
Part II, Chapter 5

Main ideas and definitions

The goal of the three chapters composing Part II is to introduce the main
concepts behind finite elements and to present various examples. This chap-
ter introduces key notions such as degrees of freedom, shape functions, and
interpolation operator. These notions are illustrated on Lagrange finite ele-
ments and modal finite elements, for which the degrees of freedom are values
at specific nodes and moments against specific test functions, respectively.

5.1 Introductory example

This section introduces the notion of finite element in dimension one. Let
K := [−1, 1] and consider a continuous function v ∈ C0(K). Our ob-
jective is to devise an interpolation operator that approximates v in a
finite-dimensional functional space, say P . For simplicity, we assume that
P = Pk for some integer k ≥ 0, where Pk is the real vector space com-
posed of univariate polynomial functions of degree at most k, i.e., p ∈ Pk if
p(t) =

∑
i∈{0:k} αit

i for all t ∈ R, with αi ∈ R for every integer i ∈ {0:k}.
Let us consider (k+1) distinct points {ai}i∈{0:k} inK, which we call nodes.

We want to construct an operator IK : C0(K) → Pk s.t. IK(v) verifies

IK(v) ∈ Pk, IK(v)(ai) := v(ai), ∀i ∈ {0:k}, (5.1)

for every function v ∈ C0(K). These conditions uniquely determine IK(v)
since a polynomial in Pk is uniquely determined by the value it takes at (k+1)
distinct points in R. For the same reason Pk is pointwise invariant under IK ,
i.e., IK(p) = p for all p ∈ Pk. To obtain an explicit representation of IK(v),
we introduce the Lagrange interpolation polynomials defined as follows:

L[a]
i (t) :=

∏
j∈{0:k}\{i}(t− aj)∏
j∈{0:k}\{i}(ai − aj)

, ∀t ∈ R, ∀i ∈ {0:k}. (5.2)
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We set L[a]
0 := 1 if k = 0. By construction, the Lagrange interpolation poly-

nomials satisfy L[a]
i (ai) = 1 and L[a]

i (aj) = 0 for all j 6= i, which we write
concisely as

L[a]
i (aj) = δij , ∀i, j ∈ {0:k}, (5.3)

where δij is the Kronecker symbol, i.e., δij := 1 if i = j and δij := 0 otherwise.
The Lagrange interpolation polynomials of degree k ∈ {1, 2, 3} using equidis-
tant nodes in K (including both endpoints) are shown in Figure 5.1. Let us

show that the family {L[a]
i }i∈{0:k} forms a basis of Pk. Since dim(Pk) = k+1,

we only need to show linear independence. Assume that
∑

i∈{0:k} αiL[a]
i = 0.

Evaluating this linear combination at the nodes {ai}i∈{0:k} yields αi = 0
for all i ∈ {1:d}, which proves the assertion. In conclusion, the polynomial

function IK(v) defined in (5.1) is IK(v)(t) :=
∑

i∈{0:k} v(ai)L
[a]
i (t).
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Fig. 5.1 Lagrange interpolation polynomials with equidistant nodes in the interval K :=
[−1, 1] of degree k = 1 (left), 2 (center), and 3 (right).

Remark 5.1 (Key concepts). To sum up, we used three important ingre-
dients to build the interpolation operator IK : the interval K := [−1, 1], the
finite-dimensional space P := Pk, and a set of degrees of freedom, i.e., linear
maps {σi}i∈{0:k} acting on continuous functions, which consist of evaluations
at the nodes {ai}i∈{0:k}, i.e., σi(v) := v(ai). A key observation concerning
the degrees of freedom is that they uniquely determine functions in P . ⊓⊔

5.2 Finite element as a triple

A polyhedron (also called polytope) in Rd is a compact interval if d = 1 and
if d ≥ 2, it is a compact, connected subset of Rd with nonempty interior such
that its boundary is a finite union of images by affine mappings of polyhedra
in Rd−1. In R2, a polyhedron is also called polygon. Simple examples are pre-
sented in Figure 5.2 in dimensions two and three. A polyhedron in R2 (resp.,
R3) can always be described as a finite union of triangles (resp., tetrahedra).
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Fig. 5.2 Examples of polyhedra in R2 and R3. The hidden edges are shown with dashed
lines in R3. From left to right: triangle, square, tetrahedron, hexahedron, prism.

