Part IV, Chapter 19

Main properties of the conforming subspaces

In this chapter, we continue the study of the interpolation properties of the
conforming finite element subspaces introduced in the previous chapter. Re-
call that

PX(Th; RY) = {vp, € PEP(Th; RY) | [un]s = 0, VF € F,

where P} "b(’771; R?) is a broken finite element space, with ¢ € {1, d} depend-
ing on the superscript x € {g,c,d}, and the jump operator [-]% is defined
in (18.7). Recall that the H'-conforming subspace P¢(7T) (¢ = 1) is built
using a Lagrange element or a canonical hybrid element of degree k > 1, the
H (curl)-conforming subspace P¢(7r) (¢ = d = 3) is built using a Nédélec el-
ement of degree k > 0, and the H (div)-conforming subspace P3(Ty) (¢ = d)
is built using a Raviart-Thomas element of degree k > 0. The cornerstone
of the construction, which is presented in a unified way for x € {g,c,d}, is
a connectivity array with ad hoc clustering properties of the local degrees
of freedom (dofs). In the present chapter, we postulate the existence of the
connectivity array and show how it allows us to build global shape functions
and a global interpolation operator in Pf (7). The actual construction of
this mapping is undertaken in Chapters 20 and 21. In this book, we shall
implicitly assume that the mesh 7j, is matching (see Definition 8.11) when
the conforming space Py (7r;R?) is invoked.

19.1 Global shape functions and dofs
For all K € Tj, the local dofs are {0k ;}ienr, and the local shape functions
are {0k ;}icn- Recall that {0k ;}ienr is a basis of Px and that {ok ;}ien is
a basis of L(Pk;R). We start by organizing all the dofs and shape functions

{ok,i} (ke {0k} (k.0)eT x>
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by grouping them into clusters, which we are going to call connectivity classes.
We assume that we have at hand a nonzero natural number I and a connec-
tivity array

jodof : TpxN — Ay, :={1:1}. (19.1)

Without loss of generality we assume that the mapping j_dof is surjective,
i.e., for every connectivity class a € Ap, there exists (K,i) € TpxN s.t.
j-dof(K,i) = a. This hypothesis is nonessential and can always be satisfied
by rearranging the codomain of j_dof.

Definition 19.1 (Connectivity class). Two pairs (K,i),(K',i') € TpxN
are said to be in the same connectivity class if j-dof (K, i) = j-dof(K', ).

We require that the mapping j_dof satisfies two key properties.
(1) The first one is that for all v, € P,j"b(’ﬁl),

For all (K,4),(K’,i) in the same
[vn € Pi(T))] <= | connectivity class, we have . (19.2)

oK,i(Vh k) = 0K (Vn K1)

Thus, (19.2) means that for every function v, in the broken finite element
space P,f’b(’ﬁl), a necessary and sufficient condition for v, to be a mem-
ber of the conforming subspace P;(7) is that for all a € Ay, the quantity
ok,i(vn|k) is independent of the choice of the pair (K,4) in the preimage
jdof1(a) := {(K',i") € ThxN | jdof(K',i') = a}.

(2) The second key property is that

VK € T, jdof(K,-) : N = Ay is injective, (19.3)

i.e., if (K,4) and (K,4') are in the same connectivity class, then i = ¢'.

We now construct global dofs and shape functions in P;(73). Since for all
a € Ap and all v, € PF(Tp), (19.2) implies that the value of ok ;(vp k) is
independent of the choice of the pair (K, 7) in the connectivity class a, it is
legitimate to introduce the following definition: For all a € Aj, we define the
linear form o, : P¥(7n) — R s.t. for all v, € PX(Th),

oa(vn) == 0ki(vn k), Y(K,i) € j_dof!(a), (19.4)

ie., 04(vn) := oK i(vp i) for every pair (K,i) in the connectivity class a.
Observe that o, € L(P¥(T); R). We now define the function ¢, : D — RY
for all @ € Ay, by

(19.5)

O, if there exists i € N s.t. (K,4) € j-dof~'(a),
PalK = .
0 otherwise.

