
Part III, Chapter 16

Local interpolation in H(div) and H(curl) (I)

In this chapter and the next one, we study the interpolation operators asso-
ciated with the finite elements introduced in Chapters 14 and 15. We con-
sider a shape-regular sequence (Th)h∈H of affine simplicial meshes with a
generation-compatible orientation (this is possible owing to Theorem 10.8).
In the present chapter, we show how the degrees of freedom (dofs) attached
to the faces and the edges can be extended by using the scale of the Sobolev
spaces. On the way, we discover fundamental commuting properties of the
interpolation operators embodied in the de Rham complex. In the next chap-
ter, we study a different way of extending the dofs attached to the faces and
the edges by requiring some integrability of the divergence or the curl.

16.1 Local interpolation in H(div)

The goal of this section is to extend the dofs of the RTRTRTk,d finite element intro-
duced in Chapter 14 and to study the properties of the resulting interpolation
operator.

16.1.1 Extending the dofs

Let K ∈ Th be a simplex in Rd with d ≥ 2. We generate a RTRTRTk,d finite

element in K from the RTRTRTk,d finite element in the reference cell K̂ by using
Proposition 14.19. Hence, the dofs in K consist of the following face dofs and
cell dofs (if k ≥ 1): For all v ∈ RTRTRTk,d,

σf
F,m(v) :=

1

|F |

∫

F

(v·νF )(ζm ◦ T−1
K,F ) ds, ∀F ∈ FK , (16.1a)

σc
j,m(v) :=

1

|K|

∫

K

(v·νK,j)(ψm ◦ T−1
K ) dx, ∀j ∈ {1:d}, (16.1b)
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where {ζm}m∈{1:nf
sh}, {ψm}m∈{1:nc

sh} are bases of Pk,d−1, Pk−1,d (k ≥ 1), re-

spectively, νF is the normal vector orienting F , {νK,j := |Fj |nFj
}j∈{1:d} are

the vectors orienting K, and TK,F : Ŝd−1 → F , TK : K̂ → K are geometric
mappings. The local dofs in K are collectively denoted by {σK,i}i∈N .

We are going to extend the above dofs to the following functional space:

V d(K) :=W s,p(K), sp > 1, p ∈ (1,∞) or s = 1, p = 1, (16.2)

recalling that W s,p(K) :=W s,p(K;Rd). The idea behind (16.2) is to invoke
a trace theorem (Theorem 3.15) to give a meaning to the face dofs. Fixing
the real number p in (16.2), one wants to take s as small as possible to make
the space V d(K) as large as possible. Thus, we can assume without loss of
generality that s ≤ 1. We can also take p = ∞ and s = 1 in (16.2).

Proposition 16.1 (Extended dofs). Let V d(K) be defined in (16.2). Let

V d(K̂) be defined similarly. Then the contravariant Piola transformation ψd
K

is in L(V d(K);V d(K̂)). Moreover, the local dofs are in L(V d(K);R) and
there is c s.t. for all v ∈ V d(K), all K ∈ Th, and all h ∈ H,

max
i∈N

|σK,i(v)| ≤ c h
d−1−d

p

K

(
‖v‖Lp(K) + hsK |v|W s,p(K)

)
. (16.3)

Proof. (1) Let v ∈ V d(K). Since the mesh is affine and ψd
K(v) := Ad

K(v◦TK)
with Ad

K := det(JK)J−1
K , we can apply Lemma 11.7 to obtain

‖ψd
K(v)‖

Lp(K̂) ≤ c ‖Ad
K‖ℓ2 |det(JK)|− 1

p ‖v‖Lp(K) ≤ c′ h
d−1−d

p

K ‖v‖Lp(K),

where the second bound follows from the regularity of the mesh sequence.
Moreover, letting γK := |det(JK)|−1‖JK‖dℓ2 if s < 1 and γK := 1 if s = 1, as
in Lemma 11.7, we obtain

|ψd
K(v)|

W s,p(K̂) ≤ c γ
1
p

K‖Ad
K‖ℓ2‖JK‖sℓ2|det(JK)|− 1

p |v|W s,p(K)

≤ c′ h
d−1−d

p
+s

K |v|W s,p(K),

where the second bound follows from the regularity of the mesh sequence.
The above bounds show that ψd

K ∈ L(V d(K);V d(K̂)) with

‖ψd
K(v)‖

Lp(K̂) + ℓs
K̂
|ψd

K(v)|
W s,p(K̂) ≤ c h

d−1−d
p

K

(
‖v‖Lp(K) + hsK |v|W s,p(K)

)
,

where ℓK̂ := 1 is a length scale associated with the reference cell K̂.
(2) Since the local dofs in K are s.t. σK,i := σ̂i ◦ ψd

