
Part IV, Chapter 19

Main properties of the conforming subspaces

In this chapter, we continue the study of the interpolation properties of the
conforming finite element subspaces introduced in the previous chapter. Re-
call that

P x
k (Th;Rq) := {vh ∈ P x,b

k (Th;Rq) | [[vh]]xF = 0, ∀F ∈ F◦
h},

where P x,b
k (Th;Rq) is a broken finite element space, with q ∈ {1, d} depend-

ing on the superscript x ∈ {g, c, d}, and the jump operator [[·]]xF is defined
in (18.7). Recall that the H1-conforming subspace P g

k (Th) (q = 1) is built
using a Lagrange element or a canonical hybrid element of degree k ≥ 1, the
H(curl)-conforming subspace P c

k (Th) (q = d = 3) is built using a Nédélec el-
ement of degree k ≥ 0, and the H(div)-conforming subspace P d

k (Th) (q = d)
is built using a Raviart–Thomas element of degree k ≥ 0. The cornerstone
of the construction, which is presented in a unified way for x ∈ {g, c, d}, is
a connectivity array with ad hoc clustering properties of the local degrees
of freedom (dofs). In the present chapter, we postulate the existence of the
connectivity array and show how it allows us to build global shape functions
and a global interpolation operator in P g

k (Th). The actual construction of
this mapping is undertaken in Chapters 20 and 21. In this book, we shall
implicitly assume that the mesh Th is matching (see Definition 8.11) when
the conforming space P x

k (Th;Rq) is invoked.

19.1 Global shape functions and dofs

For all K ∈ Th, the local dofs are {σK,i}i∈N , and the local shape functions
are {θK,i}i∈N . Recall that {θK,i}i∈N is a basis of PK and that {σK,i}i∈N is
a basis of L(PK ;R). We start by organizing all the dofs and shape functions

{σK,i}(K,i)∈Th×N , {θK,i}(K,i)∈Th×N ,
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by grouping them into clusters, which we are going to call connectivity classes.
We assume that we have at hand a nonzero natural number I and a connec-
tivity array

j dof : Th×N → Ah := {1:I}. (19.1)

Without loss of generality we assume that the mapping j dof is surjective,
i.e., for every connectivity class a ∈ Ah, there exists (K, i) ∈ Th×N s.t.
j dof(K, i) = a. This hypothesis is nonessential and can always be satisfied
by rearranging the codomain of j dof.

Definition 19.1 (Connectivity class). Two pairs (K, i), (K ′, i′) ∈ Th×N
are said to be in the same connectivity class if j dof(K, i) = j dof(K ′, i′).

We require that the mapping j dof satisfies two key properties.
(1) The first one is that for all vh ∈ P x,b

k (Th),

[ vh ∈ P x
k (Th) ] ⇐⇒



For all (K, i), (K ′, i′) in the same

connectivity class, we have

σK,i(vh|K) = σK′,i′(vh|K′)


 . (19.2)

Thus, (19.2) means that for every function vh in the broken finite element

space P x,b
k (Th), a necessary and sufficient condition for vh to be a mem-

ber of the conforming subspace P x
k (Th) is that for all a ∈ Ah, the quantity

σK,i(vh|K) is independent of the choice of the pair (K, i) in the preimage
j dof−1(a) := {(K ′, i′) ∈ Th×N | j dof(K ′, i′) = a}.
(2) The second key property is that

∀K ∈ Th, j dof(K, ·) : N → Ah is injective, (19.3)

i.e., if (K, i) and (K, i′) are in the same connectivity class, then i = i′.
We now construct global dofs and shape functions in P x

k (Th). Since for all
a ∈ Ah and all vh ∈ P x

k (Th), (19.2) implies that the value of σK,i(vh|K) is
independent of the choice of the pair (K, i) in the connectivity class a, it is
legitimate to introduce the following definition: For all a ∈ Ah, we define the
linear form σa : P x

k (Th) → R s.t. for all vh ∈ P x
h (Th),

σa(vh) := σK,i(vh|K), ∀(K, i) ∈ j dof−1(a), (19.4)

i.e., σa(vh) := σK,i(vh|K) for every pair (K, i) in the connectivity class a.

Observe that σa ∈ L(P x
k (Th);R). We now define the function ϕa : D → Rq

for all a ∈ Ah by

ϕa|K :=

{
θK,i if there exists i ∈ N s.t. (K, i) ∈ j dof−1(a),

0 otherwise.
(19.5)

This definition makes sense since if (K, i)∈ j dof−1(a) and (K, i′)∈ j dof−1(a),
then i = i′ owing to (19.3).
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Definition 19.2 (Global shape functions and dofs). The functions ϕa

are called global shape functions, and the linear forms σa are called global
degrees of freedom (dofs).