This definition makes sense since if (K, i)€ j_dof ~!(a) and (K,i’)€ j_dof*(a),
then i = ¢’ owing to (19.3).
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Definition 19.2 (Global shape functions and dofs). The functions p,
are called global shape functions, and the linear forms o, are called global
degrees of freedom (dofs).

For all a € Ay, let us introduce the following collection of cells:
To:={K €Ty|3ieN, (K,i) € jdof *(a)}, (19.6)

ie., To = {K € Ty | a € jdof(K,N)}. A direct consequence of the defini-
tion (19.5) is that

supp(va) = | K. (19.7)
KeT,

Lemma 19.3 (Conformity). For all a in Ap, ¢a € P(Tr) and
0a(Par) = baar,  Va' € Ap. (19.8)

Proof. Let a € Ay, and let us prove that ¢, € PF(Ty). Since ¢, € P,?’b('ﬁl),
we prove the assertion by checking that the property on the right-hand side
of (19.2) holds true. Let o/ be arbitrary in Aj. We need to show that the
quantity ok ;(¢ex) is independent of the pair (K,i) € j-dof~'(a’).

(1) Assume first that o’ = a. Let (K, i) be an arbitrary pair in j_dof~!(a’).
Then j_dof(K,i) = a’ = a, and the definition of ¢, implies that ¢, = Ox;.
Hence, 0k i(¢a|x) = 0k,i(0x,i) = 1 for all (K,i) € jdof~'(a’).

(2) Assume now that a’ # a. Let (K, i) be an arbitrary pair in j_dof~!(a’).
If there exists j € N s.t. judof(K,j) = a, then ¢, x = Ok ;. Notice that
J # i owing to (19.3), since j_dof(K,j) =a # o’ = j_dof(K,i). We infer in
this case that 0k i(pa|x) = 0Kk,i(0K,;) = 0 since j # i. If there is no j € NV
s.t. j.dof(K,j) = a, then ¢, x = 0 and again ox (¢4 k) = 0. To sum up,
0k,i(ajx) = 0 for all (K,i) € j-dof~*(a’).

(3) In conclusion, the above argument shows that o,(¢p,) = 1 and g4/ (pa) =0
if ' # a,ie., i0k,i(pqK) is independent of the pair (K,i) € j-dof~'(a’) for
all ' € Ay, and (19.8) holds true. O

Proposition 19.4 (Basis). {¢a}aca, is a basis of PF(Ty), and {0a}aeca,
is a basis of L(PF(Th);R).

Proof. Assume that ) A, Aaa vanishes identically on D for some real
numbers {\; }ae.a,. Using the linearity of o, and (19.8) yields

0= 000 =0 3 M) = 3 daowlea) = Ao

acAp a€Ap,

Hence, Ay = 0 for all a’ € Ay, ie., {¥4}aca, is linearly independent. To
show that {@q}eca, is a spanning set of P (7Ty), let vy € PX(Ty) and let us
set Op := vp — Za’eAh 0a' (V). We are going to prove that 05, x = 0 for all
K € Ty, and since 0y € Pk, we do so by showing that djx annihilates all
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the local dofs in K, i.e., 0k i(dp ) = 0 for all i € N. Let K be an arbitrary
cell in Ty, let 7 be an arbitrary index in AV, and let a := j_dof(K, 7). Then

0K,i(Onx) = 0a(0n) = 0a(vh) — 0a(vn) =0,

where the first equality follows from the fact that 6, € P¥(75) and the second
one from (19.8). We have thus proved that 055 = 0 for all K € T, and hence
that J5, vanishes identically because K is arbitrary. In conclusion, {¢g}aca,
is a basis of P(7T). Since {¢q }aca, is a basis of PY(7y), the identity (19.8)
implies that {04 }eca, is a basis of L(P¥(Tr);R). O

To sum up, we have shown that provided we have at hand a connectivity
array j-dof : T, x N' — A, satisfying the properties (19.2) and (19.3), we
can build in a simple manner the global basis functions and the global dofs in
the conforming finite element subspace P;(7;R?). The actual construction
of the mapping j_dof will be undertaken in the following two chapters.