K for all i ∈ N , we need

to bound the reference dofs {σ̂i}i∈N . Let v̂ ∈ V d(K̂). If σ̂i is a cell dof,
we have |σ̂i(v̂)| ≤ ĉ‖v̂‖

Lp(K̂), whereas if σ̂i is a face dof, we have |σ̂i(v̂)| ≤
ĉ(‖v̂‖

Lp(K̂)+ ℓ
s
K̂
|v̂|
W s,p(K̂)) owing to Theorem 3.15 since sp > 1 if p ∈ (1,∞)
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and s = 1 if p = 1. The above bound on ψd
K shows that the local dofs in K

are in L(V d(K);R) and that (16.3) holds true. ⊓⊔

16.1.2 Commuting and approximation properties

In this section, we study the properties of the local Raviart–Thomas inter-
polation operator

Id
K : V d(K) → RTRTRTk,d (16.4)

with V d(K) defined in (16.2). Recall that for all v ∈ V d(K), Id
K(v) is defined

as the unique polynomial in RTRTRTk,d s.t. the function (Id
K(v) − v) annihilates

all the RTRTRTk,d dofs. Let us start with an important commuting property. Let
Ib
K : V b(K) := L1(K) → Pk,d be the L2-orthogonal projection onto Pk,d, i.e.,∫
K(Ib

K(φ)− φ)q dx = 0 for all φ ∈ L1(K) and all q ∈ Pk,d; see §11.5.3.

Lemma 16.2 (Commuting with ∇·). The following diagram commutes:

V̌ d(K)
∇·

✲ V b(K)

RTRTRTk,d

Id
K

❄ ∇·
✲ Pk,d

Ib
K

❄

where V̌ d(K) := {v ∈ V d(K) | ∇·v ∈ V b(K)}. In other words, we have

∇·(Id
K(v)) = Ib

K(∇·v), ∀v ∈ V̌ d(K). (16.5)

Proof. Let v ∈ V̌ d(K). Since the divergence operator maps RTRTRTk,d to Pk,d by
Lemma 14.9, we have ∇·(Id

K(v)) ∈ Pk,d. Therefore, it suffices to show that∫
K
(Ib

K(∇·v) −∇·(Id
K(v)))q dx = 0 for all q ∈ Pk,d, and by definition of Ib

K ,

this amounts to
∫
K(∇·ζ)q dx = 0 for all q ∈ Pk,d where ζ := v − Id

K(v).
Note that by definition ζ annihilates all the dofs of the RTRTRTk,d element in K.
Integrating by parts and decomposing the boundary integral over the faces
in FK , we infer that

∫

K

(∇·ζ)q dx = −
∫

K

ζ·∇q dx+
∑

F∈FK

∫

F

ζ·nK|F q|F ds,

where nK is the outward unit normal toK. If k ≥ 1, we use that {νK,j}j∈{1:d}
is a basis of Rd and {ψm}m∈{1:nc

sh} is a basis of Pk−1,d to infer that there

are real numbers αj,m s.t. ∇q =
∑

j∈{1:d}
∑

m∈{1:nc
sh} αj,mνK,j(ψm ◦ T−1

K ).

Recalling that ζ annihilates all the cell dofs, we obtain

∫

K

ζ·∇q dx = 0.
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If k = 0, this equality is trivial. Let us now consider the integrals over the
faces of K. For all F ∈ FK , we use that νF = |F |nF and nF = ±nK|F ,
q|F ◦T−1

K,F ∈ Pk,d−1 owing to Lemma 7.10, and that ζ annihilates all the face
dofs attached to F to infer that

∫

F

ζ·nK|F q|F ds = 0.

This concludes the proof. ⊓⊔
Example 16.3 (Gradient interpolation). Let us set s = p := 1 in (16.2).
Let φ ∈ W 2,1(K). Then ∇φ ∈ W 1,1(K) = V d(K), and since ∇·(∇φ) ∈
L1(K), we have ∇φ ∈ V̌ d(K). Lemma 16.2 implies that ∇·Id

K(∇φ) =
Ib
K(∆φ). ⊓⊔

Theorem 16.4 (Approximation, r ≥ 1). Let Id
K be the RTRTRTk,d interpo-

lation operator in K. There is c s.t. for every integers r ∈ {1:k + 1} and
m ∈ {0:r}, all p ∈ [1,∞], all v ∈W r,p(K), all K ∈ Th, and all h ∈ H,

|v − Id
K(v)|Wm,p(K) ≤ c hr−m

K |v|W r,p(K). (16.6)

Moreover, for every integers r ∈ {0:k+ 1} and m ∈ {0:r}, all p ∈ [1,∞], all
v ∈ V d(K) such that ∇·v ∈W r,p(K), all K ∈ Th, and all h ∈ H, we have

|∇·(v − Id
K(v))|Wm,p(K) ≤ c hr−m

K |∇·v|W r,p(K). (16.7)