For all a ∈ Ah, let us introduce the following collection of cells:

Ta := {K ∈ Th | ∃i ∈ N , (K, i) ∈ j dof−1(a)}, (19.6)

i.e., Ta = {K ∈ Th | a ∈ j dof(K,N )}. A direct consequence of the defini-
tion (19.5) is that

supp(ϕa) =
⋃

K∈Ta

K. (19.7)

Lemma 19.3 (Conformity). For all a in Ah, ϕa ∈ P x
k (Th) and

σa(ϕa′) = δaa′ , ∀a′ ∈ Ah. (19.8)

Proof. Let a ∈ Ah and let us prove that ϕa ∈ P x
k (Th). Since ϕa ∈ P x,b

k (Th),
we prove the assertion by checking that the property on the right-hand side
of (19.2) holds true. Let a′ be arbitrary in Ah. We need to show that the
quantity σK,i(ϕa|K) is independent of the pair (K, i) ∈ j dof−1(a′).
(1) Assume first that a′ = a. Let (K, i) be an arbitrary pair in j dof−1(a′).
Then j dof(K, i) = a′ = a, and the definition of ϕa implies that ϕa|K = θK,i.
Hence, σK,i(ϕa|K) = σK,i(θK,i) = 1 for all (K, i) ∈ j dof−1(a′).
(2) Assume now that a′ 6= a. Let (K, i) be an arbitrary pair in j dof−1(a′).
If there exists j ∈ N s.t. j dof(K, j) = a, then ϕa|K = θK,j . Notice that
j 6= i owing to (19.3), since j dof(K, j) = a 6= a′ = j dof(K, i). We infer in
this case that σK,i(ϕa|K) = σK,i(θK,j) = 0 since j 6= i. If there is no j ∈ N
s.t. j dof(K, j) = a, then ϕa|K = 0 and again σK,i(ϕa|K) = 0. To sum up,
σK,i(ϕa|K) = 0 for all (K, i) ∈ j dof−1(a′).
(3) In conclusion, the above argument shows that σa(ϕa) = 1 and σa′(ϕa) = 0
if a′ 6= a, i.e., i σK,i(ϕa|K) is independent of the pair (K, i) ∈ j dof−1(a′) for
all a′ ∈ Ah, and (19.8) holds true. ⊓⊔

Proposition 19.4 (Basis). {ϕa}a∈Ah
is a basis of P x

k (Th), and {σa}a∈Ah

is a basis of L(P x
k (Th);R).

Proof. Assume that
∑

a∈Ah
λaϕa vanishes identically on D for some real

numbers {λa}a∈Ah
. Using the linearity of σa and (19.8) yields

0 = σa′(0) = σa′

( ∑

a∈Ah

λaϕa

)
=
∑

a∈Ah

λaσa′(ϕa) = λa′ .

Hence, λa′ = 0 for all a′ ∈ Ah, i.e., {ϕa}a∈Ah
is linearly independent. To

show that {ϕa}a∈Ah
is a spanning set of P x

k (Th), let vh ∈ P x
k (Th) and let us

set δh := vh−
∑

a′∈Ah
σa′(vh)ϕa′ . We are going to prove that δh|K = 0 for all

K ∈ Th, and since δh|K ∈ PK , we do so by showing that δh|K annihilates all
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the local dofs in K, i.e., σK,i(δh|K) = 0 for all i ∈ N . Let K be an arbitrary
cell in Th, let i be an arbitrary index in N , and let a := j dof(K, i). Then

σK,i(δh|K) = σa(δh) = σa(vh)− σa(vh) = 0,

where the first equality follows from the fact that δh ∈ P x
k (Th) and the second

one from (19.8). We have thus proved that δh|K = 0 for allK ∈ Th, and hence
that δh vanishes identically because K is arbitrary. In conclusion, {ϕa}a∈Ah

is a basis of P x
k (Th). Since {ϕa}a∈Ah

is a basis of P x
k (Th), the identity (19.8)

implies that {σa}a∈Ah
is a basis of L(P x

k (Th);R). ⊓⊔

To sum up, we have shown that provided we have at hand a connectivity
array j dof : Th × N → Ah satisfying the properties (19.2) and (19.3), we
can build in a simple manner the global basis functions and the global dofs in
the conforming finite element subspace P x

k (Th;Rq). The actual construction
of the mapping j dof will be undertaken in the following two chapters.

