p) = (p− c)
[
λD′

1(p) + (1 − λ)D′
2(p)

]
.

When p ≥ c, social welfare decreases as p increases. Since c < psd < pm,

compared with uniform monopoly pricing, second-degree price discrimination im-

proves social welfare.

In second-degree price discrimination, the monopolist can actually have

more choices, meaning that she can adopt more complicated nonlinear pric-

ing methods to obtain higher profits. In the following, we discuss the non-

linear pricing that maximizes the monopolist’s profit. This constitutes a s-

tandard principal-agent problem. In Part VI, we discuss the principal-agent

theory in detail.

Suppose that the commodity bundle designed by the firm for consumer-

s with preference θi is (qi, Ti), where the purchase quantity is qi and the

total payment is Ti, and meanwhile, (qi, Ti) ̸= (qj , Tj), i ̸= j. This design

needs to meet two conditions: first, choosing (qi, Ti) over (qj , Tj) can bring

more utility to consumers with preference θi, which is called the incentive
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compatibility (IC) constraint; second, the net consumer surplus cannot be

less than zero when consumers with preference θi choose (qi, Ti), which is

called the participation constraint.

The objective of the monopolist is,

max
(qi,Ti)

λ(T1 − cq1) + (1 − λ)(T2 − cq2), (9.3.1)

subject to

θ1V (q1) − T1 =0 (Type θ1’s participation constraint), (9.3.2)

θ2V (q2) − T2 =0 (Type θ2’s participation constraint), (9.3.3)

θ1V (q1) − T1 =θ1V (q2) − T2 (Type θ1’s IC constraint), (9.3.4)

θ2V (q2) − T2 =θ2V (q1) − T1 (Type θ2’s IC constraint). (9.3.5)

At the optimal point, at least one equality holds in inequalities (9.3.2)

and (9.3.4); otherwise, we can increase the value of T1 to increase the ob-

jective value. Similarly, at least one equality holds in the inequalities (9.3.3)

and (9.3.5).

For inequality (9.3.5), since θ2V (q2) − T2 = θ2V (q1) − T1 > θ1V (q1) −
T1 = 0, inequality (9.3.3) is strict, and thus we have θ2V (q2) − T2 > 0,

which means that θ2V (q2) − T2 = θ2V (q1) − T1 (i.e., (9.3.5) is binding). If

the equality holds in inequality (9.3.4), add it to inequality (9.3.5) and we

obtain V (q1) = V (q2) (i.e., q1 = q2), which implies that T1 = T2, and thus

contradicts the previous assumption. Therefore, inequality (9.3.4) is strict,

which implies that (9.3.2) is binding.

To sum up the above discussion, only the inequalities (9.3.2) and (9.3.5)

hold with equality, which implies that

T1 = θ1V (q1)

and

θ2V (q2) − T2 = θ2V (q1) − T1 = (θ2 − θ1)V (q1).
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Substituting them into the objective function,

max{λ(θ1V (q1) − cq1) + (1 − λ)(θ2V (q2) − cq2 − (θ2 − θ1)V (q1))}.

The first-order condition is then given by

θ1V
′(q1) = c

1 − 1 − λ

λ

θ2 − θ1
θ1

,

θ2V
′(q2) = c.

Because of V (q) = 1−(1−q)2

2 , we have

q1 = 1 − c

θ1 − 1 − λ

λ
(θ2 − θ1)

,

q2 = 1 − c

θ2
.

Therefore, the consumption for high-demand type consumers is social-

ly optimal (the marginal utility of commodities equals the marginal cost),

but the consumption for low-demand type consumers is lower than the so-

cially optimal level. Meanwhile, the high-demand type consumers receive

positive consumer surplus.

Figure 9.10 depicts the above optimal nonlinear pricing. Point B1 in

the figure corresponds to the purchase profile (q1, T1) of consumers with

preference θ1, where the consumer surplus is zero; point C2 corresponds to

the purchase profile (q2, T2) of consumers with preference θ2, whose con-

sumer surplus is greater than zero. In the previous second-degree price dis-

crimination with two-part tariffs, the purchase profile for consumers with

preference θ1 is B1 and for consumers with preference θ2 is B2. Compared

with the above single two-part tariff, consumers with preference θ2 pur-

chase more commodities in nonlinear second-degree price discrimination,

and the monopolist’s profits are also higher. Since the second-degree price

discrimination with two-part tariffs is a form of nonlinear pricing, the mo-

nopolist under the above optimal nonlinear pricing chooses a form of dis-

crimination that is different from the two-part tariff, resulting in a higher
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profit.

Indifference curve of

Indifference curve of

 

 

consumers of type

consumers of type

Figure 9.10: Second-degree price discrimination.

9.3.8 Third-Degree (Multi-Market) Price Discrimination

Third-degree Price Discrimination means to divide the market into two

or more groups, for which the same product is priced differently. The mo-

nopolist can divide the aggregate demand into m markets based on the

information of consumers, and knows the demand curves of these market-

s. If all markets are independent and there is no arbitrage between any two

markets, the monopolist can set different prices for different markets, but a

unified price within each market. What the monopolist practices is termed

the multi-market monopoly pricing.

Let {p1, · · · , pi, · · · , pm} be the prices ofmmarkets, and the correspond-

ing demands of the m markets be

{D1(p1), · · · , Di(pi), · · · , Dm(pm)}.

The monopolist chooses m monopoly prices for the m markets.

The objective function of the monopolist is

max
∑
i

piDi(pi) − C

(∑
i

Di(pi)
)
.

The first-order condition is:

pi − C ′(q)
pi

= 1
εi
,
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where εi = −piD
′
i(pi)

Di(pi)
is the absolute value of the elasticity of demand of

market i.

From the above condition, we know that, compared with uniform pric-

ing, consumers with higher elasticity of demand face lower prices under

price discrimination. As a consequence, this kind of consumers prefer dif-

ferential pricing. Less-elastic consumers will be charged higher prices due

to price discrimination, resulting in reduced welfare. However, for the mo-

nopolist, differential pricing will certainly bring more profits; otherwise,

there is no need for it. Because of the pair of opposite effects, the change of

social welfare in third-degree price discrimination is uncertain.

Now, let us consider a more general case. Suppose that there are m

markets, the marginal cost is constant c, the demand of the ith market is

qi = Di(pi), the corresponding consumer surplus is Si(pi), and the firm’s

profit is (pi − c)qi. If differential pricing is not allowed, the monopolist sets

a uniform price p̄ for all markets. Then, the corresponding demand of the

ith market is q̄i = Di(p̄), the consumer surplus is Si(p̄), and the profit is

(p̄− c)q̄i. After adopting differential pricing, the demand of the ith market

will become ∆qi ≡ qi − q̄i.

The change of social welfare after adopting price discrimination is:

∆W =
{∑

i

(Si(pi) − S̄i(p̄))
}

+
{∑

i

(pi − c)qi −
∑
i

(p̄− c)q̄i

}
. (9.3.6)

The (net) consumer surplus is S(p) =
∫ p̂
p D(ξ)dξ, where p̂ is the maxi-

mum price (i.e.,D(p̂) = 0). Since S′(p) = −D(p) < 0 and S′′(p) = −D′(p) >
0, S(p) is a convex function. Thus, we have

Si(pi) − Si(p̄) = S′
i(p̄)(pi − p̄), (9.3.7)

Si(pi) − Si(p̄) 5 S′
i(pi)(pi − p̄). (9.3.8)

Substituting formulas (9.3.7) and (9.3.8) into (9.3.6), we obtain

∆W =
∑
i

(pi − c)∆qi

and
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∆W 5 (p̄− c)
∑
i

∆qi,

where ∆qi = qi(pi) − qi(p̄). If ∆qi = 0,∀i, then ∆W = 0. In other words,

after adopting differential pricing, the demand of each type of consumers

increases, and thus differential pricing increases social welfare.

If
∑
i ∆qi 5 0, then ∆W 5 0, which means that the aggregate demand of

consumers decreases, and thus price discrimination reduces social welfare.

Therefore, whether the effect of differential pricing on social welfare is

positive or negative depends on its influence on sales volume.

Example 9.3.1 (Linear demand) Suppose that there are two markets, the

demand functions are q1 = a1 − b1p and q2 = a2 − b2p, respectively, and the

marginal cost is 0. In addition, suppose that a1 = a2 and b1 5 b2, which

means that market 1 is larger than market 2.

Suppose that the monopolist can adopt price discrimination. In market

i, the objective of the monopolist is

max pi(ai − bipi).

The first-order condition of profit maximization is

pi = ai
2bi

,

qi = ai
2
.

Suppose that the monopolist can only set a uniform price instead of

differential pricing. If the monopolist sets a uniform price p̄ in all markets,

and at the same time all markets have positive demands (of course, the

demand of some markets can be zero at a certain price level, which will be

discussed later), then the aggregate market demand is

Q = q̄1 + q̄2 = (a1 + a2) − (b1 + b2)p̄.

As a result, the objective function of the monopolist is

max p̄[(a1 + a2) − (b1 + b2)p̄].
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The first-order condition of profit maximization is

p̄ = (a1 + a2)
2(b1 + b2)

.

Thus, the aggregate demand is

Q = q̄1 + q̄2 = (a1 + a2)
2

= q1 + q2,

and the profit is

π̄ = (a1 + a2)2

4(b1 + b2)2 .

Since q̄1 + q̄2 = q1 + q2 (i.e., ∆q1 + ∆q2 = 0), price discrimination lowers

social welfare.

At uniform pricing, if some markets no longer have positive demands,

then it can be assumed that only market 1 is still open, while market 2 is

closed. The monopoly price, output, and profit are p̃ = a1
2b1

, q̃ = a1
2

, and

π̃ = a2
1

4b1
, respectively. Then, we have π̃ = a2

1
4b1

>
(a1 + a2)2

4(b1 + b2)
= π̄. For

example, if a1 = 2, a2 = 1, b1 = 1 and b2 = 2, then π̃ = 1 > 3
4

= π̄. We have

∆q1 = 0,∆q2 = q2 > 0. Consequently, price discrimination increases social

welfare in this case.

Therefore, the effect of third-degree price discrimination on social wel-

fare depends on the specific demand and characteristics of technology, and

thus is indeterminate.

Different properties of commodities, such as those of durable goods and

non-durable goods, will also affect the choice of the monopolist. In the

next subsection, we discuss the monopolist’s choice in the durable goods

market.

9.3.9 Monopolist of Durable Goods

When the monopolist provides a durable good , intertemporal demand will

change the interaction between the monopolist and consumers, because in-

tertemporal demand will generate a dynamic game structure. In the pre-
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vious discussion of game theory, we know that the commitment of players

is usually an important factor in a dynamic game. When consumers have

purchased a durable good, they may not purchase it again in the future,

and thus the monopolist will face consumers that are different from the

previous ones, who we call the remaining consumers.

Since the willingness to pay of the remaining consumers is lower than

that of the previous consumers, as long as the marginal cost of the monopoly

is sufficiently low, the monopolist will have the incentive to lower the price

in order to obtain additional profits. When expecting intertemporal price

discrimination from the monopolist, rational consumers will change their

purchase decisions. In fact, concerning the issue of durable goods, the mo-

nopolist’s pricing flexibility will harm the monopolist own profits. When

the monopolist adjusts the price frequently, the monopoly profit approach-

es zero. This conclusion is called the Coase conjecture.

We will identify some means to restrict the flexibility of price adjust-

ment in business, such as the most-favored-customer clause for price dif-

ference compensation. Sometimes, the firm will choose to rent instead of

selling the goods, in order to enhance the credibility of price adjustment. In

other situations, the firm will choose uneconomical durability, also called

the planned abandonment, as in the case of the regular publication of new

versions of textbooks with approximately identical contents.

To illustrate this issue, let us examine a simple example. Assume that

there are seven consumers, their willingness to pay for a durable good is 1,

2, ..., 7, respectively, and the production cost is 0. Let time be discrete, and

the time discount rate be δ. Let us assume that there is only one period,

and the monopolist charges a monopoly price 4 and sells the good to con-

sumers with willingness to pay no less than 4. At this point, the monopoly

profit is 16. Now, consider multiple periods. If the monopolist charges 4 in

the first period and consumers with willingness to pay at least 4 accept this

price, then in the second period, in the face of consumers whose willing-

ness to pay is 1, 2, and 3, the monopolist will choose the monopoly price

2, and thus consumers with willingness to pay no less than 2 will accep-

t this price. However, the above outcome cannot be a stable equilibrium,

because if expecting price reduction in the second period, consumers who
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have willingness to pay at least 4 will not purchase in the first period, and

the demand in the first period will decrease.

Such examples are ubiquitous in reality. For example, many electronic

products are durable goods, such as the iPad. When the product is new-

ly released, only consumers with a high willingness to pay will purchase

it. As people expect that the firm will inevitably lower the price to attract

medium- and low-end consumers in the future, consumers with a lower

willingness to pay will wait for future price reductions.

Sale and Rental of Durable Goods

Here, we use an example to explore how the monopolist’s pricing commit-

ment affects its profits.

Assume that the lifespan of a certain product is two periods, consumers

also live for only two periods, and each consumer purchases one unit of

product at most. The value of the product to consumers is v per period,

which is uniformly distributed over [0, 100]. The time discount rate for

consumers is 1, and the marginal cost of production is zero. Here, we define

the game structure of the sale of durable goods as follows:

(1) Players: the monopolist and consumers (who have different values

v of the product).

(2) A set of strategies: the producer chooses prices p1 and p2 for the first

and second period, respectively, which indirectly determines the demands

q1 and q2 in the two periods, meaning that q1 consumers purchase in the

first period and q2 consumers purchase in the second period. Consumers

choose whether and when to purchase.

(3) Payoffs: first, for consumers (whose valuation of product is v in ev-

ery period), u(v, 1) = 2v−p1 if purchasing in the first period, u(v, 2) = v−p2

if purchasing in the second period, and u(v, ϕ) = 0 if not purchasing at all.

Then, the monopolist’s payoff is made up of the profits in the two periods

(i.e., π = p1q1 + p2q2).

In the following, we use backward induction to solve the above game.

Assume that v̂ is the value of the product for marginal buyers who are

indifferent between purchasing in the first period and purchasing in the
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second period, and thus v̂ = p1 − p2. Consumers whose valuation of the

durable good is v > v̂ will choose to purchase in the first period, and con-

sumers whose valuation of the durable good is v > v̂ and v = p2 will choose

to purchase in the second period.

In the second period, the inverse demand function is p2 = 100 − q1 − q2,

where q1 = 100 − v̂ and q2 = v̂ − p2. The optimization condition of the

second period means that the marginal revenue equals the marginal cost

(i.e., MR = MC), and thus we obtain 100 − q1 − 2q2 = 0, i.e.,

p2 = q2 = 100 − q1
2

.

Now, consider demand q1 or price p1 in the first period of the game.

Marginal consumers’ valuation of the durable good is v̂, satisfying v̂ =
p1 − p2, and meanwhile, q1 = 100 − v̂, and thus we obtain

p1 = 300 − 3q1
2

.

Therefore, the monopolist’s total profit of two periods is

π = 300 − 3q1
2

q1 +
(100 − q1

2

)2
.

The choice of maximizing profits is q1 = 40, p1 = 90 and q2 = 30, p2 = 30
when the profits are π = 4, 500.

If the monopolist chooses to rent instead of selling, because renting does

not involve the issue of product durability, the demands for each period are

identical. From the above model setting, we know that the inverse demand

function for each period is pt = 100 − qt, t = 1, 2. The total profits of the

two periods of the monopolist are π = p1q1 + p2q2. From the first-order

condition, we obtain that q1 = 50, p1 = 50; q2 = 50, p2 = 50; π = 5, 000.

We find that, in this example, the profit from the rental of durable goods

is higher than the profit from the sale. The reason for this phenomenon is

that during the selling process, the dynamic commitment issue of the mo-

nopolist may affect the monopolist’s profit from the first-period consumers,

while renting avoids the issue of pricing commitment for durable goods.
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9.3.10 Monopoly in an Input Market

A similar classification of market structures exists for input markets. If

firms take the factor prices as given, then we have competitive factor mar-

kets. If instead there is only one firm which demands some factor of pro-

duction, then we have a monopolistic factor market, and this kind of mar-

ket structure is called the monopsony. In the monopolistic factor market,

the behavior of a monopsonist determines the price of the purchased factor.

Now, we discuss the rational decisions of the monopsonist.

Let us consider a simple example of a firm that is a competitor in its

output market, but the sole purchaser of some input good. Let w(x) be

the (inverse) supply curve of this factor of production. Then, the profit

maximization problem for the firm is:

max
x

pf(x) − w(x)x,

where f(x) is a production function, and p is the price of a competitive

product. The first-order condition is:

pf ′(x∗)−w(x∗)−w′(x∗)x∗ =0.

pf ′(x∗) refers to the marginal value of product , or the marginal revenue

of product , andw(x∗)+w′(x∗)x∗ is the marginal purchase cost of the factor.

We can rewrite the above condition as

pf ′(x∗) = w(x∗)
(

1 + 1
ε(x)

)
,

where ε(x) = dx

dw(x)
w(x)
x

is the price elasticity of supply. As the elastic-

ity goes to infinity, the monopsonist becomes perfectly competitive in the

input market.

Recall that, in Chapter 4, we considered only the behavior of a firm

in competitive factor markets. Similarly, it is possible to define the cost

function for a monopsonistic firm. For example, suppose that xi(w) is the

supply function for factor i. Then, we can define C(y) = min
∑
wixi(w),
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such that f(x(w)) = y. At this time, C(y) is the minimum cost of producing

y in the monopolistic factor market.

9.4 Monopolistic Competition

The previous section assumes that the demand curve for a product depends

only on the price set by the monopolist. However, this constitutes an ex-

treme case. Most commodities have some substitutes, and the prices of

those substitutes will affect the demand of a commodity. In this section, we

consider what occurs when the prices and quantities of similar products

produced by many firms affect one another, in what we term a monopolis-

tically competitive market.

We assume that a group of n“monopolists”sell similar, but not iden-

tical, products. The price that consumers are willing to pay for the output

of firm i depends on not only the level of output of firm i, but also the lev-

els of output of the other firms: we write this inverse demand function as

pi(qi, q−i), where q−i = (q1, . . . , qi−1, qi+1, · · · , qn).

Each firm i chooses output level qi in order to maximize its profits,

max pi(qi, q−i)qi − Ci(qi).

Since the demand facing firm i also depends on what the other firms do,

how is firm i supposed to forecast the other firms’ behavior? We will adopt

a very simple behavior hypothesis that firm i assumes that the other firms’

behavior will be constant and thus we can use Nash equilibrium as solution

concept. Then, each firm i will take the output level of other firms as given

and choose its level of output q∗
i . We then have the following first-order

condition:

pi(q∗
i , q−i) + ∂pi(q∗

i , q−i)
∂qi

q∗
i − C ′

i(q∗
i ) 5 0, with equality if q∗

i > 0.

The optimal output of all firms is denoted by q = (q1, . . . , qn). For firm

i, there will be some optimal output level, denoted by Qi(q−i).

In order for the market to be in equilibrium, each firm’s forecast about
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the behavior of the other firms must be compatible with what the other

firms actually do. As a consequence, if q∗ = (q∗
1, . . . , q

∗
n) is the vector of

equilibrium output, it must satisfy:

q∗
i = Qi(q∗

−i), i ∈ {1, 2, . . . , n},

i.e., q∗
1 must be the best response of firm 1 if it assumes that other firms are

going to produce q∗
2, · · · , q∗

n.

For each firm, its marginal revenue equals the marginal cost given the

actions of all of the other firms. This is illustrated in Figure 9.11. At the

point of equilibrium under monopolistic competition depicted in Figure

9.11, firm i is making positive profits. In a monopolistically competitive

industry, if there is no barrier and firms can freely enter and exit, it is nec-

essary to consider long-run equilibrium.

Figure 9.11: Short-run equilibrium under monopolistic competition.

9.4.1 Long-run Equilibrium under Monopolistic Competition

Since firms can freely enter and exit, the profits of the monopolistically

competitive industry will be zero in the long run. This means that firm

i must set a price p∗
i and choose an output level q∗

i , such that

p∗
i q

∗
i − Ci(q∗

i ) = 0,

or

pi = Ci(q∗
i )

q∗
i

.
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Therefore, in long-run equilibrium, the price must be equal to the av-

erage cost, but higher than the marginal cost. This means that there is ex-

cessive accumulation of production capacity, and the choice of the firm’s

output level is not efficient (i.e., it does not produce at the lowest point

of its average cost). Figure 9.12 depicts the long-run equilibrium of such

industry.

Figure 9.12: Long-run equilibrium under monopolistic competition.

9.4.2 Social Welfare in Monopolistic Competition

Since the price is higher than the marginal cost, there is a loss of social

welfare in monopolistic competition compared with perfect competition.

In addition, as their products are different, the product varieties may also

lead to an efficiency loss. Since each firm cannot obtain all of the consumer

surplus, the positive externality shows the possibility of insufficient entry.

Moreover, the entry of a firm will reduce the profits of others, and thus

the negative externality shows the possibility of excessive entry. As a re-

sult, a monopolistically competitive industry may have too many or too

few product varieties. In the following, we discuss a classic monopolistic

competition model.

9.4.3 Dixit-Stiglitz Model of Monopolistic Competition

Assume that there is a representative consumer who prefers diverse prod-

ucts. There are L kinds of differentiated products, and L is endogenously

determined. Assume that each firm can only produce one product. Then,

how many firms or types of products will the market have in the long run?
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Here, we analyze this problem according to the Dixit-Stiglitz classic model.

We assume that consumer preference is a CES (constant elasticity of substi-

tution) utility function,

U(q1, · · · , qL) =
(

L∑
l=1

qρl

)1/ρ

, ρ 5 1,

where ql denotes the quantity of differentiated products. The consumer

prefers diverse products (i.e.,
∂U(q1, · · · , qL)

∂ql
→ ∞ when ql → 0).

The budget constraint of the consumer is
∑L
l=1 plql 5 I , where pl is the

price of differentiated product l, and I is the exogenously-given income

of the representative consumer. There are two parts of costs for firms to

produce differentiated products: one is the fixed cost F ; and the other is the

marginal cost c. Assume that these costs are both cost of labor. Therefore,

the cost function for producing ql differentiated products is

TCl(ql) = F + cql.

An equilibrium under monopolistic competition must satisfy the fol-

lowing conditions:

(1) given income and market price, the consumer chooses a con-

sumption bundle that maximizes the consumer’s utility;

(2) given the consumer’s choice, firms of differentiated products

(each of whom is a monopolist of its own product) chooses

a monopoly price or output to maximize its profit;

(3) firms can enter and exit freely: the point at which the market

profits are zero determines how many firms enter the mar-

ket.

First, for consumer maximization,

max
q1,··· ,qL

(
L∑
l=1

qρl

)1/ρ

s.t.
L∑
l=1

plql = I. (9.4.9)
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The Lagrangian function of the above optimization problem is

L(q1, · · · , qL;λ) =
(

L∑
l=1

qρl

)1/ρ

− λ

(
L∑
l=1

plql − I

)
.

The first-order condition is:

(
L∑
l=1

qρl

) 1−ρ
ρ

qρ−1
l = λpl, l = 1, · · · , L;

L∑
l=1

plql = I,

thus, we obtain that

λ =

(∑L
l=1 q

ρ
l

) 1
ρ

I

and

ql =
(
pl
I

) 1
ρ−1

(
L∑
l=1

qρl

) 1
ρ−1

.

From the demand function above, we can solve for the price elasticity

of demand for products in monopolistic competition as

η ≡ −∂ ln ql
∂ ln pl

= 1
1 − ρ

.

Second, for each firm, its decision is to solve the following optimization

problem,

max
pl

Dl(pl)pl − cDl(pl) − F.

We then obtain that

pl = c

1 − 1
η

= c

ρ
.

By symmetry, we have

ql = q = I

Lpl
= Iρ

Lc
.

At the equilibrium point, the profit of each monopolistic competitive
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firm is 0, and thus we obtain the equilibrium number of firms by

I

L
(1 − ρ) = F.

Consequently,

L∗ = I(1 − ρ)
F

and

q∗
l = Fρ

(1 − ρ)c
.

From the above analysis, we can conclude that the larger is the elasticity

of substitution ρ, the lower is the price, the smaller is the number of firms,

and the greater is the output of differentiated products; the higher is the

fixed cost, the smaller is the number of firms, or the fewer is the product

varieties, the greater is the output; and the rise of revenue will increase

the number of firms, but it has no effect on the price and quantity of the

products.

9.5 Oligopoly

In perfect competition, the interaction among firms is indirectly affected

by the relationship between market price and profit. Now we discuss the

direct interaction of a few firms that produces all or most of the output of

some product. Such a market is called the oligopoly. The study of this issue

is grounded almost entirely on the game theory. Many of the specifications

of market interactions are clarified with the concepts of game theory . The

purpose of this section is to elucidate how the market power of a firm is de-

termined under different circumstances. The so-called market power refer-

s to the extent to which the firm’s pricing can deviate from the marginal

cost. It will also affect the welfare level of the market. In the following, we

will first discuss static oligopolistic competition, then dynamic oligopolistic

competition, and finally oligopolistic competition under asymmetric infor-

mation.
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9.5.1 Price Competition: Bertrand Model

The simplest and most basic static price competition model of oligopoly

was proposed by the French economist Joseph Bertrand in 1883, so is called

the Bertrand model. When the market structure of a monopoly is broken,

competition arises among firms. If their strategic means is price competi-

tion, what will the interactions among them be like? What is the market

equilibrium?

We first assume that there are only two firms in the market which are

symmetric to each other. They produce homogeneous products with the

same marginal cost c, and the market demand function is q = D(p). We

will find that in such a symmetric price competition and interactive equi-

librium, the equilibrium prices of the two firms are both the marginal cost,

which is the same as the outcome of perfect competition. At this point,

adding just one competitor will make the market power of the original mo-

nopolist completely reduce to zero. The enlightenment of this model is

that when two rival firms compete, they should not immediately engage in

a price war. The price war is the most direct form of competition, which

often results in a lose-lose outcome.

When firm 1 and firm 2 are in price competition, the profit of firm i is

πi(pi, pj) = (pi − c)Di(pi, pj),

where Di(pi, pj) is the demand faced by firm i given the prices of itself

and its opponent (i.e., pi and pj), respectively. Since the products of the

two firms are homogeneous, the demand faced by firm i is characterized as

follows:

Di(pi, pj) =



D(pi), if pi < pj ,

1
2
D(pi), if pi = pj ,

0, if pi > pj .

The objective of firm i is to choose pi to maximize πi(pi, pj).

The Bertrand equilibrium (p∗
i , p

∗
j ) is a (pure strategy) Nash equilibrium,
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i.e., when the opponent chooses p∗
j , the best response function of firm i is

p∗
i = arg max πi(pi, p∗

j ) = (pi − c)Di(pi, p∗
j ).

Formally, the Bertrand price competition equilibrium is defined as:

Definition 9.5.1 (Bertrand Equilibrium) (pb1, pb2) is a Bertrand equilibrium, if

it satisfies the following conditions:

(i) given p2 = pb2, pb1 = arg maxp1 π1(p1, p
b
2);

(ii) given p1 = pb1, pb2 = arg maxp2 π2(pb1, p2).

We find that the Bertrand equilibrium outcome is unique (i.e., (p∗
1, p

∗
2) =

(c, c)). To see this, we consider three cases.

(1) When p∗
i > p∗

j > c, the strategy profile is not a Nash equi-

librium. This is because, in this case, the profit of firm i is

zero, and at least firm i has the incentive to deviate from

the choice. If the strategy of firm j is unchanged while pi =
p∗
j −ε > c, then the profit of firm i is (p∗

j −ε−c)D(p∗
j −ε) > 0.

(2) When p∗
i = p∗

j > c, the strategy profile is not a Nash equi-

librium. Suppose that the strategy of firm j is unchanged.

Then, if the strategy of firm i also remains unchanged, its

profit is
1
2

(p∗
j −c)D(p∗

j ); if firm i chooses a price p∗
i = p∗

j −ε >
c, its profit becomes (p∗

j − ε − c)D(p∗
j − ε) > 0. As long

as the positive number ε is sufficiently small, we will have

(p∗
j − ε− c)D(p∗

j − ε) > 1
2

(p∗
j − c)D(p∗

j ).

(3) When p∗
i > p∗

j = c, the strategy profile is not a Nash equilib-

rium. At this time, the profit of firm j is zero. If the strategy

of firm i is unchanged, when firm j chooses pj = c+ ε < p∗
i ,

where ε > 0, its profit becomes εD(c+ ε) > 0.

Therefore, the only possible pure strategy equilibrium is p∗
1 = p∗

2 = c,

which is indeed a pure strategy Nash equilibrium, because no firm can

obtain higher profit by unilaterally changing its pricing strategy.
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The equilibrium outcome of Bertrand competition is that all symmetric firms

set the price of the product at the marginal cost so that the profit of each firm is

zero, which is the same as in the case of perfect competition. However, it

is difficult to conceive that, in reality, firms do not have any market power

and cannot obtain positive profits in an industry with only a few firms.

As such, this is termed the“Bertrand Paradox”. The problem is that the

assumption of the Bertrand price competition model is far from reality in

several ways, and the conclusion of zero profit is based on the pure strategy

Nash equilibrium.

First, although the pure strategy Nash equilibrium is unique in a Bertrand

competition, for a certain type of the market demand function, there is a

continuum of mixed strategy Nash equilibrium with positive profit [see

Exercise 9.12].

Second, the two firms may not be identical or have asymmetric produc-

tion technology, which will affect the pattern of market competition. Sup-

pose that we allow an asymmetric Bertrand competition, c1 < c2. When

the marginal cost of firm 1 is much lower than that of firm 2 so that c2 >

pm(c1), firm 1 will obviously choose the monopoly price and firm 2 will exit

from the market. Indeed, the market will evolve into a monopoly. When

c2 5 pm(c1), whereas no pure-strategy Nash equilibrium exists, there exists

a mixed strategy Nash equilibrium where p∗
1 = c2, and p∗

2 randomizes on

an interval above c2. In this case, the profit of firm 1 is (c2 − c1)D(c2) > 0,

the profit of firm 2 is 0, and the market price is the higher marginal cost of

the two firms. This can be regarded as a variant of the symmetric outcome.

Third, in addition to the above symmetry assumption of production

technology, it also relies on other implicit and explicit assumptions that

will affect the Bertrand equilibrium outcome:

It is implicitly assumed that an oligopolistic firm can supply all of the

demands that it faces at the same marginal cost (i.e., when the price is the

marginal cost c, the oligopolistic firm can supplyD(c)). However, in reality,

firms are usually limited by their productivity. When the production capac-

ity of firm 1 is less than D(c), p∗
1 = p∗

2 = c is not an equilibrium. The reason

for this is as follows: if the pricing decisions of both firms are unchanged,

their profits are both zero; however, since firm 1’s production capacity is
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less than D(c), the product at price c is not available to some consumers

who will turn to firm 2 instead even if firm 2 raises the price slightly. In this

way, firm 2 can choose a price that is higher than the marginal cost, and it

has an incentive to deviate from marginal-cost pricing. In practice, the pro-

duction capacity needs to be accumulated through investment in advance.

At the same time, in many industries, the marginal cost will rise when the

output reaches a certain level. We often see the weakening of competition

due to the limitation of production capacity.

It is also assumed that a firm only makes one price decision. In real-

ity, however, firms usually can adjust prices. We learned in the previous

repeated game that if the interaction between firms is repeated, two firms

may choose to cooperate after all. For example, through price collusion,

they can both obtain greater benefits.

In addition, it assumed that the products of firms are homogeneous. In

reality, there will be differences between products produced by differen-

t firms. Some products have their own adherents, and thus even if their

prices are higher than other similar products, consumers will not change

the target of purchase. For example, suppose that there are two stores in

different locations. A slight decrease in price will not assist one store to

occupy the entire market, nor will a slight increase of price make the other

store lose all of its customers. As a result, p∗
1 = p∗

2 = c cannot be the price

competition equilibrium of differentiated products. Under the extreme cir-

cumstance, the product difference is so great that every firm is a monopolist

and each will choose a monopoly price, which is similar to the monopoly

market structure, as previously discussed.