Proof. Let us start with (16.6). We apply Theorem 11.13. The contravariant
Piola transformation ψd

K is of the form (11.1) with Ad
K := det(JK)J−1

K , which
satisfies the bound (11.12) with γ := 1. Moreover, we can take l := 1 in

Theorem 11.13 since W 1,p(K̂) →֒ V d(K̂). Since l ≤ k + 1, we can apply the
estimate (11.14), which is nothing but (16.6). Finally, to prove (16.7), we use
Lemma 16.2 to infer that ∇·(v−Id

K(v)) = ∇·v−Ib
K(∇·v), and we conclude

using Lemma 11.18 (PK = Pk,d since the mesh is affine). ⊓⊔
Remark 16.5 (Error on the divergence). It is remarkable that the
bound on ∇·(v − Id

K(v)) only depends on the smoothness of ∇·v. This is
a direct consequence of the commuting property stated in Lemma 16.2. ⊓⊔
Theorem 16.6 (Approximation, r > 1

p). The estimate (16.6) holds true

for all r ∈ ( 1p , 1), m = 0, all p ∈ (1,∞), all v ∈ W r,p(K), all K ∈ Th, and
all h ∈ H, and c can grow unboundedly as r ↓ 1

p .

Proof. We first prove the following stability property:

‖Id
K(v)‖Lp(K) ≤ c

(
‖v‖Lp(K) + hrK |v|W r,p(K)

)
, (16.8)

for all v ∈W r,p(K), all K ∈ Th, and all h ∈ H (notice that v ∈ V d(K) since
rp > 1). The triangle inequality, Proposition 12.5, and the regularity of the
mesh sequence imply that
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‖Id
K(v)‖Lp(K) ≤

∑

i∈N
|σK,i(v)| ‖θK,i‖Lp(K) ≤ c h

d
p
+1−d

K

∑

i∈N
|σK,i(v)|.

Hence, (16.8) follows from the bound (16.3) on the local dofs in K. Since
PPP0,d ⊂ RTRTRTk,d is pointwise invariant under Id

K , we infer that

‖v − Id
K(v)‖Lp(K) ≤ inf

q∈PPP0,d

(
‖v − q‖Lp(K) + ‖Id

K(v − q)‖Lp(K)

)

≤ c inf
q∈PPP0,d

(
‖v − q‖Lp(K) + hrK |v − q|W r,p(K)

)

≤ c′hrK |v|W r,p(K),

where we used (16.8), |v − q|W r,p(K) = |v|W r,p(K) since q is constant on K,
and the fractional Poincaré–Steklov inequality (12.14) in K. ⊓⊔

16.2 Local interpolation in H(curl)

The goal of this section is to extend the dofs of the NNNk,d finite element intro-
duced in Chapter 15 for d = 3 and to study the properties of the resulting
interpolation operator.

16.2.1 Extending the dofs

Let K be a simplex in Rd with d = 3. We generate a NNNk,d finite element in K

from theNNNk,d finite element in the reference cell K̂ by using Proposition 15.20.
Hence, the dofs in K consist of the following edge dofs, face dofs (if k ≥ 1),
and cell dofs (if k ≥ 2): For all v ∈ NNNk,d,

σe
E,m(v) :=

1

|E|

∫

E

(v·tE)(µm ◦ T−1
K,E) dl, ∀E ∈ EK , (16.9a)

σf
F,j,m(v) :=

1

|F |

∫

F

(v·tF,j)(ζm ◦ T−1
K,F ) ds, ∀F ∈ FK , ∀j ∈ {1, 2}, (16.9b)

σc
j,m(v) :=

1

|K|

∫

K

(v·tK,j)(ψm ◦ T−1
K ) dx, ∀j ∈ {1, 2, 3}, (16.9c)

where {µm}m∈{1:ne
sh}, {ζm}m∈{1:nf

sh}, and {ψm}m∈{1:nc
sh} are bases of Pk,1,

Pk−1,2 (k ≥ 1), and Pk−2,3 (k ≥ 2), respectively, tE is the tangent vec-
tor orienting E, {tF,j}j∈{1,2} the two tangent vectors orienting F , and

{tK,j}j∈{1,2,3} the three vectors orienting K, and TK,E : Ŝ1 → E, TK,F :

Ŝ2 → F , and TK : K̂ → K are geometric mappings. The local dofs in K are
collectively denoted by {σK,i}i∈N .