Remark 19.5 (Connectivity class). Another way to formalize the group-
ing of the dofs consists of introducing the equivalence relation R in 77, xN
defined by (K,i) R (K',d) iff j_dof(K,i) = j-dof(K’,i’). One can then rede-
fine Ay, to be the set of the equivalence classes for R. The elements of A, are
then sets and are called connectivity classes. In this case, we write (K,i) € a
instead of j_dof(K,7) = a. We are going to adopt this equivalent viewpoint
from Chapter 20 onward. O

19.2 Examples

In this section, we illustrate the concepts developed in §19.1 for the spaces
PE(Th), PE(Tn), and Pl (Tp).
19.2.1 H'-conforming subspace P¢(7;)

Let (I? , ]3g, b5 &) be one of the scalar-valued Lagrange elements of degree k > 1
introduced in §6.4 or §7.4, or one of the canonical hybrid finite elements of
degree k > 1 introduced in §7.6. The broken finite element space is

PEP(Ty) == {vy, € L®(D) | % (vn) € P2, VK € Ty}, (19.9)

where 9% (v) := v o Tk is the pullback by the geometric mapping, and the
corresponding H!-conforming subspace is

PE(T3) == {vn € PE*(Th) | [un]F = 0, VF € F3}. (19.10)

We have P$(T,) C Z&P(D) := W'?(D) = {v € LP(D) | Vv € L?(D)} for
all p € [1,00] (note that Z&2(D) := H(D)). We show in Figure 19.1 the
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connectivity classes generated by j_dof on a mesh composed of four triangles
with P, o Lagrange elements.

Fig. 19.1 P> > Lagrange nodes in the
same connectivity class for a mesh com-
posed of four triangles (drawn slightly
apart).

The Lagrange and the canonical hybrid finite elements of the same degree
generate the same space Pg(7r), but the shape functions and dofs differ
for k > 2. Some global shape functions in P(7;) and P5(7;) in dimension
2 are shown in Figure 19.2 for Lagrange elements. The function shown in
the left panel is continuous and piecewise affine, and it takes the value 1 at
one mesh vertex and the value 0 at all the other mesh vertices. Because its
graph is reminiscent of a hat, this function is often called hat basis function
(and sometimes also Courant basis functions [84]). The functions shown in
the central and right panels are continuous and piecewise quadratic. The
function on the central panel takes the value 1 at one mesh vertex and the
value 0 at all the other mesh vertices, and it takes the value 0 at all the edge
midpoints. The function in the right panel takes the value 0 at all the mesh
vertices, and it takes the value 1 at one edge midpoint and the value 0 at the
midpoint of all the other edges.

i}

Fig. 19.2 Global shape functions in dimension 2: P o (left) and P2 2 (center and right)
Lagrange finite elements.

Let Ny, No, N, N. be the number of vertices, edges, faces, and cells
in the mesh 7, (recall that 7 is assumed to be a matching mesh). For a
simplicial Lagrange element, the number of Lagrange nodes per edge that
are not located at the extremities of the edge is (kzl) (if £ > 2), the number
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of Lagrange nodes per face that are not located at the boundary of the face is
(kgl) (if £ > 3), and the number of Lagrange nodes per cell that not located

at the boundary of the cell is (kgl) (if k£ > 4). These numbers are the same
for the canonical hybrid finite element. We will establish in Chapter 21 that

dim(PE(T)) = Ny + (*THNe + (5 Ne + (F5)Ne  ifd=3, (19.11a)
dim(PE(Tn)) = Ny + ("7 Ne + ("5 ) Ne ifd=2, (19.11b)
with the convention that for natural numbers n, m, (::L) :=0if n < m. In the

lowest-order case (k = 1), we have dim(P§(7,)) = Ny, and the connectivity
array j-dof coincides with the double-entry array j_cv defined in §8.3.