As a consequence, the outcome of oligopolistic competition depends on

the intensity of competition, the latter of which further depends on various

environmental factors. Next, we discuss strategic choices and equilibria

when the above three assumptions are relaxed. Meanwhile, we retain the

symmetry assumption for the sake of discussion.
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9.5.2 Price Competition with Production Capacity Constraints

Suppose that the cost function C(q) satisfies C ′(q) > 0 and C ′′(q) > 0. In

this way, the production cost of the firm exhibits the property of decreas-

ing returns to scale, and the extreme case of decreasing returns to scale is

constrained production capacity. The production capacity q̄ implies that

the marginal cost will be infinitely large when the output exceeds q̄. In the

following, we examine price competition among firms under production

capacity constraints through an example.

We investigate the residual demand functions of firms under produc-

tion capacity constraints. If firm i charges a low price pi and the supply of

firm i under this price is less than the market demand (i.e., Si(p) < D(p)),

then there are consumers who cannot purchase from firm i, and other firms

will face positive residual demand.

Let p1 < p2. q̄1 ≡ S1(p1) denote the supply of firm 1 or the production

capacity constraint of firm 1. When q̄1 ≡ S1(p1) < D(p1), the residual

demand function of firm 2 is

D̃2(p2) =

D(p2) − q̄1, if D(p2) > q̄1,

0, if D(p2) 5 q̄1.

This rationing rule for residual demand is called the efficient rationing

rule, which means that consumers will first purchase products from low-

priced producers. Tirole (1988) also discussed some other rationing rules

in his classic textbook about industrial organization.

Let the market demand function be D(p) = 1 − p, and the inverse de-

mand function be p = P (q1 + q2). Assume that both firms are subject to

production capacity constraints (i.e., the output of firm i satisfies qi 5 q̄i).

The production capacity q̄i was obtained by firm i prior to price competi-

tion at a unit cost c0 ∈ [3/4, 1]. Once the production capacity is completed,

the marginal cost is 0 at an output below q̄i and becomes infinitely large at

an output greater than q̄i. Because of the monopoly profit maxp p(1−p) = 1
4

,

the ex-ante profit of firm i does not exceed
1
4

, and meanwhile c0 ∈ [3/4, 1],

and thus q̄i 5
1
3

.
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It can be shown that the Nash equilibrium caused by the price compe-

tition between the two firms is that both firms charge p∗ = 1 − (q̄1 + q̄2). In

other words, in the price competition, the two firms are doing their best to

produce in the market, and all of the demand can be satisfied. This is be-

cause even if one firm lowers the price, it cannot sell more products, which

means that lowering the price will only bring about less revenue, and thus

no firm will choose to lower the price. Now, we discuss whether the firms

have the incentive to raise the price.

There are two effects of raising the price. One effect is to obtain more

revenue from consumers falling inside of the margin who have positive net

consumer surplus. The other effect is to decrease the sales volume of the

product, or to drive away cutoff consumers whose net consumer surplus is

zero, and some other consumers falling inside of the margin. If the price set

by firm i satisfies p = p∗, the residual demand of firm i (here, we employ the

efficient rationing rule) is q = 1 − q̄j −p, and thus its profit is p(1 − q̄j −p) =
(1 − q − q̄j)q given p = p∗ and q 5 q̄i. In this way, the derivative of profit

(1 − q− q̄j)q with respect to q is 1 − 2q− q̄j = 0, since q 5 q̄i 5 1
3 and q̄j 5 1

3 .

This means that increasing the sales volume will increase the profits of

firms, or raising the price will have a negative impact on profits, and thus

we conclude that p∗ = 1 − (q̄1 + q̄2) is the Nash equilibrium of price compe-

tition for the two firms. Thus, under production capacity constraints, the

price competition of firms will lead to a price that just clears the market.

Meanwhile, the price is higher than the marginal cost and the firms obtain

a certain degree of market power. This outcome is the same as the Cournot

competition model, which will be discussed below. Under a more general

assumption, Kreps and Scheinkman (1983) proved that the two-stage (pro-

duction capacity accumulation and price competition) oligopolistic compe-

tition equilibrium outcome is consistent with that of Cournot competition.

In the following, we discuss Cournot competition, which is an oligopolistic

interaction model of quantity competition.
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9.5.3 Quantity Competition: Cournot Model

Now, we discuss quantity competition. This model is a simple duopoly

model introduced by the French economist Cournot in 1838, so known as

the Cournot model. For simplicity, suppose that two firms, i, j, are in quan-

tity competition, and their strategies are both to choose an output level so

that the price just clears the market. We can regard the quantity compe-

tition of firms as a two-stage competition. In the first stage, the two firms

choose their profit-maximizing production levels qi, qj . In the second stage,

the two firms engage in price competition. According to the price compe-

tition with production constraints discussed above, we know that the e-

quilibrium price can just clear the market at this moment. This two-stage

explanation was proposed by Kreps and Scheinkman (1983).

The profit of firm i can be written as

πi(qi, qj) = qiP (qi + qj) − Ci(qi).

Assume that the profit function πi is strictly concave and twice differ-

entiable to qi. Through the first-order condition for the output from the

profit function, the reaction function of firm i can be obtained, which is

qi = q∗
i (qj), such that ∂π

i(q∗
i (qj),qj)
∂qi

= 0 for q∗
i > 0.

Deriving the first-order condition for qi from the above profit function,

we have

P (qi + qj) − C ′
i(qi) + qiP

′(qi + qj) = 0.

We then obtain firm i’s Lerner index, which measures the market power

of the firm,

Li ≡ P − C ′
i

P
= −qiP

′

P
= −P ′Q

P

qi
Q

= di
ε
,

where di is the market share of firm i, and ε is the absolute value of demand

elasticity. Given the linear demand and cost, the equilibrium outcome can

be easily deduced.

For discussion purposes, we set a specific market demand function,

P (Q) = 1 − Q. The cost function of each firm is Ci(qi) = ciqi, and the
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first-order condition at this time is

1 − (qi + qj) − ci − qi = 0,

and thus we obtain that

qi = q∗
i (qj) = 1 − qj − ci

2

Solving the simultaneous reaction functions, we can derive

qi = 1 − 2ci + cj
3

.

In the equilibrium of quantity competition, the equilibrium profit of each

firm is

πi = (1 − 2ci + cj)2

9
.

From the above equilibrium we find that
∂qi
∂cj

> 0 and
∂πi
∂cj

> 0 (i.e.,

the output and profit of firm i increase with the increase of the cost of its

opponent). When its opponent firm j becomes weaker (i.e., its marginal

cost increases), the output of firm j will decrease, and thus firm i faces

more residual demand and higher production.

We can extend the competition between the two firms to n firms’ quan-

tity competition. For convenience of discussion, assume that firms are sym-

metric, and thus P (Q) = 1 − Q, Ci(qi) = cqi and Q =
∑n
i=1 qi. Then, the

first-order condition becomes 1 − Q − c − qi = 0. By symmetry, we obtain

the equilibrium output as

qci = q = 1 − c

n+ 1
,

the equilibrium profit as

πci = (1 − c)2

(n+ 1)2 ,

the consumer surplus as

CS = n2(1 − c2)
2(n+ 1)2 ,
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and the market price as

p = 1 − nq = c+ 1 − c

n+ 1
.

Note that p = cwhen n → ∞, this is exactly the case of perfect competition.

We can also investigate the relationship between the number of firms

and social welfare, defined as

W (N) ≡ CS(N) +Nπ(N) = (1 − c)2

2

(
1 − 1

(N + 12)

)
.

Then, it is easy to show that
d

dn
W (n) > 0 (i.e., the more are the oligopolistic

firms, the higher is the social welfare).

Dynamic Explanation of the Cournot Equilibrium

The Cournot equilibrium is a steady-state solution. Once the equilibrium

is reached, no firm will unilaterally choose to deviate. However, can the

Cournot equilibrium explain the actual output choices of firms in compe-

tition? Alternatively, if the output choices of firms are not at a Cournot

equilibrium, will the two firms adjust their strategies? Below, we explain

the equilibrium of static quantity competition with dynamic adjustment.

In period 1, firm 1 chooses a certain output. In period 2, firm 2 adjusts its

output to an optimal level according to the choice of firm 1. In period 3,

firm 1 adjusts its output to a new level according to the choice of firm 2.

Repeat this process infinitely, and we find that, regardless of what output

level the initial firm chooses, the final outcome of dynamic adjustment is a

Cournot equilibrium output. Figure 9.13 shows this dynamic adjustment

process. We also find that the convergence outcome does not depend on

the initial output choice.

If the two firms choose the output level not simultaneously, but sequen-

tially, is the competition equilibrium still a Cournot equilibrium? Next,

we discuss quantity competition equilibrium under sequential decision-

making.
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Figure 9.13: The convergence of the Cournot equilibrium.

9.5.4 Sequential Quantity Competition: Stackelberg Model

Stackelberg (1934) discussed sequential quantity competition, so known as

the Stackelberg Model. In an industry, the dominant firm 1 takes the lead

in choosing its output. After observing the output of firm 1, firm 2 chooses

its own output, and then the market clears.

For convenience, we assume that the market demand is Q(p) = 1 − p,

and the average cost of each firm is c. This is a standard dynamic game. So

we use subgame perfect Nash equilibrium as solution concept and adopt

the backward induction technique to find the equilibrium.

First, we analyze the action of firm 2. After observing the output of firm

1, firm 2 makes the optimal output decision as follows:

max
q2

(1 − q1 − q2 − c)q2,

from which we can obtain the best response of firm 2,

q2 = q∗
2(q1) = 1 − c− q1

2
.

Given the reaction function of firm 2, the optimal output choice of firm

1 is to solve the problem

max
q1

(1 − q1 − q∗
2(q1) − c)q1,
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from which we obtain that

qs1 = 1 − c

2
> qc1,

qs2 = 1 − c

4
< qc2,

ps < pc,

and the profits satisfy

πs1 > πc1,

πs2 < πc2,

where qci , p
c and πci are the output, price, and profit when the firms are in

the situation of Cournot competition. From comparison of the above mar-

ket equilibria, we find that there is a first-mover advantage in the quantity

competition.

Having discussed the one-shot interaction of firms, we next explore the

impact of multi-period interactions on market competition.

9.5.5 Dynamic Price Competition and Firm Collusion

When firms can conduct multiple pricing, an early price may affect subse-

quent ones. For instance, if a firm lowers its price, it may trigger a chain

reaction of price cuts, which as a result poses an incentive that constrain-

s the price cuts of firms. Chamberlin’s oligopoly model pointed out that

in the oligopoly of homogeneous products, when recognizing the strategic

dependence between them, firms can maintain the monopoly price through

tacit agreement without taking any specific measures so that each firm can

obtain higher profits. The tacit collusion between them is based on revenge

for unilateral deviations, such as in a ruthless price war.

The validity of collusion between firms depends on the effectiveness of

the penalty mechanism for deviations. The so-called effectiveness refers to

the intensity of punishment against deviant participants, such that no firm

is willing to deviate from the collusive price. This depends on numerous

factors, such as observability of information and coordination during the
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punishment process. Here, we adopt a simple infinitely repeated game to

describe the collusion mechanism between firms.

When interactions are repeated infinitely, a significant change occurs in

comparison with the static interaction because there is no explicit final peri-

od at this time. Every firm, when making decisions at any period, needs to

consider the impact of previous decisions on subsequent price competition.

Of course, there is more than one equilibrium strategy at this time.

For example, the firm charges the marginal-cost pricing in each period

(i.e., p1t = p2t = · · · = c, t = 1, 2, · · · ), which is a Nash equilibrium of

the infinite-period price competition. This is because if the opponent sets

a price at the marginal cost in each period, then the firm will not obtain

a higher profit by unilaterally changing the price. However, the above e-

quilibrium is not the only equilibrium. When δ = 1
2

, the grim strategy

discussed in Chapter 7 is also a Nash equilibrium (in fact it is a subgame

perfect Nash equilibrium) in infinite-period price competition.

The grim strategy: in the first period, each firm chooses p11 = p21 = pm,

where pm is the monopoly price; in period t = 2, for firm i, if the prices

previously chosen by its opponent are the monopoly price (also known as

the collusive price), i.e., pjs = pm, ∀s < t, then firm i chooses pit = pm; if

the price previously chosen by its opponent deviates from the monopoly

price, i.e., there exists s < t, such that pjs ̸= pm, then firm i chooses pit = c

in period t.

This price strategy is called the“grim strategy”because once the op-

ponents have ever deviated from the collusion price, the firm will never

forgive them, i.e., in each subsequent period, it will choose the marginal-

cost pricing to punish the opponents.

Let us now determine whether such a strategy can become a Nash e-

quilibrium. If the firm decides to follow the collusive arrangement and

chooses the monopoly price in each period, then the total discounted profit

of firm i is
πm

2
(1 + δ + δ2 + · · · ) = πm

2(1 − δ)
. If firm i deviates from the col-

lusive arrangement in period t, then the maximal profit that it can obtain

in this period is πm. In subsequent periods, because its opponent chooses

to price the product at the marginal cost, its profit is zero. Then, the total
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discounted profit of firm i is

πm

2
(1 + δ + δ2 + · · · + δt−1) + δtπm 5 πm

2
(1 + δ + δ2 + · · · + δt−1)

+δt
[
πm

2
(1 + δ + δ2 + · · · )

]
= πm

2
(1 + δ + δ2 + · · · ).

If δ = 1
2

,
πm

2
(1 + δ + δ2 + · · · ) = πm

2(1 − δ)
= πm,

then the grim strategy is a subgame perfect Nash equilibrium.

From the above analysis, it can be seen that there is a possibility of

price collusion between oligopolists to make the market price the same as

the monopoly price. In the collusion mechanism, some strict punishment

mechanisms exist to restrict the deviation of firms.

Although the infinite-period assumption seems to be unrealistic, as long

as there is no clear cut-off time in the market competition, assuming that

there is a probability p̂ that firm i will coexist with its opponents in the

market in the next period, we can write the discount rate as δ̂ = δp̂. Then,

the total discounted profit of firm i is
∑
t δp̂

tπit(pit, put) =
∑
t δ̂
tπit(pit, put).

Therefore, as long as δ̂ = δp̂ = 1
2

, there will exist the same equilibrium of

price collusion as in the above case.

By the Folk Theorem in Chapter 7, we know that repeated games usual-

ly have infinitely many equilibria. In the above context, we find that firms

choosing the price p1t = p2t = p ∈ [c, pm] in each period also constitute

a (subgame perfect) Nash equilibrium. A similar grim strategy exists, i.e.,

each firm chooses the price p in the beginning, and if any opponent deviates

in a period, then in each period afterwards, other firms choose marginal-

cost pricing as a punishment for the opponent.

From the above multi-period price competition model, we find that in

the case of repeated games, firms have the incentive and ability to choose

collusion, which further explains why in reality we do not see the same

intense price competition as in the Bertrand equilibrium. Next, we will

relax the assumption of the homogeneity of products. We will find that in
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the market of heterogeneous products, price competition still brings market

power to firms.

9.5.6 Price Competition under Horizontal Product Differentiation:
Hotelling Model

The characterization of product differentiation is usually based on differ-

ences in consumer valuations. There are primarily two kinds of value dif-

ferentiations. One is horizontal differentiation, i.e., the value of products

is different for different consumers. The other is vertical differentiation,

i.e., the value of a product is the same for all consumers, but is different

from that of other products. For price competition of differentiated prod-

ucts, we mainly adopt the method of the spatial location model. First, we

discuss the horizontal differentiation model.

For many commodities in real life, such as clothes with different colors

and styles, different people have heterogeneous preferences, just as con-

sumers in different locations have different preferences for stores in differ-

ent locations. Harold Hotelling (1895—1973, see his biography in Section

9.6.1) developed a location model to characterize the price competition of

differentiated products in a paper published in the Journal of Political Econ-

omy in 1929.

Assume that the city is a line of length 1, and consumers are uniform-

ly distributed in the city with a density of 1. Two stores are located at

both ends of the city. Store 1 is located at x = 0, and store 2 is located at

x = 1. The marginal cost of each store is c. Assume that the traffic cost is

a quadratic function of distance (i.e., for consumers located at x, the traf-

fic cost of going to store 1 is tx2), and the traffic cost of going to store 2 is

t(1 − x)2. The product prices of the two stores are p1 and p2, respectively.

Assume that the price difference is not large to the extent that one store

faces no demand (i.e., |p1 − p2| < t). This assumption can be verified at the

Nash equilibrium point. If there is no demand for one store, as long as the

price is not lower than the marginal cost, the store has an incentive to lower

the price. The consumer has a unit demand for the product, and his val-

uation of the product s̄ is sufficiently large. This assumption ensures that
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all consumers will purchase at the equilibrium point. In addition, in the

Hotelling model, the products of the two stores are homogeneous, except

the location.

According to these assumptions, there always exists one consumer in

the city who is indifferent between the two stores. This consumer is called

the cutoff consumer, whose position depends on the prices of the two s-

tores. Let the cutoff consumer’s position be x(p1, p2), satisfying

p1 + tx2(p1, p2) = p2 + t(1 − x(p1, p2))2.

The demand for store 1 is

D1(p1, p2) = x(p1, p2) = p2 − p1 + t

2t
.

The demand for store 2 is

D2(p1, p2) = 1 − x(p1, p2) = p1 − p2 + t

2t
.

The profit of store i is

πi(pi, pj) = (pi − c)pj − pi + t

2t
.

Solving the first-order condition with respect to pi, pj + c+ t− 2pi = 0.

Then, the reaction function of store i is

Ri(pj) = pj + c+ t

2
.

By symmetry, we can obtain the Nash equilibrium price as pc1 = pc2 =
c+ t, and the profits as π1 = π2 = t

2
.

Here, the value t characterizes the degree of product differentiation.

When t = 0, the products supplied by the two stores are homogeneous, and

the equilibrium price is equal to that of the Bertrand equilibrium. When

t > 0, both stores obtain positive profits under price competition, and the

greater is the product differentiation, the greater is the market power of the

stores.
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9.5.7 Vertical Product Differentiation Model

Consumers usually have a preference ordering for the characteristics of

products. A typical example of this is quality. Although consumers gen-

erally like high-quality products in pratice, the value of product quality

possessed by each consumer is different. Use x to describe different types

of consumers. For convenience of discussion, assume that the consumer

type x is uniformly distributed in [0, 1], and the marginal cost of firms is

zero. Here, we discuss not only price competition under product differen-

tiation, but also under product positioning.

In price competition under vertical product differentiation, suppose that

the product qualities of firm A and B are a and b, respectively, where a < b,

and the prices of the two firms are pA and pB , respectively. Let the utilities

of the two products for consumers of type x be

Ux(i) ≡

ax− pA, i = A,

bx− pB, i = B.

Consider the competitive equilibrium when both firms have positive

market shares. Let x̂ be cutoff consumers, satisfying

x̂ = pB − pA
b− a

.

Then, x̂ is the market share of firm A, and 1 − x̂ is that of firm B.

The competitive equilibrium prices of the two firms are

p∗
A = arg max

pA

pAx̂; p∗
B = arg max

pB

pB(1 − x̂).

Their reaction functions are

pA = RA(pB) = pB
2

; pB = RB(pA) = b− a+ pA
2

.

As a consequence, we obtain that

p∗
A = b− a

3
; p∗

B = 2(b− a)
3

.
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Therefore, x̂ = p∗
B − p∗

A

b− a
= 1

3
. At Nash equilibrium, the profits of the two

firms are

πA(a, b) = b− a

9
; πB(a, b) = 4(b− a)

9
.

We further discuss the choice of product positioning. Consider the fol-

lowing two-stage game and find the subgame perfect Nash equilibrium.

In the first stage, the two firms choose product quality, and in the second

stage, they engage in price competition.

If the two firms choose product quality a and b, respectively, in the first

stage where a 5 b, then the equilibrium of the above price competition is

the Nash equilibrium in the second stage of the game.

In the first stage, the profits of firm A and B are

πA(a, b) = b− a

9
; πB(a, b) = 4(b− a)

9
.

Since
∂πA(a, b)

∂a
= −1

9
,

∂πB(a, b)
∂b

= 4
9
,

we have a∗ = 0 and b∗ = 1, which means that in price competition under

vertical product differentiation, firms will maximize their product differ-

ences from others.

In the second stage, the prices of the two firms are p∗
A = 1

3
and p∗

B = 2
3

,

both larger than the marginal cost, which means that in the price competi-

tion under vertical product differentiation, firms will weaken the intensity

of price competition.

The above oligopolistic competition models assume that the market

structure is exogenous. However, in practice, entering or exiting the mar-

ket is an important dimension of firms’ strategy. In the following, we will

consider competition in the dynamic market structure.

9.5.8 Market Entry Deterrence

Bain (1956) summarized four factors that affect the market structure, which

also affect the ability of incumbent firms to maintain market power.

The first factor is economies of scale. The minimum efficient scale of a



624 CHAPTER 9. MARKET THEORY

firm (or the output at the lowest average cost) is a crucial factor to deter-

mine the consumer demand of the industry. For example, in a firm that

exhibits increasing returns to scale, its minimum efficient scale may be in-

finitely large. If we have C(q) = f + cq, AC(q) = f

q
+ c as the decreasing

function of the output, then only a few firms can survive in the market. In

an industry with increasing returns to scale, the cost is the least when all of

the output is produced by one firm.

The second is the absolute advantage of cost. Incumbent firms may

have more advanced technologies obtained through experience (the pro-

cess of learning by doing) or R&D (patenting or innovation). Incumbent

firms may accumulate capital to lower their production costs, or prevent

entrants from acquiring important inputs by contracts with suppliers, or

raise the cost of their competitors.

The third is the advantage of product differentiation. Incumbent firms

obtaining patents for their products can prevent other firms from using or

imitating their technologies. They can also use the first-mover advantage

to gain brand loyalty of consumers.

The fourth is capital input requirement. Before a firm enters the market,

it needs to finance the investment. When financing is difficult, for exam-

ple, banks are unwilling to lend due to risk considerations, or if incumbent

firms increase the intensity of potential competition in the product mar-

ket and thus lower the potential entrant’s expectation for profitability, the

willingness of the potential entrant to enter the market will decrease.

Some barriers to entry are exogenous, such as those granted by law, and

not controlled by incumbent firms; whereas, some others are endogenous,

and caused by strategic choices of incumbent firms. When an incumbent

faces the threat of entry, she may take the following three actions.

(1) Entry blockade: it is difficult for the entrant to obtain the

resources needed to establish a business, and the incumbent

faces little threat of entry.

(2) Entry deterrence: the incumbent has successfully thwart-

ed the entry by adjusting her strategy to lower the entrant’s

expectation of profitability.
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(3) Entry accommodation: the incumbent finds it more prof-

itable to allow (a few) entrants to enter the market than set-

ting barriers to entry.

Below, we investigate an example of endogenous barrier.

Consider an industry consisting of two firms. Firm 1 (the incumben-

t) chooses a capital level k1 (or the previous“production capacity”) and

fixes on it. Firm 2 (the potential entrant) observes k1 and chooses a capital

level k2. If k2 = 0, this means that firm 2 has not entered the market. Under

the dynamic market structure, the competition of the two firms is to choose

their own capital levels successively. Let the output be the previous pro-

duction capacity. The game between the two firms is a two-stage game and

then we can use subgame perfect Nash equilibrium as solution concept.

The first stage: firm 1 chooses a capital level of k1.

The second stage: having observed k1, firm 2 chooses a capital

level k2. If firm 2 chooses to enter (i.e., k2 > 0), it must bear

a fixed entry cost f .

If not considering whether firm 2 enters, this model is the previously

discussed Stackelberg model.

Let market demand be linear, and the market price be p = 1 − k1 − k2.

At this point, the profit of firm 1 is π1(k1, k2) = k1(1 − k1 − k2); the profit of

firm 2 is π2(k1, k2) = k2(1 − k1 − k2) − f if it enters; otherwise, it is zero.

In the second stage, if firm 2 enters (i.e., k2 > 0), its choice is the best

response to firm 1’s action, i.e.,

k2 = R2(k1) = 1 − k1
2

.

In the first stage, expecting the response of firm 2, firm 1 chooses the

optimal capital level from the problem:

max
k1

k1(1 − k1 −R2(k1))

or

max
k1

k1

(
1 − k1 − 1 − k1

2

)
.
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We use the Stackelberg model to obtain the subgame perfect Nash equi-

librium, k∗
1 = 1

2
, k∗

2 = 1
4

, π1 = 1
8

, π2 = 1
16

− f . When f >
1
16

, we know that

firm 2 will not enter, or there is a market entry blockade. When f <
1
16

, if

firm 1 allows firm 2 to enter, then it will choose the outcome of the Stack-

elberg equilibrium, i.e., k∗
1 = 1

2
, and firm 2 will also choose k∗

2 = 1
4

. The

profit of firm 1 is then π1 = 1
8

, and the profit of firm 2 is
1
16

− f > 0.

If firm 1 deters the entry of firm 2, it will choose a capital level kb1, such

that the best choice of firm 2 is k∗
2 = 0. kb1 satisfies maxk2 k2(1 − kb1 − k2) −

f = 0, and thus we obtain kb1 = 1 − 2
√
f > 1/2. The profit of firm 1 is

π1 = (1 − 2
√
f)[1 − (1 − 2

√
f)]. When f → 1

16 , π1 → 1
4

= πm, a deterrence

strategy is a better choice for firm 1. When f → 0, an accommodation

strategy is a better choice for firm 1.

We can verify that, when f 5
(

1
4

−
√

2
8

)2

, firm 1 will choose an accom-

modation strategy; otherwise, it will choose a deterrence strategy.

9.5.9 Price Competition with Asymmetric Information

The above discussion of oligopolistic competition is based on the assump-

tion that the competition game is one of complete information. However,

in practice, firms usually face some state variables that cannot be accurate-

ly observed when making decisions, such as the cost of an opponent, the

market demand or market potential, because some information is privately

owned, such as the case in which a firm knows its own production tech-

nology better than its opponents do. George J. Stigler (1911-1991, see his

biography in Section 9.6.2) is one of the founders of information economic-

s. He believed that it costs too much for consumers to obtain information

about quality, price and purchase timing of goods, so that consumers are

neither able nor willing to obtain sufficient information, resulting in differ-

ent prices for the same commodity. According to Stigler, such result was

inevitable and did not require human intervention. In this subsection, we

discuss oligopolistic competition and dynamic market entry under asym-

metric information. For a detailed discussion of such principal-agent issues

under incomplete information, see the chapters on incentive mechanism
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design theory in Part VI.

In real market competition, firms have information that their opponents

do not possess. In game theory, we can characterize the types of firms

according to the information that is not known to their competitors. Below,

we discuss a simple price competition model with asymmetric information.

Suppose that there are two firms in the market, firm 1 and firm 2, which

produce differentiated products and engage in price competition with each

other. Firms’ demand functions are public information in the form of linear

function Di(pi, pj) = a − bpi + dpj , 0 < d < b. The information on the

cost of firm 2 is public, but the cost information of firm 1, also called the

type, is private. There are two possibilities for the marginal cost of firm

1, cl1 < ch1 , with a prior distribution prob(c1 = cl1) = β and prob(c1 =
ch1) = 1 − β. Therefore, firm 2’s expectation for firm 1’s marginal cost is

ce1 ≡ βcl1 + (1 − β)ch1 . The marginal cost of firm 2 is c2.

The ex-post profit of firm i is

πi(pi, pj) = (pi − ci)(a− bpi + dpj).

The two firms choose the prices at the same time. To solve for the Bertrand

price equilibrium under asymmetric information, we use Bayesian-Nash

equilibrium as a solution concept. Let p∗
2 be the equilibrium price of firm 2,

and pl1 and ph1 be the equilibrium price strategies of firm 1 at marginal costs

cl1 and ch1 , respectively.

Now, we solve for the best response functions of the two firms.

For firm 1, given marginal cost c1 and the pricing of firm 2, p∗
2, from

profit maximization, we obtain

a− 2bp1 + dp∗
2 + bc1 = 0,

and then

p1 = R1(p2; c1) = a+ dp∗
2 + bc1

2b
.

Therefore,

pl1 = a+ dp∗
2 + bcl1

2b
.
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Similarly, given marginal cost c2 and the pricing of firm 2, p∗
2, we have

ph1 = a+ dp∗
2 + bch1

2b
.

The expectation of firm 2 for firm 1’s pricing is then

pe1 = βpl1 + (1 − β)ph1

= a+ dp∗
2 + bce1

2b
.

For firm 2, given firm 1’s choice, its objective is to choose a price p2 to

maximize the expected profit

Eπ2 = β(p2 − c2)(a− bp2 + dpl1) + (1 − β)(p2 − c2)(a− bp2 + dph1)

= (p2 − c2)(a− bp2 + dpe1).

From the first-order condition, we can obtain the reaction function of

firm 2:

p∗
2 = R2(p1) = a+ bpe1 + bc2

2b
,

and thus we obtain the Bayesian-Nash equilibrium:

p∗
2 = 2ab+ ad+ 2b2c2 + bdce1

4b2 − d2 ;

pl1 = a+ dp∗
2 + bcl1

2b
;

ph1 = a+ dp∗
2 + bch1

2b
.

We compare the above case with the case of symmetric information.

When information is symmetric, we can obtain that

p∗
2(c1 = cl1) = 2ab+ ad+ 2b2c2 + bdcl1

4b2 − d2 < p∗
2;

p∗
2(c1 = ch1) = 2ab+ ad+ 2b2c2 + bdch1

4b2 − d2 > p∗
2.

We can verify that, in the case of symmetric information, the profit of
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firm 2 is higher because the equilibrium profit of firm 2 is a convex function

of firm 1’s cost.

For firm 1, we have that
dπ1
dp2

= ∂π1

∂p2
= d(p1 − ci) > 0. Consequently,

when the cost of firm 1 is ch1 , it will have an incentive to disclose its type

information if there is an opportunity to disclose; when the cost of firm

1 is cl1, it will deliberately conceal its cost information. This is because a

firm with high cost can avoid competitors from choosing more aggressive

low-price strategies by disclosing information, since the reaction functions

of firms are increasing functions in the costs of its opponents. If a firm

experiences a stage of information disclosure prior to setting its price, the

act of releasing (verifiable) information conveys that it is a high-cost type.

9.5.10 Limit Pricing with Asymmetric Information: Dynamic Mar-
ket Structure

The traditional view is that an incumbent firm can block entry through

low prices. Bain, in his 1949 article, proposed the concept of limit pricing,

also known as entry preventing pricing. If there is a positive relationship

between the price prior to entry and the degree of entry, the incumbent firm

will have an incentive to lower the price. A pertinent question becomes:

why can low prices prevent firms from entering? Bain asserted that the

information delivered to potential entrants by low prices was poor market

profitability, or high competition intensity, or that incumbent firms have

low-cost advantages.

Consider the situation in which price acts as a signal mechanism pro-

posed by Milgrom and Roberts (1982). Assume that, in order to convey her

private information of competitiveness or cost level, the incumbent firm

chooses a price to deliberately reveal its type information to form an entry

barrier. This game constitutes a typical signaling game.

Assume that there are two periods. In the first period, there is a monop-

olistic incumbent firm 1 that chooses a price. In the second period, firm 2

decides whether or not to enter. If firm 2 enters, there is a duopoly market

structure in the second period; if not, firm 1 remains a monopolist. The cost

of the incumbent firm is private information, and it has two possible values.
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Assume that the probability of low cost is β, and the probability of high cost

is 1 − β. If firm 2 does not enter the market, it does not know the private

information of firm 1. If it enters, firm 2 will get the cost information of firm

1. Meanwhile, entry is irreversible. The significance of introducing private

information here is that we can study how private information influences

the market entry decision and no longer has an impact post-entry.

Let M t
1(p1) be the profit of the incumbent firm when her type is t ∈

{l, h} and price is p1. Let plm and phm be the monopolistic prices when the

incumbent has low cost and high cost, respectively. From the monopoly

pricing, we know that plm < phm. Let M l
1 and Mh

1 be the monopoly profits at

low cost and high cost, respectively, i.e., M t
1 ≡ M t

1(ptm), t ∈ {l, h}.

If firm 2 enters, the cost information of firm 1 can be observed by firm

2, and the two firms engage in price competition in the second period. Let

Dt
1 and Dt

2 be the profits of the two firms after entry, where t ∈ {l, h}. To

make the discussion meaningful, suppose M t
1 > Dt

1, ∀t; Dh
2 > 0 > Dl

2.