We are going to extend the above dofs to the following functional space:

V c(K) :=W s,p(K), sp > 2, p ∈ (1,∞) or s = 2, p = 1, (16.10)
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The idea behind (16.10) is again to use a trace theorem (Theorem 3.15)
to give a meaning to the edge (and face) dofs. Fixing the real number p
in (16.10), we want to take s as small as possible to make the space V c(K)
as large as possible. Thus, we can assume without loss of generality that
s ≤ 1 if p ∈ (2,∞) and s ≤ 2 if p ∈ [1, 2]. We can also take p = ∞ and s = 1
in (16.10). We consider the norm ‖·‖W s̃,p(K) defined as follows: If s ∈ (0, 1]
(i.e., if p ∈ (2,∞]), we set

s̃ := 0, ‖v‖W s̃,p(K) := ‖v‖Lp(K), (16.11a)

whereas if s ∈ (1, 2] (i.e., if p ∈ [1, 2]), we set

s̃ := 1, ‖v‖W s̃,p(K) := ‖v‖Lp(K) + hK |v|W 1,p(K). (16.11b)

Proposition 16.7 (Extended dofs). Let V c(K) be defined in (16.10). Let

V c(K̂) be defined similarly. Then the covariant Piola transformation ψc
K is

in L(V c(K);V c(K̂)). Moreover, the local dofs are in L(V c(K);R), and there
is c s.t. for all v ∈ V c(K), all K ∈ Th, and all h ∈ H,

max
i∈N

|σK,i(v)| ≤ c h
1−d

p

K

(
‖v‖W s̃,p(K) + hsK |v|W s,p(K)

)
. (16.12)

Proof. (1) Let v ∈ V c(K). Since the mesh is affine and ψc
K(v) := Ac

K(v◦TK)
with Ac

K := JTK , we can proceed as in the proof of Proposition 16.1 and invoke

Lemma 11.7 to show that ψc
K ∈ L(V c(K);V c(K̂)) with ‖ψc

K(v)‖
W s̃,p(K̂) +

ℓs
K̂
|ψc

K(v)|
W s,p(K̂) ≤ c h

1− d
p

K

(
‖v‖W s̃,p(K) + hsK |v|W s,p(K)

)
, where the norm

‖·‖
W s̃,p(K̂) is defined similarly to ‖·‖W s̃,p(K) using ℓK̂ := 1.

(2) To bound the local dofs, we invoke Theorem 3.15 and proceed again as
in the proof of Proposition 16.1. ⊓⊔

16.2.2 Commuting and approximation properties

In this section, we study the properties of the local Nédélec interpolation
operator

Ic
K : V c(K) → NNNk,d (16.13)

with V c(K) defined in (16.10). Recall that for all v ∈ V c(K), Ic
K(v) is

defined as the unique polynomial in NNNk,d such that the function (Ic
K(v)− v)

annihilates all the NNNk,d dofs.

Lemma 16.8 (Commuting with ∇×). The following diagram commutes:

V̌ c(K)
∇×

✲ V d(K)

NNNk,d

Ic
K

❄ ∇×
✲ RTRTRTk,d

Id
K

❄
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where V̌ c(K) := {v ∈ V c(K) | ∇×v ∈ V d(K)}. In other words, we have

∇×(Ic
K(v)) = Id

K(∇×v), ∀v ∈ V̌ c(K). (16.14)

Proof. Let us first observe that ∇×NNNk,d ⊂ PPPk,d ⊂ RTRTRTk,d (see Lemma 15.10),
which implies that ∇× maps NNNk,d to RTRTRTk,d. Note also that ∇× maps V̌ c(K)
to V d(K) by definition of these spaces. Let v ∈ V̌ c(K). The proof of (16.14)
consists of showing that δ := ∇×(Ic

K(v)) − Id
K(∇×v) ∈ RTRTRTk,d annihilates

all the dofs of the RTRTRTk,d finite element in K. Let us set ζ := v − Ic
K(v) and

ξ := ∇×v − Id
K(∇×v), so that we have

δ = ∇×(Ic
K(v)) −∇×v +∇×v − Id

K(∇×v) = ξ −∇×ζ.

(1) Let us consider first the dofs attached to K for k ≥ 1. Let e be a unit
vector in Rd and let ψ ∈ Pk−1,d. We want to show that

∫
K δ·eψ dx = 0. Since

ξ annihilates all the cell dofs of the RTRTRTk,d element, we have
∫
K
ξ·eψ dx =

0, so that
∫
K δ·eψ dx = −

∫
K(∇×ζ)·eψ dx. Using the integration by parts

formula (4.8a), we have

∫

K

(∇×ζ)·eψ dx =

∫

K

ζ·∇×(eψ)−
∑

F∈FK

∫

F

ζ·(nK|F×e)ψ ds.