19.2.2 H(curl)-conforming subspace P¢(7,)

Let (IA(,ﬁc, ZA]C) be one of the Nédélec finite elements of degree k > 0 de-
scribed in Chapter 15. The broken finite element space is

PPP(T) o= {op € L2(D) | ¢ (vn i) € P°, VK € Th}, (19.12)
with the covariant Piola transformation 5 (v) := J% (v o Tk), and the cor-
responding H (curl)-conforming subspace is

PS(Th) i= {vn € PE°(Th) | [on]pxnr =0, VF € Fg}. (19.13)

We have PZ(Tp) C Z°P(D) == {v € LP(D)|Vxv € LP(D)} for all p €
[1,00] (note that Z<2(D) := H (curl; D)). A global shape function attached
to an edge is shown in the left panel of Figure 19.3 for the Ny o element.
Notice that the tangential component is continuous across the interface, but
the normal component is not.

Fig. 19.3 Global shape functions for the lowest-order Nédélec (left) and Raviart—Thomas
(right) elements in dimension 2.

Let N, Ng, N. be the number of edges, faces, and cells in 7. We will show
in Chapter 21 that
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dim(Pg(Tn)) = (FT)Ne +2("5) Ne + 3("F 1) N, if d =3,
dim(Pg(Tn)) = (") Ne +2(*T) Ne, if d =2,
with the convention that () := 0 if n < m. In the lowest-order case (k = 0),

we have dim(P§(75)) = Ne, and the connectivity array j_dof coincides with
the double-entry array j_ce defined in §8.3.

19.2.3 H(div)-conforming subspace P(T;)

Let (I? , P4, f'd) be one of the Raviart-Thomas finite elements of degree k > 0
introduced in Chapter 14. The broken finite element space is

PY°(Ty) = {vn, € LN(D) | ¢ (vp k) € P, VK € Tp}, (19.15)

with the contravariant Piola transformation 9% (v) = det(Jx) J 5" (voTk).
The corresponding H (div)-conforming subspace is

PX(Th) == {vn € PI°(Th) | [onlrmr =0, VF € Fi}. (19.16)

We have P(T,) € Z4P(D) := {v € LP(D) | V-v € LP(D)} for all p € [1, 0]
(note that Z42(D) := H(div; D)). A global shape function attached to a face
is shown in the right panel of Figure 19.3 for the RT o element (the normal
component is continuous across the interface, but the tangential component
is not). We will establish in Chapter 21 that

dim(P(75)) = ("3?) N + 3(FE?) N, if d =3, (19.17a)
dim(P(75)) = (") N + 2(F32) N, if d =2, (19.17b)
with the convention that (™) := 0 if n < m. Notice that the spaces P¢(Ty)
and PZ(T;,) have the same dimension when d = 2. In the lowest-order case

(k = 0), we have dim(Pg(7,)) = Nt, and the connectivity array j_dof coin-
cides with the double-entry array j_cf defined in §8.3.