Remark 19.5 (Connectivity class). Another way to formalize the group-
ing of the dofs consists of introducing the equivalence relation R in Th×N
defined by (K, i)R (K ′, i′) iff j dof(K, i) = j dof(K ′, i′). One can then rede-
fine Ah to be the set of the equivalence classes for R. The elements of Ah are
then sets and are called connectivity classes. In this case, we write (K, i) ∈ a
instead of j dof(K, i) = a. We are going to adopt this equivalent viewpoint
from Chapter 20 onward. ⊓⊔

19.2 Examples

In this section, we illustrate the concepts developed in §19.1 for the spaces
P g
k (Th), P c

k (Th), and P d
k (Th).

19.2.1 H1-conforming subspace P g
k (Th)

Let (K̂, P̂ g, Σ̂g) be one of the scalar-valued Lagrange elements of degree k ≥ 1
introduced in §6.4 or §7.4, or one of the canonical hybrid finite elements of
degree k ≥ 1 introduced in §7.6. The broken finite element space is

P g,b
k (Th) := {vh ∈ L∞(D) | ψg

K(vh) ∈ P̂ g, ∀K ∈ Th}, (19.9)

where ψg
K(v) := v ◦ TK is the pullback by the geometric mapping, and the

corresponding H1-conforming subspace is

P g
k (Th) := {vh ∈ P g,b

k (Th) | [[vh]]F = 0, ∀F ∈ F◦
h}. (19.10)

We have P g
k (Th) ⊂ Zg,p(D) := W 1,p(D) = {v ∈ Lp(D) | ∇v ∈ Lp(D)} for

all p ∈ [1,∞] (note that Zg,2(D) := H1(D)). We show in Figure 19.1 the
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connectivity classes generated by j dof on a mesh composed of four triangles
with P2,2 Lagrange elements.

Fig. 19.1 P2,2 Lagrange nodes in the
same connectivity class for a mesh com-
posed of four triangles (drawn slightly
apart).

The Lagrange and the canonical hybrid finite elements of the same degree
generate the same space P g

k (Th), but the shape functions and dofs differ
for k ≥ 2. Some global shape functions in Pg

1(Th) and Pg
2(Th) in dimension

2 are shown in Figure 19.2 for Lagrange elements. The function shown in
the left panel is continuous and piecewise affine, and it takes the value 1 at
one mesh vertex and the value 0 at all the other mesh vertices. Because its
graph is reminiscent of a hat, this function is often called hat basis function
(and sometimes also Courant basis functions [84]). The functions shown in
the central and right panels are continuous and piecewise quadratic. The
function on the central panel takes the value 1 at one mesh vertex and the
value 0 at all the other mesh vertices, and it takes the value 0 at all the edge
midpoints. The function in the right panel takes the value 0 at all the mesh
vertices, and it takes the value 1 at one edge midpoint and the value 0 at the
midpoint of all the other edges.

Fig. 19.2 Global shape functions in dimension 2: P1,2 (left) and P2,2 (center and right)
Lagrange finite elements.

Let Nv, Ne, Nf, Nc be the number of vertices, edges, faces, and cells
in the mesh Th (recall that Th is assumed to be a matching mesh). For a
simplicial Lagrange element, the number of Lagrange nodes per edge that
are not located at the extremities of the edge is

(
k−1
1

)
(if k ≥ 2), the number
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of Lagrange nodes per face that are not located at the boundary of the face is(
k−1
2

)
(if k ≥ 3), and the number of Lagrange nodes per cell that not located

at the boundary of the cell is
(
k−1
3

)
(if k ≥ 4). These numbers are the same

for the canonical hybrid finite element. We will establish in Chapter 21 that

dim(P g
k (Th)) = Nv +

(
k−1
1

)
Ne +

(
k−1
2

)
Nf +

(
k−1
3

)
Nc if d = 3, (19.11a)

dim(P g
k (Th)) = Nv +

(
k−1
1

)
Ne +

(
k−1
2

)
Nc if d = 2, (19.11b)

with the convention that for natural numbers n,m,
(
n
m

)
:= 0 if n < m. In the

lowest-order case (k = 1), we have dim(P g
1 (Th)) = Nv, and the connectivity

array j dof coincides with the double-entry array j cv defined in §8.3.

19.2.2 H(curl)-conforming subspace P c
k (Th)

Let (K̂, P̂ c, Σ̂c) be one of the Nédélec finite elements of degree k ≥ 0 de-
scribed in Chapter 15. The broken finite element space is

P
c,b
k (Th) := {vh ∈ L∞(D) | ψc

K(vh|K) ∈ P̂ c, ∀K ∈ Th}, (19.12)

with the covariant Piola transformation ψc
K(v) := JTK(v ◦ TK), and the cor-

responding H(curl)-conforming subspace is

P c
k (Th) := {vh ∈ P c,b

k (Th) | [[vh]]F×nF = 0, ∀F ∈ F◦
h}. (19.13)

We have P c
k (Th) ⊂ Zc,p(D) := {v ∈ Lp(D) | ∇×v ∈ Lp(D)} for all p ∈

[1,∞] (note that Zc,2(D) := H(curl;D)). A global shape function attached
to an edge is shown in the left panel of Figure 19.3 for the NNN0,2 element.
Notice that the tangential component is continuous across the interface, but
the normal component is not.