If k ≥ 2, we use that ζ annihilates the cell dofs of theNNNk,d element to infer that∫
K ζ·∇×(eψ) = 0. If k = 1, this equality is obvious. Moreover, since ζ also
annihilates the face dofs of the NNNk,d element and since the vector (nK|F×e)
is tangent to F , we infer that

∫
F
ζ·(nK|F×e)ψ ds = 0 for all F ∈ FK . In

conclusion,
∫
K(∇×ζ)·eψ dx = 0, so that

∫
K δ·eψ dx = 0.

(2) Let us now consider the dofs attached to a face F ∈ FK . We want to show
that

∫
F
δ·nFψ ds = 0 for all ψ ∈ Pk,d. This is a sufficient condition to anni-

hilate the RTRTRTk,d dofs attached to F , since for all q ∈ Pk,d−1, there exists ψ ∈
Pk,d such that ψ|F = q ◦ T−1

K,F owing to Lemma 7.10. Since ξ annihilates the

face dofs of the RTRTRTk,d element, we have
∫
F
δ·nFψ ds = −

∫
F
(∇×ζ)·nFψ ds.

Moreover, since ∇×(ψζ) = ∇ψ×ζ + ψ∇×ζ and ζ annihilates the face dofs
of the NNNk,d element, we infer that

∫

F

(∇×ζ)·nFψ ds =

∫

F

∇×(ψζ)·nF ds−
∫

F

ζ·(nF×∇ψ) ds

=

∫

F

∇×(ψζ)·nF ds =

∫

∂F

(ψζ)·τF dl =
∑

E∈EF

∫

E

ζ·(τF |Eψ) dl,

where we used the Kelvin–Stokes formula (16.15) with τF being the unit
vector tangent to ∂F whose orientation is compatible with that of nF , and
where we decomposed the integral over ∂F into the integrals over the edges
composing F . Since τF |E is tangent to the edge E and ζ annihilates the edge
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dofs of the NNNk,d element, we obtain
∫
F
(∇×ζ)·nFψ ds = 0. Hence, we have∫

F δ·nFψ ds = 0, and this concludes the proof. ⊓⊔

Lemma 16.9 (Kelvin–Stokes). Let K be a simplex in R3. Let F be a
face of K with orientation defined by nF and with boundary ∂F . Let τF be
the unit vector tangent to ∂F whose orientation is compatible with that of
nF , i.e., for all x ∈ ∂F , the vector τF (x)×nF (x) points outside of F . The
following holds true for all w ∈ V̌ c(K):

∫

F

(∇×w)·nF ds =

∫

∂F

w·τF dl. (16.15)

Theorem 16.10 (Approximation, r ≥ 1 or r ≥ 2). Let Ic
K be the local

NNNk,d interpolation operator. There is c s.t. the following holds true:
(i) If p ∈ (2,∞], then we have

|v − Ic
K(v)|Wm,p(K) ≤ c hr−m

K |v|W r,p(K), (16.16)

for every integers r ∈ {1:k+1} and m ∈ {0:r}, all v ∈W r,p(K), all K ∈ Th,
and all h ∈ H.
(ii) If p ∈ [1, 2], the estimate (16.16) holds true if k ≥ 1 for every integers
r ∈ {2:k + 1} and m ∈ {0:r}, all v ∈W r,p(K), all K ∈ Th, and all h ∈ H,
whereas if k = 0, we have

|v − Ic
K(v)|Wm,p(K) ≤ c

(
h1−m
K |v|W 1,p(K) + h2−m

K |v|W 2,p(K)

)
, (16.17)

for all m ∈ {0, 1}, all v ∈W 2,p(K), all K ∈ Th, and all h ∈ H.
(iii) Finally, we have

|∇×(v − Ic
K(v))|Wm,p(K) ≤ c hr−m

K |∇×v|W r,p(K), (16.18)

for every integers r ∈ {1:k+1} and m ∈ {0:r}, all p ∈ [1,∞], all v ∈ V c(K)
such that ∇×v ∈W r,p(K), all K ∈ Th, and all h ∈ H.

Proof. Let us start with (16.16) and (16.17). We apply Theorem 11.13. The
covariant Piola transformation ψc

K is of the form (11.1) with Ac
K := JTK ,

which satisfies the bound (11.12) with γ := 1. Moreover, we can take l := 2

if p ∈ [1, 2] and l := 1 if p ∈ (2,∞] since in both cases we have W l,p(K̂) →֒
V c(K̂). If p ∈ (2,∞] or if p ∈ [1, 2] and k ≥ 1, we have l ≤ k + 1, so that
we can apply the estimate (11.14), which is nothing but (16.16). In the case
where p ∈ [1, 2] and k = 0, we apply (11.15), which is nothing but (16.17).
Finally, to prove (16.18), we use Lemma 16.8 to infer that ∇×(v−Ic