19.3 Global interpolation operators

The goal of this section is to study the commuting and approximation prop-
erties of the global interpolation operators in the conforming finite element
subspaces P (Tn; RY) with x € {g,c,d}. Recall that g =1 if x =g and ¢ =d
if x € {c,d} (and d = 3 if x = ¢). We start by introducing the global spaces

V(D) :={v e LY(D;RY) | vjx € V¥(K), VK € Tp}, (19.18a)
V(D) :={v e V*P(D) | [v]s =0, VF € F}}, (19.18b)
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where V*(K) is the domain of the local interpolation operator Z}; (see Def-
inition 5.7). For instance, owing to Theorem 18.8 and Theorem 18.10 and
letting p € [1, 00), admissible choices for these spaces are as follows:

V&(D) := W*P(D), with s>
V(D) := W*P(D), with s>
V4(D):= W*P(D), with s>

ifp>lors=difp=1, (19.19a)
ifp>lors=2ifp=1, (19.19b)
ifp>lors=1ifp=1. (19.19¢)

[l DI B

Recall that since Chapter 5 we have abused the notation regarding the
definition of the dofs. In particular, we have used the same symbols to denote
the dofs in £(Pk;R) and the extended dofs in L(V(K);R). We are going
to be a little bit more careful in this chapter and in Chapters 20 and 21.
More precisely, we are going to use the symbol ok ; to denote dofs acting on
functions in Pg and the symbol ok ; to denote the extension of ok ; acting
on functions in V*(K). This means that the local interpolation operator
Tk : VX(K) — Py is s.t.

Tk (v)(x) = Y Gri(v)0ki(z), VoK. (19.20)
iEN
We assume that the extension of the dofs is done in such a way that the
following property holds true (compare with (19.2)): For all v € V*P(D),

For all (K,i),(K’,i") in the same
[ve V¥(D)] = | connectivity class, we have . (19.21)

0K,i(VK) = 0K i (VK1)

In other words, for every function v in V*P(D), a necessary condition for v
to be a member of the subspace V*(D) is that, for all a € Ay, the quantity
0k.,i(v) k) is independent of the choice of the pair (K,4) in j_dof~'(a). (This
condition is not sufficient since the knowledge of the values of {0 i(v|x ) }ien
does not uniquely determine the function vjgx.) We then define the global
interpolation operator Z} : V(D) — P¥(T) s.t.

Ti(v)(x) = Y Ga(v)gpa(®), Vo eD, (19.22)
a€EAy

where 7, (v) is defined by setting c,(v) := ok i(v|x) for all (K,i) in the
connectivity class a, i.e., j_dof (K, i) = a, which makes sense owing to (19.21).
The definitions of 7, and ¢, imply that

Tiw)x = oxi(vr)lki =Tic(vk), VK €T (19.23)
iEN

The above construction leads to the global interpolation operators:
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Tip, : VE(D) = PE(Tw),  Ip, : VE(D) = PE(Th), (19.24a)
fn VD) = PE(Th), Iy : VD) = PE(Th), (19.24b)

for Lagrange, canonical hybrid, Nédélec, and Raviart—Thomas elements, re-
spectively. We indicate explicitly the degree of the underlying finite element
in the notation to avoid ambiguities. (Recall that & > 1 in (19.24a) and k > 0
in (19.24b).) Let us consider for k > 0 the L?-orthogonal projection

I, s VP(D) — PP(Th) == {vn € L=(D) | % (v k) € P, VK € Tp},
(19.25)
where VP(D) := LY(D), ¢% (v) := det(Jx)(v o Tk), and PP :=Py 4 if K is a

simplex and Pb = Qp,q is K is a cuboid. Note that since the mesh is affine,
the factor det(J) is irrelevant in the definition of PP (7).

Lemma 19.6 (de Rham complex). Let us set

V&(D):={f e V8D)|VfecVD)]}, (19.26a)
V(D) :={ge VD) |Vxg e ViD)}, (19.26b)
VYD) :={ge VYD) |V-geV’D)}. (19.26¢)

Let k € N. The following diagrams commute:

VE(D) — s V(D) — s V(D) Vb (D)
|72 |72 |zt z, (1921)

PEA(TE) — e PE(T) — s PAT) — s EY(T})
Proof. Combine Lemma 16.16 (and Remark 16.18) with (19.23). O