In other words, for the incumbent, monopoly is superior to oligopolistic

competition; if the incumbent is a high-cost type, the entrant possesses an

advantage and can earn positive profits, while if the incumbent is a low-

cost type, firm 2 will not wish to enter. The discount rate is δ for both firms.

Since the incumbent aims to obtain a monopoly profit, she hopes that

her price choice in the first period can make the potential entrant believe

that she is a low-cost type. The problem here is whether or not the incum-

bent has the ability to achieve the goal. Consider the following signaling

mechanism. Firm 1 chooses a low price pl1 to send the low-cost signal. As a

result, the profit of the incumbent may decrease in first period, but such a

reduction can bring returns in the second period, i.e., the incumbent can ob-

tain a monopoly profit, as the potential entrant believes that the incumbent

is a low-cost type and thus abandons entering the market. Now, the issue

becomes whether the potential entrant will believe that the incumbent is

low-cost without observing pl1. The answer may not be readily apparent.

This is because even a high-cost incumbent may be able to imitate the low-

price type, so that price signals may not reflect the type information. To an-

alyze this problem, we usually use equilibrium concepts of the incomplete

information dynamic game, such as“perfect Bayesian equilibrium”.
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In Chapter 6, we discussed signaling games. The equilibria of a sig-

naling game can be divided into three categories: separating equilibrium;

pooling equilibrium; and semi-separating equilibrium (in which some type-

s of signal senders will adopt mixed strategies). Here, we focus on the first

two categories.

First, we analyze the separating strategy. The separating strategy means

that different types of the incumbent will send different signals and satis-

fy incentive compatibility constraints. Since a separating equilibrium is a

perfect Bayesian equilibrium, it is necessary to define the belief of the sig-

nal receiver off the equilibrium path. In separating equilibrium, a firm of

high-cost type does not need to imitate a low-cost type through low prices.

She will choose a high-cost monopoly price phm in the first period where her

profit is Mh
1 , while in the second period, her profit is the oligopoly profit

Dh
1 , and thus the total discounted profit is Mh

1 + δDh
1 . Let pl1 be the price

of the low-cost incumbent in the first period. Since it is a separating equi-

librium, it should be ensured that the high-cost type does not choose pl1 to

imitate the pricing strategy of the low-cost type.

Therefore, the incentive compatibility constraint for the high-cost type

is

Mh
1 + δDh

1 =Mh
1 (pl1) + δMh

1 ,

or

Mh
1 −Mh

1 (pl1) = δ(Mh
1 −Dh

1 ), (9.5.10)

where Mh
1 (pl1) is the profit of the high-cost type in the first period when it

chooses price pl1.

In the following, we consider the strategic choice of a low-cost type. S-

ince the incumbent can at least set a monopoly price plm in the first period

and the worst case in the second period is that there are entrants, the mini-

mum profit that he or she can obtain is M l
1 + δDl

1. If choosing pl1 in the first

period, the total discounted profit of the low-cost type of the incumbent is

M l
1(pl1) + δM l

1. As a consequence, the incentive compatibility constraint for

the low-cost type to choose pl1 is

M l
1(pl1) + δM l

1 =M l
1 + δDl

1,



632 CHAPTER 9. MARKET THEORY

or

M l
1 −M l

1(pl1) 5 δ(M l
1 −Dl

1). (9.5.11)

Assume that the separating equilibrium under asymmetric information

is different from the pricing of various types of the incumbent under sym-

metric information (when the high-cost and low-cost types choose phm and

plm, respectively). In other words, under asymmetric information, if the

low-cost type chooses plm, the high-cost type has an incentive to pool, i.e.,

Mh
1 −Mh

1 (plm) < δ(Mh
1 −Dh

1 ). (9.5.12)

In (9.5.10) and (9.5.11), pl1 is in a range [≈p1, p̃1], where p̃1 < plm. Con-

sequently, to achieve the separating equilibrium, the pricing of a low-cost

type must be sufficiently lower than her monopoly price, which is the cost

of preventing the high-cost firm from pooling, in order to prevent market

entry in the second period.

The reason why a high-cost type does not mimic the pricing of a low-

cost type is that imitation leads to more decrease of profit in the first period

than the gain.

When M l
1 − Dl

1 > Mh
1 − Dh

1 , i.e., the revenue obtained by the low-

cost type through low prices to prevent entry (the increase in profit from

oligopoly to monopoly) is more than that of a high-cost type, or

d

dc1
[M1(c1) −D1(c1)] < 0,

where

M1(c1) = max
p1

[(p1 − c1)Dm
1 (p1)],

D1(c1) = max
p1

(p1 − c1)D1(p1, p
d
2).

According to the envelope theorem, we have

dM(c1)
dc1

= −Dm
1 (pm1 ),

dD1(c1)
dc1

= −D1(pd1, pd2) + (pd1 − c1)∂D1(pd1, pd2)
∂p2

∂pd2
∂c1

.
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Thus,

d

dc1
[M1(c1) −D1(c1)] = −Dm

1 (pm1 ) +D1(pd1, pd2) − (pd1 − c1)∂D1(pd1, pd2)
∂p2

∂pd2
∂c1

.

If the monopoly demand of the incumbent is greater than the duopoly

demand, and
∂pd2
c1

> 0, which means that the increasing cost of the incum-

bent will make the opponent raise the price, then we have
d

dc1
[M1(c1) −

D1(c1)] < 0.

Figure 9.14 illustrates the separating equilibrium. In the separating in-

terval, a low-cost type is most likely to choose p̃1, because this is the sep-

arating price closest to the low-cost monopoly price in the interval, which

is of the lowest (credible) signaling cost and also will not be mimicked by

the high-cost type. Since the high-cost type’s price choice will always re-

veal her own type, she will choose the monopoly price in the first period.

Therefore, the most reasonable separating equilibrium in this equilibrium

series (the continuum of separating equilibria) is that in the first period, the

low-cost type chooses p̃1, and the high-cost type chooses phm.

We next examine whether the pooling equilibrium exists. One condi-

tion for the existence of pooling equilibrium is βDl
2 + (1 − β)Dh

2 < 0,

or β >
Dh

2
Dh

2 −Dl
2

, i.e., the probability of the low-cost type is sufficiently

large, which means that firm 2 will not choose to enter the market if there

is no information. If both types choose the same price, the potential en-

trant cannot distinguish the types of the incumbent based on the price. In

this case, the potential entrant in the second period has the same belief for

both types as the initial belief. Another condition for pooling equilibri-

um to exist is that both types have the incentive to choose the same price.

For the high-cost incumbent, the condition of choosing the same price p1 is

Mh
1 − Mh

1 (p1) = δ(Mh
1 − Dh

1 ). For the low-cost type, it has no incentive to

show the difference from the high-cost type, because firm 2 will not enter

when firm 1’s type cannot be distinguished.

One conclusion in Chapter 6 on game theory is that only separating

equilibrium satisfies the intuitive criterion in the signaling game.

Here, we use a simple example to solve the above signaling game in
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M1 −M1 (p1)

Figure 9.14: Separating equilibrium.

which the price transmits the cost information. Assume that the inverse

demand function is p = 10 − Q, and the incumbent firm 1’s marginal cost

c1 is private information. Assume that the prior distribution of the type of

firm 1 is prob(c1 = 0) = prob(c1 = 4) = 0.5. The cost of the potential entrant

firm 2 is c2 = 1, which is public knowledge. The market entry cost is 9,

and the time discount rate is δ = 1. Suppose that the oligopolistic market

competition is quantity competition. The time structure of the game is as

follows: in the first period, firm 1 is the market monopolist and chooses the

price p1; in the second period, firm 2 chooses whether to enter the market. If

firm 2 enters, it will pay a fixed cost 9, and the two oligopolists will engage

in quantity competition; if not, firm 1 is still a monopolist and chooses the

price p2 in the second period.

We use simple formulas for equilibrium profits of quantity competition

under linear demand, which are

π1(c1, c2) = (a− 2c1 + c2)2

9
,

π2(c1, c2) = (a− 2c2 + c1)2

9
− f,

where a = 10. Table 9.1 depicts the profits of the two firms.

If under price p1 in the first period, firm 2 cannot distinguish the type of

the firm 1 (which is the pooling equilibrium), the expected revenue of firm

2 to enter the market is 0.5 × (−1.9) + 0.5 × 7 > 0. As a result, firm 2 will
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Type of the incumbent: The potential entrant
Enter Not enter

Low cost c1 = 0 πc1(0) ≈ 13, πc2(0) ≈ −1.9 πm1 (0) = 25, π2(0) = 0
High cost c1 = 4 πc1(4) = 1, πc2(4) = 7 πm1 (4) = 9, π2(4) = 0

Table 9.1: Firms’ profits under limit pricing.

choose to enter.

We discuss p1(c1) in the first period that satisfies the intuitive criterion.

In other words, when p1 = p1(c1 = 0), firm 2 believes that firm 1 is the

low-cost type, or the high-cost type will not mimic the low-cost type, and

meanwhile, p1(c1 = 0) is the price that brings the highest profits to the low-

cost type among all separating equilibria. We can verify that p1(c1 = 0) =
4.17, because 9.99 = πm1 (p1 = 4.17, c1 = 4) + πm1 (4) = (10 − 4.17)(4.17 −
4) + 9 < πm1 (4) + πc1(4) = 10.

9.5.11 Concluding Remarks on the Oligopolistic Market

From the above all kinds of models in the oligopolistic market, we find that

different market environments, including information distribution (sym-

metric or asymmetric), one-shot or repeated games, product properties (ho-

mogeneous or heterogeneous), sequence of actions, different strategy s-

paces (price decisions, quantity decisions, product decisions), etc., will all

affect the final strategic choices of the firms, and impact the final market

price and the profits of the firms. Because the firms possess market power

(i.e., the pricing ability of deviating from the marginal cost), generally the

more are the market transactions, the greater is the social welfare. There-

fore, an in-depth analysis of the oligopolistic market may be beneficial to

provide certain useful suggestions for government policies. For example,

it can provide a logical basis for the design of competition policy to control

and restrain the excessive market power of incumbents and control price

collusion among firms.

We have a simple classification of market structure, but in pratice, an in-

dustry may experience different market structures in various periods. For

instance, when a new product is just released, the market is likely to be a

monopoly. With the imitation of other firms, the market structure slow-



636 CHAPTER 9. MARKET THEORY

ly becomes an oligopoly. In the mature period of the industry, firms will

increasingly emerge and the market may be transformed into a monopo-

listically competitive market, or even close to a perfectly competitive mar-

ket. In the evolution process, the welfare of consumers and producers will

change, as well.

The models discussed above only describe a small part of firm interac-

tions in the market. Indeed, many other interesting problems exist, such

as corporate R&D and innovation incentives, related patent system design,

compatibility of technical standards in the network economy, network ex-

ternality, relationships between upstream and downstream firms, platfor-

m economy, etc., which constitute an extensive branch of microeconomics

(i.e., industrial organization). Readers who are interested in these issues

can refer to certain classic textbooks, including Tirole’s seminal work The

Theory of Industrial Organization published in 1988. Some of the examples in

our discussion are based on this book.

9.6 Biographies

9.6.1 Harold Hotelling

Harold Hotelling (1895—1973) is a widely recognized figure in the fields of

statistics, economics, and mathematics. Although his papers on economics

were not many, he made a profound contribution to economic sciences. He

is considered one of the leaders of the Pareto school.

Hotelling originally majored in journalism when studying at the Uni-

versity of Washington, but later turned to mathematics to carry out related

research in the field of topology, and received his Ph.D. degree in 1924. He

then received an appointment at Stanford University. His most important

contribution to statistical theory was multivariate analysis and probabili-

ty. His most influential paper is“The Generalization of Student’s Ratio”,

which is now known as Hotelling’s T 2. He also played a key role in the de-

velopment of principal component analysis and canonical correlations. He

was elected as a Fellow of the U.S. National Academy of Sciences in 1972

and a member of the Accademia Nazionale dei Lincei in Rome in 1973.
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The Edgeworth model described the instability of the market with only

two sellers, but in 1929, Hotelling challenged this view and proposed the

Hotelling model. He believed that price or output instability was not the

basic feature of oligopoly. The Hotelling model is obviously a criticism of

Edgeworth and Bertrand. Hotelling disagreed with the idea that consumer-

s’ sudden change of choice from one seller to another constituted a feature

of the market. He expected that the decrease in price would, in fact, not

attract a great number of consumers. Therefore, he asserted that as long as

consumers turned to other sellers gradually, the market would remain sta-

ble. At the same time, he proposed the theory of spatial competition, which

divides product difference into different points in the line segment of space,

and thus product difference has a testable empirical meaning. One well-

known example of this is the previously discussed Hotelling model that

was published in the Journal of Political Economy in 1929. In 1931 he pub-

lished “The Economics of Exhaustible Resources”, which is considered

to be a hallmark of the birth of resource economics.

Hotelling taught Milton Friedman statistics and Kenneth J. Arrow math-

ematical economics. He also helped Arrow to transfer from the Department

of Mathematics to the Department of Economics, and was an important in-

fluence in his change of research interest from mathematical statistics to

economic theory.

9.6.2 George J. Stigler

George J. Stigler (1911-1991) was a prominent American economist, eco-

nomic historian, and professor at the University of Chicago. He and Milton

Friedman were known as the leaders of the Chicago School of Economic-

s. He was the 1982 Laureate in the Nobel Memorial Prize in Economic

Sciences. Stigler grew up in Seattle, in the U.S., where he received his edu-

cation until he graduated from the University of Washington with a bache-

lor’s degree in business administration, and later earned a master’s degree

in business administration from Northwestern University. After that, he

stayed at the University of Washington for more than one year before he

went to the University of Chicago to pursue his doctoral degree. In 1936—
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1938, he served as an Assistant Professor at Iowa State University. In 1938—

1946, he taught at the University of Minnesota, and was promoted to Full

Professor in 1941. In 1946, Stigler learned that his alma mater, the Uni-

versity of Chicago, wanted him to attend an interview for the recruitment

of professors, where he met another professor candidate, Friedman, who

finally received the only professor vacancy. Stigler then came to Brown

University and taught there until 1947. From 1947 to 1958, he taught at

Columbia University, during which time his economic thought gradually

matured. In 1958, when a professor vacancy came up at the University of

Chicago, Stigler finally received the position of Full Professor there. He

spent more than 20 years at the University of Chicago, during which time

the Chicago School of Economics took the lead in academia.

Stigler believed that it was a pleasant and uniquely stimulating life to

be a devoted intellectual and dedicate himself to“boring”economics re-

search. Indeed, he intended to avoid all non-academic occupations and

activities. He had endless enjoyment from teaching, research and academic

exchanges, and left numerous invaluable works, including Production and

Distribution Theories (1941), The Theory of Competitive Price (1942), The Theory

of Price (1946, 1952, 1964), Domestic Servants in the United States, 1900-1940

(1947), Trends in Output and Employment (1947), Employment and Compensa-

tion in Education (1950), The Price Statistics of the Federal Government (1961),

The Intellectual and the Marketplace (1962), A Dialogue on the Proper Econom-

ic Role of the State (coauthored work, 1963), Capital and Rates of Return in

Manufacturing Industries (1963), Essays in the History of Economics (1965), The

Organization of Industry (coauthored work, 1968), The Behavior of Industrial

Prices (coauthored work, 1970), Modern Man and His Corporations (1971), The

Citizen and the State: Essays on Regulation (1975), etc.

Stigler was a representative of the Chicago School of Economics in the

area of microeconomics. He was one of the founders of information eco-

nomics. He contended that it was too costly for consumers to obtain infor-

mation on quality, price and timing of purchasing, so that consumers were

neither able to nor willing to obtain sufficient information, thus resulting

in different prices for the same commodity. According to him, this was

inevitable and a normal market phenomenon that did not require human
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intervention. Stigler’s view renewed the assumption that there was only

one price for a commodity in the market theory of microeconomics. In the

research process, Stigler also extended this analysis to the labor market.

These studies established a new research area called the information eco-

nomics. Since his paper The Economics of Information was published in 1961,

the study has become a prominent subject in today’s economic discipline,

producing many Laureates of the Nobel Memorial Prize in Economic Sci-

ences. Another contribution of Stigler was his criticism of social regulation

policies. His frequent comments on public policies were often cited by po-

litical figures. His most well-known contribution was to demonstrate that

the free market mechanism remains the most efficient system in existence

today. He utilized the latest research results of econometrics, and provided

many examples in which government regulations that aimed to improve ef-

ficiency were actually ineffective or deleterious. He also advocated the free

market system, and opposed monopoly and state intervention. He was the

primary founder of a new and important research area called the regulato-

ry economics. Friedman praised Stigler as a pioneer who used economic

and analytical methods to study legal and political issues.
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9.7 Exercises

Exercise 9.1 In an industry with unchanged technology, the long-run cost

function of perfectly competitive firms is LTC = q3 − 10q2 + 175q, and the

market demand function is Q = 1000 − 2P .

1. Find the long-run supply function of the industry.

2. Find the number of firms at the long-term equilibrium.

3. If a consumption tax of $50 per unit is levied, find the number of firms

at the new long-run equilibrium.

4. If the above consumption tax is replaced by a sales tax of 50% of the

product price, find the number of firms at the new long-run equilib-

rium.

Exercise 9.2 The demand function of a perfectly competitive market is q =
a− bp, and the supply function is q = c+ dq, where a, b, c, d > 0.

1. If consumers are levied a specific duty t, how will social welfare change?

Why?

2. If the above specific duty t is now levied on producers instead, how

will social welfare change? Why?

3. If consumers are given a specific subsidy s instead, how will social

welfare change? Why?

Exercise 9.3 The demand function of a perfectly competitive market is qd(p),

and the supply function is qs(p), where qd(p) is a decreasing function of p,

and qs(p) is an increasing function of p.

1. Consider the case of specific duty. Are the equilibrium quantity and

price finally obtained by producers when taxing consumers the same

as those when taxing producers? Justify your answer.
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2. Consider the case of specific subsidy. Are the equilibrium quantity

and price finally obtained by producers when subsidizing consumers

the same as those when subsidizing producers? Justify your answer.

3. Consider the case of ad valorem duty. Are the equilibrium quantity

and price finally obtained by producers when taxing consumers the

same as those when taxing producers? Justify your answer.

Exercise 9.4 There is a unique monopolistic firm in the market, who can

adopt first-degree price discrimination.

1. Will the firm choose the output level according to the decision princi-

ple MR = MC? Why?

2. Will the firm choose to produce where the market demand is inelas-

tic? If it is possible, give an example; if not, justify your answer.

Exercise 9.5 A monopolist has two geographically separated markets with

demand functions q1 = 30 − 2p1 and q2 = 25 − p2, respectively, its marginal

cost is 3, and the fixed cost is zero.

1. If the monopolist can implement third-degree price discrimination,

what will its price, output, and profit be?

2. If price discrimination is prohibited by law, then what will its price,

output, and profit be?

3. If the demand of market 2 increases and its demand function becomes

q2 = a− p2 for a > 25, answer questions 1 and 2 again.

Exercise 9.6 There is only one firm in the market with a demand function

q = a− bp and a marginal cost c satisfying c < a/b. The firm sells through a

unique retailer. It first sets a wholesale price w, and then the retailer sets a

retail price p after observing the wholesale price. The retailer’s cost is zero.

Prove the following: The retail price in the market is higher than the price

set by the vertically integrated monopolist.

Exercise 9.7 There is a unique monopolistic firm in the market, and its in-

verse demand function (in each period) is p = a − bq. The marginal cost
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in period 1 is c1; as the monopolist is“learning by doing”, the marginal

cost in period 2 is c2 = c1 −mq1. Suppose that a > c and b > m.

1. What is the output of the monopolist in each period?

2. If the output in each period is chosen by a social planner, will she

choose the output on the principle that“the price equals the marginal

cost”in period 1? Why?

3. If the output in period 2 is determined by the monopolist, will the so-

cial planner choose an output level in period 1 higher than the result

obtained in question 1? Why?

Exercise 9.8 Suppose that the monopolist and consumers both live for in-

finite periods. The value v by consumers is uniformly distributed over

[0, 1/(1 − δ)] (i.e., the valuation in each period is subject to a uniform distri-

bution on [0, 1]). If a consumer with value v purchases at price pt at time t,

his utility is δt(v−pt). The monopolist’s intertemporal profit is
∑∞
t=1 δ

tptqt.

Find the linear stable equilibrium: in a certain period, when the price is p,

any consumer with a value higher than w(p) = λp will purchase, where

λ > 1, while consumers with lower valuations will not. Conversely, in a

certain period, if consumers with value higher than v purchase while oth-

ers do not purchase, then the monopolist charges a price p(v) = µv, where

µ < 1.

1. When only consumers with values lower than v purchase, the mo-

nopolist charges pt, pt+1, · · · , and consumers follow the above linear

rule. Find the intertemporal profit of the monopolist starting from

period t.

2. Prove the following: The optimization of pt by the monopolist leads

to a linear rule, where λ is determined by 1 − 2λµ+ δλ2µ2 = 0.

3. Write down the indifference equation of consumers with valuation

w(p).

4. Prove the following: When δ approaches 1, the monopolist’s profit

approaches 0.
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Exercise 9.9 Consider an economy consisting of two consumers and two

commodities. The utility function of type A consumers is u(x, y) = 6x −
x2 +y, and the utility function of typeB consumers is v(x, y) = 8x−x2 +2y.

The price of commodity y is 1, the income of each consumer is 5, 000, and

the numbers of the two types of consumers are both n.

1. Suppose that the monopolist’s marginal cost of producing commodi-

ty x is c, and it cannot implement any price discrimination. Find the

optimal price and output. What range is c in when the monopolist

sells the commodity to both types of consumers?

2. Suppose that the monopolist adopts a“two-part tariff”under which

consumers must first pay a lump-sum fee k, so that they can purchase

at a unit price p. If p < 4, what is the highest lump-sum fee k for type

A consumers? If a type A consumer pays k and then purchases at a

unit price p, how many units will he purchase?

3. If the economy only has n type A consumers and no type B con-

sumers, what will p and K be when the profit is maximized?

4. If c < 1, and both types of consumers purchase, what will p and k be

when the profit is maximized?

Exercise 9.10 A retailer purchases products from a wholesaler and sells the

products to consumers. The retailer holds all sales channels, and thus it is a

monopolist in the retail market. The market demand is p = 20−q. Suppose

that the retailer cannot implement price discrimination. The wholesaler

is a monopolist in the wholesale market, and its production cost is c(Q) =
3Q2+10. The wholesaler charges the retailer a two-part tariff: in addition to

the wholesale price w per unit of product, there is a fixed entry fee F (note

that when the retailer does not purchase products from the wholesaler, i.e.,

when the retailer chooses to withdraw from the market, there is no need to

pay the entry fee F ). Because the wholesaler does not have retail channels,

it cannot directly sell its products to consumers. The retailer’s goal is to

maximize her profit p(q) = wq − F by choosing q under the premise of

given (w,F ). To facilitate the solution, we assume that the retailer will exit
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from the market if and only if its profit is negative, and the wholesaler

chooses a wholesale price w < 20.

1. Express the retailer’s profit as a function of w, q, and F .

2. If the retailer chooses to enter the market, find the output q∗ when the

retailer’s profit is maximized, where q∗ is a function of w.

3. After obtaining q∗, express the retailer’s price p and its profit as func-

tions of w.

4. What conditions shall F and w satisfy so that the retailer will not exit

from the market?

Exercise 9.11 Suppose that the product market is perfectly competitive,

and that the production of this product requires two factors of production

(i.e., labor and capital). A firm is a price-taker in the labor market, but it is

the only buyer in the capital market, and thus can determine the price of

capital.

1. Write the firm’s profit maximization problem and give the first-order

condition.

2. If the firm becomes a price-setter in both labor and capital factor

markets, how will the first-order condition of its profit maximization

problem change?

3. If the firm becomes a monopolist in the product market and a price-

setter in the capital factor market, how will the first-order condition

of its profit maximization problem change?

Exercise 9.12 There are two oligopolists in the market who engage in a

Bertrand competition. The market demand function x(p) is continuous and

strictly decreasing in p, and there exists a p̄ < ∞, such that x(p) = 0 for all

p = p̄. The marginal costs of the two firms are both c > 0.

1. Prove that there is a pure strategy Nash equilibrium p∗
1 = p∗

2 = c.

2. Prove that the above pure strategy Nash equilibrium is also the u-

nique Nash equilibrium.
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3. If the market demand function becomes x(p) = p−η, prove that there

is a mixed strategy Nash equilibrium, such that both firms have posi-

tive profits. (Hint: Let the firms choose prices according to the distri-

bution function F (p) = 1 − m−η(m−c)
p−η(p−c) for p = m; F (p) = 0 otherwise,

and m > cm, and check that F is a mixed strategy Nash equilibrium

where prices announced always exceed marginal cost c. )

Exercise 9.13 Consider the following product differentiation model: p1 =
a− bq1 − dq2 and p2 = a− dq1 − bq2, where a, d > 0, b = d. Suppose that the

marginal costs of the two firms are c1 and c2, respectively.

1. If the two firms engage in quantity competition, find the equilibrium

outputs.

2. Derive the demand functions of the two firms.

3. If the two firms engage in price competition, find the equilibrium

prices.

Exercise 9.14 Consider the following product differentiation model: p1 =
a − b(q1 + λq2) and p2 = a − b(λq1 + q2), where a, b > 0 and 0 5 λ 5 1.

Suppose that the marginal costs of the two firms are both c, and the two

firms make decisions simultaneously, where firm 1 sets the price and firm

2 sets the output. Find the equilibrium outputs and prices of the two firms.

Exercise 9.15 There exist two oligopolists in the market, and their cost func-

tions are c1 = 2q2
1 and c2 = q2

2 , respectively. The demand function is

q = 10 − 2p.

1. If the two firms do not form a cartel, solve for the optimal outputs

and profits of the two in a Cournot competition.

2. If the two firms form a cartel, solve for the profit-maximizing outputs.

How will the two firms distribute the profits?

3. If the two firms’ cost functions change to c1 = 2q1 and c2 = q2, answer

questions 1 and 2 again.
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Exercise 9.16 There are two oligopolists in the market who engage in a

Cournot competition. The marginal costs of the two firms are both 2. The

market demand function is q = 14−3q. Before they decide on their outputs,

firm 1 can choose whether to adopt a new technology with a fixed cost of

10 to reduce its marginal cost to 0. Firm 2 can observe whether firm 1 has

adopted the technology.

1. Write the strategy sets of the two firms in this game.

2. Will firm 1 use this technology? What are the equilibrium outputs of

the two firms, respectively?

Exercise 9.17 There are J oligopolists in the market who engage in a Cournot

competition. The market demand function is q = a− 2p, and the marginal

cost of firm i(i = 1, 2, · · · , J) is ci.

1. Find the equilibrium outputs of the J firms.

2. Suppose that an upcoming policy will increase the marginal costs of

all firms by a constant c0. Will they support the policy? Why?

3. Suppose that an upcoming policy will increase the marginal costs of

all firms by a fixed percentage of t. Will they support the policy?

Why?

Exercise 9.18 There are two oligopolists in the market. Their marginal cost-

s are both c, and the inverse demand function is p = a − bq. The two firms

compete in a Stackelberg game, where firm 1 is the leader, and firm 2 is the

follower.

1. Solve for the output levels in the subgame perfect equilibrium (i.e.,

(q∗
1, q

∗
2)).

2. Is (q∗
1, q

∗
2) a Nash equilibrium of this game? Why?

3. If these two firms now compete in a Cournot game, prove that the

Nash equilibrium of the Cournot game is also the Nash equilibrium

of the Stackelberg game.
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Exercise 9.19 There are three oligopolists in the market. The demand func-

tion is q = a − bp, their marginal costs are all c, and the fixed costs are all

zero. If the three firms make output decisions, respectively, in the following

orders, solve for the optimal output level of each firm.

1. The three firms choose their outputs simultaneously.

2. Firm 1 first chooses its output, firm 2 chooses its output after observ-

ing firm 1’s output, and firm 3 chooses its output after observing the

outputs of firm 1 and firm 2.

3. Firm 1 first chooses its output, and after observing firm 1’s output,

firm 2 and firm 3 choose their outputs simultaneously.

4. Firm 1 and firm 2 first choose their outputs simultaneously, and firm

3 chooses its output after observing the outputs of firm 1 and firm 2.

Exercise 9.20 There are two oligopolists in the market. The market de-

mand function is q = 500 − 4p. Firm 1 and firm 2 have constant marginal

costs of 6 and 10, respectively.

1. If firm 1 sets the market price of the product and firm 2 is a price-taker,

find the equilibrium outputs and profits of the two firms.

2. If firm 2 sets the market price of the product and firm 1 is a price-taker,

find the equilibrium outputs and profits of the two firms.

3. Is firm 1 or firm 2 willing to become a price leader? Why?

4. If the two firms engage in a Cournot competition, find the equilibri-

um outputs and profits, and compare them with the results of ques-

tions 1 and 2. What do you find?

Exercise 9.21 There is a leader firm and a follower firm in the market. The

market demand function is q = 10 − 2p. The leader firm 1 sets the market

price of the product, and then the follower firm 2 takes the price as given.

This is called the“price leadership model”. The cost functions of the two

firms are TC1 = 0 and TC2 = 2q2
2 , respectively.
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1. Explain the difference between the price leadership model and the

Stackelberg model.

2. Solve for the outputs and profits of the leader firm and the follower

firm.

3. If the follower firm’s cost function becomes TC2 = aq2, where a is a

constant, solve for the output and profit of the leader firm.

Exercise 9.22 Suppose that the cost for each firm to enter the market is c >

0, and the following conditions are satisfied: (1) the equilibrium output of a

single firm decreases in the number of firms; (2) the total output increases

in the number of firms; and (3) the equilibrium price is always above the

marginal cost. Prove the following: From the perspective of social welfare,

the symmetric Cournot model of free entry leads to excessive entry.

Exercise 9.23 Consumers are uniformly distributed on an axis of length 1,

and each consumer only purchases one unit of goods. In the first stage,

two firms choose their locations. Firm 1 is a > 0 away from the left end

of the axis, firm 2 is b > 0 away from the right end, and a + b 5 1. In the

second stage, the two firms choose their prices p1 and p2, respectively. The

transportation cost is quadratic, i.e. , the transportation cost for a consumer

at x to go purchase from firm 1 is cx2, while that for a consumer at y to go

purchase from firm 2 is cy2. The fixed costs and marginal costs of the two

firms are all zero. Prove the following: a = b = 0.

Exercise 9.24 (Rotemburg and Saloner, 1986) There are two oligopolists in

the market who produce homogeneous products, and both have a constant

marginal cost c. The two firms engage in infinitely repeated Bertrand com-

petition with a discount factor δ. The market demand function is q = a− p,

and the intercept a randomly fluctuates: in each period, the probability of

a = ah is λ, and the probability of a = al is 1 − λ. al < ah and the demands

in different periods are independent. The monopoly prices at two demand

levels are denoted by ph and pl.

1. Solve for the δ∗, such that for δ = δ∗, the two firms can employ the

trigger strategy to maintain the above-mentioned monopoly prices in

the subgame perfect Nash equilibrium.
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2. For 1/2 < δ < δ∗, find the highest price p(δ), such that in the subgame

perfect Nash equilibrium, the two firms can use the trigger strategy

to maintain the price p(δ) at the high demand level, and pl at the low

demand level.

Exercise 9.25 There are two oligopolists in the market who produce ho-

mogeneous products and engage in the incomplete information Cournot

competition. The market demand function is q = a − bp. The marginal

cost of firm 1 is ch with a probability λ and cl with a probability 1 − λ. The

marginal cost of firm 2 is ch with a probability η and cl with a probability

1 − η.

1. If both firms know exactly their own marginal costs and know only

the probability distribution of the opponent’s marginal cost, find the

equilibrium outputs of the two firms.

2. If the two firms know only the probability distribution of the marginal

costs of their own and their opponents, find the Bayesian-Nash equi-

librium outputs of the two firms.

Exercise 9.26 Suppose that consumers and firms are uniformly distributed

on a unit circle. A consumer chooses one firm to purchase one unit of its

product, and his transportation cost is tx, where x represents the distance

between the consumer and the chosen firm. The market is free to enter, and

the fixed entry cost for each firm is f .

