
Part IV, Chapter 21

Construction of the connectivity classes

In this chapter, we finish the construction of the connectivity classes which
we characterize by means of an equivalence relation on the pairs in Th ×N .
We show that the resulting equivalence classes verify the two key assump-
tions (19.2) and (19.3) introduced in Chapter 19. Our starting point is to
assume that the finite element at hand satisfies the two fundamental assump-
tions introduced in Chapter 20: the face unisolvence assumption (Assump-
tion 20.12) and the face matching assumption (Assumption 20.14). These
two assumptions turn out to be sufficient to fully characterize the connectiv-
ity classes of Raviart–Thomas elements. For the other elements (Lagrange,
canonical hybrid, and Nédélec) for which there are degrees of freedom (dofs)
attached to geometric entities of smaller dimension, we have to consider two
additional abstract assumptions, the M -unisolvence assumption (Assump-
tion 21.9) and the M -matching assumption (Assumption 21.10), which we
show hold true for these elements. At the end of the chapter we propose enu-
meration techniques that facilitate the practical construction of the map χlr

introduced in Assumption 20.14. This map is a key tool for the construction
of the connectivity array j dof. We assume in the entire chapter that the
reference cell is either a simplex or a cuboid, we assume that d = 3, and we
continue to use the notation introduced in Chapters 19 and 20.

21.1 Connectivity classes

In this section, we describe a way to build the connectivity classes that makes
the two key assumptions from Chapter 19 hold true. This is done by con-
structing an equivalence relation on the set Th×N .
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21.1.1 Geometric entities and macroelements

We start by introducing the geometric objects to which we will attach the
dofs. Let Th be a matching mesh and let Vh, Eh, and Fh be the sets collecting,
respectively, the vertices, edges, and faces in the mesh Th as defined in §8.2.
Definition 21.1 (Geometric entity). Let Th be a matching mesh. We call
M geometric entity if M is a vertex z ∈ Vh, an edge E ∈ Eh, a face F ∈ Fh,
or a cell K ∈ Th.
Definition 21.2 (Macroelement). Let M be a geometric entity. We asso-
ciate with M the following subsets of Th and D:

TM := {K ∈ Th |M ⊂ K} ⊂ Th, (21.1a)

DM := int({x ∈ D | ∃K ∈ TM ,x ∈ K}) ⊂ D. (21.1b)

The set DM is called macroelement associated with the geometric entity M .

Notice that the notion of macroelement is trivial for a mesh cell since in this
case TK := {K} and DK := int(K). This notion is also very simple for a mesh
face, since if F ∈ F◦

h , then TF := {Kl,Kr} where F := ∂Kl ∩ ∂Kr (so that
card(TF ) = 2), whereas if F ∈ F∂

h , then TF := {Kl} where F := ∂Kl ∩ ∂D
(so that card(TF ) = 1). For a vertex z ∈ Vh or an edge E ∈ Eh, there are in
general more than two cells in Tz and TE , and card(Tz) and card(TE) are not
known a priori. Figure 21.1 illustrates these concepts for a triangular mesh.
Notice that if the geometric entity M is s.t. card(TM ) ≥ 2, then M is a face,
an edge, or a vertex. Hence, TM can also be characterized as follows when
card(TM ) ≥ 2:

TM = {K ∈ Th |M ⊂ ∂K} ⊂ Th. (21.2)

K ∈ Tz

z

K ∈ TF
F

Fig. 21.1 Left: mesh vertex z ∈ Vh, macroelement Tz composed of six mesh cells with
one cell K ∈ Tz highlighted in gray. Right: mesh face F ∈ Fh, macroelement TF composed
of two mesh cells with one cell K ∈ TF highlighted in gray. Note that the subsets Dz and
DF are connected.

Definition 21.3 (M-path). Let M be a geometric entity. A collection of
cells (K0, . . . ,KL) in TM is called M -path if either L = 0 or the following
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holds true for all l ∈ {1:L}: Fl := ∂Kl−1 ∩ ∂Kl ∈ F◦
h. We say that L is the

length of the M -path and that the M -path connects K0 with KL.

Lemma 21.4 (M-path). Let M be a geometric entity. Assume card(TM ) ≥
2. Then for every pair (K,K ′) of distinct cells in TM , there exists an M -path
of length L ≥ 1 connecting K with K ′, and we have M ⊂ ⋂l∈{1:L} Fl.

Proof. The subset DM is connected since D is a Lipschitz domain. This
implies the existence of the M -path. Finally, since card(TM ) ≥ 2, (21.2)
holds true, and since Kl−1,Kl ∈ TM for all l ∈ {1:L}, we have M ⊂ ∂Kl−1

and M ⊂ ∂Kl. Hence, M ⊂ Fl for all l ∈ {1:L}. ⊓⊔
It will be useful to describe geometric entities as an intersection of faces.