Remark 19.7 (Interpolation with extended domain). The commuting
diagram (19.27) shows that we can extend the domain of Z¢ , to V(D) :=

V(D) + VV8(D), that of I,‘ih to V(D) := V4(D) + VxV(D), and that
of Igh to VP(D) := V4(D) + V-VP(D). Keeping the same notation for the
differential operators, this leads to the following commuting diagrams:

VE(D) VeD) — L (D) Y 7h(D)
lI:%Jrl.,h lzﬁ,h lIﬁih lfgh (19.28)
\% \v4 \v2
P, (Th) PY(Th) —=— PY(Th) P2(Th)

For instance, for all v = w + V¢ € V(D) with w € V(D) and ¢ € V&(D),
we set Zp , (v) = I¢ , (w)+VIE,, (). To verify that Z¢ , (v) is Wel} defined,
we observe that if v = wy + Vi1 = wy + Viby, then ¢y — 1hy € VE(D) so
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that V(Z2, | , (Y1 —1b2)) = ¢, (V(¥1 —¢2)) =I5 ;, (w2 —wi). Thus, we have
Zg p(w) + VIE () = I p(w )+VI+1h(‘/’2) O

Let us now turn to the approximation properties of the global interpolation
operators defined in (19.24). Henceforth, the subscript & is omitted when the
context is unambiguous. The following results follow from the localization
property (19.23) combined with the corresponding local interpolation results,
and from Lemma 19.6 for the approximation properties on the divergence and
the curl.

Corollary 19.8 (H!-conforming interpolation). Let (T3 )ne be a shape-
reqular sequence of ajﬁne matching meshes. Let p € [1,00]. Let | be the small-
est integer such that ] > £ pr >1orl:=difp=1. The following estimates
hold true, uniformly w. "t p, with either I, = I} : V&(D) — PZ(Ty) o
I, =1y : V&(D) = PE(Th), k > 1:

(i) If 1 < k+ 1, then for every integers r € {l:k + 1} and m € {0:r}, all
veW™P(D), and all h € H,

1
P
v = Tn()lwmr(ry §c< S R, K)) , (19.29)
K€7-h
for p < oo, and [v —Tp,(v)|wm.e(7;,) < cmaxger, hi " |vlwre (k)

(ii) If I > k 4+ 1, then for every integer m € {0:k + 1} all v € WHP(D), and
all h € H,

1

|v—zh<v>|wm,pm>Sc<Z o >|v|€vn,p<K>>, (19.30)

KeTh ne{k+1:1}

forp < oo, and [v =T (V) |wm.co(7;) < cMAXK T, nefht1:} e | 0lwn.oo (k) -

Corollary 19.9 (H (curl)-conforming interpolation). Let (Tp)nen be a
shape-regular sequence of affine matching meshes. Let p € [1,00] and let
l:=14p>2andl:=2ifpell,2]. The following holds true, uniformly
w.r.t. p, with Z§ : V(D) — PC(’E), k>0:

(i) If p > 2 or ifp € [1,2] and k > 1, then for every integers r € {l:k + 1}
and m € {0:r}, allv e W"P(D), and all h € H,

1
v =I5 (v) lwmor (1) < ( D R T K)) , (19.31)
KeTy
for p < o0, and [v = If (v) [wm.o(1,) < cmaxgeT;, Mg " |V|wroo (k)

(ii) If p € [1,2] and k = 0, then for every integer m € {O 1}, allv € W2P(D),
and all h € H,
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1
|v_zg(v)|wm,p(7h)gc< SN m ’”>|v|Wnp ) . (19.32)

KeThne{1,2}

for p < oo, and |v — I§ (v)|wm.(7;,) < cMaXgeT, nef1,2} Vi |Vlwno(K)-
(ili) For every integers r € {1:k + 1} and m € {0:r}, all v € V(D) with
Vxv e W"P(D), and all h € H,