1. Find the equilibrium number J of firms.

2. Find the socially optimal number m of firms. What is the numerical

relation between m and J? Provide an explanation for your answer.

3. If the consumer’s transportation cost is changed to tx2, answer ques-

tions 1 and 2 again.

Exercise 9.27 (Selten, 1973) There are J firms in the market, and their marginal

costs are all zero. The market demand function is q = 1 − p. The firms de-

cide whether to join a cartel. The cartel members determine the output

distribution standard and strictly enforce it, and they engage in a Cournot
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competition with other firms. Prove the following: If J 5 4, then all firms

will join the cartel; but if J = 6, the cartel will only include some of the

firms.

Exercise 9.28 There are J firms in the market, their marginal costs are all c,

and the market demand function is q = a− p.

1. Consider a merger of two firms. Prove the following: If J = 2, they

can profit from it; but if J = 3, the merger is unprofitable.

2. Now, consider a merger of k firms. Find the necessary and sufficient

conditions for them to profit from the merger.

Exercise 9.29 In the limit pricing model in this chapter, it is assumed that

the marginal cost of the potential entrant is public knowledge. Now, con-

sider the following model, in which the marginal cost of the potential en-

trant is private information. Specifically, let the demand function be p =
10 − 2q, the prior distribution of the incumbent firm 1’s type be p(c1 = 0) =
α and p(c1 = 4) = 1 − α, and the prior distribution of the potential entrant

firm 2’s type be p(c2 = 1) = β and p(c2 = 2) = 1 − β. The market entry

cost is F , and the time discount rate is δ = 1. Find possible pooling equilib-

ria and separating equilibria, and verify whether they satisfy the intuitive

criterion.
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The rest of the textbook will examine the allocation of resources in more

realistic economic environments. The main theme is how to solve the issue

of“market failure”. These will be the topics discussed in the remaining

chapters of this textbook.

The market we have discussed so far is basically a frictionless ideal

one. In addition, we directly or implicitly assume that markets are perfectly

competitive except for monopolistic competition, oligopoly, and monopoly

discussed in Chapter 9.

Chapters 3-10 and Chapter 13 are primarily positive analysis of the mar-

ket economy, discussing how rational consumers and firms make optimal

decisions, and how the market operates in various structures (perfect com-

petition, monopolistic competition, oligopoly). Chapters 11-12 primarily

conduct normative analysis on perfectly competitive markets, and discuss

the free market’s optimality, rationality, uniqueness, and universality from

different aspects.

In Chapters 11 and 12, we have discussed the internal logic between

competitive equilibrium (Walrasian equilibrium) and efficiency (Pareto op-

timality). The concept of competitive equilibrium provides us with an ap-

propriate notion of market equilibrium for competitive market economies.

The concept of Pareto optimality offers a minimal test that any socially op-

timal economic outcome should pass since it is a formulation of the idea

that there is no further improvement under given social resources, and it

conveniently separates the issue of economic efficiency from more contro-

versial (and political) questions regarding the ideal distribution of wealth

across individuals.

The important results and insights obtained in Chapters 11-12 are the

First and Second Fundamental Theorems of Welfare Economics, the Com-

petitive Equilibrium Core Property Theorem, the Core Equivalence Theo-

rem, and the Fairness Theorem. These results demonstrate the optimality,

rationality, and uniqueness of a perfectly competitive market from differ-

ent perspectives. The First Fundamental Theorem of Welfare Economics

reveals how a market economy results in Pareto optimal allocations under

certain conditions, such as perfect competition, pursuit of personal inter-

ests (local non-satiation preferences), no externalities, no public goods, no
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increasing returns to scale, no transaction cost, and complete information.

When these conditions are not satisfied, the market often fails, resulting in

inefficient allocations of resources. It is, in some sense, the formal expres-

sion of Adam Smith’s claim about the“invisible hand”of the market.

The Second Fundamental Theorem of Welfare Economics goes even fur-

ther. It states that under the same set of conditions plus convexity and

continuity conditions, all Pareto optimal outcomes can in principle be im-

plemented through the market by appropriate redistribution of initial en-

dowments, and then “letting the market work”. The First and Second

Fundamental Theorems of Welfare Economics show that Pareto optimal al-

locations and competitive market equilibrium allocations are equivalent in

a certain sense, while the Economic Core Theorem reveals that a free com-

petitive market system is also socially stable.

Equity of resource allocations is also an important criterion to an econ-

omy. The Fairness Theorem discussed in Chapter 12 gives specific sugges-

tions on how to achieve efficiency and equity of resource allocations simul-

taneously. If all economic agents have an equal starting point for compe-

tition, even if this starting point is not Pareto efficient, it can achieve both

Pareto efficient and equitable allocations through market competition. The

Core Equivalence Theorem is profound, in that it shows that the market

system is the unique institutional arrangement that results in efficient al-

locations in the presence of sufficient economic freedom and competition.

In other words, it demonstrates that under the objective and realistic con-

straints of individuals pursuing their self-interests, as long as individuals

choose to voluntarily cooperate and exchange freely under sufficient com-

petition, even if no economic system has been established beforehand, the

result approaches a competitive market equilibrium allocation.

All of these conclusions show the effective role of the free market in

resolving problems associated with fairness and justice. Through the joint

role of the government, the market and society, we can achieve resource

allocations with both efficiency and equity. These results provide a theo-

retical support for inheritance tax, compulsory education, environmental

protection, anti-monopoly legislation, and financial regulation, thus pro-

viding inspiration for solving the problem of the excessive gap between
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the rich and the poor, as well as correcting market failures.

As mentioned, all of these theoretical conclusions are based on their pre-

conditions, and the perfectly competitive market is just an ideal state with-

out frictions, which basically does not exist in reality, and thus they belong

to the category of benchmark theories. However, this research method, like

that of natural science, is of critical importance. Like the ideal state without

any friction in physics, it does not exist at all in practice, but it provides a

benchmark or a reference system for the study of practical problems with

various frictions. Similarly, the perfect competition situation analyzed by

the general equilibrium theory is relevant for thinking about, studying, and

testing a real market economy. It provides directions and strategies for the

choice and reform of economic systems, establishes a benchmark or a refer-

ence system to study more realistic markets, and it is the starting point for

people to think of and test the results of market economies. In particular,

if a market economy fails to achieve efficiency of resource allocation, it will

inevitably violate at least some of the conditions of the First Fundamental

Theorem of Welfare Economics.

Of course, from micro- and incomplete information perspectives, the

market still faces many problems that often lead to“market failure”. It is

important to analyze the circumstances under which a market may fail and

how a government should act. Provided the governance boundary of the

market mechanism is clarified, we do not unconditionally refute the role of

the market, or go from one extreme to the other, but instead know the cir-

cumstances under which the market can play a decisive role in allocating

resources, and how a government can play an effective and appropriate,

but not unconstrained, role in cases of market failures. Of course, the basic

premise remains that individuals are rational, and governments should not

directly intervene in economic activities, but rather establish rules or sys-

tems to correct market failure. This is due to that, with incomplete informa-

tion, direct intervention in economic activities (e.g., using a large number

of state-owned enterprises, arbitrary restrictions on market access, and in-

terference with commodity prices) often does not work well. In this regard,

the last two parts of the textbook, which are devoted to the study of design-

ing incentive compatible mechanisms, can play a significant role in making
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the market more efficient and solving market failure problems.

Therefore, the contents of the remainder of the textbook can be viewed

as a further expansion of these topics. From Chapter 14 to the last chapter

of the textbook, the focus of our discussion will shift from the superiority

of the frictionless and freely competitive market system to issues that may

arise from market economies, with further exploration on how to remedy

the failures. To this end, we will examine the various situations in which

the actual market deviates from the ideal perfect competition situation, and

the so-called“market failure”issues resulting in Pareto inefficient alloca-

tions, and we will provide corresponding solutions for market failure.

In the current part, we will study externalities and public goods in

Chapter 14 and Chapter 15, respectively. In both cases, the actions of one a-

gent directly affect the utility or production of other individuals in the econ-

omy. We will see that these nonmarketed“goods”or“bads”generally

result in Pareto inefficiency. It turns out that private markets frequently do

not work well in the presence of externalities and public goods. We will

consider situations of incomplete information which also tend to result in

Pareto inefficient outcomes in Parts ?? and ??.



Chapter 14

Externalities

14.1 Introduction

In this chapter we deal with economic environments with externalities. The

so-called externality refers to situations in which economic activities (pro-

duction or consumption activities) of some individuals affect the utility or

production levels of other individuals, which further affects their own e-

conomic activities. The basic conclusion is that the presence of externality

generally leads to Pareto inefficient outcomes, resulting in market failure.

The fundamental reason for this is that some factors affecting economic ac-

tivities are not properly considered. Even if the requirements of perfect

competition and economic freedom are satisfied, allocation is often ineffi-

cient, and thus other institutional arrangements or mechanisms are needed

to improve the allocation of resources.

Externality constitutes an objective and ubiquitous phenomenon. Specif-

ically, externality consists of two categories: consumer externality and pro-

duction externality, and they are the same in nature.

14.1.1 Consumption Externality

In the previous analysis, utility, satisfaction, and welfare of individuals are

only related to their own consumption levels, but not to the consumption

choices of others. In fact, however, in many situations, the utility level of an

agent will also be affected by the consumptions of others, while the agent

659
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cannot control the consumption of others, and thus the agent’s utility level

is passively affected. Externality can be either negative, which may hurt an

agent, or positive, which may benefit the agent. Indeed, such examples in

the real world are manifold.

Example 14.1.1 The following examples about consumption externalities

are commonly seen in practice.

(i) One person’s quiet environment is disturbed by another per-

son’s noise.

(ii) Mr. A dislikes Mr. D smoking next to him.

(iii) Mr. B’s satisfaction decreases as Mr. C’s consumption level

increases, because Mr. B envies Mr. C’s affluent life, which

leads to the mentality of resenting the rich.

(iv) It does not matter if you are feeling well or not. You do

not want others feeling well. If someone else is feeling well,

you will not feel well. Seeing others feel well makes you

unhappy.

(v) You watch the television purchased by your roommates.

(vi) You accept a free ride to work from your colleague.

(vii) Your clothes are influenced by the style of other people.

(viii) Your utility from using a phone, WhatsApp, and email

depends on whether other people have a corresponding de-

vice.

Environmental impacts or pollution in cases (i) and (ii) are typical exter-

nalities, and individual behaviors that pollute the environment can have a

negative impact on the health of others. In addition, there are always some

people who are jealous of others around them. Benefiting oneself at the

cost of others in case (iv) may be understandable, and harming others at

the cost of oneself (all perish together) may also be understandable, but,

as shown in case (iii), harming others without benefiting oneself is more

commonplace. Although it is somewhat difficult to understand, it may be

interpreted by negative consumption externalities. Cases (v) and (vi) are
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examples of positive externalities, while cases (vii) and (viii) are examples

of consumption network externalities.

These examples illustrate that externality is a ubiquitous phenomenon.

Some may deny the existence of externality with the example of looking

at beauty without cost. In fact, there are two misunderstandings in this

assertion. First, whether the price is zero is not used in defining externality.

Second, to see beauty more often, such as models in fashion shows or movie

stars in films, it is actually necessary to pay for admission tickets.

Formally, we express the existence or absence of consumption external-

ities as follows:

ui(xi) : without preference externality;

ui(x1, ...,xn) : with preference externality,

in which other individuals’ consumption choices affect individual i’s utili-

ty.

14.1.2 Production Externality

Production externality means that the level of one firm’s output is affected

by the production activities of other economic agents. Production external-

ity effects can be either negative or positive.

The following lists some examples for production externality:

Example 14.1.2 Here are some typical examples about production exter-

nalities in practice.

(i) Sewage discharge from chemical plants can affect the pro-

duction of surrounding fishermen. In particular, downstream

fishing can be adversely affected by pollutants emitted from

an upstream chemical plant.

(ii) The machine noise of the factory near to you disturbs your

equanimity.

(iii) Smog from factories could be equivalent to smoking one

pack of cigarettes per day.
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(iv) A problem with a bank has caused panic and a significan-

t decline in currency liquidity. In the face of bank failures

caused by the financial crisis, everyone is afraid to deposit,

thus affecting the real economy.

(v) Beekeeping and farms have mutually positive production

externalities. The flowers in the farm benefit the beekeepers,

which in turn facilitates pollination of crops.

(vi) University brands can benefit all students, including those

with a low GPA, making it relatively easier for them to find

jobs.

(vii) The R&D of an enterprise may increase the productivity

and, in turn, the output levels of other firms. In the IT indus-

try, the fixed cost of production is large, and the marginal

cost is small, but the positive externality of the product is

very large. As such, knowledge has a typical externality.

In order to facilitate innovation, intellectual property pro-

tection is required; otherwise, an enterprise may not have

incentives to conduct R&D. A monopoly is not altogether

an undesirable condition under a competition environment.

One of its benefits is that it can stimulate firms to carry out

R&D and innovations (and thus obtain monopoly profits).

(viii) The output of a firm is influenced by the aggregate knowl-

edge in the entire economy (production network externali-

ty).

In addition, the decisions of governments and their officials might have

an enormous positive or negative externality to individuals, both in terms

of production and consumption. This is the fundamental reason why a

need exists for supervision of, or checks and balances on, governments and

their officials.

This leads to an examination of various suggestions for alternative ways

to allocate resources that may lead to more efficient outcomes. Achieving

an efficient allocation in the presence of externalities essentially involves
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ensuring that agents face the correct pricing for their activities. Ways of

solving externality problems include taxation, regulation, property rights,

merges, mechanism design, market design, etc.

14.2 Consumption Externality

When there are no consumption externalities, agent i’s utility function is a

function of only her own consumption:

ui(xi). (14.2.1)

In this case, for any l = 1, 2, . . . , L and h = 1, 2, . . . , L, the first-order condi-

tions (FOCs) for a competitive equilibrium are given by

MRSxl
1,x

h
1

= MRSxl
2,x

h
2

= · · · = MRSxl
n,x

h
n

= pl

ph
, (14.2.2)

and from Chapter 11, we know that the FOCs for Pareto efficiency are also

given by:

MRSxl
1,x

h
1

= · · · = MRSxl
n,x

h
n
, (14.2.3)

As a result, because of the price-taking assumption, every competitive

equilibrium results in Pareto efficiency when utility functions are locally

non-satiated.

The main purpose of this section is to demonstrate that a competitive

equilibrium allocation is not generally Pareto efficient when an consump-

tion externality exists. We show this by examining that, in the presence

of consumption externalities, the FOCs for a competitive equilibrium are

not, in general, identical to the FOCs for Pareto efficient allocations. The

following discussion is mainly drawn from Tian and Yang (2009).

Consider the following simple two-person and two-good exchange e-

conomy. The utility functions are given as follows:

uA(xA, xB, yA), (14.2.4)

uB(xA, xB, yB), (14.2.5)
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which are assumed to be strictly increasing in their own consumption lev-

els and quasi-concave in all arguments. To obtain interior solutions, we as-

sume that ui satisfies the Inada condition ∂u
∂xi

(0) = +∞, and also limxi→0
∂u
∂xi
xi =

0. Note that only the consumption of good x results in consumption exter-

nalities.

The FOCs for a competitive equilibrium are the same as previously:

MRSAxy = px
py

= MRSBxy. (14.2.6)

We now provide the FOCs for Pareto efficient allocations, x∗, in ex-

change economies with consumption externalities by solving the following

problem:

max
x∈R4

++

uB(xA, xB, yB) (14.2.7)

s.t. xA + xB 5 wx,

yA + yB 5 wy,

uA(xA, xB, yA) = uA (x∗
A, x

∗
B, y

∗
A) .

The FOCs are given by

xA : ∂uB
∂xA

− λx + µ
∂uA
∂xA

= 0, (14.2.8)

yA : −λy + µ
∂uA
∂yA

= 0, (14.2.9)

xB : ∂uB
∂xB

− λx + µ
∂uA
∂xB

= 0, (14.2.10)

yB : ∂uB
∂yB

− λy = 0, (14.2.11)

λx : wx − xA − xB = 0, λx = 0, λx (wx − xA − xB) = 0, (14.2.12)

λy : wy − yA − yB = 0, λy = 0, λy (wy − yA − yB) = 0, (14.2.13)

µ : uA − u∗
A = 0, µ = 0, µ (uA − u∗

A) = 0. (14.2.14)

By (14.2.11), λy = ∂uB
∂yB

> 0, and thus by (14.2.13),

yA + yB = wy, (14.2.15)



14.2. CONSUMPTION EXTERNALITY 665

which means that there is never disposal (or destruction) of the good that

has no externality. Moreover, by (14.2.9) and (14.2.11), we have

µ =
∂uB
∂yB

∂uA
∂yA

. (14.2.16)

Then, by (14.2.8) and (14.2.9), we obtain

λx
λy

=

 ∂uA
∂xA

∂uA
∂yA

+
∂uB
∂xA

∂uB
∂yB

 , (14.2.17)

and by (14.2.10) and (14.2.11), we have

λx
λy

=

 ∂uB
∂xB

∂uB
∂yB

+
∂uA
∂xB

∂uA
∂yA

 . (14.2.18)

Thus, by (14.2.17) and (14.2.18), we get

∂uA
∂xA

∂uA
∂yA

+
∂uB
∂xA

∂uB
∂yB

=
∂uB
∂xB

∂uB
∂yB

+
∂uA
∂xB

∂uA
∂yA

, (14.2.19)

which means that the social marginal rate of substitution of good x for good

y for the two consumers is identical at Pareto efficient allocations. We call

this the social marginal rate of substitution because the social welfare func-

tion can be written as the sum of individual utilities. From the above con-

dition, in order to evaluate relevant marginal rates of substitution for op-

timality conditions, we must take into account both the direct and indirect

effects of consumption activities in the presence of externalities. In other

words, to achieve Pareto optimality, when one consumer increases the con-

sumption of good x, not only does the consumer’s consumption of good y

need to change, the other consumer’s consumption of good y also needs to

change. Thus, the social marginal rate of substitution of good x for good y

by consumer i equals
∂ui
∂xi
∂ui
∂yi

+
∂uj
∂xi
∂uj
∂yj

. Since the FOCs for competitive equilibri-

um and Pareto optimal allocations are not the same, we immediately have

the following conclusion:
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Proposition 14.2.1 If there is consumption externality, competitive equilibrium

allocations are, in general, not Pareto efficient.

Elaborating further, solving (14.2.8) and (14.2.10) for µ and λx, we have

µ =
∂uB
∂xB

− ∂uB
∂xA

∂uA
∂xA

− ∂uA
∂xB

> 0 (14.2.20)

and

λx =
∂uA
∂xA

∂uB
∂xB

− ∂uA
∂xB

∂uB
∂xA

∂uA
∂xA

− ∂uA
∂xB

. (14.2.21)

When the consumption externality is positive, from (14.2.17) or (14.2.18),

we can easily see that λx is always positive since λy = ∂uB
∂yB

> 0. In addition,

when no externality or a one-sided externality1 exists, by either (14.2.17) or

(14.2.18), λx is positive. Thus, the marginal equality condition (14.2.19) and

the balanced budget conditions completely determine all Pareto efficient

allocations for these cases. However, when there are negative externali-

ties for both consumers, the Kuhn-Tucker multiplier λx, directly given by

(14.2.21) or indirectly given by (14.2.17) or (14.2.18), is the sum of negative

and positive terms, and thus the sign of λx may be indeterminate. There-

fore, using condition (14.2.19) and the balanced budget conditions alone

may not guarantee finding Pareto efficient allocations correctly.

To guarantee that an allocation is Pareto efficient in the presence of neg-

ative externalities, we must require λx = 0 at efficient points, which in turn

requires that the social marginal rate of substitution of good x for good y is

nonnegative, i.e.,
∂uA
∂xA

∂uA
∂yA

+
∂uB
∂xA

∂uB
∂yB

=
∂uB
∂xB

∂uB
∂yB

+
∂uA
∂xB

∂uA
∂yA

= 0, (14.2.22)

or equivalently requires both (14.2.19) and

∂uA
∂xA

∂uB
∂xB

(joint marginal benefit)

= ∂uA
∂xB

∂uB
∂xA

(joint marginal cost)

(14.2.23)

for all Pareto efficient points.

1Only one consumer imposes an externality on another consumer.
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We can interpret the term in the left-hand side of (14.2.23), ∂uA
∂xA

∂uB
∂xB

, as

the joint marginal benefit of consuming good x, and the term in the right-

hand side, ∂uA
∂xB

∂uB
∂xA

, as the joint marginal cost of consuming good x because

the negative externality harms the consumers. To consume the goods effi-

ciently, a necessary condition is that the joint marginal benefit of consuming

good x should not be less than the joint cost of consuming good x.

Thus, the following conditions

(PO)



∂uA
∂xA
∂uA
∂yA

+
∂uB
∂xA
∂uB
∂yB

=
∂uB
∂xB
∂uB
∂yB

+
∂uA
∂xB
∂uA
∂yA

= 0,

yA + yB = wy,

xA + xB 5 wx,

(∂uA
∂xA

∂uB
∂xB

− ∂uA
∂xB

∂uB
∂xA

) (wx − xA − xB) = 0,

constitute a set of requirements that must be satisfied by Pareto efficient

allocations. We can further analyze the solution for Pareto efficiency by

considering three cases.

Case 1. When ∂uA
∂xA

∂uB
∂xB

> ∂uA
∂xB

∂uB
∂xA

, or equivalently
∂uA
∂xA
∂uA
∂yA

+
∂uB
∂xA
∂uB
∂yB

=
∂uB
∂xB
∂uB
∂yB

+
∂uA
∂xB
∂uA
∂yA

> 0, we have λx > 0, and thus the last two conditions in the PO

reduce to xA + xB = wx. In this case, there is no destruction for good x.

Substituting xA + xB = wx and yA + yB = wy into the marginal equality

condition (14.2.19), a relationship is provided between xA and yA, from

which we can find Pareto efficient allocations.

Case 2. When the joint marginal benefit equals the joint marginal cost:

∂uA
∂xA

∂uB
∂xB

= ∂uA
∂xB

∂uB
∂xA

, (14.2.24)

then
∂uA
∂xA

∂uA
∂yA

+
∂uB
∂xA

∂uB
∂yB

=
∂uB
∂xB

∂uB
∂yB

+
∂uA
∂xB

∂uA
∂yA

= 0 (14.2.25)

and thus λx = 0. In this case, when xA + xB 5 wx, the necessity of destruc-

tion is indeterminant (Note that no destruction means that xA + xB = wx.).

However, even when destruction is necessary, we can still determine the
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set of Pareto efficient allocations by using yA + yB = wy and the zero social

marginal equality condition (14.2.25). Indeed, after substituting yA + yB =
wy into (14.2.25), we can solve for xA in terms of yA.

Case 3. When ∂uA
∂xA

∂uB
∂xB

< ∂uA
∂xB

∂uB
∂xA

, for any allocation that satisfies xA +
xB = wx, yA + yB = wy, and the marginal equality condition (14.2.19), the

social marginal rate of substitution is negative. The allocation will not be

Pareto efficient. Thus, there must be a destruction (free disposal) for good x

for Pareto efficiency, and there exist Pareto efficient allocations that satisfy

(14.2.25).

Summarizing the above three cases, we conclude that one can employ

the following set of conditions

∂uA
∂xA
∂uA
∂yA

+
∂uB
∂xA
∂uB
∂yB

=
∂uB
∂xB
∂uB
∂yB

+
∂uA
∂xB
∂uA
∂yA

xA + xB = wx

yA + yB = wy

,

together with whether ∂uA
∂xA

∂uB
∂xB

= ∂uA
∂xB

∂uB
∂xA

, to determine whether or not

there is destruction (free disposal):

Indeed, if ∂uA
∂xA

∂uB
∂xB

= ∂uA
∂xB

∂uB
∂xA

is also satisfied, then there is no free dis-

posal in achieving Pareto efficient allocations. If ∂uA
∂xA

∂uB
∂xB

< ∂uA
∂xB

∂uB
∂xA

, al-

though utility functions are strictly increasing in x, there must be the case

of destruction of some amount of x in achieving Pareto efficient allocations.

We then have the following proposition that characterizes whether or

not there is destruction (free disposal) of endowmentswx in achieving Pare-

to efficient allocations, although utility functions are strictly increasing in

x.

Proposition 14.2.2 For 2 × 2 pure exchange economies, suppose that the utility

function ui (xA, xB, yi) is continuously differentiable, strictly quasi-concave, and
∂ui(xA,xB ,yi)

∂xi
> 0 for i = A,B.

(1) If the social marginal rate of substitution of good x for good y is

positive at a Pareto efficient allocation x∗,2 then there is no free

disposal for wx in achieving the Pareto efficient allocation x∗.
2As we discussed above, this is true if the consumption externality is positive, or there

is no externality or only one-sided externality.
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(2) If the social marginal rate of substitution of good x for good y is

negative for any allocation (xA, xB) satisfying xA + xB = wx,

yA + yB = wy, and the marginal equality condition (14.2.19),

then there must be free disposal for wx in achieving any Pareto

efficient allocation x∗. In other words, x∗
A + x∗

B < wx and x∗ is

determined by yA + yB = wy and (14.2.25).

Example 14.2.1 Consider the following utility function:

ui(xA, xB, yi) = √
xiyi − xj , i ∈ {A,B} , j ∈ {A,B} , j ̸= i.

By the marginal equality condition (14.2.19), we obtain

(√
yA
xA

+ 1
)2

=
(√

yB
xB

+ 1
)2

(14.2.26)

and thus
yA
xA

= yB
xB

. (14.2.27)

Let xA +xB ≡ x̄. Substituting xA +xB = x̄ and yA + yB = wy into (14.2.27),

we have
yA
xA

= wy
x̄
. (14.2.28)

Then, by (14.2.27) and (14.2.28), we get

∂uA
∂xA

∂uB
∂xB

= 1
4

√
yA
xA

√
yB
xB

= yA
4xA

= wy
4x̄

(14.2.29)

and
∂uA
∂xB

∂uB
∂xA

= 1. (14.2.30)

Thus, x̄ = wy/4 is the critical point that makes ∂uA
∂xA

∂uB
∂xB

− ∂uA
∂xB

∂uB
∂xA

= 0, or

equivalently
∂uA
∂xA
∂uA
∂yA

+
∂uB
∂xA
∂uB
∂yB

=
∂uB
∂xB
∂uB
∂yB

+
∂uA
∂xB
∂uA
∂yA

= 0. Therefore, if wx >
wy

4 , then

∂uA
∂xA

∂uB
∂xB

− ∂uA
∂xB

∂uB
∂xA

< 0, and thus there must be destruction in any Pareto

efficient allocation. If wx <
wy

4 , then ∂uA
∂xA

∂uB
∂xB

− ∂uA
∂xB

∂uB
∂xA

> 0, and thus

Pareto optimal allocation requires no destruction. Finally, when wx = wy

4 ,

any allocation that satisfies the marginal equality condition (14.2.19) and

the balanced budget conditions, xA + xB = wx and yA + yB = wy, also
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satisfies (14.2.23) since ∂uA
∂xA

∂uB
∂xB

− ∂uA
∂xB

∂uB
∂xA

= 0, and thus it is a Pareto efficient

allocation with no free disposal.

Note that, since ∂uA
∂xA

and ∂uB
∂xB

represent marginal utilities, they are usu-

ally diminishing as consumption in good x increases. Since ∂uA
∂xB

and ∂uB
∂xA

are in the form of marginal cost, their absolute values are typically increas-

ing in good x. Therefore, when total endowment wx is small, the social

marginal benefit would exceed the social marginal cost, so that there is

no destruction of good x. As the total endowment of wx increases with

the total endowment of wy fixed (i.e., y becomes relatively scarce when x

becomes abundant), the social marginal cost will ultimately outweigh the

social marginal benefit, which results in the destruction of the endowment

wx.

Alternatively, we can obtain the same result by using the social marginal

rate of substitution. When utility functions are strictly quasi-concave, marginal

rates of substitution are diminishing. Therefore, in the presence of negative

consumption externalities, the social marginal rate of substitution of good x

for good y may become negative when the consumption of good x becomes

sufficiently large. When this occurs, it is better to destroy some resources

for good x. As the destruction of good x increases which will, in turn, de-

crease the consumption of good x, the social marginal rate of substitution

will increase. Eventually, it will become nonnegative.

When there is a negative externality, it seems strange that some com-

modities need to be destroyed in order to achieve Pareto efficient alloca-

tions. This phenomenon, however, is not only important in theory, but also

related to practice. Tian and Yang (2012) used the above theoretical result-

s to explain a well-known puzzle of the happiness-income relationship in

the economics and psychology literature: people’s happiness rises with in-

come up to a point, but not beyond it. For example, mean life satisfaction in

the United States has been declining in roughly past 60 years; whereas, that

in the United Kingdom remained approximately flat across the same peri-

od. If we interpret income as a good, when the good becomes an inferior

good or people envy each other’s income level (e.g., low-income people en-

vy high-income people), then according to the above results, when income
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exceeds a certain threshold level, if all income is spent, people’s happiness

decreases as consumption increases, which leads to Pareto inefficient allo-

cations. Consequently, when economic growth reaches a certain level, if

other aspects (e.g., spiritual civilization and political civilization ) cannot

achieve a corresponding level, increases in income do not increase people’s

satisfaction, which is the so-called happiness – income paradox.

To illustrate this point, return to Example 14.2.1 and interpret x as the

composite of material goods or GDP index, and y as the composite of non-

material goods or non-GDP index. If we do not increase the level of non-

material goods wy in a comprehensive and balanced manner, and only fo-

cus on GDP growth, we will eventually have wx >
wy

4 . As a result, as we

can see in practice, people’s happiness continues to decline as income level

constantly rises.

The above results have a strong policy implication, i.e., the governmen-

t’s pursuit of GDP growth does not always improve people’s happiness,

but rather may decrease people’s satisfaction, resulting in Pareto inefficient

allocations. This is the fundamental reason for that, in the past few decades,

people’s happiness in many countries has risen and then began to decline

as income continued to rise. A similar phenomenon is also seen recently

in China. According to the above discussions, an individual’s happiness

comes from both material and non-material (spiritual civilization and po-

litical civilization) levels. In fact, an individual’s happiness level is deter-

mined by multiple factors: (1) material factors, such as income levels and

differences; (2) mental factors, such as career achievement, work stress,

unemployment, leisure time, friendships, and family harmony; (3) social

and political factors, such as social equity, political stability, and democrat-

ic rights; and (4) ecological factors, such as control of environmental pol-

lution and ecological damage, which are related to individual health and

even survival. It can be seen that the factors listed in (1) are GDP prod-

ucts, and the factors listed in (2)-(4) are non-material goods or non-GDP

products.

Therefore, happiness comes from material civilization, spiritual civi-

lization, political civilization, and ecological civilization. When people’s

living standards are limited, people care more about pursuing material civ-
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ilization. When their living standard reaches a certain threshold, people

will tend to pursue spiritual civilization, political civilization, and ecolog-

ical civilization . In other words, people first need to satisfy the need for

food, clothing, shelter, and transportation, and then the superstructure of

art, poetry, philosophy, life comfort and quality, physical health, democrat-

ic politics, and protection of one’s own rights. Due to the negative external-

ities resulting from envying other people’s living standards, the construc-

tion of spiritual civilization, political civilization, and ecological civilization

is also crucial. Therefore, both material and non-material goods need to be

balanced and fully developed; otherwise, social harmony and efficiency

will not be achieved.

Happiness is the subject of psychology, ethics, and economics. Many

economists believe that mainstream economics cannot solve the problem

of human happiness. However, the above results show that “happiness

economics”can also be incorporated into the framework of mainstream

economics. It can still be assumed that individuals are self-interested in

pursuing their personal interests, and Pareto optimality or social welfare

maximization is still a necessary and basic criterion for judging whether

the resource allocation is efficient. It just adds to the reasonable assumption

that people’s income generally has negative externalities. For a detailed

discussion of this issue, see Tian and Yang (2009, 2012).

14.3 Production Externality

We now discuss the fact that, when production externalities exist, com-

petitive markets may also result in inefficient allocations of resources. To

illustrate this, consider a simple economy with two firms. Firm 1 produces

output x that will be sold in a competitive market. However, production of

x imposes an externality cost, denoted by e(x), to firm 2, which is assumed

to be convex and strictly increasing.