Xd3d 7.86 (2/09/2002)

17/02/04  ern     

mesh.avoir2D

Ned

Triangles 2D P1

noeuds  :    182

éléments:    288

ss. dom.:      2

Xd3d 7.86 (2/09/2002)

17/02/04  ern     

mesh.avoir2D

RT

Triangles 2D P1

noeuds  :    182

éléments:    288

ss. dom.:      2

Fig. 19.3 Global shape functions for the lowest-order Nédélec (left) and Raviart–Thomas
(right) elements in dimension 2.

Let Ne, Nf, Nc be the number of edges, faces, and cells in Th. We will show
in Chapter 21 that
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dim(P c
k (Th)) =

(
k+1
1

)
Ne + 2

(
k+1
2

)
Nf + 3

(
k+1
3

)
Nc, if d = 3,

dim(P c
k (Th)) =

(
k+1
1

)
Ne + 2

(
k+1
2

)
Nc, if d = 2,

with the convention that
(
n
m

)
:= 0 if n < m. In the lowest-order case (k = 0),

we have dim(P c
0 (Th)) = Ne, and the connectivity array j dof coincides with

the double-entry array j ce defined in §8.3.

19.2.3 H(div)-conforming subspace P d
k (Th)

Let (K̂, P̂ d, Σ̂d) be one of the Raviart–Thomas finite elements of degree k ≥ 0
introduced in Chapter 14. The broken finite element space is

P
d,b
k (Th) := {vh ∈ L1(D) | ψd

K(vh|K) ∈ P̂ d, ∀K ∈ Th}, (19.15)

with the contravariant Piola transformation ψd
K(v) := det(JK) J−1

K (v◦TK).
The corresponding H(div)-conforming subspace is

P d
k (Th) := {vh ∈ P d,b

k (Th) | [[vh]]F ·nF = 0, ∀F ∈ F◦
h}. (19.16)

We have P d
k (Th) ⊂ Zd,p(D) := {v ∈ Lp(D) | ∇·v ∈ Lp(D)} for all p ∈ [1,∞]

(note that Zd,2(D) :=H(div;D)). A global shape function attached to a face
is shown in the right panel of Figure 19.3 for the RTRTRT0,2 element (the normal
component is continuous across the interface, but the tangential component
is not). We will establish in Chapter 21 that

dim(P d
k (Th)) =

(
k+2
2

)
Nf + 3

(
k+2
3

)
Nc, if d = 3, (19.17a)

dim(P d
k (Th)) =

(
k+2
1

)
Nf + 2

(
k+2
2

)
Nc, if d = 2, (19.17b)

with the convention that
(
n
m

)
:= 0 if n < m. Notice that the spaces P c

k (Th)
and P d

k (Th) have the same dimension when d = 2. In the lowest-order case
(k = 0), we have dim(P d

0 (Th)) = Nf, and the connectivity array j dof coin-
cides with the double-entry array j cf defined in §8.3.

19.3 Global interpolation operators

The goal of this section is to study the commuting and approximation prop-
erties of the global interpolation operators in the conforming finite element
subspaces P x

k (Th;Rq) with x ∈ {g, c, d}. Recall that q = 1 if x = g and q = d
if x ∈ {c, d} (and d = 3 if x = c). We start by introducing the global spaces

V x,b(D) := {v ∈ L1(D;Rq) | v|K ∈ V x(K), ∀K ∈ Th}, (19.18a)

V x(D) := {v ∈ V x,b(D) | [[v]]xF = 0, ∀F ∈ F◦
h}, (19.18b)
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where V x(K) is the domain of the local interpolation operator Ix
K (see Def-

inition 5.7). For instance, owing to Theorem 18.8 and Theorem 18.10 and
letting p ∈ [1,∞), admissible choices for these spaces are as follows:

V g(D) :=W s,p(D), with s > d
p if p > 1 or s = d if p = 1, (19.19a)

V c(D) :=W s,p(D), with s > 2
p if p > 1 or s = 2 if p = 1, (19.19b)

V d(D) :=W s,p(D), with s > 1
p if p > 1 or s = 1 if p = 1. (19.19c)

Recall that since Chapter 5 we have abused the notation regarding the
definition of the dofs. In particular, we have used the same symbols to denote
the dofs in L(PK ;R) and the extended dofs in L(V (K);R). We are going
to be a little bit more careful in this chapter and in Chapters 20 and 21.
More precisely, we are going to use the symbol σK,i to denote dofs acting on
functions in PK and the symbol σ̃K,i to denote the extension of σK,i acting
on functions in V x(K). This means that the local interpolation operator
IK : V x(K) → PK is s.t.