1
P
IV (v = T¢ () w7 <c( S wi )|V><U|WWK)) . (19.33)
K€7-h

forp < oo, and |V x (v =TI (v))|wm.eo(7,) < emaxgeT, by ™|V Xv|lwreo (k-

Corollary 19.10 (H (div)-conforming interpolation). Let (T,)nen be a
shape-regular sequence of affine matching meshes. Let p € [1,00]. The follow-
ing holds true, uniformly w.r.t. p, with I3 : V4(D) — P3(Ty), k > 0:

(i) For every integers r € {1:k + 1} and m € {0:r}, all v € W™P(D), and
all h € H,

1
o= Tilwnsiny <e( X M ol ) 1930
KeTy
for p < o0, and |v — I} (v) |wm.ee(7;) < cmaxger, Kz " v|wrs (k)

(i) For every integers r € {0:k + 1} and m € {0: r} all v € VYD) with
Vv e WP(D), and all h € H,

1
|v-<v—zs<v>>|wm<m<c( ST fl 0 ) . (1935)
KeTy,

for p < o0, and |V-(v — I} (v)) [wm.eo(75,) < cmaxgeT, B "V v|wen (i)

19.4 Subspaces with zero boundary trace

In this section, we briefly review the main changes to be applied when
one wishes to enforce homogeneous boundary conditions to the functions
in PY(7p). Let p € [1,00) and let s > gifp> land s =dif p=1. We
consider the trace operator 4* : W*P(Ty,;R?) — LY(0D;R?) defined by

7E(v) == vjap (g=t=1), (19.36a)
7(v) =vppxn (¢=t=d=23), (19.36b)
V() :==vppm  (¢=d,t=1), (19.36c)
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where m is the outward unit normal to D. Notice that v*(v)|r = 7k, p(v|x,)

for all F' € F? with F := 0K;NdD and Yk, .r is the operator defined in (18.7)
for the mesh cell K;. We are interested in the following subspace of P (7y):

Pio(Th) = {vn € PE(Ta) [ v*(v) = 0} (19.37)

Definition 19.11 (Boundary & internal classes). We say that a connec-
tivity class a € Ay, is a boundary connectivity class if and only if o,(v) =0
for all v € P,;‘)O('ﬁl). The collection of boundary connectivity classes is de-

noted by AZ. The classes in A5, := Aj, \ A? are called internal connectivity
classes.

We assume that the following properties hold true:
Vo, € PE(TR),  [75(un) =0] <= [oa(vn) =0, Va e A?],  (19.38a)
Vv € V¥(D), [v*(v) =0] = [Fa(v) =0, Ya € A?]. (19.38D)

We are going to show in Chapters 20 and 21 that these properties are indeed
satisfied by most of the finite elements considered in this book.

Example 19.12 (A?). For Lagrange elements, a € A{ iff o, is an evaluation
at a node located on 0D. For canonical hybrid elements, a € A‘Z iff o, is an
evaluation at a vertex located on 0D, or o, is an integral over an edge or a
face located on dD. For Nédélec elements, a € AY iff o, is an integral over
an edge or a face located on 9D, and for Raviart—-Thomas elements, a € Ag
iff o, is an integral over a face located on 9D. a

Proposition 19.13 (Basis). {tpa}aGA; is a basis ofP,;fO(ﬁ), and {UG}GGAE
is a basis of E(Pﬁo(ﬁz);R)~

Proof. See Exercise 19.3. O

Let V*(D) be defined in (19.19). Since functions in V*(D) have a y*-trace
on 0D, it is legitimate to set

V§(D) = {v € V¥(D) | v¥*(v) = 0}. (19.39)

The interpolation operator with prescribed boundary conditions Zj5, : V5*(D) —
Py, (Th) acts as follows:

Tyy(0)(@) == > Ga(v)pa(x), V€D, (19.40)
a€As,

and (19.38b) implies that

Tiw) = i), Yo e V(D). (19.41)



Part IV. FINITE ELEMENT SPACES 233

Hence, the approximation properties of Z}, are identical to those of the re-
striction of Zj to V(D). Moreover, we have the following commuting prop-
erties.