Let y be the output produced by firm 2, which is sold in a competitive

market. Let cx(x) and cy(y) be the cost functions of firms 1 and 2, which are

convex and strictly increasing.
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The profits of the two firms amount to

π1 = pxx− cx(x), (14.3.31)

π2 = pyy − cy(y) − e(x), (14.3.32)

where px and py are the prices of x and y, respectively. Then, by the FOCs,

we have for positive amounts of outputs:

px = c′
x(x), (14.3.33)

py = c′
y(y). (14.3.34)

However, the profit maximizing output xc is over-produced from a social

perspective. The first firm only takes account of its own production cost,

i.e., the cost that is imposed on itself, but it ignores the social cost, i.e., its

private cost plus the cost that it imposes on the other firm.

What is the socially efficient output?

The social profit, π1 + π2, is not maximized at xc and yc, which satisfy

(14.3.33) and (14.3.34). If the two firms merged in order to internalize the

externality, then the problem becomes

max
x,y

pxx+ pyy − cx(x) − e(x) − cy(y) (14.3.35)

which gives the FOCs:

px = c′
x(x∗) + e′(x∗),

py = c′
y(y∗),

where x∗ is an efficient amount of output, characterized by price being e-

qual to the marginal social cost. Thus, x∗ is less than the competitive output

xc by the convexity of e(x) and cx(x).
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Figure 14.1: The efficient output x∗ is less than the competitive output xc.

14.4 Solutions to Externalities

From the above discussion, we know that a competitive market may not

result in Pareto efficient outcomes in the presence of externalities. Conse-

quently, one needs to seek some other alternative mechanisms to solve the

market failure problem. Many remedies have been proposed to correct the

market failure of externality, such as:

1. Pigovian taxes;

2. Voluntary negotiation (Coase’s approach );

3. Compensatory taxes/subsidies;

4. Creating a missing market with property rights;

5. Direct intervention;

6. Mergers of firms;

7. Creating a market for the exchange of emission rights;

8. Incentive mechanism design.

Any of the above solutions may result in Pareto efficient outcomes, but

may lead to different income distributions. It is also important to know

what kinds of information are required to implement one of the above so-

lutions.

Most of the above proposed solutions need to make the following as-

sumptions:
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1. The source and degree of the externality are identifiable.

2. The recipients of the externality are identifiable.

3. The causal relationship of the externality can be established

objectively.

4. The cost of preventing (by different methods) an externality

is perfectly known to everyone.

5. The cost of implementing taxes and subsides is negligible.

6. The cost of voluntary negotiation is negligible.

We will discuss the advantages and disadvantages of the above schemes

below, and identify which are feasible and which are not. In addition, it is

important to know what kind of information is needed to perform each of

these solutions. Most of the above schemes require information symmetry,

such as Pigovian tax, and Coase Theorem. There will be major problems

in the implementation of these rules in the case of incomplete information.

Therefore, incentive mechanism design is necessary to implement these so-

lutions or to provide new solutions.

14.4.1 Pigovian Tax

The Pigovian tax was proposed by Arthur Cecil Pigou (1877–1959, see his

biography in Section 14.6.1). For externality-producing firms, the govern-

ment imposes a tax on the marginal cost of externality with the tax rate

t = e′(x∗). In the case of complete information, both the externality and the

tax rate t can be determined, and the FOCs of the enterprise’s problem are

the same as the FOCs of the social optimum, thereby achieving the efficient

allocation of resources.

To see this, set a tax rate, t, such that t = e′(x∗). This tax rate to firm 1

would internalize the externality. Indeed, the net profit of firm 1 is

π1 = px · x− cx(x) − t · x, (14.4.36)

which leads to the FOC:

px = c′
x(x) + t = c′

x(x) + e′(x∗), (14.4.37)
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which is the same as the one for social optimality. In other words, when fir-

m 1 faces the wrong pricing of its action, a tax t = e′(x∗) should be imposed

for each unit of its production. This will lead to a socially optimal outcome

that is less than the competitive equilibrium outcome. Such correction taxes

are called Pigovian taxes.

This solution requires that the taxing authority knows the externality

cost e(x). How does the authority know the externality and estimate its

value in real world? If the authority has such information, this solution

would work well, such as imposing a Pigovian tax on gasoline, since au-

tomobile emissions are relatively easier to determine. However, in most

cases, it does not work well, and it is only applicable to scenarios in which

e(x) is relatively easier to identify.

In addition, as pointed out by Ng (2004), if e(x) is an assessment func-

tion of environmental disruption, this often involves many people (even

globally) and the future generations, and thus it is difficult to estimate.

However, if e(x) is a cost function on abatement spending, it is often eas-

ier to estimate. Ng argues that in the case of serious pollution (and there-

fore there is an abatement investment), it is not necessary to estimate the

damage of pollution, but rather to tax according to the marginal cost of

abatement. However, when e(x) is private information and is difficult to

identify, it is difficult for the tax collector to accurately obtain information

about the cost e(x), and thus this solution cannot be directly adopted. In

order to obtain information, some effective means are necessary, but they

all involve a cost. If the cost is too high, it is difficult to adopt in practice.

14.4.2 Coase’s Approach

A different approach to the externality problem relies on the parties in-

volved to negotiate a solution themselves.

Nobel laureate Ronald Harry Coase (1910-2013, see his biography in

Section 14.6.2) raised two problems of Pigou’s tax: first, government inter-

vention harms economic freedom; and second, taxpayers are unlikely to

get informed about e(x) in most situations.

The greatest novelty of Coase’s contribution was the systematic treat-
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ment of trade in property rights. To solve the externality problem, Coase

emphasized in his famous 1960 article, “The Problem of Social Cost”,

that whether externality problems can be effectively solved depends on

whether property rights are clearly defined. For this reason, Coase put

forward a clear definition of property rights, and methods of voluntary ex-

change and negotiation. The so-called Coase Theorem asserts that as long

as property rights are clearly defined, the outcome of negotiations between

the two parties will result in an efficient level of production in the presence

of production externality.

The term “Coase Theorem”originated with George Stigler, who ex-

plained Coase’s ideas in his textbook,“The Theory of Price”. Stigler as-

serted that the Coase Theorem actually contains two claims in the absence

of transaction costs:

Claim 1 (Coase Efficiency Theorem): Voluntary negotiations over

externalities will lead to a Pareto-optimal outcome.

Claim 2 (Coase Neutrality Theorem or Independence Theorem): The

level of externality is the same, regardless of to whom the

property rights are given and how they are allocated.

Stigler’s Claim 2 would follow from Claim 1 if it were true that every

Pareto optimal allocation has the same level of externality, irrespective of

the way that private goods are distributed. Thus, the so-called Coase The-

orem asserts that as long as property rights are clearly assigned and the

transaction cost is zero, the two parties will negotiate in such a way that

the optimal level of the externality-producing activity is implemented. As a

policy implication, a government should simply rearrange property rights

with appropriately designed property rights. The market could then inter-

nalize externalities without direct government intervention.

Coase illustrates his assertion through various examples of the two-

person economy with externalities. The following simple examples depict

Coase’s core ideas.

Example 14.4.1 Two firms: One is a chemical factory that discharges chem-

icals into a river, and the other is the fisherman. Suppose that the river can
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produce a value of $100,000. If the chemicals pollute the river, the fish can-

not be consumed. How does one solve the externality problem? Coase’s

solution states that as long as the property right of the river is clearly as-

signed, efficient outcomes will emerge. In other words, to yield an efficien-

t output, the government should give the river’s ownership either to the

chemical firm or to the fisherman. To see this, assume that:

The cost of a filter is denoted by cf .

Case 1: The river is given to the factory.

i) cf < $100, 000. The fisherman is willing to buy a filter for

the factory. The fisherman will pay for the filter so that the

chemical cannot pollute the river.

ii) cf > $100, 000. The chemical is discharged into the river. The

fisherman does not want to install a filter.

Case 2: The river is given to the fisherman, and the firm’s net product

revenue is greater than $100, 000.

i) cf < $100, 000. The factory purchases the filter so that the

chemical cannot pollute the river.

ii) cf > $100, 000. The firm pays $100,000 to the fisherman be-

fore the chemical is discharged into the river.

In this way, regardless of who owns the property, two cases lead to the

same efficient result: as long as cf < $100, 000, pollution will not occur;

otherwise, it will take place. The only difference is that the income distri-

bution effect is different.

Like the above example, Coase himself provided numerous examples

supporting his claims concerning negotiations between firms, but rather

negotiations between individuals. Because firms pursue profit maximiza-

tion rather than utility maximization, their economic behavior seem to be

fiduciary behavior. This difference is important because profit maximiza-

tion has no income effect, whereas utility maximization generally has an

income effect. Therefore, we need to make some restricted assumptions
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on consumers’ utility functions to establish the Coase Theorem for negoti-

ations between utility-maximizing individuals.

Now, consider an economy with two consumers with L goods. Fur-

thermore, consumer i has initial wealth wi, and her utility function is given

by

ui(x1
i , . . . , x

L
i , h).

In other words, the utility of each consumer is related to the quantity of

goods consumed, as well as the activity h carried out by consumer 1.

Activity h has no direct monetary cost for person 1. For example, h is

the quantity of loud music played by person 1. In order to play the music,

the consumer must purchase electricity, but electricity can be captured as

one of the components of x1. From the point of view of consumer 2, h rep-

resents an external effect of consumer 1’s action. In the model, we assume

that
∂u2
∂h

̸= 0.

Thus, the externality in this model lies in the fact that h affects consumer

2’s utility, but it is not priced by the market. Let vi(p, wi, h) be consumer i’s

indirect utility function:

vi(wi, h) = max
xi

ui(xi, h)

s.t. pxi 5 wi.

To rule out the income effect resultant from the assignment of proper-

ty rights, we assume that utility functions are quasi-linear with respect to

some numeraire commodity. Thus, the consumer’s indirect utility function

takes the following form:

vi(wi, h) = ϕi(h) + wi.

We further assume that utility is strictly concave in h: ϕ0
i (h) < 0. Again,

the competitive equilibrium outcome in general is not Pareto optimal. In

order to maximize utility, consumer 1 chooses h in order to maximize v1,

so that the interior solution satisfies ϕ′
1(h∗) = 0. Even though consumer 2’s
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utility depends on h, it cannot affect the choice of h.

On the other hand, the socially optimal level of hwill maximize the sum

of the consumers’ utilities:

max
h

ϕ1(h) + ϕ2(h).

The FOC for an interior maximum is:

ϕ′
1(h∗∗) + ϕ′

2(h∗∗) = 0,

where h∗∗ is the Pareto optimal amount of h. Thus, the social optimum is

where the sum of the marginal benefit of the two consumers equals zero.

In the case of negative externality for consumer 2 (loud music), we have

h∗ > h∗∗, namely, too much h is produced. In the case of positive externality

for consumer 2, we then have h∗ < h∗∗.

Now, we show that, as long as property rights are clearly determined,

the two parties will negotiate in such a way that the optimal level of the

externality-producing activity is implemented. We first consider the case

in which consumer 2 has the right to prohibit consumer 1 from undertak-

ing activity h. However, this right is contractible. Consumer 2 can sell

consumer 1 the right to undertake h2 units of activity h in exchange for

some transfers, T2. The two consumers will bargain both over the size of

the transfers, T2, and over the number of units of the externality-producing

good, h2.

In order to determine the bargaining outcome, we first specify the bar-

gaining mechanism as follows:

1. Consumer 2 offers consumer 1 a take-it-or-leave-it contract

specifying a payment T2 and an activity level h2.

2. If consumer 1 accepts the offer, that outcome will be imple-

mented. If consumer 1 does not accept the offer, consumer

1 cannot produce any amount of the externality-producing

good, i.e., h2 = 0.

In the absence of agreement, consumer 1 must have h2 = 0 because the

right is given to consumer 2, and consumer 1 will accept (h2, T2) if and only
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if it satisfies the participation constraint, i.e.,

ϕ1(h2) − T2 = ϕ1(0).

Given this constraint on the set of acceptable offers, consumer 2 will

choose (h2, T2) that is a solution to the following problem:

max
h2,T2

ϕ2(h2) + T2

s.t. ϕ1(h2) − T2 = ϕ1(0).

Since consumer 2 prefers higher T2, the constraint must be binding at

the optimum. Thus, the problem becomes:

max
h2

ϕ1(h2) + ϕ2(h2) − ϕ1(0).

The FOC for this problem is given by:

ϕ′
1(h2) + ϕ′

2(h2) = 0.

This is the same condition that results in the socially optimal level of

h2. Thus, consumer 2 chooses h2 = h∗∗, and, using the constraint, we have

T2 = ϕ1(h∗∗) − ϕ1(0). Moreover, the offer (h2, T2) is accepted by consumer

1, and the bargaining process implements the social optimum.

Now, we consider the case in which consumer 1 has the right to produce

as much of the externality as she wants. We maintain the same bargaining

mechanism. Consumer 2 can give consumer 1 a take-it-or-leave-it offer

(h1, T1), where the subscript indicates that consumer 1 has the property

right in this situation. However, now, in the event that consumer 1 rejects

the offer, she can choose to produce as much of the externality as she wants,

which means that she will choose to produce h∗. Thus, the only change

between this situation and the previous case occurs when no agreement is

reached. In this case, consumer 2’s problem is:

max
h1,T1

ϕ2(h1) − T1

s.t. ϕ1(h1) + T1 = ϕ1(h∗).
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Again, the constraint must be binding, and thus consumer 2 chooses h1

and T1 to maximize

max ϕ1(h1) + ϕ2(h1) − ϕ1(h∗),

which is also maximized at h1 = h∗∗, since the FOC is the same. The only

difference is in the transfer. Here, T1 = ϕ1(h∗) − ϕ1(h∗∗).

Though the outcomes of both property-rights arrangements implement

h∗∗, they have different distributional consequences. Specifically, the trans-

fer payment is positive if consumer 2 has the property rights; whereas, it

is negative when consumer 1 has the property rights. The reason for this

is that consumer 2 has bargaining power in the sense that consumer 1 is

forced to produce 0 units of the externality-producing good when no a-

greement is reached.

Note that in the quasi-linear framework, redistribution of the numeraire

commodity has no effect on social welfare. Irrespective of how the property

rights are assigned, this bilateral bargaining process provides an example

of the Coase Theorem: If trade of the externality can occur, then bargain-

ing will lead to an efficient outcome, regardless of how property rights are

assigned (as long as they are clearly assigned). Note that well-defined, en-

forceable property rights are essential for bargaining to work. If there is a

dispute over who has the right to pollute (or not pollute), then bargaining

may not result in efficiency. An additional requirement for efficiency is that

the bargaining process itself is costless. Note that the government does not

need to know about individual consumers here, i.e., it only needs to define

property rights clearly. Thus, the Coase Theorem provides an argument in

favor of having clear laws and a well-developed judicial system.

However, we know that the quasi-linear function is a highly restric-

tive assumption, which means that there is no income effect. If the Coase

Theorem is only valid for the quasilinear utility function, then it has great

limitations to be applicable for solving consumption externality problem-

s. Therefore, a natural question is, does the Coase Theorem hold for other

types of utility functions? Hurwicz gave a surprising and disappointing

answer . Hurwicz (Japan and the World Economy, 7, 1995, pp. 49-74) argued
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that, even when the transaction cost is zero and property rights are clearly

defined, the absence of income effects in the demand for the good with an

externality is not only sufficient (which is well known) but also necessary

for the Coase Neutrality Theorem to be true. In other words, when the

transaction cost is negligible, the level of pollution will be independent of

the assignments of property rights if and only if the preferences of the con-

sumers are quasi-linear with respect to the externality-generating private

good.

Unfortunately, as shown by Chipman and Tian (2012), the proof of Hur-

wicz’s claim on the necessity of quasi-linear preferences for the Coase The-

orem to be valid is incorrect. To see this, consider the following class of

utility functions that have the functional form:

Ui(xi, h) = xie
−h + ϕi(h), i = 1, 2 (14.4.38)

where

ϕi(h) =
∫
e−hbi(h)dh. (14.4.39)

Ui(xi, h) is clearly not quasi-linear in xi. It is further assumed that for all

h ∈ (0, η], b1(h) > ξ, b2(h) < 0, b′
i(h) < 0 (i = 1, 2), b1(0) + b2(0) = ξ, and

b1(η) + b2(η) 5 ξ.

We then have

∂Ui/∂xi = e−h > 0, i = 1, 2,

∂U1/∂h = −x1e
−h + b1(h)e−h > e−h[ξ − x1] = 0,

∂U2/∂h = −x2e
−h + b2(h)e−h < 0

for (xi, h) ∈ (0, ξ) × (0, η), i = 1, 2. Thus, by the mutual tangency equality

condition for Pareto efficiency, we have

0 = ∂U1
∂h

/
∂U1
∂x1

+ ∂U2
∂h

/
∂U2
∂x2

= −x1 −x2 + b1(h) + b2(h) = b1(h) + b2(h) − ξ,

(14.4.40)

which is independent of xi. Therefore, if (x1, x2, h) is Pareto optimal, and

so is (x′
1, x

′
2, h) provided that x1 + x2 = x′

1 + x′
2 = ξ. In addition, note
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that b′
i(h) < 0 (i = 1, 2), b1(0) + b2(0) = ξ, and b1(η) + b2(η) 5 ξ. Then,

b1(h) + b2(h) is strongly monotone, and thus there is a unique h ∈ [0, η],
satisfying (14.4.40). Thus, the contract curve is horizontal, even though

individuals’ preferences need not be quasi-linear.

Example 14.4.2 Suppose that b1(h) = (1+h)αηη+ξ with α < 0, and b2(h) =
−hη. Then, for all h ∈ (0, η], b1(h) > ξ, b2(h) < 0, b′

i(h) < 0 (i = 1, 2),

b1(0) + b2(0) > ξ, and b1(η) + b2(η) < ξ. Thus, ϕi(h) =
∫
e−hbi(h)dh is

concave, andUi(xi, h) = xie
−h+

∫
e−hbi(h)dh is quasi-concave, ∂Ui/∂xi > 0

and ∂U1/∂h > 0, and ∂U2/∂h < 0 for (xi, h) ∈ (0, ξ) × (0, η), i = 1, 2, but it

is not quasi-linear in xi.

Chipman and Tian (2012) then investigate the necessity for the“Coase

conjecture”that the level of pollution is independent of the assignments of

property rights. This reduces to developing necessary and sufficient condi-

tions that guarantee that the contract curve is horizontal, so that the set of

Pareto optima for the utility functions is h-constant. This, in turn, reduces

to finding the class of utility functions, such that the mutual tangency (first-

order) condition does not contain xi and, consequently, it is a function, de-

noted by g(h), of h only:

∂U1
∂h

/
∂U1
∂x1

+ ∂U2
∂h

/
∂U2
∂x2

= g(h) = 0. (14.4.41)

Let Fi(xi, h) = ∂Ui
∂h /

∂Ui
∂xi

(i = 1, 2), which can be generally expressed as

Fi(xi, h) = xiψi(h) + fi(xi, h) + bi(h),

where fi(xi, h) are nonseparable and nonlinear in xi. ψi(h), bi(h), and

fi(xi, h) will be further specified below.

Let F (x, h) = F1(x, h)+F2(ξ−x, h). Then, the mutual tangency equality

condition can be rewritten as

F (x, h) = 0. (14.4.42)

Thus, the contract curve, i.e., the locus of Pareto-optimal allocations, can be

expressed by a function h = f(x) that is implicitly defined by (14.4.42).
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Then, the Coase Neutrality Theorem, which is characterized by the con-

dition that the set of Pareto optimal allocations (the contract curve) in the

(x, h) space for xi > 0 is a horizontal line h = constant, implies that

h = f(x) = h̄

with h̄ constant, and thus we have

dh

dx
= −Fx

Fh
= 0

for all x ∈ [0, ξ] and Fh ̸= 0, which means that the function F (x, h) is

independent of x. Then, for all x ∈ [0, ξ],

F (x, h) = xψ1(h)+(ξ−x)ψ2(h)+f1(x, h)+f2(ξ−x, h)+b1(h)+b2(h) ≡ g(h).
(14.4.43)

Since the utility functions U1 and U2 are functionally independent, and

x disappears in (14.4.43), we must haveψ1(h) = ψ2(h) ≡ ψ(h) and f1(x, h) =
−f2(ξ − x, h) = 0 for all x ∈ [0, ξ]. Therefore,

F (x, h) = ξψ(h) + b1(h) + b2(h) ≡ g(h), (14.4.44)

and
∂Ui
∂h

/
∂Ui
∂xi

= Fi(xi, h) = xiψ(h) + bi(h), (14.4.45)

which is a first-order linear partial differential equation. It can be verified

that the principal integral Ui(xi, h) of (14.4.45) is given by

Ui(xi, h) = xie
∫
ψ(h)dh + ϕi(h), i = 1, 2 (14.4.46)

with

ϕi(h) =
∫
e
∫
ψ(h)dhbi(h)dh. (14.4.47)

The general solution of (14.4.45) is then given by Ūi(x, y) = ψ(Ui),

where ψ is an arbitrary function. Since a monotonic transformation pre-

serves orderings of preferences, we can regard the principal solutionUi(xi, h)
as a general functional form of utility functions that is fully characterized
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by (14.4.45).

Note that (14.4.46) is a general utility function that contains quasi-linear

utility in xi and the utility function given in (14.4.38) as special cases. In-

deed, it reduces to the quasi-linear utility function when ψ(h) ≡ 0 and to

the utility function given by (14.4.38) when ψ(h) = −1.

To make the mutual tangency (first-order) condition (14.4.41) also be

sufficient for the contract curve to be horizontal in a pollution economy, we

assume that for all h ∈ (0, η], x1ψ(h)+b1(h) > 0, x2ψ(h)+b2(h) < 0, ψ′(h) 5
0, b′

i(h) < 0 (i = 1, 2), ξψ(0)+b1(0)+b2(0) = 0, and ξψ(η)+b1(η)+b2(η) 5 0.

We then have for (xi, h) ∈ (0, ξ) × (0, η), i = 1, 2,

∂Ui/∂xi = e
∫
ψ(h) > 0, i = 1, 2,

∂U1/∂h = e
∫
ψ(h)[x1ψ(h) + b1(h)] > 0,

∂U2/∂h = e
∫
ψ(h)[x2ψ(h) + b2(h)] < 0,

and thus

0 = ∂U1
∂h

/
∂U1
∂x1

+ ∂U2
∂h

/
∂U2
∂x2

= (x1 + x2)ψ(h) + b1(h) + b2(h)

= ξψ(h) + b1(h) + b2(h), (14.4.48)

which does not contain xi. Therefore, if (x1, x2, h) is Pareto optimal, so is

(x′
1, x

′
2, h) provided that x1 + x2 = x′

1 + x′
2 = ξ. Furthermore, note that

ψ′(h) 5 0, b′
i(h) < 0 (i = 1, 2), ξψ(0) + b1(0) + b2(0) = 0, and ξψ(η) +

b1(η) + b2(η) 5 0. Then, ξψ(h) + b1(h) + b2(h) is strongly monotone, and

there is a unique h ∈ [0, η] that satisfies (14.4.48). Thus, the contract curve is

horizontal, even though individuals’ preferences need not be quasi-linear.

The formal statement of the Coase Neutrality Theorem obtained by

Chipman and Tian (2012) can thus be set forth as follows:

Proposition 14.4.1 (Coase Neutrality Theorem) In a pollution economy con-

sidered in the chapter, suppose that the transaction cost equals zero, and that the

utility functions Ui(xi, h) are differentiable and such that ∂Ui/∂xi > 0, and

∂U1/∂h > 0, but ∂U2/∂h < 0 for (xi, h) ∈ (0, ξ) × (0, η), i = 1, 2. Then,
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the level of pollution is independent of the assignments of property rights if and

only if the utility functions Ui(x, y), up to a monotonic transformation, have a

functional form given by

Ui(xi, h) = xie
∫
ψ(h) +

∫
e
∫
ψ(h)dhbi(h)dh, (14.4.49)

where h and bi are arbitrary functions, such that the Ui(xi, h) are differentiable,

∂Ui/∂xi > 0, and ∂U1/∂h > 0, but ∂U2/∂h < 0 for (xi, h) ∈ (0, ξ) × (0, η),

i = 1, 2.

Although the above Coase Neutrality Theorem includes quasilinear u-

tility function as a special case, Hurwicz’s insight on the limitations of the

Coase Theorem remains valid. The Coase Theorem is more applicable to

production externalities rather than consumption externalities.

It is important to fully comprehend the limitations of the Coase Theo-

rem. One might think that, with clear property rights, free exchange, and

voluntary cooperation, the market can operate efficiently without consid-

ering the preconditions of the Coase Theorem, and especially the following

two basic prerequisites: (1) zero transaction cost; and (2) no income effect.

In practice, costs of negotiation and organization, in general, are not negli-

gible, and the income effect may not be zero. Thus, privatization is optimal

only in case of zero transaction cost, no income effect, and perfectly com-

petitive economic environments. However, in the real world, these condi-

tions are often not satisfied. For example, the privatization of state-owned

enterprises tends to be expensive, and much debate exists about how to

privatize and who should receive a share or benefit. Indeed, if there is no

corresponding system as the basis and the transaction cost is too large, then

radical privatization may not be desirable.

Do clearly defined private property rights necessarily lead to the opti-

mal allocation of resources, and is it impossible for other ownership forms?

Tian (2000, 2001) showed that private ownership (resp. state ownership

and collective ownership) may be (resp. relatively or constrainedly) effi-

cient, depending on the development level of the underlying institution-

al environment. If an institutional environment is markedly underdevel-

oped, state and collective ownership could be sub-optimal (relatively more
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efficient) compared to private ownership. Only when the market system

is mature, and has a good governance, the private property right system

can be efficient, or the private property rights system is (globally) optimal.

Therefore, all three property rights systems may be (sub-)optimal, depend-

ing on the regularity of institutional environments. Therefore, instead of

rapid privatization of state-owned enterprises, it is better to continuous-

ly improve the institutional environment and allow private enterprises to

flourish. China’s economic reform and opening-up over the past 40 years

has fully demonstrated this point.

The problem of the Coase Efficiency Theorem is more serious. First, as

Arrow (1979, p. 24) pointed out, the basic postulate underlying Coase’s

theory appears to be that the process of negotiation over property rights

can be modelled as a cooperative game, and this requires the assumption

that each player knows the preferences or production functions of each of

the other individuals. When information is not complete or asymmetric, in

general, it results in Pareto inefficient outcomes. For instance, when there

is one polluter and there are many pollutees, a“free-rider”problem aris-

es, and there is an incentive for pollutees to misrepresent their preferences.

Irrespective of whether or not the polluter is liable, the pollutees may be

expected to overstate the amount that they require to compensate for the

externality. Thus, we may need to design an incentive compatible mecha-

nism to solve the free-rider problem.

Secondly, even if the information is complete, there are several circum-

stances that have led a number of economists to question the conclusion in

the Coase Efficiency Theorem:

(1) The economic core may be empty, and thus no Pareto opti-

mum exists. An example of this for a three-agent economy

was presented by Aivazian and Callen (1981).

(2) There may be a fundamental non-convexity that prevents

a Pareto optimum from being supported by a competitive

equilibrium. Starrettt (1972) showed that externalities are

characterized by“fundamental non-convexities”that may

preclude the existence of competitive equilibrium.
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(3) When an agent possesses the right to pollute, there is a built-

in incentive for extortion. As Andel (1966) pointed out, any-

one with the right to pollute has an incentive to extract pay-

ment from potential pollutees, e.g., by threating to disrupt

the peace of the pollutees by making loud noises in the mid-

dle of the night.

(4) Arrow (1979) argued that the Coase Theorem relies on a bar-

gaining process and finally forms a cooperative game, which

depends on the assumption of complete information. Obvi-

ously, in practice, the information is not complete and may

lead to free-rider problems.

Thus, the hypothesis that negotiations over externalities will mimic trades

in a competitive equilibrium is, as Coase himself conceded, not one that

can be logically derived from his assumptions, but must be regarded as

an empirical conjecture that may or may not be confirmed by the data.

Consequently, room for much theoretical work remains in order to provide

Coasian economics with rigorous underpinnings .

14.4.3 Missing Market

We can regard externality as a lack of a market for an“externality”. For

the above example of Pigovian taxes, a missing market is a market for pol-

lution. Adding a market for firm 2 to express its demand for pollution -

or for a reduction of pollution - will provide a mechanism for efficient al-

locations. By adding this market, firm 1 can decide how much pollution it

wants to sell, and firm 2 can decide how much pollution it wants to pur-

chase.

Let r be the price of abatement of pollution.

x1 = the units of pollution that firm 1 wants to produce;

x2 = the units of pollution that firm 2 wants topurchase.

Normalize the output of firm 1 to x1.
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The profit maximization problems become:

π1 = pxx1 − rx1 − c1(x1),

π2 = pyy + rx2 − e2(x2) − cy(y).

The FOCs are given by:

px − r = c′
1(x1) for Firm 1,

py = c′
y(y) for Firm 2,

r = e′(x2) for Firm 2.

At market equilibrium, x∗
1 = x∗

2 = x∗, we have

px = c′
1(x∗) + e′(x∗) (14.4.50)

which results in a socially optimal outcome.

In this model, we assume that the price of abatement of pollution is

taken as given for all firms. When the number of firms is small, this as-

sumption is not necessarily true, and thus may still result in an inefficient

pollution level. Then, in the real world, the method of auctioning pollution

rights is used to greatly increase competition.

The basic idea of this model has been utilized to deal with a large num-

ber of externalities in practice, and has established a warrants market for

the consumption and production of numerous externality-producing good-

s. In addition to establishing a market for pollution rights transactions,

it is also widely applied in establishing license trading markets for many

externality-producing goods such as radio frequency spectra. As an appli-

cation, we will discuss this issue by considering emissions trading in the

end of this chapter.

14.4.4 The Compensation Mechanism

In general, Pigovian taxes were not adequate to solve externality problem-

s due to incomplete information: the tax authority cannot know the cost

induced by the externality. How then can one solve this incomplete infor-
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mation problem?

Varian (1994) proposed an incentive mechanism which encourages firm-

s to correctly reveal the costs that they impose on others. Here, we discuss

this mechanism. In brief, a mechanism consists of a message space and an

outcome function (rules of game). We will introduce in detail mechanism

design theory in Part VI. Varian’s incentive mechanism allows firms to form

a Pareto efficient tax rate through a game. The regulatory department does

not know the individual’s information, and thus it is necessary to induce

individuals’ information about their economic characteristics to implement

efficient tax rates t1 and t2 through an incentive compatible mechanism.

Varian’s mechanism is designed in a way that firms proposes a tax rate

for each other. If the tax rates set by the two parties are different, they

then will be punished. The mechanism proposed by Varian is divided in-

to two stages. In the first stage, firms independently propose tax rates for

each other, which captures the idea of competitive markets, and no firm

can control the tax rate imposed on itself. If one can determine its tax rate,

then rent-seeking occurs. In the second stage, the mechanism designer dis-

tributes interests according to the information of both parties. Finally, the

individuals make the decision of production and output according to the

rules determined by the mechanism, and the equilibrium outcome is Pareto

efficient.

Strategy Space (Message Space): M = M1 × M2 with Mi = {(ti, xi)},

i = 1, 2, where t1 is interpreted as a Pigovian tax proposed by firm 1 and x1

is the proposed level of output by firm 1, and t2 is interpreted as a Pigovian

tax proposed by firm 2 and y2 is the proposed level of output by firm 2.

The mechanism has two stages:

Stage 1 (Announcement stage): Firms 1 and 2 name Pigovian tax rates

respectively, ti, i = 1, 2, which may or may not be the efficient level of such

a tax rate.

Stage 2 (Choice stage): If firm 1 produces x units of pollution, firm 1

must pay t2x to firm 2. Thus, each firm takes the tax rate as given. Firm 2

receives t1x units as compensation. Each firm pays a penalty, (t1 − t2)2, if

they announce different tax rates.
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Thus, the payoffs of the two firms are:

π∗
1 = max

x
pxx− cx(x) − t2x− (t1 − t2)2,

π∗
2 = max

y
pyy − cy(y) + t1x− e(x) − (t1 − t2)2.

Since this is a two-stage game, we may use the subgame perfect equilib-

rium, i.e., an equilibrium in which each firm takes into account the reper-

cussions of its first-stage choice on the outcomes in the second stage. As

usual, we solve this game by looking at stage 2 first.