The following definition of a finite element is due to Ciarlet [76, p. 93].

Definition 5.2 (Finite element). Let d ≥ 1, an integer nsh ≥ 1, and the
set N := {1:nsh}. A finite element consists of a triple (K,P,Σ) where:

(i) K is a polyhedron in Rd or the image of a polyhedron in Rd by some
smooth diffeomorphism. More generally, K could be the closure of a
Lipschitz domain in Rd (see §3.1). K is nontrivial, i.e., int(K) 6= ∅.

(ii) P is a finite-dimensional vector space of functions p : K → Rq for some
integer q ≥ 1 (typically q ∈ {1, d}). P is nontrivial, i.e., P 6= {0}. The
members of P are polynomial functions, possibly composed with some
smooth diffeomorphism.

(iii) Σ is a set of nsh linear forms from P to R, say Σ := {σi}i∈N , such
that the map ΦΣ : P → Rnsh defined by ΦΣ(p) :=

(
σi(p)

)
i∈N is an

isomorphism. The linear forms σi are called degrees of freedom (in short
dofs), and the bijectivity of the map ΦΣ is referred to as unisolvence.

Remark 5.3 (Proving unisolvence). To prove unisolvence, it suffices to
show that dimP ≥ nsh = cardΣ and that ΦΣ is injective, i.e.,

[σi(p) = 0, ∀i ∈ N ] =⇒ [ p = 0 ], ∀p ∈ P. (5.4)

Owing to the rank nullity theorem, ΦΣ is then bijective and dimP = nsh. ⊓⊔

Remark 5.4 (L(P ;R)). Σ is a basis of the space of the linear forms over
P , i.e., L(P ;R). Indeed, dim(L(P ;R)) = dim(P ) = nsh. Moreover, if the
vector X = (Xi)i∈N ∈ Rnsh is s.t.

∑
i∈N Xiσi(p) = 0 for all p ∈ P , taking

p := Φ−1
Σ (X) yields

∑
i∈N X2

i = 0. Hence, Xi = 0 for all i ∈ N . ⊓⊔

Proposition 5.5 (Shape functions). (i) There is a basis {θi}i∈N of P s.t.

σi(θj) := δij , ∀i, j ∈ N . (5.5)

The functions θi are called shape functions. (ii) Let {φi}i∈N be a basis of
P . Then defining the generalized Vandermonde matrix V ∈ Rnsh×nsh with
entries Vij := σj(φi) for all i, j ∈ N , the shape functions are given by

θi =
∑

j∈N
(V−1)ijφj , ∀i ∈ N . (5.6)



48 Chapter 5. Main ideas and definitions

Proof. (i) The shape functions are given by θi = Φ−1
Σ (ei) for all i ∈ N ,

where (ei)i∈N is the canonical basis of Rnsh . (ii) To show that the matrix V
is invertible, we consider X ∈ Rnsh s.t. XTV = 0 and set p :=

∑
i∈N Xiφi.

Then XTV = 0 implies that σj(p) = 0 for all j ∈ N , and (5.4) in turn
implies that p = 0. Hence, X = 0 since {φi}i∈N is a basis of P . Finally,
σk(
∑

j∈N (V−1)ijφj) =
∑

j∈N (V−1)ijσk(φj) =
∑

j∈N (V−1)ijVjk = δik for

all k ∈ N . This proves that θi =
∑

j∈N (V−1)ijφj . ⊓⊔

Proposition 5.5 gives a practical recipe to build the shape functions. One
first chooses a basis of P and evaluates the associated Vandermonde matrix V
and its inverse. The components of the shape function θi in the chosen basis
are then ((V−1)ij)j∈N for all i ∈ N . One must be careful in choosing the basis
{φi}i∈N when working with high-order polynomials, since the matrix V may
become ill-conditioned if the basis is not chosen properly. The computation of
the shape functions can be affected by roundoff errors if V is ill-conditioned.