Lemma 19.14 V(de Rham complex with boundary prescription). Let
Vi(D) :={v € VX(D) | v*(v) = 0} with V(D) defined in (19.26), and

Vo (D) == {v € VP(D) := LY(D) | (v,1)12(py = 0}, (19.42a)
PIS,O(E) = {Uh S P,?(ﬁ) | (Uh, 1)L2(D) = 0}. (19.42b)
Let k € N. The following diagrams commute:

VXL V(D) —Y e V(D)

/(D)
Z% 1m0 lli,ho llﬁ,ho lz}; (19.43)

\Y% YV x .
P§+1,0(771) - P;S,o('ﬁz) - Pnd,o('ﬁz) P;?,o(ﬁz)

Vi (D)

Proof. Observe that the tangential boundary trace of V f is zero if v8(f) =0
and that the normal trace of Vxg is zero if v°(g) = 0. O

Remark 19.15 (Extensions). The above argumentation can be adapted
to enforce a zero trace on a part of the boundary that corresponds to a
strict subset of the boundary faces in .7-',‘3 . The details are left to the reader.
Furthermore, the commuting diagram (19.43) can be rewritten by using the
spaces VE(D), Vi (D)+VVE(D), Vi{(D)+Vx Vg (D), and Vi (D) +V-Vi (D)
instead of V£ (D), VE(D), Vi(D), V(D). 0

Exercises

Exercise 19.1 (Connectivity classes). Consider the mesh shown in Fig-
ure 19.4 and let PF(75) be the associated finite element space composed
of continuous Lagrange P, finite elements. Assume that the enumeration of
the Lagrange nodes has been done with the increasing vertex-index technique
(see (10.10)). (i) What is the domain and the codomain of j_dof? (ii) Identify
j_dof~1(8) and j_dof1(13). (iii) Identify T and Tio.

Exercise 19.2 (Stiffness, mass, incidence matrices). Let {\, },e(1:n,}
be the global shape functions in P{(7Ty). Let {0 }meqi1:n,} be the global
shape functions in P§(73). (i) Recall the incidence matrix M € RNexNv
defined in Remark 10.2. Prove that VA, = 7, cy.n.y M3, 0m for all n €
{1:Ny}. (Hint: compute of,(VA,) where {Ufn}me{l:N?V} is the dual basis of
{0m}meqi: Ny i-e., the associated dofs.) (ii) Let A € R vXNv he the Courant
stiffness matrix with entries A,/ := fD V-V, dz for all n,n' € {1:N,},
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Fig. 19.4 Illustration for Exercise 19.1.

and let NV € RNexNe he the Nédélec mass matrix with entries Ny 1=
[p Om0ny dz for all m,m’ € {1:Nc}. Prove that A = (M®)TN M.

Exercise 19.3 (Zero trace). (i) Show that o, € P ((Ts) for all a € Aj.
(i) Prove Proposition 19.13.

Exercise 19.4 (Approximability in LP). Let p € [1,00). Prove that
limp, o inf,, cps(7,) |0 — vnllze(p) = 0 for all v € LP(D). (Hint: by density.)

Exercise 19.5 (Hermite). Let 7;, := {[xi, Zi11]}ieqo: 1} be a mesh of the
interval D := (a,b). Recall the Hermite finite element from Exercise 5.4. Spec-
ify global shape functions {0, i1 }iefo: 1413 in Hp == {vn, € CY(D) | Vi €
{0:1}, vp(z,05,1] € P3}. (Hint: consider values of the function or of its deriva-
tive at the mesh nodes.) Can the bicubic Hermite rectangular finite element
from Exercise 6.8 be used to enforce C''-continuity for d = 27