K(v)) =
∇×v − Id

K(∇×v), and we conclude using Theorem 16.4. ⊓⊔

Remark 16.11 (Error on the curl). It is remarkable that the bound on
∇×(v − Ic

K(v)) only depends on the smoothness of ∇×v. This is a direct
consequence of the commuting property stated in Lemma 16.8. ⊓⊔
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Theorem 16.12 (Approximation, r > 2
p). There is c, unbounded as r ↓ 2

p ,
such that:
(i) If p ∈ (2,∞), the estimate (16.16) holds true for all r ∈ ( 2p , 1), m = 0, all

v ∈W r,p(K), all K ∈ Th, and all h ∈ H.
(ii) If p ∈ (1, 2], the estimate (16.16) holds true if k ≥ 1 for all r ∈ ( 2p , 2), all

m ∈ {0, 1}, all v ∈ W r,p(K), all K ∈ Th, and all h ∈ H, whereas if k = 0,
we have

|v − Ic
K(v)|Wm,p(K) ≤ c

(
h1−m
K |v|W 1,p(K) + hr−m

K |v|W r,p(K)

)
, (16.19)

for all r ∈ ( 2p , 2), all m ∈ {0, 1}, all v ∈W r,p(K), all K ∈ Th, and all h ∈ H.

Proof. Let us set l := 2 if p ∈ (1, 2] and l := 1 if p ∈ (2,∞). Let r ∈ ( 2p , l), so

that W r,p(K) →֒ V c(K). Combining the bound from Proposition 12.5, the
regularity of the mesh sequence, and the estimate (16.12) on the local dofs,
we infer the stability estimate

‖Ic
K(v)‖Lp(K) ≤ c

(
‖v‖W r̃,p(K) + hrK |v|W r,p(K)

)
,

with r̃ := 0 if r ∈ (0, 1] and r̃ := 1 if r ∈ (1, 2).
(i) Assume that p ∈ (2,∞). Then r < 1 so that ‖v‖W r̃,p(K) = ‖v‖Lp(K).
Since PPP0,d ⊂ NNNk,d, we infer that

‖v − Ic
K(v)‖Lp(K) ≤ c inf

q∈PPP0,d

(
‖v − q‖Lp(K) + |Ic

K(v − q)|Lp(K)

)

≤ c
(

inf
q∈PPP0,d

‖v − q‖Lp(K) + hrK |v|W r,p(K)

)
,

where we used that |v − q|W r,p(K) = |v|W r,p(K). The estimate (16.16)
with m = 0 follows from the fractional Poincaré–Steklov inequality (see
Lemma 12.12).
(ii) Assume that p ∈ (1, 2). Then r ∈ (1, 2) so that ‖v‖W r̃,p(K) = ‖v‖Lp(K)+
hK |v|W 1,p(K). Let n := min(1, k). Since n ≤ k and n ≤ 1 < r, proceeding as
above, we infer that

‖v − Ic
K(v)‖Lp(K) ≤ c

(
inf

q∈PPPn,d

φK(v − q) + hrK |v|W r,p(K)

)
,

with φK(v − q) := ‖v − q‖Lp(K) + hK |v − q|W 1,p(K) Using the inverse in-

equality |Ic
K(v− q)|W 1,p(K) ≤ ch−1

K ‖Ic
K(v− q)‖Lp(K) (see Lemma 12.1) and

proceeding again as above, we infer that

|v − Ic
K(v)|W 1,p(K) ≤ c

(
inf

q∈PPPn,d

h−1
K φK(v − q) + hr−1

K |v|W r,p(K)

)
.

If k ≥ 1, we have n = 1, and the estimate (16.16) follows from Corollary 12.13
for all m ∈ {0, 1}, whereas if k = 0, we have n = 0, and the estimate (16.19)
for all m ∈ {0, 1} follows from the fractional Poincaré–Steklov inequality. ⊓⊔
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16.3 The de Rham complex

In this section, we introduce the notion of de Rham complex, and we reinter-
pret the previous commuting properties from Lemma 16.2 and Lemma 16.8
in this context. We assume that d = 3; see Remark 16.17 below to adapt the
material when d = 2.

Definition 16.13 (Exact cochain complex). Let I ≥ 2 be an integer. A
cochain complex is composed of a sequence of Banach spaces (Vi)i∈{0: I} and
a sequence of linear operators (di)i∈{1: I} between these spaces

V0
d1−→ V1 . . . Vi−1

di−→ Vi
di+1−→ Vi+1 . . . VI−1

dI−→ VI , (16.20)

such that for all i ∈ {1:I}, im(di) is closed in Vi and if i < I, im(di) ⊆
ker(di+1) (this means that di+1 ◦ di = 0). The cochain complex is said to be
exact if im(di) = ker(di+1) for all i ∈ {1:I−1}.