Remark 5.6 (Vandermonde matrix). For d = 1, if one uses the mono-
mial basis {xi}i∈N with the dofs σi(p) := p(ai), then V is a classical Vander-
monde matrix with entries Vij = aij for all i, j ∈ N . ⊓⊔

5.3 Interpolation: finite element as a quadruple

The notion of interpolation operator is central to the finite element theory.
The term “interpolation” is used here in a broad sense, since the degrees of
freedom (dofs) are not necessarily point evaluations. For the interpolation
operator to be useful, one needs to extend the domain of the linear forms in
Σ so that they can act on functions in a space larger than P , which we denote
by V (K). The space V (K) is the fourth ingredient defining a finite element.

Definition 5.7 (Interpolation operator). Let (K,P,Σ) be a finite ele-
ment. Assume that there exists a Banach space V (K) ⊂ L1(K;Rq) s.t.:

(i) P ⊂ V (K).
(ii) The linear forms {σi}i∈N can be extended to L(V (K);R), i.e., there exist

{σ̃i}i∈N and cΣ such that σ̃i(p) = σi(p) for all p ∈ P , and |σ̃i(v)| ≤
cΣ‖v‖V (K) for all v ∈ V (K) and all i ∈ N . We henceforth abuse the
notation and use the symbol σi instead of σ̃i.

We define the interpolation operator IK : V (K) → P by setting

IK(v)(x) :=
∑

i∈N
σi(v)θi(x), ∀x ∈ K, (5.7)

for all v ∈ V (K). V (K) is the domain of IK , and P is its codomain.

Proposition 5.8 (Boundedness). IK belongs to L(V (K);P ).
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Proof. Let ‖·‖P be a norm in P (all the norms are equivalent in the finite-
dimensional space P ). The triangle inequality and Definition 5.7(ii) imply
that ‖IK(v)‖P ≤ (cΣ

∑
i∈N ‖θi‖P )‖v‖V (K) for all v ∈ V (K). ⊓⊔

Proposition 5.9 (P -invariance). P is pointwise invariant under IK , i.e.,
IK(p) = p for all p ∈ P . As a result, IK is a projection, i.e., IK◦IK = IK .

Proof. Letting p =
∑

j∈N αjθj yields IK(p) =
∑

i,j∈N αjσi(θj)θi = p owing
to (5.5). This shows that P is pointwise invariant under IK , and it immedi-
ately follows that IK is a projection. ⊓⊔

Example 5.10 (V (K)). If one builds IK(v) by using values of the function
v at some points in K, like we did in §5.1, then it is natural to set V (K) :=
C0(K;Rq) (recall that K is a closed set in Rd, so that functions in C0(K;Rq)
are continuous up to the boundary). Another possibility is to set V (K) :=
W s,p(K;Rq) for some real numbers s ≥ 0 and p ∈ [1,∞] such that sp > d (or
s ≥ d if p = 1); see Theorem 2.31. If IK(v) involves integrals over the faces of
K, then one can take V (K) :=W s,p(K;Rq) with sp > 1 (or s ≥ 1 if p = 1).
More generally, if IK(v) involves integrals over manifolds of codimension d′,
then it is legitimate to set V (K) := W s,p(K;Rq) with sp > d′ (or s ≥ d′ if
p = 1). We abuse the notation since we should writeW s,p(int(K);Rq), where
int(K) denotes the interior of the set K in Rd. ⊓⊔

5.4 Basic examples

5.4.1 Lagrange (nodal) finite elements

The dofs of scalar-valued Lagrange (or nodal) finite elements are point val-
ues. The extension to vector-valued Lagrange elements is done by proceeding
componentwise.

Definition 5.11 (Lagrange finite element). Let (K,P,Σ) be a scalar-
valued finite element (q := 1 in Definition 5.2). If there is a set of points
{ai}i∈N in K such that for all i ∈ N ,

σi(p) := p(ai), ∀p ∈ P, (5.8)

the triple (K,P,Σ) is called Lagrange finite element. The points {ai}i∈N are
called nodes, and the shape functions {θi}i∈N , which are s.t.

θi(aj) := δij , ∀i, j ∈ N , (5.9)

form the nodal basis of P associated with the nodes {ai}i∈N .