At stage 2, firm 1 will choose x(t2) to satisfy the FOC:

px − c′
x(x) − t2 = 0. (14.4.51)

Note that, by the convexity of cx, i.e., cx0(x) > 0, we have

x′(t2) = − 1
c0x(x)

< 0. (14.4.52)

Firm 2 will choose y to satisfy py = c′
y(y).

Stage 1: Each firm will choose the tax rates t1 and t2 to maximize their

payoffs.

For Firm 1,

max
t1

pxx− cx(x) − t2x(t2) − (t1 − t2)2, (14.4.53)

which leads to the following FOC:

2(t1 − t2) = 0,

and thus

t∗1 = t2. (14.4.54)

For Firm 2,

max
t2

pyy − cy(y) + t1x(t2) − e(x(t2)) − (t1 − t2)2 (14.4.55)
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so that the FOC is

t1x
′(t2) − e′(x(t2))x′(t2) + 2(t1 − t2) = 0,

and then we have

[t1 − e′(x(t2))]x′(t2) + 2(t1 − t2) = 0. (14.4.56)

By (14.4.52), (14.4.54) and (14.4.56), we get

t∗ = e′(x(t∗)) with t∗ = t∗1 = t∗2. (14.4.57)

Substituting the equilibrium tax rate, t∗ = e′(x(t∗)), into (14.4.51), we

obtain

px = c′
x(x∗) + e′(x∗), (14.4.58)

which is the condition for social efficiency of production.

Remark 14.4.1 This mechanism works by setting opposing incentives for

two agents. Firm 1 always has an incentive to match the announcement of

firm 2. However, consider firm 2’s incentive. If firm 2 thinks that firm 1

will propose a large compensation rate t1 for it, it wants firm 1 to be taxed

as little as possible so that firm 1 will produce as much as possible. On

the other hand, if firm 2 thinks that firm 1 will propose a small t1, it wants

firm 1 to be taxed as much as possible. Thus, the only point where firm 2 is

indifferent about the level of production of firm 1 is where firm 2 is exactly

compensated for the externality cost.

In general, individuals’ personal goals are different from certain social

goal. However, we may be able to design an incentive-compatible mecha-

nism so that individuals’ personal goals are consistent with the social goal.

Tian (2003) also gave the solution to consumption externalities by provid-

ing the incentive mechanism that results in Pareto efficient allocations. Tian

(2004) studied the informational efficiency problem of the mechanisms that

result in Pareto efficient allocations in the presence of consumption exter-

nalities.
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14.5 Emissions Trading and Efficient Allocation of Pol-

lution Rights

This section deals with emissions trading. Emissions trading is also called

cap and trade (CAT), which is a market-based approach to controlling pol-

lution by providing economic incentives for achieving reductions in the

emissions of pollutants. In contrast to command-and-control environmen-

tal regulations, such as best available technology (BAT) standards and gov-

ernment subsidies, emissions trading programs are a type of flexible envi-

ronmental regulation that allows organizations to decide how best to meet

policy targets.

We will discuss the governance of pollution and focus on how to achieve

efficient allocations of pollution rights through markets, so that pollution

can be efficiently controlled. In the 1990s, some European and American

countries established emission permit markets for pollutants and achieved

relative success. Their application has also been gradually extended to oth-

er countries. This section focuses on the intrinsic mechanism, efficiency,

and possible limitations of the emissions trading market. The discussion

in this section refers to the analysis of emissions trading markets by Leach

(2004) and Newell and Stavins (2003).

An important issue regarding pollution charges and emission caps is in-

formation. Since the government does not have the information on technol-

ogy of firms, discharge of pollutants usually do not reach the level of Pigo-

vian tax, nor can it achieve the most efficient level of pollution abatemen-

t. In addition, in environmental pollution, the negotiations between firms

and residents are faced with excessive transaction costs, such as free-rider

problems, and thus cannot achieve efficient pollution control. However,

cap-and-trade can usually reduce information requirements and transac-

tion costs through market mechanisms.

Below is a simple example to discuss the efficiency of the emission right-

s market.

Consider an economy with two firms. There is no externality between

the two firms, and they may discharge pollutants. Without control, firm i

will produce pollution of ē. Let ai denote the volume of emission abate-
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ment. Assume that the cost of emission abatement is Ci = ci
a2

i
2 . The two

firms have different costs of emission reduction. Suppose that c1 < c2, the

total social emission regulated by the government is 2ê, and the emission

cap for every firm is ê < ē.

14.5.1 Emission Reduction without Trading Market

If the emission rights of two firms cannot be exchanged, then the mission

abatement cost for firm i is Ci = ci
(ē−ê)2

2 , and the total cost of emission

abatement is (c1 + c2) (ē−ê)2

2 . The marginal costs of emission abatements

for firm 1 and firm 2 are c1(ē − ê) and c2(ē − ê), respectively. Since two

firms’ marginal costs of emission abatement are different, the total cost of

social emission abatement is not minimized. If firm 2 transfers 1 unit of

emission rights to firm 1, the social emission abatement cost is reduced by

(c2 − c1)(ē− ê). The establishment of an emission rights market will reduce

the total cost of emission abatement without affecting total emissions.

14.5.2 Emissions Trading

Below, we discuss market equilibrium under emissions trading. Assume

that the emissions trading market is competitive, and the number of firm i

is a continuum. The total number of firms in each category is standardized

to 1.

For firm i, the optimization problem is as follows:

min
a1

c1
a2

1
2

+ p(ē− ê− a1) (14.5.59)

s.t. a1 5 ē, (14.5.60)

where a1 is the actual emission abatement by firm 1, and p is the price of

emission rights. The emission abatement needed for firm 1 is ē − ê. If the

actual emission abatement is a1 < ē− ê, firm 1 needs to purchase ē− ê− a1

of emission rights. If its actual emission abatement is a1 > ē− ê, firm 1 can

supply −(ē − ê − a1) of emission rights. Therefore, the objective function

for firm 1 is to minimize the pollution cost under emission cap ê.
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Condition (14.5.60) represents that the highest possible abatement of

emissions by firm 1 will not exceed the pollution that it produces.

So, the optimal decision of firm 1 is

a1 =


p

c1
, if p < c1ē,

ē, otherwise.
(14.5.61)

The demand of emission rights for firm 1 is denoted as d1(p) = ē−ê−a1.

Here, we see supply as a negative demand. By (14.5.61), we obtain

d1(p) =

 ē− ê− p
c1
, if p < c1ē,

−ê, otherwise.
(14.5.62)

Similarly, we can get the demand of emission rights for firm 2, d2(p).

When d1(p) + d2(p) = 0, the emission rights market reaches an equilib-

rium, and there are two possible equilibria.

(1) Equilibrium 1: firm 1 reserves a part of emission rights. That is,

a1 < ē.

The market clears and satisfies

2(ē− ê) −
[
p

c1
+ p

c2

]
= 0,

the equilibrium price is

p = 2(ē− ê)
[ 1
c1

+ 1
c2

]−1
, (14.5.63)

and satisfies

p < c1ē.

Substituting the equation (14.5.63) into the above equation yields

ê > ē
c2 − c1

2c2
.

In other words, if firm 1’s cap is sufficiently large, then the firm will retain
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part of the emission rights. In this equilibrium, emissions trading is

−d1 = d2 = (ē− ê)c2 − c1
c1 + c2

. (14.5.64)

From the formula (14.5.64), we can see that the greater is the difference

in the emissions technologies of the two firms, the greater is the scale of the

emissions trading. Through emissions trading, the social emission abate-

ment costs can be minimized. In equilibrium, the emission abatement cost

of the society is

C1 + C2 = 2(ē− ê)2
[ 1
c1

+ 1
c2

]−1
< (ē− ê)2 c1 + c2

2
.

(2) Equilibrium 2: firm 1 sells all emission rights.

The market clears and satisfies

ē− 2ê− p

c2
= 0,

the equilibrium price is
p = c2(ē− 2ê),

and satisfies

p > c1ē,

obtaining

ê < ē
c2 − c1

2c2
.

The volume of emissions trading is

−d1 = d2 = ê.

The total social emission abatement cost is

c1
2

(ē)2 + c2
2

(ē− 2ê)2 < (ē− ê)2 c1 + c2
2

.

In the emissions trading market, when firms have different technologies

in emission abatement, the transaction will allow them to remain the same

regarding the marginal cost of emission abatement, resulting in efficient al-
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location of pollution rights. In addition, in the case of an emission rights

market, firms will also have greater incentives in the innovation of emis-

sion abatement technologies. This is because market transactions can make

the benefits of emission abatement innovations greater, rather than merely

lower their own emission abatement costs. Many studies have found that,

through market transactions, emission abatement costs of the society can

be markedly conserved. For example, a study on sulfur dioxide emissions

trading among electric utilities by Carlson et al. (2000) demonstrated that

emissions trading could lower abatement cost curves for the U.S. power

industry by over 50% since 1985, as opposed to the command-and-control

approach (requiring a uniform emission rate standard), and the trading can

reduce annual abatement costs by 700 million ∼ 800 million dollars.

However, the operation of the emission rights market will also have its

costs. For instance, what would be the optimal way to allocate emission

rights among firms and for new participants? Of course, an established

way to deal with the distribution of emission rights is by auction. How-

ever, setting up an auction market among different pollutants presents a

major challenge because, in some industries, there may be intrinsic links

among different pollutants. Joskow et al. (1998) studied transaction cost-

s in the operation of an emission rights market, and discussed the impact

of auctions on the price of emission rights in the sulfur dioxide emission

rights market in the U.S. context.

In addition, the allocation of emission rights may lead to rent-seeking

and social risks. Different firms may have dissimilar borrowing capabili-

ties, and may suffer from efficiency losses in auctions and market trading.

Moreover, for many developing countries, the supervision of emissions has

long been problematic. If pollution discharge cannot be efficiently moni-

tored, then the market for emission rights will inevitably lack clear proper-

ty rights. Stavins (1995) discussed the impact of transaction costs of emis-

sion rights on pollution control efficiency. In addition, Tietenberg (1995)

discussed the spatial allocation of emission rights. For more information

on the emissions trading market, readers can refer to Gayer and Horowitz

(2005). They discussed in detail some of the important theoretical and prac-

tical issues involved in the emissions trading market.
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14.6 Biographies

14.6.1 Arthur Pigou

Arthur Cecil Pigou (1877 - 1959) was a British economist, and one of the

leading representatives of the Cambridge School. Pigou was born into a

military family in England and was admitted to the University of Cam-

bridge, where he first studied history. Later, he changed his focus to eco-

nomics under the influence of Marshall. In 1908, Pigou became a Professor

of Political Economy at the University of Cambridge in succession to Alfred

Marshall, and held the post until 1943. Pigou inherited Marshall’s academ-

ic tradition and analytical framework to a large extent. In addition, he also

served as a Fellow of the Royal Society, Honorary President of the Interna-

tional Economic Association, a member of the Cunliffe Committee on the

Currency and Foreign Exchange, and a member of the Royal Commission

on Income Tax. He proposed the concept of “economic welfare”in his

representative works The Economics of Welfare, Industrial Fluctuations and A

Study in Public Finance. He advocated the equalization of national income

and established the cardinal utility theory. Pigou was the first to systemati-

cally study externality from the perspective of welfare economics. Based on

the concept of“external economy”put forward by Marshall, he expand-

ed the concept and content of “external diseconomy”. This expansion

turned from the effect of external factors on business to the impact of busi-

ness or residents on other businesses or residents.

The Economics of Welfare published in 1920 was Pigou’s most famous

representative work. This textbook systemized welfare economics, and

marked the establishment of Pigou’s complete theoretical system. Its inter-

pretation of welfare economics has long been regarded as“classic”, and

therefore Pigou was also known as the “father of welfare economics”.

Pigou believed that the purpose of this textbook was to study the impor-

tant factors that affect economic welfare in real life. The entire book was

centered on how to increase social welfare. Pigou proposed the so-called

Pigovian tax, which advocates subsidies for activities that have positive

externalities.



700 CHAPTER 14. EXTERNALITIES

Pigou contributed an important model of neoclassical thought. In fac-

t, Keynes criticized Pigou as a representative of the full employment per-

spective in the neoclassical school. Pigou replied to this criticism by stating

that Keynes’ The General Theory of Employment, Interest, and Money was a

mixture of incorrect ideas. In his response to Keynes, Pigou attempted to

restore the position of neoclassical employment theory through a logically

complete demonstration, under the classical assumption about wages and

price elasticity.

14.6.2 Ronald Coase

Ronald Harry Coase (1910 - 2013) was the originator of the new institution-

al economics, founder of property rights theory, and a representative of the

Chicago School of Economics. He was awarded the 1991 Nobel Memori-

al Prize in Economic Sciences for his discovery and analysis of the role of

transaction costs and property rights in institutional structure and opera-

tion.

Coase was born on 29 December 1910 in a small town, named Willes-

den, outside of London. In his childhood, Coase had to wear leg-irons to

help support his legs. Due to physical limitations, young Coase had to at-

tend a school for the physically disabled. Through his own unremitting

efforts, Coase successfully entered the London School of Economics and

obtained a Bachelor of Commerce degree at the age of 22. After six years of

teaching at this school, Coase received a doctoral degree from the Universi-

ty of London in 1951. He then came to the U.S. and taught at the University

of Buffalo and the University of Virginia. Subsequently, he became a pro-

fessor at the University of Chicago.

Coase only wrote a few papers in his life. The most famous of these

were“The Nature of the Firm”published in 1937 and“The Problem of

Social Cost”published in 1960. These two papers are probably the most

widely cited works in all economics literature. Although he seldom used

mathematics, his articles were logically clear. He introduced and adopted

the concept of transaction costs and clarified property rights to investigate

the boundaries and externalities of the firm. He introduced the institution
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and the firm into mainstream economics, which had previously focused

on interpreting how the market price system works. He demonstrated the

relationship of the firm, property rights, contracts, and markets, as well as

the important role of these factors in economic development. His economic

ideas were profound, and had a far-reaching influence on the developmen-

t of modern economics. Indeed, various subfields of economics, such as

the economics of property rights, information economics, mechanism de-

sign theory, contract theory, and transition economics, have all been greatly

influenced by Coase’s ideas.

In his paper, entitled“The Nature of the Firm”, he explained how the

firm was formed from a distinctive perspective. This paper was later wide-

ly considered as having a paradigm-changing effect on economics. From

the perspective of “transaction costs”, Coase provided reasons for how

firms emerged. Coase believed that there were costs in market transaction-

s. These costs include bargaining, costs of contracts formation and imple-

mentation, and time costs. Coase also asserted that when market transac-

tion costs are higher than coordination costs within the firm, then the firm

emerges. The existence of the firm occurs to save market transaction cost-

s by replacing higher-cost market transactions with lower-cost intra-firm

transactions. This distinctive research perspective is still heralded by the

economics community.

Coase’s research seldom involves mathematics. In his seminal 1960 pa-

per “The Problem of Social Cost”, he used a written discourse to deal

with the economic problem of externalities, and to demonstrate the defini-

tion of property rights and the importance of property rights arrangement

in economic transactions. George Joseph Stigler (1911 - 1991), winner of the

1982 Nobel Prize in Economics, further classified Coase’s theory as“under

perfect competition, private and social costs will be equal”, and eventu-

ally formed the well-known “Coase Theorem”. The importance of the

Coase Theorem lies in the revelation that, apart from price, property right-

s arrangement and transaction costs have a major impact on institutional

arrangements. The Coase Theorem is divided into two parts. As long as

the transaction cost is zero and the property rights are clearly defined: (1)

the level of the externality will be the same, regardless of the assignment
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of property rights, known as the Coase Neutrality Theorem; and (2) with

voluntary exchanges and voluntary negotiations, clearly defined property

rights will lead to efficient allocation of resources. In other words, with

market mechanisms, through voluntary trading and negotiations, contrac-

tual arrangements that achieve the best interests of all individuals can be

determined. This conclusion is called the Coase Efficiency Theorem. Coase

further argued that, even if there are transaction costs, the parties involved

in the interaction will find a less costly institutional arrangement through

the contract when the property rights are clearly defined.

Coase’s economic theory and his insights have spread widely in China,

which has always been in the process of economic reforms, making him

one of the most cited contemporary economists among Chinese economist-

s. Coase also enjoyed a remarkably long life, and passed away at the age of

102.

14.7 Exercises

Exercise 14.1 There is an orchard next to an apiary. The orchard produces

fruit, and the apiary supplies honey. The flowers of the fruit tree provide

honeybees with nectar, and the bees promote pollen transmission. Suppose

that the price of fruit is $2 per unit, and the price of honey is $8 per unit.

Let H be the output of honey, and A be the yield of fruit. The orchard’s

cost function is CA(A,H) = A2/2 − 6H , and the apiary’s cost function is

CH(A,H) = H2/2 − 3A.

1. If the orchard and the apiary make independent decisions, what is

the output of fruit and honey, respectively?

2. If the orchard and the apiary merge, what is the output of fruit and

honey, respectively?

3. Do the markets for fruit and honey result in Pareto efficient alloca-

tions? Why?
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Exercise 14.2 Consider an economy with two goods and two consumers.

The utility functions of the two consumers are

u1(x) = 0.5 ln(x1
1 + x1

2) + 0.5 ln x2
1,

u2(x) = 0.5 ln x1
2 + 0.5 ln x2

2.

Their consumption spaces Zi = R2
+, i = 1, 2, and the initial endowments

are w1 = (1, 2) and w2 = (2, 1).

1. Solve for Pareto efficient allocations and competitive equilibria.

2. Is a competitive equilibrium allocation Pareto efficient? Why?

Exercise 14.3 Consider a pure exchange economy with two goods and two

consumers. The first good is“music”, and the second good is“bread”.

The consumption space is Xi = R2
+, i = 1, 2. The aggregate initial endow-

ment is (wm, wb). The utility functions of the two consumers are

u1(m1, b1) = m
3/5
1 b

2/5
1 − k1,

u2(m2, b2) = m
3/5
2 b

2/5
2 − k2,

in which m1 and m2 are music consumptions, and b1 and b2 are bread con-

sumptions of consumer 1 and 2, respectively, and k1 and k2 are constant

parameters.

1. What is the set of Pareto optimal allocations?

2. Suppose that the initial endowments of consumers 1 and 2 are w1 =
(3/2, 1/2) and w2 = (1/2, 3/2). Solve for the competitive equilibrium.

3. Verify whether the equilibrium allocation in question 2 is Pareto op-

timal.

4. Now, suppose that the consumers’ utility functions change to

û1(m1,m2, b1) = m
3/5
1 b

2/5
1 −m2,

û2(m1,m2, b2) = m
3/5
2 b

2/5
2 −m1.
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One explanation to the above utility functions is that, while one per-

son’s consumption of music increases her own utility, it also interferes

with the quiet environment of the other, thereby reducing the utility

of the other.

(a) What is the critical value w̄m of the aggregate initial endowment,

such that exhaustion of resources beyond the critical value will

result in Pareto inefficient allocation?

(b) What is the set of interior-point Pareto efficient allocations? (Dis-

cuss two situations: wm 5 w̄m and wm > w̄m). Compare the

result with that in question 1 above.

(c) Suppose that w1 = (3/2, 1/2) and w2 = (1/2, 3/2). Solve for

the competitive equilibrium. Is the competitive allocation Pareto

optimal?

Exercise 14.4 Consider the pure exchange economy of two commodities

and two consumers. The consumption space is Xi = R2
+, i = 1, 2 , and the

aggregate endowment is given by (wx, wy), where x and y represent two

commodities. The utility functions of the two consumers are

u1(x1, y1) = x0.3
1 y0.7

1 − x2,

u2(x2, y2) = x0.3
2 y0.7

2 − x1.

1. Solve for w̄x, such that ifwx > w̄x, any attainable (balanced) allocation

is not Pareto efficient.

2. Solve for interior-point Pareto efficient allocations.

3. Suppose that w1 = (2, 1),w2 = (1, 2), and solve for competitive equi-

librium. Is the competitive allocation Pareto efficient? Why?

Exercise 14.5 Consider the economy of two commodities and two consumer-

s. The consumption space is Xi = R2
+, i = 1, 2. Commodity m represents

all commodities that can be purchased with money. Commodity n char-

acterizes all commodities that cannot be purchased with money, such as
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freedom and family life. In other words, commodity m represents the com-

posite of all goods that can be included in GDP, while commodity n cannot.

The utility function of consumer i is:

ui(mi, ni,mj) = mα
i n

1−α
i − βmj , 0 < α < 1, β > 0.

1. Prove that if the total endowment of m exceeds a certain amount,

there must be some free disposal in m (i.e., m cannot be exhausted

completely) in reaching Pareto optimal allocations.

2. Solve for Pareto efficient allocations.

3. Do you think that the conclusion of this question can explain the fol-

lowing paradox: The individual’s happiness index may not increase

with the country’s wealth?

Exercise 14.6 Consider the economy of n consumers. Each consumer i

chooses an action hi ∈ R+ and her utility function is ϕi(hi,
∑
i hi) + wi.

Suppose that ϕi(·) is strictly concave. wi is her initial endowment.

1. Characterize Pareto optimal actions h1, · · · , hn.

2. Characterize Nash equilibrium on actions.

3. Compare the Pareto efficient outcome with the Nash equilibrium out-

come. What kind of tax rate can result in Pareto optimal outcomes?

Exercise 14.7 There is a common grazing land in a mountain village where

villagers can herd sheep. The cost of raising each sheep is 4. The total

revenue of raising sheep on this grazing land is f(x) = 20x− 3x2/2, where

x denotes the number of sheep.

1. Prove that free grazing does not maximize the total welfare of the

grazing land.

2. The government now decides that a license is necessary for raising

sheep. How should the government decide on the price of the license

in order to maximize its revenue?
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Exercise 14.8 Two persons have to decide separately how fast they should

drive an automobile. Individual i chooses driving speed xi to obtain the u-

tility of ui(xi) and u′
i(xi) > 0. However, the faster the automobile, the more

likely there will be an automobile accident. Let P (x1, x2) be the probability

of an accident, and it is an increasing function of x1 and x2. Let ci > 0 be

the cost to individual i in the event of an accident. Each person’s utility is

linear with regard to currency.

1. Prove that the individual’s choice of driving speed is faster than the

requirement for social welfare maximization.

2. If the penalty for individual i was ti in the event of an accident, solve

for the ti that can internalize the externality.

3. Now, suppose that the utility of individual i changes to 0 in the event

of an accident. Find the penalty for the internalization of the exter-

nality.

Exercise 14.9 A manufacturer’s cost function c(q, h) is differentiable and

strictly convex, q = 0 is its output level, and h is the negative externality

level of production. This externality affects the consumer, whose indirect

utility function is ϕ(h)+w, where ϕ(h) is differentiable and satisfies ϕ′(h) <
0.

1. Derive the first-order conditions in which the manufacturer chooses

q and h.

2. Derive the Pareto-optimal first-order conditions of q and h.

3. Suppose that the government imposes a tax on the producer’s output.

Prove that it cannot achieve Pareto optimality.

4. Suppose that the government directly levies taxes on the externality,

and prove that this approach can achieve Pareto optimality.

5. Suppose that h = γq is constant for γ > 0. Prove that taxation on

production can achieve Pareto optimality.
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Exercise 14.10 (Tragedy of the Commons) Fishermen can fish freely in a

lake. The cost of a fishing boat is c > 0. When there are b fishing boats

in the lake, a total of f(b) fish are captured. The fishing amount for each

fishing boat is f(b)/b. For b = 0, we have f ′(b) > 0 and f0(b) < 0. The price

of fish is p > 0 per unit.

1. Solve for the equilibrium quantity of boats.

2. Solve for the Pareto optimal quantity of fishing boats, and prove that

it is less than the equilibrium quantity.

3. What kind of fishing tax should be imposed on fishing boats to achieve

the Pareto optimal quantity?

4. Suppose that the lake belongs to someone. How does the owner

choose the number of fishing boats?

Exercise 14.11 Consider an economy with two consumers, A and B, and

two commodities, 1 and 2. yji represents individual i’s consumption of the

commodity j, and Ii represents the individual’s income level. The prices

of the two commodities are p1 and p2, respectively. The utility function for

consumer A is uA(y1
A, y

2
A, y

2
B), and the utility function for consumer B is

uB(y1
B, y

2
B), which means that the consumption of good 2 by consumer B

has an externality to consumer A.

1. Write down the utility maximization problems of consumers, and de-

termine the conditions that should be satisfied under an equilibrium

allocation.

2. If ∂uA/∂yB < 0, is the equilibrium allocation Pareto efficient?

3. Now, suppose that a specific duty, denoted t2B , is levied on the con-

sumption of commodity 2 by consumer B. What will happen to the

utility maximization problem of consumer B?

4. Can the method of taxing restore the Pareto efficient allocation? Why?

Exercise 14.12 A local government proposes to implement a sewage tax

system with a minimum discharge standard. Each firm is allowed to emit
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a certain amount h̄ of pollutants without being taxed, while those beyond

h̄ will be taxed.

1. Write down the objective function of the firm.

2. Explain why the system is not efficient, in general, and cannot en-

courage minimal-cost abatements, and under what circumstances the

system is efficient.

Exercise 14.13 Consider the constant marginal abatement cost function of

two firms:

−C ′
1(h1) = a, h1 < ĥ1;

−C ′
2(h2) = b, h2 < ĥ2.

1. When the damage function of pollution is convex and linear, find so-

cially optimal emissions of the two firms.

2. Under these circumstances, is it possible to use economic incentive

policy tools to achieve the socially optimal allocation?

Exercise 14.14 (Macho-Stadler and Pérez-Castrillo, 2006) Under the linear

sewage tax rate and incomplete supervision, a firm decides to report its e-

missions of z, while its actual emissions are h. The linear tax rate is τ , and

the firm pays a sewage fee of zτ . The firm’s return is a function of the actu-

al amount of pollutants discharged, which is denoted by g(h). When firms

are not subject to any regulation, their emissions are h, and g′(h) = 0. When

h ∈ [0, h), g(h) is an increasing and concave function: g′(h) > 0, g0(h) < 0.

The probability that a firm’s real emissions are detected by environmental

protection agencies is ρ ∈ [0, 1]. A penalty to a firm that is found to make

a false report is θ(h− z), and the penalty is a monotonically increasing and

convex function of the difference between actual emissions and reported

emissions: for x > 0, θ′(x) > 0 and θ0(x) > 0. Since the penalty of unit

false report should be higher than the tax rate, we assume θ′(0) > τ .

1. How does the firm’s optimal reported emissions and actual emissions

change with the regulatory intensity ρ?



14.7. EXERCISES 709

2. Does the increase of regulatory intensity for the firm that reports greater

than zero emissions reduce its actual emissions?

Exercise 14.15 There is a chemical plant in the upper reaches of a river,

and its production will cause pollution to two downstream fishermen. The

chemical plant can spend $5,000 to purchase equipment to avoid pollution.

The pollution will result in losses of $2,500 and $4,000 for the two fisher-

men, respectively. The fishermen can purchase the decontamination unit

alone or jointly for $6,000 to eliminate the pollution.

1. Suppose that the property rights are not clearly defined, pollution has

already occurred, and the two fishermen can negotiate. What is the

result?

2. Suppose that the property rights are owned by the chemical plant,

and the chemical plant and the two fishermen can negotiate. What is

the result?

3. Now, suppose that the property rights belong to the two fishermen,

and the chemical plant and the two fishermen can negotiate. What is

the result?

4. Which result of the above three questions is Pareto efficient?

5. If the“tax-subsidy”mechanism is introduced, how should the reg-

ulator achieve a Pareto efficient outcome?

Exercise 14.16 (Coase Neutrality Theorem) The Coase Neutrality Theorem

asserts that, as long as property rights are clearly defined, the equilibrium

level of the externality will be the same, irrespective of the assignment of

property rights. Consider the pure exchange economy of two types of com-

modities and two consumers. One commodity is“money”, and both con-

sumers desire it. The other commodity is“music”. Music consumption

will increases one’s own utility, while reducing the utility of the other.

1. What special assumptions about consumer preferences will lead to

the Coase Neutrality Theorem? Demonstrate your claim in two situ-

ations concerning the definition of property rights: (a) a musician has
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the right to play music without neighbors’ approval; (b) a musician

must be authorized by neighbors to play music. (In order to reach

an agreement, one person can compensate another person.) Use a

diagram to illustrate your answer.

2. Suppose that both have the Cobb-Douglas utility function. Does the

argument of the Coase Neutrality Theorem still hold? Illustrate your

answer with a diagram.

Exercise 14.17 The Coase Efficiency Theorem states the following: If prop-

erty rights are clearly defined and transaction costs are zero, the negotiation

of externalities will lead to Pareto optimal outcomes.

1. Prove that the assumption of quasilinear utility function is a sufficient

condition for this theorem to hold.

2. Is the quasilinear utility function a necessary condition for the theo-

rem to hold? If yes, give a proof; if not, give a counterexample.

Exercise 14.18 (Kolstad, 2000) Suppose that there are two polluting firms

with hidden characteristics θ. For both firms, θ does not have to be equal.

Suppose that θ can take a value of 1 or 2. The revenue of firm i is Si(hi, θi) =
1 − (1−θihi)2

2θi
. The damage resultant from pollution is D(h1 + h2) = (h1 +

h2)2/2.

1. Suppose that the regulator knows each firm’s θ: θ1 and θ2. For all pos-

sible combinations of θ1 and θ2, what is the socially optimal pollution

for each firm: h∗
1(θ1, θ2), h∗

2(θ1, θ2)?

2. Now, suppose that the regulator does not know θ, but asks each firm

to report θ. After receiving reports from each firm, each firm i will be

charged a fee of Ti(hi, θi). This fee is based on the reported θi by firm

i, the reported θj by firm j, and real emissions hi:

Ti(hi, θi) = D[hi + h∗
j (θ1, θ2)] − Sj [h∗

j (θ1, θ2), θj ].

Before firms report their θ values, all of above specifications are com-

mon knowledge. Prove that it is in the best interest of each firm to

report the true θ and take the socially optimal pollution level h∗.
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Chapter 15

Public Goods

15.1 Introduction

The previous chapter discusses resource allocations in economic environ-

ments with externalities. In the presence of externalities, the market may

fail to achieve efficient allocation even under perfect competition and free-

dom of choice, and then some remedies need to be implemented. These

measures include: Pigouvian tax, Coase’s approach, building a market for

emissions trading, and designing an incentive mechanism.

The presence of public goods is another significant situation that results

in market failure. Once public goods are present in an economy, external-

ities, and thus market failure, may occur. It is well-known that financing

a public project via voluntary donation is difficult. This is because public

goods are essentially distinct from private goods. Two main differences are

non-exclusivity and non-rivalry. A good is excludable if other individual-

s can be excluded from consuming it when an individual consumes it. A

good is non-rival if one person’s consumption does not reduce the amount

available to other consumers.

A pure public good is a good in which consuming one unit of the good by

an individual in no way prevents others from consuming the same unit of the good.

Thus, the good is nonexcludable and non-rival. Examples of public goods

include street lights, policemen, fire protection, highway systems, national

defense, flood-control projects, public television and radio broadcasts, pub-

715
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lic parks, public projects, etc. The purest public good is national defense. It

protects all citizens of a nation from aggression.

Local Public Goods: when there is a location restriction for the provision

of a public good.

The non-exclusivity of public goods may result in a free-rider problem.

For example, individuals want to get benefits from, but do not want to

contribute to, a public project. The inefficiency of state-owned enterprises

also originated from the free-rider problem. These enterprises usually lack

a proper incentive to make efforts, i.e., everyone wants to enjoy the efforts

provided by others. Even if the competitive market is an efficient system

for allocating private goods, it is not an efficient mechanism for allocating

public goods.

There are three possible ways that might be used to solve this prob-

lem: (1) forming social norms and cultures of donation habits, although it

is difficult to achieve in the short term, and the effect is limited; (2) remold-

ing one’s ideology by taking altruism and work as happiness, although the

reality is cruel and it is ineffective, unless the genes that pursue personal

interests are altered; and (3) in situations in which social norms and cul-

tures, such as donation habits, are difficult to form in the short run and

individuals’ ideological consciousness cannot be markedly improved, in-

centive mechanism design shall be adopted by respecting the fact that in-

dividuals’ ideological realm is limited as a constraint condition on a case-

by-case basis. A comprehensive governance approach that combines in-

centive mechanism with social norms and regulations can better solve the

free-rider problem in the presence of public goods.