Lemma 21.5 (Geometric entity as intersection of faces). Let K ∈ Th
be a mesh cell. The following holds true: (i) Let G ⊂ FK be a nonempty
collection of faces of K. Then M :=

⋂
F∈G F is always a geometric entity

when M 6= ∅. (ii) Let M be a geometric entity that is not a cell. Then there
is a unique subset GK,M ⊂ FK s.t. M =

⋂
F∈GK,M

F .

Proof. (i)
⋂

F∈G F is always a geometric entity when it is nonempty because
K is a polyhedron.
(ii) WhetherK is a simplex or a cuboid, ifM :=

⋂
F∈G F is nonempty, thenM

is a vertex, an edge, or a face of K, and there cannot be any other possibility.
If M is a vertex, there can only be exactly d faces s.t. M =

⋂
F∈G F . If M is

an edge, there can only be exactly 2 faces s.t. M =
⋂

F∈G F . If M is a face,
G contains only one face. ⊓⊔
Remark 21.6 (Prisms). The proof of Lemma 21.5 shows that for the state-
ment (ii) to hold true when d = 3, every vertex has to be shared by exactly
d faces. In addition to the tetrahedron and the hexahedron, another polyhe-
dron having this property is the prism with triangular basis. ⊓⊔

21.1.2 The two key assumptions

Let us briefly motivate what we want to do. Our goal is to partition the set
N according to the nature of the dofs and to use the same partition on every
mesh cell. Let K ∈ Th. We say that i is an internal dof if there is no face
F ∈ FK s.t. i ∈ NK,F , and we write i ∈ N ◦. We say that i is a boundary dof
if there is at least one face F ∈ FK s.t. i ∈ NK,F , and we write i ∈ N ∂ . A first
natural partition of the dofs is thus N = N ◦ ∪ N ∂ . If all the subsets NK,F

are mutually disjoint, as it happens for the Raviart–Thomas elements, the
collection of boundary dofs is further partitioned as N ∂ =

⋃
F∈FK

NK,F . The
situation is more intricate when the subsets NK,F are not mutually disjoint
since in this case we need to consider the intersections

⋂
F∈G NK,F for the

nonempty subsets G ⊂ FK , and we are only interested in the subsets G ⊂ FK

s.t. the above intersection is nonempty. The following lemma shows that for
the finite elements considered in this book, the set

⋂
F∈G F is nonempty if

the set
⋂

F∈G NK,F is nonempty.
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Lemma 21.7 (Intersection of boundary dofs). Let K ∈ Th be a simplex
or a cuboid. If K is a simplex, assume that there is no local shape function
that has a nonzero γ-trace on all the faces of K. If K is a cuboid, assume that
there is no local shape function that has a nonzero γ-trace on two opposite
faces of K. Then for every nonempty set G ⊂ FK , if

⋂
F∈G NK,F is nonempty,

then
⋂

F∈G F is nonempty as well.

Proof. Let us reason by contradiction and assume that
⋂

F∈G F = ∅. If K is a
simplex, this implies that G = FK , whereas if K is a cuboid, this implies that
G contains two opposite faces. Recalling that i ∈ NK,F iff γK,F (θK,i) 6= 0, we
infer from our assumption on the shape functions that

⋂
F∈G NK,F is empty.

This concludes the proof. ⊓⊔

All the simplicial finite elements considered in this book satisfy the assump-
tion of Lemma 21.7 since the γ-trace of every shape function vanishes on at
least one face. All the cuboidal finite elements considered in this book also
satisfy the assumption of Lemma 21.7 since there is no shape function that
has a nonzero γ-trace on two opposite faces.

Lemma 21.7 combined with Lemma 21.5 allows us to identify the geometric
entities that are different from K with those nonempty subsets G ⊂ FK such
that

⋂
F∈G NK,F is nonempty. This leads to the following definition.

Definition 21.8 (Mh). We denote by Mh the collection of all the geometric
entities M s.t. for all K ∈ TM , the unique nonempty subset GK,M ⊂ FK

satisfying M =
⋂

F∈GK,M
F is s.t.

NK,M :=
⋂

F∈GK,M

NK,F 6= ∅. (21.3)

We say that the finite element has face dofs if Fh ⊂ Mh, edge dofs if Eh ⊂
Mh, and vertex dofs if Vh ⊂ Mh.

Since NK,F is nonempty for all K ∈ Th and all F ∈ FK (see Assump-
tion 20.12 on face unisolvence), all the mesh faces are in Mh, i.e., Fh ⊂ Mh.
This means that all the finite elements considered in this book have face dofs.
We will see in the next section that Mh = Vh∪Eh ∪Fh for the Lagrange ele-
ments and the canonical hybrid element, Mh = Eh∪Fh for Nédélec elements,
and Mh = Fh for Raviart–Thomas elements.