Examples are presented in Chapters 6 and 7. Following Definition 5.7, the
Lagrange interpolation operator IL

K acts as follows:
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IL
K(v)(x) :=

∑

i∈N
v(ai)θi(x), ∀x ∈ K. (5.10)

By construction, IL
K(v) matches the values of v at all the Lagrange nodes, i.e.,

IL
K(v)(aj) = v(aj) for all j ∈ N . The domain of IL

K can be V (K) := C0(K)
or V (K) :=W s,p(K) with p ∈ [1,∞] and ps > d (s ≥ d if p = 1).

5.4.2 Modal finite elements

The dofs of modal finite elements are moments against test functions us-
ing some measure over K. For simplicity, we consider the uniform mea-
sure and work in L2(K;Rq) with q ≥ 1. We are going to use the notation
(v, w)L2(K;Rq) :=

∫
K
(v, w)ℓ2(Rq) dx.

Proposition 5.12 (Modal finite element). Let K be as in Definition 5.2.
Let P be a finite-dimensional subspace of L2(K;Rq) and let {ζi}i∈N be a basis
of P . Let Σ := {σi}i∈N be composed of the following linear forms σi : P → R:

σi(p) := |K|−1(ζi, p)L2(K;Rq), ∀p ∈ P, ∀i ∈ N . (5.11)

(The factor |K|−1 is meant to make σi independent of the size of K.) Then
the triple (K,P,Σ) is a finite element called modal finite element.

Proof. We use Remark 5.3. By definition, dim(P ) = card(Σ). Let p ∈ P be
such that σi(p) = 0 for all i ∈ N . Writing p =

∑
i∈N αiζi, we infer that

|K|−1‖p‖2L2(K;Rq) =
∑

j∈N αjσj(p) = 0, so that p = 0. ⊓⊔

Examples of modal finite elements are presented in Chapter 6. Let us
introduce the mass matrix M of order nsh with entries

Mij := |K|−1(ζi, ζj)L2(K;Rq), ∀i, j ∈ N . (5.12)

By construction, M is symmetric, and since

(MX,X)ℓ2(Rnsh) =
∑

i,j∈N
MijXiXj = |K|−1‖ξ‖2L2(K;Rq),

for all X ∈ Rnsh with ξ =
∑

j∈N Xjζj , we infer that (MX,X)ℓ2(Rnsh) ≥ 0.
Moreover, (MX,X)ℓ2(Rnsh ) = 0 implies ξ = 0, i.e., X = 0 since {ζi}i∈N is
a basis of P . In conclusion, M is symmetric positive definite. Furthermore,
one readily sees that M = V , where the Vandermonde matrix V is defined
in Proposition 5.5. Hence, θi =

∑
j∈N (M−1)ijζj for all i ∈ N . Following

Definition 5.7, the modal interpolation operator Im
K acts as follows:

Im
K(v)(x) :=

∑

i∈N

(
1

|K|(ζi, v)L2(K;Rq)

)
θi(x), ∀x ∈ K. (5.13)
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The domain of Im
K can be defined to be V (K) := L2(K;Rq), or even

V (K) := L1(K;Rq) if P ⊂ L∞(K;Rq). One can verify that Im
K is the L2-

orthogonal projection onto P ; see Exercise 5.2. Finally, if the basis {ζi}i∈N
is L2-orthogonal, the mass matrix is diagonal, and in that case the shape
functions are given by θi := (|K|/‖ζi‖2L2(K;Rq))ζi for all i ∈ N .

5.5 The Lebesgue constant

Recall from Definition 5.7 that the interpolation operator IK is in L(V (K);P ).
Since P ⊂ V (K), we can equip P with the norm of V (K) and view IK a
member of L(V (K)). In this section, we study the quantity

‖IK‖L(V (K)) := sup
v∈V (K)

‖IK(v)‖V (K)

‖v‖V (K)
, (5.14)

which is called the Lebesgue constant for IK . We abuse the notation by
writing the supremum over v ∈ V (K) instead of v ∈ V (K) \ {0}.

Lemma 5.13 (Lower bound). ‖IK‖L(V (K)) ≥ 1.

Proof. Since P is nontrivial (i.e., P 6= {0}) and since IK(p) = p for all p ∈ P
owing to Proposition 5.9, we infer that

sup
v∈V (K)

‖IK(v)‖V (K)

‖v‖V (K)
≥ sup

p∈P

‖IK(p)‖V (K)

‖p‖V (K)
= 1. ⊓⊔

The Lebesgue constant arises naturally in the estimate of the interpolation
error in terms of the best-approximation error of a function v ∈ V (K) by
a function in P , that is, infp∈P ‖v − p‖V (K). In particular, the next result
shows that a large value of the Lebesgue constant is associated with poor
approximation properties of IK .