15.2 Notations and Basic Settings

A general setting of a public goods economy includes consumers, produc-

ers, private goods, public goods, and economic characteristics of consumer-

s and produces.

The following notations will be used in what follows:

• n: the number of consumers.
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• L: the number of private goods.

• K: the number of public goods.

• Zi ⊆ RL
+ × RK

+ : the consumption space of consumer i.

• Z ⊆ RnL
+ × RK

+ : consumption space.

• xi ∈ RL
+: a consumption of private goods by consumer i.

• y ∈ RK
+ : a consumption/production of public goods.

• wi ∈ RL
+: the initial endowment of private goods for consumer i. For

simplicity, it is assumed that there is no public goods endowment, but

they can be produced from private goods.

• Y ⊆ RL+K : the set of production possibilities of the firm. For sim-

plicity, we assume that there is only one firm to produce the public

goods.

• (y,−v) ∈ Y : a production plan, where v ∈ RL
+ is the vector of private

goods input.

• f : RL
+ → RK

+ : production function with y = f(v).

• θi: the profit share of consumer i from the production.

• (xi,y) ∈ Zi: a consumption of private goods and public goods by

consumer i.

• (x,y) = (x1, ...,xn,y) ∈ Z: an allocation.

• <i (or ui if exists): a preference ordering (it is complete and transi-

tive).

• ei = (Zi,<i,wi, θi): the characteristic of consumer i.

• e = (e1, ..., en, f): a public goods economy.

The above is a relatively simple class of public goods economic envi-

ronments. Analogous to the previous discussion, in a general equilibrium
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problem, the economic environments can be more general to allow for pro-

duction possibility sets of general form, an arbitrary number of firms, and

either public or private goods as input or output. For a detailed discussion,

see Foley (1970) and Milleron (1972).

Definition 15.2.1 Allocation z ≡ (x,y) = (x1, . . . ,xn,y) ∈ Z is feasible, if

(y,
∑n
i=1 xi − ŵ) ∈ Y , where ŵ =

∑n
i=1 wi.

If technology can be represented by function y = f(v), the feasibility

condition can be written as:

n∑
i=1

xi + v 5
n∑
i=1

wi, (15.2.1)

and

y = f(v). (15.2.2)

Definition 15.2.2 An allocation (x,y) is Pareto efficient for a public goods

economy e if it is feasible and there is no other feasible allocation (x′,y′),

such that (x′
i,y

′) <i (xi,y) for all consumers i and (x′
k,y

′) ≻k (xk,y) for

some k.

Definition 15.2.3 An allocation (x,y) is weakly Pareto efficient for the public

goods economy e if it is feasible and there is no other feasible allocation

(x′,y′), such that (x′
i,y

′) ≻i (xi,y) for all consumers i.

Remark 15.2.1 Unlike private goods economies, even under the assump-

tions of continuity and strong monotonicity, a weakly Pareto efficient allo-

cation may not be Pareto efficient for public goods economies. The follow-

ing proposition is ascribed to Tian (1988).

Proposition 15.2.1 For public goods economies, a weakly Pareto efficient alloca-

tion may not be Pareto efficient, even if preferences satisfy strong monotonicity and

continuity.

PROOF. The proof is by way of a counter-example. Consider an e-

conomy with (n,L,K) = (3, 1, 1), constant returns in producing y from

x (the input-output coefficient normalized to one), and the following en-

dowments and utility functions: w1 = w2 = w3 = 1, u1(x1, y) = x1 + y,
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and ui(xi, y) = xi + 2y for i = 2, 3. Then, z = (x, y) with x = (0.5, 0, 0)
and y = 2.5 is weakly Pareto efficient, but not Pareto efficient, because

z′ = (x′, y′) = (0, 0, 0, 3) Pareto-dominates z by consumers 2 and 3. 2

However, under an additional condition of strict convexity, they are

equivalent. The corresponding proof is left to readers.

15.3 Discrete Public Goods

15.3.1 Efficient Provision of Public Goods

For simplicity, consider a public good economy with n consumers and two

goods: one private good and one public good.

Discrete public goods, also called public projects, are indivisible. It is

assumed that the units of public goods provided are normalized to 1. This

can also be interpreted as a logical variable of 0 or 1: 1 for providing public

projects, and 0 for not providing public projects.

Let gi be the contribution made by consumer i, so that

xi + gi = wi;
n∑
i=1

gi = v.

Let c be the cost of providing the public project, so that the production

technology is given by

y =

 1 if
∑n
i=1 gi = c

0 otherwise

Assume that ui(xi, y) is strictly monotonically increasing and continu-

ous. We first want to know under what conditions providing the public

good Pareto dominates not providing it, i.e., there exist (g1, . . . , gn), such

that
∑n
i=1 gi = c and

ui(wi − gi, 1) > ui(wi, 0), ∀i. (15.3.3)

Let ri be the maximum willingness-to-pay (reservation price) of consumer
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i, i.e., ri must satisfy

ui(wi − ri, 1) = ui(wi, 0). (15.3.4)

Inequality (15.3.3) implies that providing the public project will bring

higher utilities for all consumers than not providing the public project.

Then, from the perspective of social optimality, the public good should

be provided. Therefore, as long as we know the utility function of each

individual, we know their willingness-to-pay, and thus we know whether

providing the public good is Pareto efficient.

If providing the public project Pareto dominates not providing the pub-

lic project, we have

ui(wi − gi, 1) > ui(wi, 0) = ui(wi − ri, 1), ∀ i. (15.3.5)

By strong monotonicity of ui, we have

wi − gi > wi − ri ∀i. (15.3.6)

Then, we have

ri > gi, (15.3.7)

and thus
n∑
i=1

ri >
n∑
i=1

gi = c. (15.3.8)

In other words, the sum of the willingness-to-pay for the public good must

exceed the cost of providing it. This condition is necessary. In fact, this

condition is also sufficient. In summary, we have the following proposition.

Proposition 15.3.1 Providing a public good Pareto dominates not providing the

public good if and only if
∑n
i=1 ri >

∑n
i=1 gi = c.

The problem is that individual preferences/utility functions are un-

known to a social planner, and thus it may result in inefficient outcomes, as

we discuss below. Determination of how to design an incentive mechanis-

m to induce individuals to truthfully report their private information then

becomes an important issue.
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15.3.2 Free-Rider Problem

First of all, we want to know whether a free competitive market leads to an

efficient provision of public goods. The following example shows that, due

to the free-rider problem, we generally cannot expect individual decision-

making to result in an efficient provision of public projects.

To see this, consider a simple economy with only two participants, the

maximum willingness-to-pay for each individual is ri = 100, i = 1, 2. Sup-

pose that the cost for providing the public project is c = 150. The partic-

ipants decide on their own how much they will contribute for the public

project. If both are willing to contribute 75, the public project will be pro-

vided, and each participant will receive 25 units of benefit. If only one

person contributes 150, the public project is provided, but the benefit is 50,

while the benefit of another person is 100. Formally, we have

ri = 100 i = 1, 2;

c = 150 (total cost);

gi =

 150/2 = 75 if both agents make contributions;

150 if only agent i makes contribution.

Each person decides independently whether or not to contribute for

providing the public good. As a result, each one has an incentive to be a

free-rider on the other as shown by the payoff matrix in Table 15.1.

Person 2
Contribute Not Contribute

Person 1 Contribute (25,25) (-50,100)
Not Contribute (100,-50) (0,0)

Table 15.1: Private provision of a discrete public good.

Note that net payoffs are defined by ri − gi. Thus, it is given by 100 -

150/2 = 25 when both consumers are willing to produce the public project,

and 100-150 = -50 when only one person wants to contribute, but the other

person does not.

The dominant strategy equilibrium in this game is (no contribution, no



722 CHAPTER 15. PUBLIC GOODS

contribution). Thus, although the public project benefits both agents, no-

body wants to share the cost of producing the public project, but wants to

free-ride on the other consumer. As a result, the public good is not provid-

ed at all, even though it would be more efficient to do so. Thus, voluntary

contribution, in general, does not result in an efficient level of the public

good provision.

The above-mentioned problem is typically a prisoner’s dilemma. This

phenomenon is common in practice, causing both participants to be worse

off. For example, if two firms conspire to monopolize prices, they can

gain higher profits, but if one side lowers its price slightly, it can attrac-

t more customers. Consequently, as the Bertrand model predicted, each

party has an incentive to reduce the price, and ultimately the price reaches

the marginal cost level. This illustrates the basic conclusion that inefficient

allocation often results from self-consciousness and self-dedication only.

15.3.3 Voting for a Discrete Public Good

The amount of a public good is also often determined by voting. Will this

generally result in an efficient provision? The answer, in general, is nega-

tive.

Voting does not result in efficient provision. Consider the following

example.

Example 15.3.1

c = 120

r1 = 80, r2 = 35, r3 = 35.

Clearly, r1 +r2 +r3 > c. gi = 120/3 = 40. The efficient provision of the pub-

lic project should be yes. However, under the majority rule, only consumer

1 votes “yes”since she receives a positive net benefit if the good is pro-

vided. The 2nd and 3rd persons vote“no”to provide public project, and

therefore the public project will not be provided so that we have inefficient

provision of the public project. The problem with majority rule is that it on-

ly measures the individuals’ net benefits for the public good, whereas the
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efficient condition requires a comparison of maximum willingness-to-pay,

resulting in the inconsistency between individual rationality and collective

rationality.

This example also shows that democracy and efficiency are often incom-

patible in decentralized decision-making, because voters are usually driv-

en by their own interests. To overcome the possible inconsistency between

democracy and efficiency, a criterion of whether democratic decision-making

should be adopted is that the higher is the level, the more respect for pub-

lic opinion is given in the election of leaders, and the more democratic

decision-making should be adopted in the selection of leaders. Because

leaders’ decisions of directions and strategies have tremendous external-

ities, it is necessary to elect/select a person who respects public opinion,

cares about the total welfare of a society, and is responsible to the voter-

s; otherwise, they will not be elected/selected for public office in the next

term.

However, once a person is elected/selected, since she is accountable to

the voters, the implementation of her goals and specific decisions should

be efficient; otherwise, if her daily decisions are often rejected by her staff

or team members, how can she be responsible for the voters? As such,

constantly applying the simple majority rule to every specific issue may

often lead to inefficient outcomes. Therefore, even in a democratic system,

the major leader of an organization (e.g., presidents of a nation or of a u-

niversity) usually has the power to nominate her deputies and the entire

leadership team. Of course, if a unit fails to improve and does not perform

well, the people will not be satisfied after the end of a term of office, and

then the existing leaders may not be reelected. Thus, the top leaders have

incentives to fulfill their commitments to the people. This is essentially the

structure of government departments and enterprises.

An example is the professors’ committee at universities. Its duty is to

evaluate the academic performance and promotion of faculty members,

rather than getting involved in the details of daily executive work. If every

professor has a voting right to support her own field of specialty, then an

inefficient outcome, as described in the above example, may arise.
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The above analysis shows that neither market nor democratic voting

procedures could lead to the efficient provision of public goods. The so-

lution to this problem is quite challenging to achieve, and depends on the

design of proper incentive mechanisms. We will discuss the VCG (Vickrey-

Clarke-Groves) mechanism in Chapter 18, which may elicit the efficien-

t provision of public goods and truth-telling of voters.

15.4 Continuous Public Goods

15.4.1 Efficient Provision of Public Goods

Similar results can also be obtained for the provision of continuous public

goods. Again, for simplicity, we assume that there is only one public good

and one private good that may be regarded as money, and y = f(v), where

y is the production of public good, and v is the input of private good used

in producing the public good.

The welfare maximization approach shows that Pareto efficient alloca-

tions can be characterized by

max
(x,y)

n∑
i=1

aiui(xi, y)

s.t.
n∑
i=1

xi + v 5
n∑
i=1

wi,

y 5 f(v).

Define the Lagrange function:

L =
n∑
i=1

aiui(xi, y) + λ

(
n∑
i=1

wi −
n∑
i=1

xi − v

)
+ µ(f(v) − y). (15.4.9)

When ui is strictly quasi-concave and differentiable, and f(v) is concave

and differentiable, the set of Pareto optimal allocations is characterized by



15.4. CONTINUOUS PUBLIC GOODS 725

the FOCs:

ai
∂ui
∂xi

− λ 5 0, with equality if xi > 0; (15.4.10)

µf ′(v) − λ 5 0, with equality if v > 0; (15.4.11)
n∑
i=1

ai
∂ui
∂y

− µ 5 0, with equality if y > 0. (15.4.12)

Therefore, at an interior solution, by (15.4.10) and (15.4.11)

ai
µ

= f ′(v)
∂ui
∂xi

. (15.4.13)

Substituting (15.4.13) into (15.4.12), we have

n∑
i=1

∂ui
∂y
∂ui
∂xi

= 1
f ′(v)

. (15.4.14)

Thus, we obtain the well-known Lindahl-Samuelson condition. This con-

dition is different from the Pareto optimality for economies with private

goods only. It indicates that the sum of the marginal rates of substitution of

a public good for a private good across all economic agents is equal to the

marginal rate of technical substitution; whereas, for the private goods e-

conomy, the marginal rate of substitution of any two goods for every agent

i is equal to the marginal rate of technical substitution at Pareto optimality.

Thus, the conditions for Pareto efficiency are given by
∑n
i=1MRSiyxi

= MRTSyv,∑
xi + v 5∑n

i=1wi,

y = f(v).
(15.4.15)

The result shows that the provision level of the public good and the

consumption of the private good are jointly determined.

Example 15.4.1 Consider an economy with one public good, one private
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good, and n consumers. The utility function of consumer i is:

ui = ai ln y + ln xi,

y = v.

The Lindahl-Samuelson condition is

n∑
i=1

∂ui
∂y
∂ui
∂xi

= 1, (15.4.16)

and thus
n∑
i=1

ai
y
1
xi

=
n∑
i=1

aixi
y

= 1 ⇒
∑

aixi = y, (15.4.17)

which implies that the level of the public good depends on the private good

consumptions of all agents and is not uniquely determined.

Thus, in general, the marginal willingness-to-pay for a public good de-

pends on the amount of private good consumption, and therefore the effi-

cient level of y depends on xi. However, in the case of quasi-linear utility

functions,

ui(xi, y) = xi + ui(y), (15.4.18)

the Lindahl-Samuelson condition becomes

n∑
i=1

u′
i(y) = 1

f ′(v)
≡ c′(y), (15.4.19)

and thus y is uniquely determined.

Example 15.4.2 Suppose that

ui = ai ln y + xi,

y = v.

The Lindahl-Samuelson condition is

n∑
i=1

∂ui
∂y
∂ui
∂xi

= 1, (15.4.20)
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and thus
n∑
i=1

ai
y

= 1 ⇒
∑

ai = y, (15.4.21)

which implies that the level of public good is uniquely determined.

15.4.2 Lindahl Mechanism and Equilibrium

We gave the conditions for Pareto efficiency in the presence of public good-

s. The next issue is to determine how to achieve Pareto efficient allocations

under decentralized decision-making of individuals. In an economy with

only private goods, as long as the local non-satiation assumption is satis-

fied, every competitive equilibrium allocation is Pareto efficient.

However, with public goods, a competitive mechanism in general can-

not result in Pareto efficient allocations. Indeed, if public goods are allo-

cated through a competitive market, the equilibrium outcome is the same

as the one for private goods economies, i.e., the marginal rate of substitu-

tion of two goods for all individuals is equal to the price ratio of the cor-

responding goods and then equal to the marginal rate of technical substi-

tution, which does not satisfy the Lindahl-Samuelson condition. As such,

the competitive mechanism leads to inefficient allocations in the presence

of public goods.

For instance, if we solve for competitive equilibrium in an economy

with one private good, one public good and two consumers, then utility

maximizing behavior would equalize the MRS of y for x and its relative

price, e.g.,

MRSAyx = MRSByx = py
px
,

which violates the Lindahl-Samuelson condition. Thus, in a public goods

economy, market failure occurs.

Then, what economic mechanism should be adopted to achieve Pare-

to efficient allocations in public goods economies? We know that, in the

private goods economy, the Walrasian mechanism can result in efficient re-

source allocation. In the presence of public goods, one possible institutional

arrangement is the Lindahl mechanism.

In the early 20th century, Lindahl proposed an institutional arrange-
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ment based on the Lindahl-Samuelson condition. Lindahl suggested to use

a taxation approach to provide public goods, by which the tax rates may be

different for different individuals. Each individuals should pay a specific

“personalized price”for public goods, which means, for the same amount

of the consumption of public goods, different prices are assigned to differ-

ent individuals for consuming public goods. Thus, the Lindahl solution is

a way to mimic the Walrasiansolution, with a difference that the consump-

tion level of a public good is the same for all consumers, but the prices for

consuming public goods are personalized due to different preferences of

consumers.

To see this, consider an economy with xi ∈ RL
+ (private goods) and

y ∈ RK
+ (public goods). For simplicity, we assume that the production

possibility set of public goods Y is a closed convex cone. Thus, production

technologies characterized by y = f(v) exhibit constant returns to scale

(CRS). A feasible allocation satisfies

n∑
i=1

xi + v 5
n∑
i=1

wi. (15.4.22)

Let qi ∈ RK
+ be the personalized price vector of consumer i for

consuming the public goods y.

Let q̂ =
∑n
i=1 qi be the market price vector of y.

Let p ∈ RL
+ be the price vector of private goods.

The profit is defined as π = qy − pv.

Definition 15.4.1 (Lindahl Equilibrium) We say that an allocation (x∗,y∗) ∈
Z, a price vector of private goods p∗ ∈ RL

+, and a personalized price vector

of public goods q∗
i ∈ RK

+ , one for each individual i = 1, · · · , n, constitute a

Lindahl equilibrium if the following conditions are satisfied:

(i) p∗x∗
i + q∗

i y
∗ 5 p∗wi for all i;

(ii) If (xi,y) ≻i (x∗
i ,y

∗)，then p∗xi + q∗
i y > p∗wi for all i;

(iii) for all (y,−v) ∈ Y，there is q̂∗y∗ − p∗v∗ = q̂∗y − p∗v;

(iv) (y∗,−v∗) ∈ Y ,
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where v∗ =
∑n
t=1 wi −

∑n
i=1 x∗

i，
∑n
t=1 q∗

i = q̂∗.

The first condition above is a budget constraint, the second is a utility

maximization condition, the third is a profit maximization condition, and

the fourth is a feasibility condition.

Remark 15.4.1 Because the production function exhibits constant returns

to scale, the maximum profit is zero at the Lindahl equilibrium. That is,

q̂∗y∗ − p∗v∗ = 0, therefore

n∑
i=1

p∗x∗
i =

n∑
i=1

p∗wi + q̂∗y∗.

Thus, the budget constraint (i) holds with equality at Lindahl equilibrium

for every consumer.

We may regard a Walrasian equilibrium as a special case of a Lindahl

equilibrium when there are no public goods. In fact, the concept of Lindahl

equilibrium in economies with public goods is, in numerous ways, a nat-

ural generalization of Walrasian equilibrium in private goods economies,

with attention given to the well-known duality that reverses the role of

prices and quantities between private and public goods, and between Wal-

rasian and Lindahl allocations. In the Walrasian mechanism, prices for al-

l commodities are the same for all consumers, but the quantities of their

private goods consumption are personalized. In the Lindahl mechanism,

however, the quantities of public goods consumed are the same for all con-

sumers, while prices charged for public goods are personalized. In addi-

tion, the concepts of Walrasian and Lindahl equilibria are both relevant to

private-ownership economies. Moreover, they are both characterized by

purely price-taking behavior on the part of consumers. The Lindahl solu-

tion for the efficient provision of public goods is essentially an information-

ally decentralized decision-making process.

Lindahl equilibrium has similar properties to Walrasian equilibrium. In

fact, by redefining the consumption space, an economy with public goods

can be regarded as an economy with private goods only. Therefore, a Lin-

dahl equilibrium can then be regarded as a Walrasian equilibrium under
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this redefinition of the consumption space. This method is adopted in the

following to prove the existence of Lindahl equilibrium, where the First

and Second Fundamental Theorems of Welfare Economics still hold. The

proof is similar to that of Walrasian equilibrium.

Theorem 15.4.1 (Existence Theorem on Lindahl Equilibrium) For a public

goods economy e = ({Xi,wi,<i} , {Yj}, {θi}), there exists a Lindahl equilibrium

if the following conditions are satisfied:

(i) Zi = RL+K
+ ;

(ii) wi > 0;

(iii) <i is continuous, strictly convex, and monotonic;

(iv) Y is a closed and convex cone, 0 ∈ Y , (−RL+, 0) ⊆ Y (free dis-

posal property).

PROOF. We prove this theorem by constructing an economy with only pri-

vate goods to which the existence theorem of Walrasian equilibrium (CE)

can be applied. Specifically, treating the consumptions of different con-

sumers of public goods as different commodities and changing the original

commodity space of consumer i to Z̄i = (Zi, {0}) ⊆ RL+K × R(n−1)K ,

where 0 is the null element of (n− 1)K dimensional space. The consump-

tion bundle of i is z̄i = (xi,yi, 0, · · · , 0). The consumption space construct-

ed above and the conditions of this theorem satisfy all of the requirements

of Theorem 10.4.7 (Existence Theorem III for competitive equilibrium), and

thus the existence of CE is guaranteed. Therefore, a Lindahl equilibrium

exists for the original public goods economy. 2

Similarly, we can enhance the monotonicity assumption to strong mono-

tonicity and relax the assumption of interior-point initial endowments of

private goods.

For a public goods economy with one private good and one public good

y = 1
q̂v, the definition of Lindahl equilibrium becomes much simpler.

Definition 15.4.2 An allocation (x∗, y∗) is a Lindahl equilibrium allocation

if there exist q∗
i , i = 1, · · · , n, such that
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(i) x∗
i + q∗

i y
∗ 5 wi;

(ii) if (xi, y) ≻i (x∗
i , y

∗), then xi + q∗
i y > wi;

(iii)
∑n
i=1 q

∗
i = q̂.

In fact, the feasibility condition is automatically satisfied when the budget

constraints in (i) are satisfied.

If (x∗, y∗) is an interior point of the Lindahl equilibrium allocation, we

can then have the FOC of utility maximization:

∂ui
∂y
∂ui
∂xi

= qi
1
, (15.4.23)

which means that the Lindahl-Samuelson condition holds:

n∑
i=1

MRSyxi = q̂,

which is the necessary condition for Pareto efficiency.

Example 15.4.3 Solve for the Lindahl equilibrium of the following public

goods economy:

ui(xi, y)=xαi
i y

(1−αi), 0 < αi < 1,

y= 1
q̂
v.

The budget constraint is:
xi + qiy = wi.

The demand functions for private goods xi and public goods yi of con-

sumer i are given by

xi=αiwi, (15.4.24)

yi=
(1 − αi)wi

qi
. (15.4.25)

Since y1 = y2 = · · · = yn = y∗ at Lindahl equilibrium, we have by (15.4.25)

qiy
∗ = (1 − αi)wi. (15.4.26)
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Making summation leads to

q̂y∗ =
n∑
i=1

(1 − αi)wi.

Then, we have
y∗ =

∑n
i=1(1 − αi)wi

q̂
.

Thus, by (15.4.26), we have

qi = (1 − αi)wi
y∗ = q̂(1 − αi)wi∑n

i=1(1 − αi)wi
. (15.4.27)

If we want to find a Lindahl equilibrium, we must know the preferences

or MRS of each consumer. However, the information about individuals’

preferences is in general unknown and, because of the free-rider problem,

each consumer will have the incentive to not truthfully reveal her prefer-

ences in order to contribute less. Moreover, as each consumer has a per-

sonalized price system, when the preferences of consumers are not public

information, it is difficult to regard the personalized price system of each

consumer as given because her report will affect her price.

15.5 Welfare Properties of Lindahl Equilibrium

15.5.1 The First Fundamental Theorem of Welfare Economics

Similarly, we have the following First Fundamental Theorem of Welfare

Economics for public goods economies.

Theorem 15.5.1 (The First Welfare Theorem for Public Goods Economy)

For a public goods economy e=(e1, . . . , en, Y ), every Lindahl allocation (x∗,y∗)
with the price system (q∗

1, · · · , q∗
n,p

∗) is weakly Pareto efficient. Furthermore, if

local non-satiation is satisfied, it is Pareto efficient.

PROOF. The proof of the first conclusion of the theorem is included in

the proof of the second one. We only need to prove that, under local non-

satiation, every Lindahl allocation (x∗,y∗) is Pareto efficient. Suppose that

this is not the case. Then, there exists another feasible allocation (xi,y),

such that (xi,y) <i (x∗
i ,y

∗) for all i and (xk,y) ≻k (x∗
k,y

∗) for some k.
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We first show

p∗xi + q∗
i y=p∗wi, for all i = 1, 2, · · · , n,

If not, then there is some i, such that

p∗xi + q∗
i y < p∗wi.

Then, by local non-satiation, there is (x′
i, y

′), such that (x′
i, y

′) ≻ (xi, y) <i

(x∗
i , y

∗) and p∗x′
i + q∗

i y
′ < p∗wi, contradicting the fact that (x∗

i , y
∗) is con-

sumer i’s utility maximizing consumption bundle.

For consumer k, since (x∗
k, y

∗) is consumer k’s optimal choice, by (xk, y) ≻k

(x∗
k, y

∗), we must have

p∗xk + q∗
ky>p∗wk for some k.

Thus, making summation leads to

n∑
i=1

p∗xi +
n∑
i=1

q∗
i y >

n∑
i=1

p∗wi, (15.5.28)

i.e.,

q̂∗y + p∗
n∑
i=1

(xi − wi) = q̂∗y + p∗v > 0.

However, according to the profit maximization condition, for all (y,v) ∈
Y , we have

q̂∗y + p∗v 5 0.

This contradiction proves the theorem. 2

Similarly, we can define Lindahl equilibrium with transfers.

Definition 15.5.1 (Lindahl Equilibrium with Transfers) For a public good-

s economy e = (e1,. . . ,en, Y ), an allocation (x∗,y∗) ∈ Z, a price vector of

private goods p∗ ∈ RL
+ and a personalized price vector of public goods

q∗
i ∈ RK

+ , ∀i, constitute a Lindahl equilibrium with transfers if there exists an

assignment of wealth levels (I1, . . . , In) with
∑
i Ii = p ·

∑
i wi, such that

(i) p∗x∗
i + q∗

i y
∗ 5 Ii;
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(ii) if (xi,y) ≻i (x∗
i ,y

∗), then p∗xi + q∗
i y > Ii;

(iii) for all (y,−v) ∈ Y , q̂∗y∗ − p∗v∗ = q̂∗y − p∗v;

(iv) (y∗,−v∗) ∈ Y ,

where v∗ =
∑n
t=1 wi −

∑n
i=1 x∗

i ,
∑n
t=1 q∗

i = q̂∗.

Theorem 15.5.2 (The First Welfare Theorem of LE with Transfers) For a pub-

lic goods economy e=(e1,. . . ,en, Y ), every Lindahl equilibrium allocation (x∗,y∗)
with transfers and price system(q∗

i ,· · · ,q∗
n,p

∗) is weakly Pareto efficient. Further-

more, if consumers’ preferences are locally non-satiated, then it is Pareto efficient.

PROOF. The proof is analogous to the proof of Theorem 15.5.1, and is thus

omitted. 2

15.5.2 Economic Core in the Presence of Public Goods

Similar to a private goods economy, we can define economic core in the

presence of public goods as follows:

Definition 15.5.2 (Blocking Coalition) A group of economic agents S ⊆ N

is said to block (improve upon) a given allocation (x,y) , if the coalition can

be Pareto improved within its own endowments, i.e., there exists another

allocation (x′,y′) such that

(1) (x′,y′) is feasible with respect to S, i.e., (y,
∑
i∈S(x′

i − wi) ∈
Y ,

(2) (x′
i,y

′) <i (xi,y) for all i ∈ S, and (x′
k,y

′) ≻k (xk,y) for

some k ∈ S.

Definition 15.5.3 (Economic Core) A feasible allocation (x,y) is said to have

the core property if it cannot be blocked by any coalition. The set of all allo-

cations in the core is called the economic core or simply the core.

Remark 15.5.1 Every allocation in the core is Pareto efficient and individ-

ually rational, i.e., (xi,y) <i (wi, 0), ∀i = 1, 2, . . . , n.

Similar to the proof of the Economic Core Theorem for private goods,

we can show that every Lindahl equilibrium allocation has the core prop-

erty under local non-satiation of preferences.
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Theorem 15.5.3 Suppose that the local non-satiation condition is satisfied. If

(x,y,p) is a Lindahl equilibrium, then (x,y) is in the core.

Although every Lindahl equilibrium allocation is in the core under local

non-satiation of preferences, the core convergence theorem does not hold

necessarily. See Milleron (1972) for a counterexample.

15.5.3 The Second Fundamental Theorem of Welfare Economics

Similarly, we have the Second Fundamental Theorem of Welfare Economics

for a public goods economy.

Theorem 15.5.4 (The Second Welfare Theorem for a Public Goods Economy)

For a public goods economy e = (e1, · · · , en, {Yj}), suppose that <i is continu-

ous, convex, and strongly monotone, Y is a closed convex set, and 0 ∈ Y . Then, for

every Pareto efficient allocation (x∗,y∗) with interior-point private consumption

(i.e., x∗ ∈ RnL
++), there exists a nonzero price vector (q1, · · · , qn,p) ∈ RL+nK

+ ,

such that ((x,y), (q1, · · · , qn),p) is a Lindahl equilibrium with transfers, i.e.,

there exists an assignment of wealth levels after transfers (I1, · · · , In) satisfying∑
i Ii = p ·

∑
i wi, such that

(1) if (xi,y) ≻i (x∗
i ,y

∗), then pxi + qiy > Ii ≡ px∗
i , i = 1, · · · , n,

(2) for all (y,−v) ∈ Y , q̂y∗ − pv∗ = q̂y − pv,

where v∗ =
∑n
t=1 wi −

∑n
i=1 x∗

i and
∑n
t=1 qi = q̂.

PROOF. Define two subsets W and P (x∗,y∗) of space RnK+L as follows:

W = {(y, · · · ,y; −v) : (y,−v) ∈ Y }.

Because Y is a closed convex set and 0 ∈ Y , W is non-empty, closed, and

convex.

P (x∗,y∗) = {(y′
1, · · · ,y′

n; −v′) : v′ =
n∑
i=1

(x′
i − wi) & (x′

i,y
′
i) ≻i (x∗

i ,y
∗)}.

Since <i is convex, P (x∗,y∗) is convex.

Since (x∗,y∗) is a Pareto optimal allocation, we must haveW ∩P (x∗) =
∅; otherwise, there may exist a Pareto improvement. Therefore, applying
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the Separating Hyperplane Theorem introduced in Chapter 2, we obtain

that there exists (q1, · · · , qn,p) ̸= 0, such that for all (y, · · · ,y; −v) ∈ W

and for all (y′
1, · · · ,y′

n; −v′) ∈ P (x∗,y∗), we have

n∑
i=1

qiy
′
i − pv′ =

n∑
i=1

qiyi − pv. (15.5.29)

We proceed with the proof in five steps.

1. Profit maximization, i.e., for all (y,−v) ∈ Y , we have q̂y∗ − pv∗ =
q̂y − pv.

Let ẑ = (y∗, · · · ,y∗; −v′), where v′ =
∑n
i=1(wi−x′

i) and x′
i ≥ x∗

i (i.e.,

x′
i = x∗

i and x′
i ̸= x∗

i ). Then, by strong monotonicity of preferences,

we have (x′
i,y

∗) ≻i (x∗
i ,y

∗), and thus (y∗, · · · ,y∗; −v′) ∈ P (x∗,y∗).

Therefore, it follows from (15.5.29) that, for any (y,−v) ∈ Y , we have

q̂y∗ − pv′ = q̂y − pv.

Let v′ → v∗, then we have q̂y∗ − pv∗ = q̂ · y − pv, ∀(y,−v) ∈ Y .

2. (q1, · · · , qn,p) = 0, and p ̸= 0.