IK(v)(x) :=
∑

i∈N
σ̃K,i(v)θK,i(x), ∀x ∈ K. (19.20)

We assume that the extension of the dofs is done in such a way that the
following property holds true (compare with (19.2)): For all v ∈ V x,b(D),

[ v ∈ V x(D) ] =⇒



For all (K, i), (K ′, i′) in the same

connectivity class, we have

σ̃K,i(v|K) = σ̃K′,i′(v|K′)


 . (19.21)

In other words, for every function v in V x,b(D), a necessary condition for v
to be a member of the subspace V x(D) is that, for all a ∈ Ah, the quantity
σ̃K,i(v|K) is independent of the choice of the pair (K, i) in j dof−1(a). (This
condition is not sufficient since the knowledge of the values of {σ̃K,i(v|K)}i∈N
does not uniquely determine the function v|K .) We then define the global
interpolation operator Ix

h : V x(D) → P x
k (Th) s.t.

Ix
h(v)(x) :=

∑

a∈Ah

σ̃a(v)ϕa(x), ∀x ∈ D, (19.22)

where σ̃a(v) is defined by setting σ̃a(v) := σ̃K,i(v|K) for all (K, i) in the
connectivity class a, i.e., j dof(K, i) = a, which makes sense owing to (19.21).
The definitions of σ̃a and ϕa imply that

Ix
h(v)|K =

∑

i∈N
σ̃K,i(v|K)θK,i = Ix

K(v|K), ∀K ∈ Th. (19.23)

The above construction leads to the global interpolation operators:
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IL
k,h : V g(D) → P g

k (Th), Ig
k,h : V g(D) → P g

k (Th), (19.24a)

Ic
k,h : V c(D) → P c

k (Th), Id
k,h : V d(D) → P d

k (Th), (19.24b)

for Lagrange, canonical hybrid, Nédélec, and Raviart–Thomas elements, re-
spectively. We indicate explicitly the degree of the underlying finite element
in the notation to avoid ambiguities. (Recall that k ≥ 1 in (19.24a) and k ≥ 0
in (19.24b).) Let us consider for k ≥ 0 the L2-orthogonal projection

Ib
k,h : V b(D) → P b

k (Th) := {vh ∈ L∞(D) | ψb
K(vh|K) ∈ P̂ b, ∀K ∈ Th},

(19.25)

where V b(D) := L1(D), ψb
K(v) := det(JK)(v ◦ TK), and P̂ b := Pk,d if K̂ is a

simplex and P̂ b := Qk,d is K̂ is a cuboid. Note that since the mesh is affine,
the factor det(JK) is irrelevant in the definition of P b

k (Th).

Lemma 19.6 (de Rham complex). Let us set

V̌ g(D) := {f ∈ V g(D) | ∇f ∈ V c(D)}, (19.26a)

V̌ c(D) := {g ∈ V c(D) | ∇×g ∈ V d(D)}, (19.26b)

V̌ d(D) := {g ∈ V d(D) | ∇·g ∈ V b(D)}. (19.26c)

Let κ ∈ N. The following diagrams commute:

V̌ g(D)
∇

✲ V̌ c(D)
∇×

✲ V̌ d(D)
∇·

✲ V b(D)

P g
κ+1(Th)

Ig
κ+1,h

❄ ∇
✲ P c

κ(Th)

Ic
κ,h

❄ ∇×
✲ P d

κ (Th)

Id
κ,h

❄ ∇·
✲ P b

κ (Th)

Ib
κ,h

❄

(19.27)

Proof. Combine Lemma 16.16 (and Remark 16.18) with (19.23). ⊓⊔

Remark 19.7 (Interpolation with extended domain). The commuting

diagram (19.27) shows that we can extend the domain of Ic
κ,h to Ṽ c(D) :=

V c(D) +∇V g(D), that of Id
κ,h to Ṽ d(D) := V d(D) +∇×V c(D), and that

of Ib
κ,h to Ṽ b(D) := V d(D) +∇·V b(D). Keeping the same notation for the

differential operators, this leads to the following commuting diagrams:

V g(D)
∇

✲ Ṽ c(D)
∇×

✲ Ṽ d(D)
∇·

✲ Ṽ b(D)

P g
κ+1(Th)