Theorem 5.14 (Interpolation error). For all v ∈ V (K), we have

‖v − IK(v)‖V (K) ≤ (1 + ‖IK‖L(V (K))) inf
p∈P

‖v − p‖V (K), (5.15)

and ‖v−IK(v)‖V (K) ≤‖IK‖L(V (K)) inf
p∈P

‖v−p‖V (K) if V (K) is a Hilbert space.

Proof. Since IK(p) = p for all p ∈ P , we infer that v−IK(v) = (I−IK)(v) =
(I − IK)(v − p), where I is the identity operator in V (K), so that

‖v−IK(v)‖V (K) ≤ ‖(I − IK)(v − p)‖V (K) ≤ (1 + ‖IK‖L(V (K)))‖v − p‖V (K),

where we used the triangle inequality. We obtain (5.15) by taking the infimum
over p ∈ P . Assume now that V (K) is a Hilbert space. We use the fact that
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in any Hilbert space H , any operator T ∈ L(H) such that 0 6= T ◦T = T 6= I
satisfies ‖T ‖L(H) = ‖I − T ‖L(H); see Kato [124], Xu and Zikatanov [201,
Lem. 5], Szyld [188]. We can apply this result with H := V (K) and T := IK .
Indeed, IK 6= 0 since P is nontrivial, IK 6= I since P is a proper subset of
V (K), and IK ◦ IK = IK owing to Proposition 5.9. We infer that

‖v−IK(v)‖V (K) ≤ ‖I −IK‖L(V (K))‖v− p‖V (K) = ‖IK‖L(V (K))‖v− p‖V (K),

and we conclude by taking the infimum over p ∈ P . ⊓⊔

Example 5.15 (Lagrange elements). The Lebesgue constant for the La-
grange interpolation operator IL

K with nodes {ai}i∈N and space V (K) :=
C0(K) is denoted by ΛN := ‖IL

K‖L(C0(K)). Owing to Theorem 5.14, we
have ‖v − IL

K(v)‖C0(K) ≤ (1 + ΛN ) infp∈P ‖v − p‖C0(K). One can ver-
ify (see Exercise 5.6) that ΛN = ‖λN ‖C0(K) with the Lebesgue function
λN (x) :=

∑
i∈N |θi(x)| for all x ∈ K. ⊓⊔

Example 5.16 (Modal elements). Consider a modal finite element with
V (K) := L2(K;Rq) (see Proposition 5.12). Since Im

K is the L2-orthogonal
projection from L2(K;Rq) onto P , the Pythagorean identity ‖v‖2L2(K;Rq) =

‖Im
K(v)‖2L2(K;Rq) + ‖v − Im

K(v)‖2L2(K;Rq) implies that ‖Im
K‖L(L2(K;Rq)) ≤ 1,

which in turn gives ‖Im
K‖L(L2(K;Rq)) = 1 owing to Lemma 5.13. ⊓⊔

Let assume that V (K) is a Hilbert space with inner product (·, ·)V (K). Fol-
lowing ideas developed in Maday et al. [137], we now show that the Lebesgue
constant can be related to the stability of an oblique projection. Owing to
Theorem A.16 (or Exercise 5.9), we introduce the functions qi ∈ V (K) for all
i ∈ N s.t. (qi, v)V (K) = σi(v) for all v ∈ V (K). Let us set Q := span{qi}i∈N ,

and let Q⊥ be the orthogonal to Q in V (K) for the inner product (·, ·)V (K).

Lemma 5.17 (Oblique projection). Let IK be defined in (5.7). Then IK
is the oblique projection onto P along Q⊥, and the Lebesgue constant is

‖IK‖L(V (K)) = α−1
PQ with αPQ := infp∈P supq∈Q

(p,q)V (K)

‖p‖V (K)‖q‖V (K)
.