The exactness of a cochain complex is useful since it gives a simple way
of knowing whether an element vi ∈ Vi is in im(di) by checking whether
di+1(vi) = 0. In this book, we focus on one fundamental example of cochain
complex, namely the de Rham complex which involves the gradient, curl, and
divergence operators.

Proposition 16.14 (de Rham complex). Let D be a Lipschitz domain
in R3. Assume that D is simply connected and that ∂D is connected. The
following cochain complex, called de Rham complex, is exact:

R
i−→ H1(D)

∇−→H(curl;D)
∇×−→H(div;D)

∇·−→ L2(D)
o−→ {0}, (16.21)

where i maps a real number to a constant function and o is the zero map.

Proof. That ker(∇) = R, ker(∇×) = im(∇), and ker(∇·) = im(∇×) are
well-known facts from calculus since D is, respectively, connected, simply
connected, and has a connected boundary. Finally, that im(∇·) = L2(D) is
proved in Lemma 51.2. ⊓⊔

Proposition 16.15 (Discrete de Rham complex). Let κ ∈ N. The fol-
lowing cochain complex, called discrete de Rham complex, is exact:

R
i−→ Pκ+1,3

∇−→ NNNκ,3
∇×−→ RTRTRTκ,3

∇·−→ Pκ,3
o−→ {0}. (16.22)

Proof. ker(∇) = im(i) is obvious, and ker(∇×) = im(∇) follows from
Lemma 15.10. For ker(∇·) = im(∇×), ker(o) = im(∇·); see Exercise 16.6. ⊓⊔

We now connect the above two de Rham complexes by means of interpo-
lation operators. Let K be a simplex in Rd, d = 3. Let p ∈ [1,∞) and let s
be such that sp > 3 if p > 1 or s = 3 if p = 1. Recall the following functional
spaces where V b(K) := L1(K):
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V̌ g(K) := {f ∈ W s,p(K) | ∇f ∈W s− 1
p
,p(K)}, (16.23a)

V̌ c(K) := {g ∈W s− 1
p
,p(K) | ∇×g ∈W s− 2

p
,p(K)}, (16.23b)

V̌ d(K) := {g ∈W s− 2
p
,p(K) | ∇·g ∈ V b(K)}. (16.23c)

Lemma 16.16 (Commuting diagrams). Let κ ∈ N. Let K be a simplex
in Rd, d = 3. Let Ig

κ+1,K be the interpolation operator associated with the
canonical hybrid element of degree (κ + 1) defined in §7.6. Let Ic

κ,K be the

NNNκ,3 interpolation operator, let Id
κ,K be the RTRTRTκ,d interpolation operator, and

let Ib
κ,K be the L2-orthogonal projection onto Pκ,d. The following diagrams

commute:

V̌ g(K)
∇

✲ V̌ c(K)
∇×

✲ V̌ d(K)
∇·

✲ V b(K)

Pκ+1,d

Ig
κ+1,K

❄ ∇
✲ NNNκ,d

Ic
κ,K

❄ ∇×
✲ RTRTRTκ,d

Id
κ,K

❄ ∇·
✲ Pκ,d

Ib
κ,K

❄

Proof. Recalling Lemma 16.2 and Lemma 16.8, it only remains to prove that
the leftmost diagram commutes. This is done in Exercise 16.3. ⊓⊔

Remark 16.17 (2D). There are two possible versions of Lemma 16.16 if
d = 2, using either the operator ∇×f := ∂1f2−∂2f1 or the operator ∇⊥f :=
(−∂2f, ∂1f)T. One can show that the following two diagrams commute:

V̌ g(K)
∇⊥
✲ V̌ d(K)

∇·
✲ V b(K) V̌ g(K)

∇
✲ V̌ c(K)

∇×
✲ V b(K)

Pκ+1,d

Ig
κ+1,K

❄ ∇⊥
✲ RTRTRTκ,d

Id
κ,K

❄ ∇·
✲ Pκ,d

Ib
κ,K

❄

Pκ+1,d

Ig
κ+1,K

❄ ∇
✲ NNNκ,d

Ic
κ,K

❄ ∇×
✲ Pκ,d

Ib
κ,K

❄

with V̌ g(K) defined in (16.23a) with sp > 2 if p ∈ (1,∞) or s = 2 if

p = 1, V̌ c(K) := {g ∈ W s− 1
p
,p(K) | ∇×g ∈ L1(K)}, and V̌ d(K) :=

Rπ
2
(V̌ c(K)) = {g ∈ W s− 1

p
,p(K) | ∇·g ∈ V b(K)}, where Rπ

2
is the rota-

tion matrix of angle π
2 in R2. ⊓⊔

Remark 16.18 (Cuboids). The commuting diagrams from Lemma 16.16
can be adapted when K is a cuboid by using the Cartesian Raviart–Thomas
and Nédélec spaces from §14.5.2 and §15.5.2. ⊓⊔