Ig
κ+1,h

❄ ∇
✲ P c

κ(Th)

Ic
κ,h

❄ ∇×
✲ P d

κ (Th)

Id
κ,h

❄ ∇·
✲ P b

κ (Th)

Ib
κ,h

❄

(19.28)

For instance, for all v = w+∇ψ ∈ Ṽ c(D) with w ∈ V c(D) and ψ ∈ V g(D),
we set Ic

κ,h(v) := Ic
κ,h(w)+∇Ig

κ+1,h(ψ). To verify that Ic
κ,h(v) is well defined,

we observe that if v = w1 + ∇ψ1 = w2 + ∇ψ2, then ψ1 − ψ2 ∈ V̌ g(D) so
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that ∇(Ig
κ+1,h(ψ1−ψ2)) = Ic

κ,h(∇(ψ1−ψ2)) = Ic
κ,h(w2−w1). Thus, we have

Ic
κ,h(w1) +∇Ig

κ+1,h(ψ1) = Ic
κ,h(w2) +∇Ig

κ+1,h(ψ2). ⊓⊔

Let us now turn to the approximation properties of the global interpolation
operators defined in (19.24). Henceforth, the subscript k is omitted when the
context is unambiguous. The following results follow from the localization
property (19.23) combined with the corresponding local interpolation results,
and from Lemma 19.6 for the approximation properties on the divergence and
the curl.

Corollary 19.8 (H1-conforming interpolation). Let (Th)h∈H be a shape-
regular sequence of affine matching meshes. Let p ∈ [1,∞]. Let l be the small-
est integer such that l > d

p if p > 1 or l := d if p = 1. The following estimates

hold true, uniformly w.r.t. p, with either Ih = Ig
h : V g(D) → P g

k (Th) or
Ih = IL

h : V g(D) → P g
k (Th), k ≥ 1:

(i) If l ≤ k + 1, then for every integers r ∈ {l:k + 1} and m ∈ {0:r}, all
v ∈ W r,p(D), and all h ∈ H,

|v − Ih(v)|Wm,p(Th) ≤ c

( ∑

K∈Th

h
p(r−m)
K |v|pW r,p(K)

) 1
p

, (19.29)

for p <∞, and |v − Ih(v)|Wm,∞(Th) ≤ cmaxK∈Th
hr−m
K |v|W r,∞(K).

(ii) If l > k + 1, then for every integer m ∈ {0:k + 1}, all v ∈ W l,p(D), and
all h ∈ H,

|v − Ih(v)|Wm,p(Th) ≤ c

( ∑

K∈Th

∑

n∈{k+1: l}
h
p(n−m)
K |v|pWn,p(K)

) 1
p

, (19.30)

for p <∞, and |v−Ih(v)|Wm,∞(Th) ≤ cmaxK∈Th,n∈{k+1: l} h
n−m
K |v|Wn,∞(K).

Corollary 19.9 (H(curl)-conforming interpolation). Let (Th)h∈H be a
shape-regular sequence of affine matching meshes. Let p ∈ [1,∞] and let
l := 1 if p > 2 and l := 2 if p ∈ [1, 2]. The following holds true, uniformly
w.r.t. p, with Ic

h : V c(D) → P c
k (Th), k ≥ 0:

(i) If p > 2 or if p ∈ [1, 2] and k ≥ 1, then for every integers r ∈ {l:k + 1}
and m ∈ {0:r}, all v ∈W r,p(D), and all h ∈ H,

|v − Ic
h(v)|Wm,p(Th) ≤ c

( ∑

K∈Th

h
p(r−m)
K |v|p

W r,p(K)

) 1
p

, (19.31)

for p <∞, and |v − Ic
h(v)|Wm,∞(Th) ≤ cmaxK∈Th

hr−m
K |v|W r,∞(K).

(ii) If p ∈ [1, 2] and k = 0, then for every integer m ∈ {0:1}, all v ∈W 2,p(D),
and all h ∈ H,
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|v − Ic
h(v)|Wm,p(Th) ≤ c

( ∑

K∈Th

∑

n∈{1,2}
h
p(n−m)
K |v|p

Wn,p(K)

) 1
p

, (19.32)

for p <∞, and |v − Ic
h(v)|Wm,∞(Th) ≤ cmaxK∈Th,n∈{1,2} h

n−m
K |v|Wn,∞(K).

(iii) For every integers r ∈ {1:k + 1} and m ∈ {0:r}, all v ∈ V c(D) with
∇×v ∈W r,p(D), and all h ∈ H,

|∇×(v − Ic
h(v))|Wm,p(Th) ≤ c

( ∑

K∈Th

h
p(r−m)
K |∇×v|p

W r,p(K)

) 1
p

, (19.33)

for p <∞, and |∇×(v−Ic
h(v))|Wm,∞(Th) ≤ cmaxK∈Th

hr−m
K |∇×v|W r,∞(K).