Proof. (1) Unisolvence implies that P ∩ Q⊥ = {0}. Indeed, if p ∈ P ∩ Q⊥,
then p ∈ P and σi(p) = 0 for all i ∈ N , so that p = 0. Let now v ∈ V (K).
We observe that IK(v) ∈ P and

(qi, IK(v)− v)V (K) = σi(IK(v))− σi(v) = 0, ∀i ∈ N .

Hence, IK(v) − v ∈ Q⊥. From the decomposition v = IK(v) + (v − IK(v)),
we infer that V (K) = P +Q⊥. Therefore, the sum is direct, and IK(v) is the
oblique projection of v onto P along Q⊥.
(2) We have

αPQ‖IK(v)‖V (K) ≤ sup
q∈Q

(IK(v), q)V (K)

‖q‖V (K)
= sup

q∈Q

(v, q)V (K)

‖q‖V (K)
≤ ‖v‖V (K),
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for all v ∈ V (K), showing that ‖IK‖L(V (K)) ≤ α−1
PQ. To prove the lower

bound, let us first show that IK(ΠQ(p)) = p for all p ∈ P , where ΠQ is the
V (K)-orthogonal projection onto Q. We first observe that

(IK(ΠQ(p)), q)V (K) = (ΠQ(p), q)V (K) = (p, q)V (K),

for all q ∈ Q, where we used the fact that both IK and ΠQ are projections
along Q⊥. The above identity implies that IK(ΠQ(p))− p ∈ P ∩Q⊥ = {0}.
Hence, IK(ΠQ(p)) = p. Since P is a finite-dimensional space, a compactness
argument shows that there is p∗ ∈ P with ‖p∗‖V (K) = 1 such that αPQ =

supq∈Q
(p∗,q)V (K)

‖q‖V (K)
. Since (p∗, q)V (K) = (ΠQ(p

∗), q)V (K), we infer that αPQ =

supq∈Q
(ΠQ(p∗),q)V (K)

‖q‖V (K)
= ‖ΠQ(p

∗)‖V (K). We conclude that

‖IK‖L(V (K)) ≥
‖IK(ΠQ(p

∗))‖V (K)

‖ΠQ(p∗)‖V (K)
=

‖p∗‖V (K)

‖ΠQ(p∗)‖V (K)
=

1

αPQ
. ⊓⊔

Further results on the Lebesgue constant for one-dimensional Lagrange
elements can be found in §6.3.1.

Exercises

Exercise 5.1 (Linear combination). Let S ∈ Rnsh×nsh be an invertible
matrix. Let (K,P,Σ) be a finite element. Let Σ̃ := {σ̃i}i∈N with dofs σ̃i :=∑

i′∈N Sii′σi′ for all i ∈ N . Prove that (K,P, Σ̃) is a finite element. Write

the shape functions {θ̃j}j∈N and verify that the interpolation operator does

not depend on S, i.e., ĨK(v)(x) = IK(v)(x) for all v ∈ V (K) and all x ∈ K.

Exercise 5.2 (Modal finite element). (i) Let (K,P,Σ) and (K,P, Σ̃) be
two modal finite elements. Let {ζi}i∈N , {ζ̃i}i∈N , be the two bases of P s.t.

the dofs in Σ and Σ̃ are given by σi(p) := |K|−1(ζi, p)L2(K;Rq) and σ̃i(p) :=

|K|−1(ζ̃i, p)L2(K;Rq) for all i ∈ N . Prove that the interpolation operators Im
K

and Ĩm
K are identical. (ii) Prove that (p, Im

K(v)− v)L2(K;Rq) = 0 for all p ∈ P .

(iii) Let M be defined by (5.12), and let Mθ
ij := |K|−1(θi, θj)L2(K;Rq) for all

i, j ∈ N , where {θi}i∈N are the shape functions associated with (K,P,Σ).
Prove that Mθ = M−1.

Exercise 5.3 (Variation on P2). Let K := [0, 1], P := P2, and Σ :=
{σ1, σ2, σ3} be the linear forms on P s.t. σ1(p) := p(0), σ2(p) := 2p(12 ) −
p(0)−p(1), σ3(p) := p(1) for all p ∈ P . Show that (K,P,Σ) is a finite element,
compute the shape functions, and indicate possible choices for V (K).