We can now state the two key assumptions regarding the structure of the
dofs that will help us identify the connectivity classes.

Assumption 21.9 (M-unisolvence). For every geometric entity M ∈ Mh

and every cell K ∈ TM (i.e., M ⊂ ∂K), the following holds true: (i) There
is a linear map γK,M s.t. for every face F ∈ GK,M , we have ker(γK,F ) ⊂
ker(γK,M ). (ii) For all i ∈ NK,M , there is a linear form σK,M,i s.t. σK,i =
σK,M,i ◦ γK,M . (iii) The triple (M,PK,M , ΣK,M ) is a finite element where
PK,M := γK,M (PK) and ΣK,M := {σK,M,i}i∈NK,M

.
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Assumption 21.10 (M-matching). The following holds true for every in-
terface F := ∂Kl∩∂Kr ∈ F◦

h and every geometric entityM ∈ Mh s.t.M ⊂ F
(so that Kl,Kr ∈ TM and F ∈ GKl,M ∩GKr ,M ): (i) PKl,M = PKr ,M . (ii) The
map χlr introduced in Assumption 20.14 is such that χlr(NKl,M ) = NKr,M ,
and the map χlr,M : NKl,M → NKr,M defined by χlr,M := χF |NKl,M

is s.t.

σKl,M,il = σKr ,M,χlr,M(il), ∀il ∈ NKl,M , (21.4)

i.e., ΣKl,M = ΣKr,M and χlr,M : NKl,M → NKr ,M is bijective.

The definition of χlr,M in Assumption 21.10 is meaningful becauseNKl,M ⊂
NKl,F and NKr,M ⊂ NKr,F owing to (21.3). When the geometric entity M
is a face, Assumption 21.9 and Assumption 21.10 are identical to Assump-
tion 20.12 (face unisolvence) and Assumption 20.14 (face matching).

Given an M -path (see Definition 21.3) of length L ≥ 1, we define the map
χǫ
Fl

for all l ∈ {1:L} by setting χǫ
Fl

:= χFl
if nFl

points from Kl−1 to Kl and

χǫ
Fl

:= χ−1
Fl

otherwise, where nFl
is the unit normal vector orienting Fl.

Lemma 21.11 (Path independence). Let M ∈ Mh. Let K,K ′ be two
cells in TM (possibly identical) connected by an M -path of length L ≥ 1, say
(K =: K0, . . . ,KL := K ′). Then for all i ∈ NK,M , the index χǫ

FL
◦ . . .◦χǫ

F1
(i)

with Fl := ∂Kl−1 ∩ ∂Kl, ∀l ∈ {1:L}, is independent of the M -path.

Proof. Let M ∈ Mh be a geometric entity and let K,K ′ be two cells in
TM . Let (K =: Kβ,0 . . . ,Kβ,Lβ

:= K ′), ∀β ∈ {1, 2}, be two M -paths in
TM connecting K to K ′, with Fβ,l := ∂Kβ,l−1 ∩ ∂Kβ,l for all l ∈ {1:Lβ}.
Let i′1 := χǫ

F1,L1
◦ . . . ◦ χǫ

F1,1
(i) and i′2 := χǫ

F2,L2
◦ . . . ◦ χǫ

F2,1
(i). Assump-

tion 21.10 implies that σK,M,i = σK1,1,M,χǫ
F1,1

(i) = . . . = σK′,M,i′1
and

σK,M,i = σK2,1,M,χǫ
F2,1

(i) = . . . = σK′,M,i′2
. Hence, σK′,M,i′1

= σK′,M,i′2
.

But, by Assumption 21.9, (M,PK′,M , ΣK′,M ) is a finite element. Hence,
σK′,M,i′1

= σK′,M,i′2
iff i′1 = i′2. ⊓⊔

21.1.3 Connectivity classes as equivalence classes

For all (K, i) ∈ Th×N , we introduce the smallest geometric entity associ-
ated with the dof σK,i. This object is the last brick we need to define the
equivalence relation mentioned at the beginning of the chapter.

Lemma 21.12 (MK,i). Let K ∈ Th and i be a boundary dof. Then the
following set is nonempty and is a member of Mh:

MK,i :=
⋂

{M∈Mh | i∈NK,M}
M. (21.5)

Proof. The subset GK,i := {F ∈ FK | i ∈ NK,F } is nonempty since i is

a boundary dof. Then the set M̃K,i :=
⋂

F∈GK,i
F is nonempty owing to

Lemma 21.7 since i ∈ ⋂F∈GK,i
NK,F , and it is a geometric entity owing to



254 Chapter 21. Construction of the connectivity classes

Lemma 21.5. The rest of the proof consists of showing that M̃K,i = MK,i.