Corollary 19.10 (H(div)-conforming interpolation). Let (Th)h∈H be a
shape-regular sequence of affine matching meshes. Let p ∈ [1,∞]. The follow-
ing holds true, uniformly w.r.t. p, with Id

h : V d(D) → P d
k (Th), k ≥ 0:

(i) For every integers r ∈ {1:k + 1} and m ∈ {0:r}, all v ∈ W r,p(D), and
all h ∈ H,

|v − Id
h(v)|Wm,p(Th) ≤ c

( ∑

K∈Th

h
p(r−m)
K |v|p

W r,p(K)

) 1
p

, (19.34)

for p <∞, and |v − Id
h(v)|Wm,∞(Th) ≤ cmaxK∈Th

hr−m
K |v|W r,∞(K).

(ii) For every integers r ∈ {0:k + 1} and m ∈ {0:r}, all v ∈ V d(D) with
∇·v ∈ W r,p(D), and all h ∈ H,

|∇·(v − Id
h(v))|Wm,p(Th) ≤ c

( ∑

K∈Th

h
p(r−m)
K |∇·v|pW r,p(K)

) 1
p

, (19.35)

for p <∞, and |∇·(v − Id
h(v))|Wm,∞(Th) ≤ cmaxK∈Th

hr−m
K |∇·v|W∞,p(K).

19.4 Subspaces with zero boundary trace

In this section, we briefly review the main changes to be applied when
one wishes to enforce homogeneous boundary conditions to the functions
in P x

k (Th). Let p ∈ [1,∞) and let s > d
p if p > 1 and s = d if p = 1. We

consider the trace operator γx :W s,p(Th;Rq) −→ L1(∂D;Rt) defined by

γg(v) := v|∂D (q = t = 1), (19.36a)

γc(v) := v|∂D×n (q = t = d = 3), (19.36b)

γd(v) := v|∂D·n (q = d, t = 1), (19.36c)
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where n is the outward unit normal to D. Notice that γx(v)|F = γxKl,F
(v|Kl

)

for all F ∈ F∂
h with F := ∂Kl∩∂D and γxKl,F

is the operator defined in (18.7)
for the mesh cell Kl. We are interested in the following subspace of P x

k (Th):

P x
k,0(Th) := {vh ∈ P x

k (Th) | γx(v) = 0}. (19.37)

Definition 19.11 (Boundary & internal classes). We say that a connec-
tivity class a ∈ Ah is a boundary connectivity class if and only if σa(v) = 0
for all v ∈ P x

k,0(Th). The collection of boundary connectivity classes is de-

noted by A∂
h. The classes in A◦

h := Ah \ A∂
h are called internal connectivity

classes.

We assume that the following properties hold true:

∀vh ∈ P x
k (Th), [ γx(vh) = 0 ] ⇐⇒ [σa(vh) = 0, ∀a ∈ A∂

h ], (19.38a)

∀v ∈ V x(D), [ γx(v) = 0 ] =⇒ [ σ̃a(v) = 0, ∀a ∈ A∂
h ]. (19.38b)

We are going to show in Chapters 20 and 21 that these properties are indeed
satisfied by most of the finite elements considered in this book.

Example 19.12 (A∂
h). For Lagrange elements, a ∈ A∂

h iff σa is an evaluation
at a node located on ∂D. For canonical hybrid elements, a ∈ A∂

h iff σa is an
evaluation at a vertex located on ∂D, or σa is an integral over an edge or a
face located on ∂D. For Nédélec elements, a ∈ A∂

h iff σa is an integral over
an edge or a face located on ∂D, and for Raviart–Thomas elements, a ∈ A∂

h

iff σa is an integral over a face located on ∂D. ⊓⊔

Proposition 19.13 (Basis). {ϕa}a∈A◦
h
is a basis of P x

k,0(Th), and {σa}a∈A◦
h

is a basis of L(P x
k,0(Th);R).

Proof. See Exercise 19.3. ⊓⊔

Let V x(D) be defined in (19.19). Since functions in V x(D) have a γx-trace
on ∂D, it is legitimate to set

V x
0 (D) := {v ∈ V x(D) | γx(v) = 0}. (19.39)

The interpolation operator with prescribed boundary conditions Ix
h0 : V x

0 (D) →
P x
k,0(Th) acts as follows:

Ix
h0(v)(x) :=

∑

a∈A◦
h

σ̃a(v)ϕa(x), ∀x ∈ D, (19.40)

and (19.38b) implies that

Ix
h0(v) = Ix

h(v), ∀v ∈ V x
0 (D). (19.41)
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Hence, the approximation properties of Ix
h0 are identical to those of the re-

striction of Ix
h to V x

0 (D). Moreover, we have the following commuting prop-
erties.