Exercise 5.4 (Hermite). LetK := [0, 1], P := P3, andΣ := {σ1, σ2, σ3, σ4}
be the linear forms on P s.t. σ1(p) := p(0), σ2(p) := p′(0), σ3(p) := p(1),
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σ4(p) := p′(1) for all p ∈ P . Show that (K,P,Σ) is a finite element, compute
the shape functions, and indicate possible choices for V (K).

Exercise 5.5 (Powell–Sabin). Consider K := [0, 1] and let P be composed
of the functions that are piecewise quadratic over the intervals [0, 12 ] ∪ [ 12 , 1]
and are of class C1 over K, i.e., functions in P and their first derivatives are
continuous. Let Σ := {σ1, . . . , σ4} be the linear forms on P s.t. σ1(p) := p(0),
σ2(p) := p′(0), σ3(p) := p(1), σ4(p) := p′(1). Prove that the triple (K,P,Σ)
is a finite element. Verify that the first two shape functions are

θ1(t) =

{
1− 2t2 if t ∈ [0, 12 ],

2(1− t)2 if t ∈ [ 12 , 1],
θ2(t) =

{
t(1 − 3

2 t) if t ∈ [0, 12 ],
1
2 (1 − t)2 if t ∈ [ 12 , 1],

and compute the other two shape functions. Note: a two-dimensional version
of this finite element on triangles has been developed in [161].

Exercise 5.6 (Lebesgue constant for Lagrange element). Prove that
the Lebesgue constant ΛN defined in Example 5.15 is equal to ‖IL

K‖L(C0(K)).
(Hint : to prove ‖IL

K‖L(C0(K)) ≥ ΛN , consider functions {ψi}i∈N taking val-
ues in [0, 1] s.t.

∑
i∈N ψi = 1 in K and ψi(aj) = δij for all i, j ∈ N .)

Exercise 5.7 (Lagrange interpolation). Let K := [a, b] and let p ∈
[1,∞). (i) Prove that ‖v‖L∞(K) ≤ (b − a)−

1
p ‖v‖Lp(K) + (b− a)1−

1
p ‖v′‖Lp(K)

for all v ∈ W 1,p(K) (Hint : use v(x) − v(y) =
∫ y

x
v′(t) dt for all v ∈ C1(K),

where |v(y)| := minz∈K |v(z)|, then use the density of C1(K) in W 1,p(K).)
(ii) Prove that W 1,p(K) embeds continuously in C0(K). (iii) Let IL

K be
the interpolation operator based on the linear Lagrange finite element us-
ing the nodes a and b. Determine the two shape functions and prove that
IL
K can be extended to W 1,p(K). (iv) Assuming that w ∈ W 1,p(K) is

zero at some point in K, show that ‖w‖Lp(K) ≤ (b − a)‖w′‖Lp(K). (v)
Prove the following estimates: ‖(v − IL

K(v))′‖Lp(K) ≤ (b − a)‖v′′‖Lp(K),
‖v−IL

K(v)‖Lp(K) ≤ (b−a)‖(v−IL
K(v))′‖Lp(K), ‖(IL

K(v))′‖Lp(K) ≤ ‖v′‖Lp(K),
for all p ∈ (1,∞] and all v ∈ W 2,p(K).

Exercise 5.8 (Cross approximation). Let X,Y be nonempty subsets of
R and f : X×Y → R be a bivariate function. Let N := {1:nsh} with nsh ≥ 1,
and consider nsh points {xi}i∈N in X and nsh points {yj}j∈N in Y. Assume
that the matrix F ∈ Rnsh×nsh with entries Fij := f(xi, yj) is invertible. Let
ICA(f) : X×Y → R be s.t. ICA(f)(x, y) :=

∑
i,j∈N (F−T)ijf(x, yj)f(xi, y).

Prove that ICA(f)(x, yk) = f(x, yk) for all x ∈ X and all k ∈ N , and that
ICA(f)(xk, y) = f(xk, y) for all y ∈ Y and all k ∈ N .

Exercise 5.9 (Riesz–Fréchet in finite dimension). Let V be a finite-
dimensional complex Hilbert space. Show that for every antilinear form A ∈
V ′, there is a unique v ∈ V s.t. (v, w)V = 〈A,w〉V ′,V for all w ∈ V, with
‖v‖V = ‖A‖V ′ .