Firstly, we prove qi = 0, i = 1, · · · , n. Let

ẑ = (y, · · · ,y; −v) + ekyi,

where (y, · · · ,y; −v) is an element in W , ekyi = (0, · · · , 1, 0, · · · , 0) is a

vector in RnK+L, such that the element of public goods k associated

with qki is 1, and the other elements are all zero. Then, by the strong

monotonicity of preferences and the fact that eky is equally distributed

among all economic agents, we have ẑ ∈ P (x∗,y∗). Therefore, from

(15.5.29), we have

q̂y − pv + qki = q̂y − pv. (15.5.30)
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Consequently,

qki = 0, k = 1, 2, · · · ,K; i = 1, 2, · · · , n. (15.5.31)

Now, we prove that p = 0. Let elx = (0, · · · , 1, 0, · · · , 0) be a vector in

RnK+L, such that the element associated with good l is 1, and other

elements are zero. Repeating the above procedure, we have

pli = 0, l = 1, 2, · · · , L. (15.5.32)

Lastly, we prove p ̸= 0 by contradiction. If p = 0, since (q1, · · · , qn,p) ̸=
0, then for some public good k, we must have its price qk =

∑n
i=1 qki >

0. Since the production of public goods exhibits constant returns to

scale, when p = 0, the costs for all private goods as inputs are zero.

Then, the profit may be infinitely large, which contradicts the fact that

y is a profit-maximizing plan.

3. For all i, if (xi,y) < (x∗
i ,y

∗), then
∑
i pxi + q̂y =∑

i px∗
i + q̂y∗.

For every i and (xi,y) < (x∗
i ,y

∗), by strong monotonicity of prefer-

ences, there exists (x′
i,y

′) that is arbitrarily close to (xi,y), such that

(x′
i,y

′) ≻i (xi,y) <i (x∗
i ,y

∗), and thus (y′, · · · ,y′;
∑
i(x′

i − wi)) ∈
P (x∗,y∗). In addition, note that (y∗, · · · ,y∗;

∑
i(x∗

i −wi)) ∈ W . Thus,

by (15.5.29), we have

∑
i

px′
i + q̂y′ =

∑
i

px∗
i + q̂y∗.

Let x′
i → xi. We have

∑
i pxi + q̂y =∑

i px∗
i + q̂y∗.

4. For all i, if (xi,y) < (x∗
i ,y

∗), then pxi + qiy = px∗
i + qiy

∗. Let

(x′
i,y

′)=(xi,y),

(x′
m,y

′)=(x∗
m,y

∗), m ̸= i.
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Then, it follows from step 3 that

pxi + qiy +
∑
m̸=i

(px∗
m + qmy∗) =

∑
j

px∗
j +

∑
i

qiy
∗,

therefore
pxi + qiy = px∗

i + qiy
∗.

5. For all i, if (xi,y) ≻ (x∗
i ,y

∗), then pxi + qiy > px∗
i + qiy

∗ ≡ Ii.

If the conclusion does not hold, then

pxi + qiy = px∗
i + qiy

∗. (15.5.33)

Since (xi,y) ≻ (x∗
i ,y

∗), when 0 < λ < 1 is sufficiently close to 1, it

follows from the continuity of preferences that (λxi, λy) ≻ (x∗
i ,y

∗).

From the conclusion of step 4, we have λ(pxi + qiy) = px∗
i + qiy

∗ =
pxi + qiy.

Since x∗ ∈ RnL
++, from step 2 where we have (q1, · · · , qn,p) = 0 and

p ̸= 0, we already know that pxi + qiy = px∗
i + qiy

∗ > 0; therefore,

λ = 1, which contradicts the fact that λ < 1.

Thus, all of the conditions of the Lindahl equilibrium with transfers are

satisfied. 2

15.6 Free-Rider Problem

When the MRS is known, Pareto efficient allocation (x, y) can be deter-

mined from the Lindahl-Samuelson condition or the Lindahl solution. Sub-

sequently, the contribution of each consumer is given by gi = wi − xi.

However, since individuals’ preferences are private information, a social

planner does not normally know the information about MRS. Of course, it

would be naive to think that each individual will truthfully reveal her pref-

erences and determine the willingness-to-pay based on the revealed infor-

mation. Since all economic agents are self-interested, generally they will

not tell the true MRS, so they may be able to make a smaller contribution.
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Indeed, if consumers realize that their shares of the contribution for

producing public goods (or the personalized prices) depend on their re-

port of MRS, they have“incentives to deceive.”In other words, when the

consumers are asked to report their preferences or MRSs, they will have

incentives to report their economic characteristics so that they can pay less

to consume the public goods, resulting in insufficient provision of public

goods and leading to Pareto inefficient allocations. This is the so-called

free-rider problem. This is also why it is difficult to raise sufficient funds

for the provision of public goods through voluntary contribution.

To see this, note that the social goal is to reach Pareto efficient allocations

for a public goods economy. However, from the perspective of personal

interest, the utility maximization problem of each person is the following:

max ui(xi, y) (15.6.34)

subject to

gi ∈ [0, wi];

xi + gi = wi;

y = f

gi +
n∑
j ̸=i

gj

 .
That is, each consumer i maximizes her payoffs when others’ strategies g−i

are given. From this problem, we can form a non-cooperative game:

Γ = (Gi, ϕi)ni=1,

where Gi = [0, wi] is the strategy space of consumer i and ϕi : G1 × G2 ×
· · · ×Gn → R is the payoff function of consumer i, which is defined by

ϕi(gi,g−i) = ui

(wi − gi), f(gi +
n∑
j ̸=i

gj)

 . (15.6.35)

For the game Γ = (Gi, ϕi)ni=1, the strategy g∗ = (g∗
1, · · · , g∗

n) is a Nash

Equilibrium if
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ϕi(g∗
i ,g∗

−i) = ϕi(gi,g∗
−i) ∀gi ∈ Gi, ∀i = 1, 2, · · · , n,

and g∗ is a dominant strategy equilibrium if

ϕi(g∗
i ,g−i) = ϕi(gi,g−i) ∀gi ∈ Gi, ∀i = 1, 2, · · · , n.

As usual, a dominant strategy equilibrium is a Nash equilibrium, but

the converse may not be true. There is a dominant strategy only for very

special payoff functions, while a Nash equilibrium exists for continuous

and quasi-concave payoff functions that are defined on a compact set.

For Nash equilibrium, if ui and f are differentiable, then the FOC is:

∂ϕi(g∗)
∂gi

5 0, with equality if gi > 0, ∀ i = 1, · · · , n. (15.6.36)

Thus, we have

∂ϕi
∂gi

= ∂ui
∂xi

(−1) + ∂ui
∂y

f ′

g∗
i +

n∑
j ̸=i

gj

 5 0, with equality if gi > 0.

So, at an interior-point solution g∗, we have

∂ui
∂y
∂ui
∂xi

= 1
f ′(g∗

i +
∑
j ̸=i gj)

,

and thus

MRSiyxi
= MRTSyv,

which does not satisfy the Lindahl-Samuelson condition. Therefore, the

Nash equilibrium, in general, does not result in Pareto efficient allocations.

The above equation implies that a lower level of public good is provid-

ed, rather than the Pareto efficient level of the public good, when utility

functions are quasi-concave because of diminishing MRS (see Figure 15.1).

Therefore, Nash equilibrium allocations are, in general, not consistent with

Pareto efficient allocations. Then, how can one solve this free-rider prob-

lem? We will answer this question in Part VI using mechanism design the-



15.7. BIOGRAPHIES 741

Figure 15.1: Free-rider results in a lower provision of public goods than the
level of Pareto efficient provision of public goods.

ory. Vickrey-Clarke-Groves mechanism of demand revelation can solve the

problem of efficient provision of public goods.

15.7 Biographies

15.7.1 Ludwig Mises

Ludwig von Mises (1881-1973), the third generation head of the Austrian

School and a member of the Mont Pelerin Society, enrolled at the University

of Vienna in 1900, where he was greatly influenced by Carl Menger (1840 -

1921) and received a doctoral degree from the School of Law in 1906. From

1909 to 1934, he was an economist for the Vienna Chamber of Commerce.

After World War I, he also served as a legal advisor to a government agen-

cy, where he was responsible for drafting the terms of the final war-treaty

to resolve pre-war private debt problems between belligerents . On New

Year’s Day in 1927, the Austrian Institute for Business Cycle Research that

he founded was formally established, and Hayek became its first director.

In 1934 - 1940, he moved to Geneva as a professor at the Graduate Insti-

tute of International Studies. In 1940, he moved to New York. At that time,

Keynesianism in the U.S. academic world was prevalent, Mises’ liberalism

was clearly out of the mainstream, and he was not employed by any aca-

demic organization. In 1945, through the recommendation of the Lawrence



742 CHAPTER 15. PUBLIC GOODS

Fertig & William Volker Foundation , Mises entered New York University,

but he could only serve as a visiting professor. In 1949, Mises published his

important work “Human Behavior.”Even so, he was only able to find a

visiting professor position until his retirement in 1969.

For a long time, even though Mises’ ideas had not been accepted by

mainstream economists, his ideological influence and knowledge contri-

bution to 20th century human society cannot be ignored. To a certain ex-

tent, it could be said that the history of economic thought of human society

in the 20th century is incomplete without the inclusion of Mises. In 2000,

America’s“Freedom”magazine referred to Mises as“the century figure

of libertarianism.”

The reason why Mises occupied such an important position in the his-

tory of contemporary human society is mainly because Mises made numer-

ous remarkable theoretical contributions in understanding the basic princi-

ples of human economic and social operations. In addition to his theoreti-

cal contributions in inflation, economic cycles, economic epistemology and

methodology, and his own unique cataliactics (i.e., a theory of the way that

the free market system reaches exchange ratios and prices) and praxeolo-

gy, his main theoretical contributions lie in the early 1920s. He presented

the following major theoretical insight: In the absence of a market price

mechanism, the impossibility of economic computations will result in the

infeasibility of a centrally planned economy.

15.7.2 Douglass North

Douglass C. North (1920 - 2015), as the founder and pioneer of New Eco-

nomic History (Cliometrics), New Institutional Economics, and New Polit-

ical Economy, was one of the most important and influential economists in

the late 20th century. In 1942 and 1952, respectively, he received a bache-

lor’s degree and a Ph.D. degree from the University of California, Berkeley.

He began teaching at the University of Washington in 1951, taught at Rice

University in 1979, at Cambridge University in 1981-1982, and returned to

the University of Washington in 1982. North was awarded the 1993 No-

bel Memorial Prize in Economic Sciences for renewed research in economic
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history by applying economic theory and quantitative methods in order to

explain economic and institutional change.

The main contribution of North was innovation in research methodolo-

gies, i.e., to study new objects with the methods of neoclassical economics.

In other words, he used neoclassical economics and econometrics to in-

vestigate economic history. His early research on ocean shipping and the

balance of payments of the U.S., in line with the school of new economic

history represented by Robert W. Fogel (1926 - 2013), combined neoclas-

sical production theory with data obtained in economic history research.

This new method has revolutionized the study of economic history. North,

however, was not satisfied with this. He also used property rights theo-

ry to explain the impact of institutional change on economic performance

in U.S. history. North’s early work, such as The Economic Growth of the U-

nited States: 1790-1860 and Growth and Welfare in the American Past: A New

Economic History, fully reflect this.

From the 1980s, North began to use property rights theory of the new

institutional economics to analyze the more general theory of industrial-

ization in the western world in the last two centuries with the purpose to

explore the causes of economic growth in the western world, internal rela-

tions between economic growth and institutional change, the trend of in-

teraction between the property rights system and economic development,

and the inherent requirements of economic development for institutions.

North’s works in this area include The Rise of the Western World: A New

Economic History and Institutional Change and the American Economic Growth.

From the 1990s, North began to summarize his experience of 30 years’

research on economic history, and extracted some theories that became im-

portant contributions to economics, and especially to the new institutional

economics. His works in this area primarily include Institutions, Institu-

tional Change, and Economic Performance. Overall, North’s contribution to

economics mainly includes three aspects: first, he used the method of insti-

tutional economics to explain economic growth in history; second, as one

of the founders of the new institutional economics, North re-examined the

role of institutions, including the property rights system; and third, North

applied institutions, a concept that was not involved in neoclassical eco-
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nomics, as an endogenous variable in economic research. In particular, the

property rights system, ideology, state, and ethics are taken as variables in

economic evolution and economic development. The theory of institution-

al change has thus been greatly developed.

Property rights theory, state theory, and ideology theory are the three

cornerstones of North’s theory of institutional change. In particular, they

are the theory of property rights that describes incentives for individuals

and groups in institutions ; the theory of the state that defines and enforces

property rights; and the theory of ideology that influences people’s dif-

ferent reactions on the change of objective existence, which explains why

people have different understandings in practice. It is worth mentioning

that North always used cost-benefit analysis to demonstrate the rationali-

ty of the choice of property rights system, the necessity of the existence of

the state, and the importance of ideology. Such analysis makes his theory

remarkably persuasive.

15.8 Exercises

Exercise 15.1 Prove that, for a public goods economy, weak Pareto efficient

allocation is Pareto efficient when preferences satisfy strong monotonicity,

continuity, and strict convexity.

Exercise 15.2 (Pareto efficiency of Lindahl equilibrium) Consider a pub-

lic goods economy with n individuals who consume one private good x

and one public good y in consumption space Zi = R2
+. Each individual i is

endowed with wi units of private good. There are no initial endowments

for the public good, but the public good can be produced from the private

good, according to a production technology

y = 1
q
v.

The utility function of individual i is denoted by ui(xi, y), which is contin-

uously differentiable and satisfies

∂ui
∂xi

> 0 for all i = 1, 2, . . . , n.
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1. Define the Lindahl equilibrium and Pareto efficiency for this econo-

my, without assuming representation of preferences by utility func-

tions.

2. For interior Pareto efficiency, is it necessary that all individuals have

the same marginal rate of substitution, i.e., that

∂u1
∂y
∂u1
∂x1

=

∂u2
∂y
∂u2
∂x2

= . . . =

∂u2
∂y
∂un
∂xn

If yes, provide a proof. If not, provide a counter example.

3. Now, suppose the utility functions are of the quasi-linear form ui =
xi+vi(y) with vi strictly increasing, strictly concave, and continuously

differentiable.

(a) At interior Pareto efficient solutions (x∗
1, x

∗
2, . . . , x

∗
n, y

∗), does y∗

vary with (x∗
1, x

∗
2, . . . , x

∗
n)? Why or why not?

(b) Is the answer to part (a) different when quasi-linearity is not as-

sumed? Why or why not?

(c) Suppose that n = 2, w1 = 5,w2 = 4, production function is given

by y = 1/2v, and utility function is given by

u1 = x1 + α ln y

u2 = x2 + β ln y

Find the Lindahl equilibrium for this economy.

Exercise 15.3 Consider a public goods economy with one private good, x,

one public good, y, and n agents. Each agents consumption set is the non-

negative quadrant. Each agent i is endowed with wi units of private good.

There are no initial endowments for the public good, but the public good

can be produced from the private good, according to a production technol-

ogy y = v. Utility functions of agents are given by

ui(xi, y) = xi + ci ln y, ci > 0.
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1. Define the Lindahl equilibrium and Pareto efficient allocation for this

economy.

2. Find the set of interior Pareto efficient allocations.

3. Find the set of interior Lindahl equilibria. Does the First Theorem of

Welfare Economics hold for Lindahl equilibria in the above economy?

Justify your answer.

4. For the above economy, find the set of interior competitive equilibria

(if necessary, specify values ci for which competitive equilibria exist).

Does the First Theorem of Welfare Economics hold for competitive

equilibria in the above economy? Justify your answer.

Exercise 15.4 Consider an economy with two consumers and two goods.

One of these goods, y, is public, and the other good, x, is private. The con-

sumer’s preferences can be represented by u1(x, y) = xy and u2(x, y) =
xy2. The public good can be produced, by either consumer, with the pro-

duction function y = 1
2x. Consumer 1 has 20 units of x, and consumer 2

has 20 units of x. Let yi be the production of y by consumer i.

1. Find the conditions for Pareto efficiency in this economy, and then all

possible Pareto efficient allocations.

2. Assume that each consumer takes the other’s production of y as given

and then maximizes personal utility. What is the Nash equilibrium?

Is it Pareto efficient.

3. Find the Lindahl equilibrium.

4. Show that the Lindahl equilibrium allocation for the economy is Pare-

to efficient.

Exercise 15.5 Consider a public good economy with one private good x,

one public good y, and n consumers whose consumption choice sets are

non-negative in each dimension. Each consumer i owns wi units of private

good, and they do not own public good which can be produced with a

production function of y = v . The utility function for each consumer i is
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represented by ui(xi, y), which may not be differentiable (note that it is then

not possible to answer the following questions 1 and 2 with differential

methods).

1. Define Lindahl equilibrium and Pareto efficient allocation of the e-

conomy.

2. Prove that every Lindahl equilibrium allocation is Pareto efficient.

(Hint: If you need additional assumptions, make it clear in the proof.)

3. Now, suppose that ui is differentiable. Then, give the Lindahl-Samuelson

first-order conditions for Pareto efficient allocation.

4. When the consumer’s utility function is ui(xi, y) = (xi + 1)αiy(1−αi)

and 0 < αi < 1, find the Lindahl equilibrium. Is it Pareto efficient?

Exercise 15.6 Consider an economy with two goods, a private (rivalrous)

good x, e.g., leisure, and a public (non-rivalrous) good y, e.g., radio broad-

cast music. Both goods are measured in hours per day. There are two con-

sumers, 1 and 2, and one firm. The firm produces y, using labor v as input.

(Thus, if consumer i supplies vi units of labor to the firm, then the amoun-

t of leisure left to i is xi = wi − vi, where wi is i’s initial endowment of

leisure.) Let the production function of the firm be linear (constant returns

to scale), with k units of v needed to produce one unit of y at any scale of

output (k > 0). There is no free disposal. The initial endowments wi of x

are positive, but the initial endowment of y is zero.

Assume that each consumption set is Zi = RL+K
+ , and the utility func-

tion of consumer i is given by:

ui = xi + ϕi(y), (15.8.37)

where the valuation function ϕi(y) is twice differentiable, and has a positive

derivative ϕ′
i(y) > 0, and a negative second derivative ϕ′′

i (y) < 0 for all

y = 0, for i = 1, 2. (Remember, it is assumed that wi > 0 for i = 1, 2.)

Suppose that each consumer i voluntarily chooses to contribute an amoun-

t of labor vi = 0 toward the production of the public good y, with vi < wi.

By definition, at a Nash equilibrium allocation, written (x̄1, x̄2, v̄1, v̄2, ȳ),



748 CHAPTER 15. PUBLIC GOODS

each consumer i maximizes ui, treating vj as given (for j ̸= i)), and taking

into account the equality

ky = v1 + v2. (15.8.38)

Answer the following questions (a)-(e) and explain your answers to

these questions as fully as possible.

1. Find the conditions that characterize Pareto efficient allocations. (These

will be equations in x1, x2, y and the original endowments.)

2. Suppose that, at a Nash equilibrium, consumer 2 contributes a posi-

tive amount of labor, but is still left with positive amounts of leisure,

i.e., w2 > v̄2 > 0, while consumer 1 contributes nothing, i.e., v̄1 = 0.
Could such an equilibrium be Pareto optimal?

3. Suppose that, at a Nash equilibrium, both consumers contribute posi-

tive amounts of labor, but are still left with positive amounts of leisure.

Could such an equilibrium be Pareto optimal?

4. Suppose that, at a Nash equilibrium, neither consumer contributes

any labor. Could such an equilibrium be Pareto optimal?

5. Define the Lindahl equilibrium, and prove that every Lindal equilib-

rium is Pareto efficient under local non-satiation.

Exercise 15.7 Consider a public economy with n consumers, one private

good x and one public good y. Each consumer has a consumption space

Zi = R2
+, an endowment of the private good wi = 10, and her preferences

can be represented by ui(xi, y) = xi + θiln y. The production technology

of the public good is f(q) = q, where q represents the input of the private

good in production.

1. Find the Pareto optimal allocation. How does this answer change

with n?

2. If each person contributes some of her endowment to produce the

public good , what is the Nash equilibrium of voluntary contribu-

tions? How does this answer change with n?
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3. If a government chooses to impose an individual tax of ϵ on each per-

son to produce nϵ units of the public good, and each individual de-

cides whether to make an extra contribution to the public good, what

is the total amount of the public good provided in this way (Assume

that ϵ is very small)?

4. If the government can only collect an income tax at the rate of τ , and

all taxes are employed to produce the public good, what is the tax rate

that can guarantee the efficient provision of the public good? If con-

sumers vote to determine the tax rate, what is the tax rate determined

by majority voting? What is the difference compared to the situation

in which all consumers have the same preference parameter θ?

Exercise 15.8 (Public goods and group size) Consider a public good econ-

omy with n identical economic agents, one private good, and one public

good. Suppose that consumer i’s consumption space Zi = R2
+ and the

utility function is ui(xi, y) = xi + h(y), where xi represents the private

good consumed by consumer i and y represents the public good. Sup-

pose that h is concave, differentiable, monotonically increasing, and satis-

fies limy→0 h
′(y) > 1 and limy→∞ h′(y) = 0. Each agent has an endowment

ω of the private good, and the amount of endowment is sufficiently large,

such that the non-negativity constraint of private consumption is always

non-binding. The public good production exhibits constant returns to s-

cale. One unit of private good can produce one unit of public good, and

only symmetric allocations are discussed.

1. Prove that the optimal provision level of the public good is an increas-

ing function of n.

2. The level of the public good provided under the voluntary contribu-

tion equilibrium is independent of the number of people n. Provide

an explanation for this.

Exercise 15.9 Consider a public good economy with n identical economic

agents, one private good, and one public good. One way to resolve the

free-rider problem proposed in the economics literature is to reward the
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contribution for public goods in the form of a lottery: if an individual i

contributes zi, then there is a probability of zi∑n

j=1 zj
to win the lottery worth

R units of private good. Personal contributions are used both to raise funds

for public goods and to provide lottery bonuses, and thus only
∑n
j=1 zj −R

of the contribution is put into public good production. Suppose that the

lottery bonus R is independent of n. Prove that under the symmetric Nash

equilibrium in which each individual contributes z (z is a function of n and

R):

1. If n > 1, the provision level of the public good y = nz − R is always

greater than the voluntary provision level specified in the previous

question.

2. The provision level of the public good y = nz −R increases with n.

3. When n → ∞, the provision level of the public good approaches a

finite value.

4. Now, suppose that when n → ∞, the optimal provision level of the

public good also approaches infinity. The conclusion in the above

question 3 is somehow negative. Therefore, assume that the total

bonus increases with n: R = nr. Prove:

(a) The provision level of the public good y = n(z − r) increases

with n.

(b) When n → ∞, the public good level also approaches infinity.

Provide an explanation for this result.

Exercise 15.10 (Tragedy of the Commons) Suppose that there are n house-

holds in a village, and each household has the right to raise dairy cows in

a public pasture. The number of dairy cows raised by farmer i is xi. The

amount of milk that a cow can produce depends on the number of cows x̂

grazing on the pasture. Assume that the income of farmer i raising xi cows

is xiv(x̂). v(x̂) > 0 when x̂ < x̂0, v(x̂) = 0 when x̂ > x̂0, where v(0) > 0,

v′ < 0 and v0 < 0. The cost per cow is c, and assume that the cow can be

perfectly segmented and that v(0) > c. Each household also decides how
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many cows to purchase at the same time, and all of the cows bought will

graze on the public pasture.

1. Determine the game for the households.

2. Find the Nash equilibrium, and compare it with the socially optimal

result.

Exercise 15.11 Consider a public good economy with n individuals, one

private good x, and one public good y. The total endowment of private

good is w, and public good can be produced from the private good with

cost function c(y). The utility function for consumer i is ui(xi, y) = xi +
vi(y), where vi is an arbitrary function defined on R+. Each consumer’s

consumption set is R × R+, and the consumption of public good is non-

negative. The private good cannot be utilized for public consumption.

1. Suppose that destruction is cost-free. Write down all of the inequali-

ties that describe the feasible allocation (x1, · · · , xn, y).

2. The public good consumption y is said to be “surplus maximiz-

ing”if the following condition is satisfied:

y ∈ arg max
y′50

∑
i

vi(y′) − c(y′).

Consider whether the proposition is correct:

“If y is the surplus maximizing public good consumption,

then any feasible allocation that produces y units of pub-

lic good must be Pareto optimal.”

Prove your answer.

3. Consider whether the proposition is correct:

“If the allocation (x1, · · · , xn, y) is Pareto optimal, then y

is surplus-maximizing.”

Prove your answer.
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Exercise 15.12 Suppose that there are n fishermen in a fishing village. Some

fishermen fish in the sea. Since the sea is large enough, irrespective of how

many fishermen go fishing, every fisherman can catch k fish. There are

some other fishermen who fish a lake (the fish in the sea and the fish in the

lake are perfect substitutes). If x fishermen go fishing in the lake, then each

fisherman can catch x−1/2 fish (i.e., these fishermen can catch x1/2 fish in

total, and every fisherman catches the same number of fish).

1. For fishermen, it is cost-free to choose between fishing in the lake or

in the sea, and no fishermen go where they believe they will catch

less fish. How many fishermen will go fishing in the sea? How many

fishermen will go fishing in the lake? How many fish will they catch,

on average?

2. If the government restricts fishing in the lake, how many fishermen

should be allowed to go fishing in the lake in order to maximize fish-

ing capacity in this community?

3. If the demand function of the fish is assumed to be

Q = A−BP,

compare the price of fish in the market without restriction to that un-

der efficient allocation.

4. Now, suppose that the fish in the lake and the fish in the sea are not

perfect substitutes. The price of marine fish is $20 each, and the de-

mand for fish in the lake is

QL = A′ −B′PL.

If there are no restrictions on fishermen, how many fishermen will go

fishing in the lake at equilibrium? If the government collects a fixed

license fee on fishermen who go fishing in the lake, will the price of

fish in the lake rise or fall? Write the derivation process.
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Exercise 15.13 Suppose that n economic agents have the same Cobb-Douglas

utility function ui(xi, y) = xαi y
1−α and the consumption set Zi = R2

+. The

total amount of wealth isw, and they are divided among k 5 n individuals.

How many public goods are provided? How does the quantity of public

goods change when k increases?

Exercise 15.14 An ancient village uses some goods (e.g., sheep) for two

purposes: either as food or as a public religious sacrifice . Suppose that

villager i’s initial endowment of sheep is wi > 0. Let xi = 0 be the con-

sumption of sheep, and gi = 0 be the amount for public sacrifice. The total

amount of sheep used for sacrifice is y =
∑n
i=1 gi. The utility function for

villager i is given by:

ui(xi, y) = xi + ai ln y,

where ai > 1.

1. When deciding on their sacrifice, each villager i regards that the sac-

rifice of other villagers remain fixed, and on this basis she decides on

the sacrifice that she would offer. Let

y−i =
∑
j ̸=i

gi

be the sacrifice, except villager i. Provide the utility-maximizing prob-

lem that determines the sacrifice of villager i.

2. Recall that for all individuals i, y = gi + y−i. What is the equilibrium

amount of public good? (Hint: Not everyone will contribute positive

public good.)

3. Who will be a free-rider in this problem?

4. In this economy, what is the Pareto efficient quantity of public good

to be provided?

Exercise 15.15 A town has a population of 1, 000, and each resident’s u-

tility function is ui(xi, y) = (xi + ki)yα, where y is the size of the town’s

ice-skating rink measured in square meters, and xi is the number of bread
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consumed by resident i each year. Suppose that the price of a loaf of bread

is 1, and the price of maintaining a square meter of skating rink is also 1.

Each resident have a different income wi . Find the Lindahl equilibrium for

this town. Under the Lindahl equilibrium, how much should the govern-

ment raise from resident i?

Exercise 15.16 (The First Welfare Theorem of Lindahl Allocation with

Transfers) Prove Theorem 15.4.3: given the public goods economy e =
(e1, · · · , en, {Yj}), every Lindahl equilibrium allocation (x∗,y∗) with trans-

fers, and the price system (q∗
i , · · · , q∗

n,p
∗), is weakly Pareto efficient. If the

consumers’ preferences also satisfy local non-satiation, it is Pareto efficient.

Exercise 15.17 (The First Welfare Theorem of Welfare Economics with

strictly convex preference) Suppose that <i is strictly convex. Let allo-

cation (x,y) ∈ X × Y and non-zero price vector (q1, · · · , qn,p) ∈ RL+nK
+

constitute a Lindahl equilibrium. Prove that the Lindahl equilibrium allo-

cation is Pareto efficient.

Exercise 15.18 (Lindahl equilibrium, constrained Lindahl equilibrium,

Lindahl quasi-equilibrium, and Pareto optimality) For the public good-

s economy e = (e1, · · · , en, {Yj}), suppose that for all i, 0 ̸= wi ∈ Xi = RL
+

and <i is preference ordering. Allocation (x,y) ∈ X×Y and non-zero price

vector (q1, · · · , qn,p) ∈ RL+nK
+ constitute a constrained Lindahl equilibrium,

if the other conditions in the definition remain the same, except that (ii) is

replaced by

(ii′) (xi,y) ≻i (x∗
i ,y

∗) and xi + y 5 ∑n
t=1 wi implies p∗xi +

q∗
i y > p∗wi, ∀i = 1, · · · , n.

Allocation (x,y) ∈ X × Y and non-zero price vector (q1, · · · , qn,p) ∈
RL+nK

+ constitute a Lindahl quasi-equilibrium, if the other conditions in the

definition remain the same, except that (ii) is replaced by

(ii0) (xi,y) <i (x∗
i ,y

∗) implies p∗xi+q∗
i y = p∗wi, ∀i = 1, · · · , n.

1. We know that if preferences <i satisfy local non-satiation, every Lin-

dahl equilibrium allocation is Pareto optimal. What if the local non-

satiation is not satisfied?
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2. Prove the following: If <i satisfies convexity, then the interior-point

constrained Lindahl equilibrium is a Lindahl equilibrium. Can the

convexity be relaxed to local non-satiation?

3. Prove the following: If <i satisfies strong monotonicity, then Lindahl

equilibrium is Lindahl quasi-equilibrium. Can strong monotonicity

be relaxed to monotonicity?

4. Prove the following: If a Lindahl equilibrium allocation is a Lindahl

quasi-equilibrium allocation, it is Pareto efficient.

5. From the previous question, if <i is strictly convex, the Lindahl equi-

librium allocation is Pareto optimal. Then, if <i is strictly convex, is

Lindahl equilibrium necessarily a Lindahl quasi-equilibrium?

6. Suppose that <i satisfies continuity for every individual i. Prove the

following: If p ∈ RL
++, the Lindahl quasi-equilibrium is a Lindahl

equilibrium.

7. Suppose that for any individual i, <i satisfies continuity and strong

monotonicity. Prove the following: If (p,x) is a Lindahl quasi-equilibrium

and xi ∈ int RL
+ for some i, then p ∈ RL

++.

Exercise 15.19 (Economic Core Theorem in public economy) Prove Theo-

rem 15.4.4: Under the local non-satiation of preferences, if (x,y,p) is a Lin-

dahl equilibrium, then (x,y) is in the core.

Exercise 15.20 (The Second Theorem of Welfare Economics in a public

goods economy with non-satiated preferences) Prove the theorem: for a

given public goods economy e = (e1, · · · , en, {Yj}), suppose that prefer-

ences <i are continuous, convex, and non-satiated. Y is a closed convex set

and 0 ∈ Y . Then, for any Pareto optimal allocation (x∗,y∗), there exists a

non-zero price vector (q1, · · · , qn,p) ∈ RL+nK , such that ((x,y), (q1, · · · , qn),p)
is a Lindahl quasi-equilibrium with transfers. In other words, there is an

assignment of wealth levels (I1, · · · , In) with
∑
i Ii = p

∑
i wi, such that

(1) if (xi,y) ≻i (x∗
i ,y

∗), then pxi + qiy = Ii ≡ px∗
i + qiy

∗,

i = 1, · · · , n;
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(2) for all (y,−v) ∈ Y , we have q̂y∗ − pv∗ = q̂y − pv,

where v∗ =
∑n
i=1 wi −

∑n
i=1 x∗

i ,
∑n
i=1 qi = q̂.

Furthermore, if for all i, 0 ∈ Xi and px∗
i + qiy

∗ > 0, then (x∗,y∗,p) is a

Lindahl equilibrium with transfers.
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