Lemma 19.14 (de Rham complex with boundary prescription). Let
V̌ x
0 (D) := {v ∈ V̌ x(D) | γx(v) = 0} with V̌ x(D) defined in (19.26), and

V b
0 (D) := {v ∈ V b(D) := L1(D) | (v, 1)L2(D) = 0}, (19.42a)

P b
κ,0(Th) := {vh ∈ P b

κ (Th) | (vh, 1)L2(D) = 0}. (19.42b)

Let κ ∈ N. The following diagrams commute:

V̌ g
0 (D)

∇
✲ V̌ c

0 (D)
∇×

✲ V̌ d
0 (D)

∇·
✲ V b

0 (D)

P g
κ+1,0(Th)

Ig
κ+1,h0

❄ ∇
✲ P c

κ,0(Th)

Ic
κ,h0

❄ ∇×
✲ P d

κ,0(Th)

Id
κ,h0

❄ ∇·
✲ P b

κ,0(Th)

Ib
h

❄

(19.43)

Proof. Observe that the tangential boundary trace of ∇f is zero if γg(f) = 0
and that the normal trace of ∇×g is zero if γc(g) = 0. ⊓⊔

Remark 19.15 (Extensions). The above argumentation can be adapted
to enforce a zero trace on a part of the boundary that corresponds to a
strict subset of the boundary faces in F∂

h . The details are left to the reader.
Furthermore, the commuting diagram (19.43) can be rewritten by using the
spaces V g

0 (D), V c
0 (D)+∇V g

0 (D), V d
0 (D)+∇×V c

0 (D), and V b
0 (D)+∇·V d

0 (D)
instead of V̌ g

0 (D), V̌ c
0 (D), V̌ d

0 (D), V b
0 (D). ⊓⊔

Exercises

Exercise 19.1 (Connectivity classes). Consider the mesh shown in Fig-
ure 19.4 and let P g

2 (Th) be the associated finite element space composed
of continuous Lagrange P2 finite elements. Assume that the enumeration of
the Lagrange nodes has been done with the increasing vertex-index technique
(see (10.10)). (i) What is the domain and the codomain of j dof? (ii) Identify
j dof−1(8) and j dof−1(13). (iii) Identify T6 and T10.

Exercise 19.2 (Stiffness, mass, incidence matrices). Let {λn}n∈{1:Nv}
be the global shape functions in P g

1 (Th). Let {θm}m∈{1:Ne} be the global
shape functions in P c

0 (Th). (i) Recall the incidence matrix Mev ∈ RNe×Nv

defined in Remark 10.2. Prove that ∇λn =
∑

m∈{1:Ne} Mev
mnθm for all n ∈

{1:Nv}. (Hint : compute σe
m(∇λn) where {σe

m}m∈{1:Ne} is the dual basis of
{θm}m∈{1:Ne}, i.e., the associated dofs.) (ii) Let A ∈ RNv×Nv be the Courant
stiffness matrix with entries Ann′ :=

∫
D
∇λn·∇λn′ dx for all n, n′ ∈ {1:Nv},
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Fig. 19.4 Illustration for Exercise 19.1.

and let N ∈ RNe×Ne be the Nédélec mass matrix with entries Nmm′ :=∫
D
θm·θm′ dx for all m,m′ ∈ {1:Ne}. Prove that A = (Mev)TNMev.

Exercise 19.3 (Zero trace). (i) Show that ϕa ∈ P x
k,0(Th) for all a ∈ A◦

h.
(ii) Prove Proposition 19.13.

Exercise 19.4 (Approximability in Lp). Let p ∈ [1,∞). Prove that
limh↓0 infvh∈P g

k
(Th) ‖v − vh‖Lp(D) = 0 for all v ∈ Lp(D). (Hint : by density.)

Exercise 19.5 (Hermite). Let Th := {[xi, xi+1]}i∈{0:I} be a mesh of the
intervalD := (a, b). Recall the Hermite finite element from Exercise 5.4. Spec-
ify global shape functions {ϕi,0, ϕi,1}i∈{0:I+1} in Hh := {vh ∈ C1(D) | ∀i ∈
{0:I}, vh|[xi,xi+1] ∈ P3}. (Hint : consider values of the function or of its deriva-
tive at the mesh nodes.) Can the bicubic Hermite rectangular finite element
from Exercise 6.8 be used to enforce C1-continuity for d = 2?