Remark 16.19 (Literature). The construction and analysis of finite ele-
ments leading to discrete de Rham complexes has witnessed significant pro-
gresses since the early 2000s and has lead to the notion of finite element
exterior calculus; see Arnold et al. [11, 12]. Regularity estimates in Sobolev
(and other) norms for right inverse operators of the gradient, curl, and diver-
gence can be found in Costabel and McIntosh [83]. ⊓⊔
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Exercises

Exercise 16.1 (V̌ d(K)). Show that V d(K) defined in (16.2) can be used in
the commuting diagram of Lemma 16.2 after replacing L1(K) byW s−1,p(K).
(Hint : use Theorem 3.19.)

Exercise 16.2 (Id
K). Prove that the estimate (16.6) holds true for all r ∈

[1, k + 1], r 6∈ N, every integer m ∈ {0:⌊r⌋}, and all p ∈ [1,∞). Prove that
(16.7) holds true for all r ∈ [0, k + 1], r 6∈ N, every integer m ∈ {0:⌊r⌋}, and
all p ∈ [1,∞). (Hint : combine Wm,p-stability with Corollary 12.13.)

Exercise 16.3 (de Rham). Prove that the leftmost diagram in Lemma 16.16
commutes. (Hint : verify that ∇Ig

K(v)−Ic
K(∇v) annihilates all dofs in NNNk,d.)

Exercise 16.4 (Poincaré operators). Assume that K is star-shaped with
respect to a point a ∈ K. Let f and g be smooth functions on K. Define

P g(g)(x) := (x−a)·
∫ 1

0 g(a+ t(x−a)) dt, P c(g)(x) := −(x−a)×
∫ 1

0 g(a+

t(x − a)) dt (if d = 3), and P d(f)(x) := (x − a)
∫ 1

0
f(a + t(x − a))td−1 dt.

Verify that (i) ∇P g(g) = g if ∂igj = ∂jgi for all i, j ∈ {1:d}; (ii) ∇×P c(g) =
g if ∇·g = 0; (iii) ∇·P d(f) = f .

Exercise 16.5 (Koszul operator). (i) Let v ∈ PPPH
k,d with d = 3. Prove that

∇(x·v)−x×(∇×v) = (k+1)v and −∇×(x×v)+x(∇·v) = (k+2)v. (Hint :
use Euler’s identity from Lemma 14.3.) (ii) Prove that PPPk,d = ∇Pk+1,d ⊕
(x×PPPk−1,d) = ∇×PPPk+1,d⊕(xPk−1,d). (Hint : establish first these identities for
homogeneous polynomials.) Note: defining the Koszul operators κg(v) := x·v
and κc(v) := −x×v for vector fields and κd(v) := xv for scalar fields, one
has κg(∇q) = kq (Euler’s identity) and ∇·(κd(q)) = (k+ d)q for all q ∈ PH

k,d,

and ∇(κg(q)) + κc(∇×q) = (k + 1)q and ∇×(κc(q)) + κd(∇·q) = (k + 2)q
for all q ∈ PPPH

k,d; see [11, Sec. 3.2].

Exercise 16.6 (∇·RTRTRTk,d and ∇×NNNk,3). (i) Prove that ∇·RTRTRTk,d = Pk,d.
(Hint : prove that ∇· : xPk,d → Pk,d is injective using Lemma 14.3.) (ii)
Let us set RTRTRTdiv=0

k,d := {v ∈ RTRTRTk,d | ∇·v = 0}. Determine dim(RTRTRTdiv=0
k,d ) for

d ∈ {2, 3}. (iii) Show that RTRTRTdiv=0
k,3 = ∇×PPPk+1,3. (Hint : use Lemma 14.9.)

(iv) Prove that RTRTRTdiv=0
k,3 = ∇×NNNk,3. (Hint : use the rank nullity theorem.)

Exercise 16.7 (∇Pk+1,d and ∇×PPPk+1,3). Let k ∈ N. (i) Set PPPc
k,d :=

∇Pk+1,d. Show that dim(PPPc
k,d) =

(
k+d+1

d

)
− 1. (ii) Assume d = 3. Set

PPPd
k,3 := ∇×PPPk+1,3. Show that dim(PPPd

k,3) = 3
(
k+4
3

)
−
(
k+5
3

)
+1 = 3

(
k+3
3

)
−
(
k+2
3

)

(with the convention that
(
2
3

)
= 0). (Hint : use the exact cochain complex

P0,d
i−→ Pk+2,d

∇−→ PPPk+1,d
∇×−→ PPPk,d

∇·−→ Pk−1,d
o−→ {0}.)


