
Question 1: Let Ω be a convex polygon in \mathbb{R}^2. Let $\{T_h\}_{h>0}$ be a conforming, shape-regular mesh family composed of triangles. Consider the P_1-Crouzeix-Raviart finite element approximation of

$$-\nabla^2 u = f, \quad u|_{\partial \Omega} = 0.$$

(a) Write the definition of the Crouzeix-Raviart approximation space based on T_h, say $D_{0,h}$.

(b) Let u_h be the Galerkin approximation of u in $D_{0,h}$. Recall the definition of u_h.

(c) Let $C_{0,h}$ be the space composed of continuous piecewise P_1 functions based on T_h and with zero trace on $\partial \Omega$.

(d) Let $w_h \in C_{0,h}$. Evaluate $\sum_{K \in T_h} \int_K \nabla w_h \cdot \nabla (u - u_h) dK$.

(e) Using the fact that there is $c > 0$, uniform with respect to h, so that

$$\|v - v\|_{L^2(F)} \leq c \frac{1}{h} \|\nabla v\|_{H^1(K)}, \quad \forall v \in H^1(K), \forall F \in F_h,$$

prove that $\|u - u_h\|_{L^2(\Omega)} \leq c' h \|u - u_h\|_{1,h}$ (i.e., finish the Nitsche-Aubin proof ...)

Let K and \hat{K} be a nondegenerate simplex and a reference simplex in \mathbb{R}^d, respectively. Let a_1, \ldots, a_{d+1} be the vertices of K. Let $\hat{a}_1, \ldots, \hat{a}_{d+1}$ be the vertices of \hat{K}. Let $\lambda_1, \ldots, \lambda_{d+1}$ be the barycentric coordinate functions in \hat{K}. Give a simple expression of the affine transformation that maps $\hat{a}_1, \ldots, \hat{a}_{d+1}$ to a_1, \ldots, a_{d+1}, respectively.

Question 2: Let K be a non-degenerate polyhedron in \mathbb{R}^d. Let \hat{K} be the non-degenerate polyhedron obtained from K by applying the homothety of ratio $1/h_K$, where $h_K := \text{diam}(K)$. Prove that there exists a uniform constant $c(\hat{K})$ so that

$$\|v\|_{L^2(\partial K)} \leq c(\hat{K}) \left(h_K^{-\frac{1}{2}} \|v\|_{L^2(\Omega)} + h_K^{\frac{1}{2}} \|
abla v\|_{L^2(\Omega)} \right), \quad \forall v \in \mathbb{P}_1(K).$$

Question 3: Let K be a non-degenerate polyhedron in \mathbb{R}^d. Let \hat{K} be the non-degenerate polyhedron obtained from K by applying the homothety of ratio $1/h_K$, where $h_K := \text{diam}(K)$. Let k be an integer, $k \geq 0$. Prove that there exists a uniform constant $c(k, \hat{K})$ so that

$$\|v\|_{L^2(\partial K)} \leq c(\hat{K}) h_K^{-\frac{1}{2}} \|v\|_{L^2(\Omega)}, \quad \forall v \in \mathbb{P}_k(K).$$