Since GK,i ⊂ {M ∈ Mh | i ∈ NK,M}, we have MK,i ⊂ M̃K,i. To prove
the converse inclusion, let us consider M in the set {M ∈ Mh | i ∈ NK,M}.
By Lemma 21.5, there is ∅ 6= GK,M ⊂ FK s.t. M =

⋂
F∈GK,M

F , and the

definition (21.3) of NK,M implies that i ∈ ⋂F∈GK,M
NK,F . Hence, for all F ∈

GK,M , we have i ∈ NK,F , which means that GK,M ⊂ GK,i, and this in turn

yields M̃K,i =
⋂

F∈GK,i
F ⊂ ⋂F∈GK,M

F =M . Since the geometric entity M

is arbitrary in {M ∈ Mh | i ∈ NK,M}, we conclude that M̃K,i ⊂ MK,i. ⊓⊔

We now partition the product set Th×N into equivalence classes.

Definition 21.13 (Binary relation R). We say that (K, i)R (K ′, i′) if and
only if either (K, i) = (K ′, i′), or K 6= K ′, MK,i = MK′,i′ := M , and given
an M -path connecting K to K ′ in TM , say (K = K0, . . . ,KL = K ′), with
Fl := ∂Kl−1 ∩ ∂Kl, ∀l ∈ {1:L}, we have i′ = χǫ

FL
◦ . . . ◦ χǫ

F1
(i).

This definition makes sense when K 6= K ′ since in this case M cannot be
equal to either K or K ′, and since M ⊂ K ∩ K ′, the cells K and K ′ are
in TM . Owing to Lemma 21.4, K and K ′ can be connected by an M -path,
and owing to Lemma 21.11, the index χǫ

FL
◦ . . . ◦χǫ

F1
(i) is independent of the

M -path that is chosen to connect K to K ′.

Lemma 21.14 (Equivalence relation). Let Assumptions 21.9 and 21.10
hold true. Then the binary relation R is an equivalence relation.

Proof. R is by definition reflexive. By enumerating the cells in the M -path
in reverse order, we infer that R is symmetric. Finally, let us prove that
R is transitive. Let (K, i)R (K ′, i′) and (K ′, i′)R (K ′′, i′′). Then MK,i =
MK′,i′ = MK′′,i′′ := M . If (K, i) = (K ′, i′) or (K ′, i′) = (K ′′, i′′),
there is nothing to prove. Otherwise, we have K 6= K ′ and K ′ 6= K ′′.
Let (K =: K1,0 . . . ,K1,L1

:= K ′), (K ′ =: K2,0 . . . ,K2,L2
:= K ′′) be

two M -paths, respectively, connecting K to K ′ and K ′ to K ′′. Let us set
Fβ,l := ∂Kβ,l−1 ∩ ∂Kβ,l for all l ∈ {1:Lβ} and all β ∈ {1, 2}. Then
(K =: K1,0 . . . ,K1,L1 = K2,0 . . . ,K2,L2

:= K ′′) is an M -path and i′′ =
χǫ
F2,L2

◦ . . . ◦χǫ
F2,1

(i′) = χǫ
F2,L2

◦ . . . ◦χǫ
F2,1

◦χǫ
F1,L1

◦ . . . ◦χǫ
F1,1

(i). If K 6= K ′′,

this argument proves that (K, i)R(K ′′, i′′). If K = K ′′, Assumption 21.10
implies that σK,M,i = σK′′,M,i′′ = σK,M,i′′ , which is possible only if i = i′′

owing to Assumption 21.9. Hence, we have again (K, i)R(K ′′, i′′). ⊓⊔

Let Ah be the set of the equivalence classes induced by R over Th×N . Let
us now consider any map j dof : Th×N → Ah such that

[ j dof(K, i) = j dof(K ′, i′) ] ⇐⇒ [ (K, i)R(K ′, i′) ]. (21.6)

Letting I be the cardinality of Ah, there are I! ways to define j dof.
Whichever choice that is made to define j dof, let us now prove that the
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two assumptions (19.2) and (19.3) made in Chapter 19 hold true. Recall
that these are the two structural conditions that we required from j dof in
Chapter 19 to construct the conforming subspace P x

k (Th;Rq).

Lemma 21.15 (Equivalence relation at interfaces). Let F ∈ F◦
h with

F := ∂Kl ∩ ∂Kr and let χlr be the map introduced in Assumption 20.14.
The following holds true for all il ∈ NKl,F : (i) MKl,il = MKr,χlr(il); (ii)
j dof(Kl, il) = j dof(Kr, χlr(il)).

Proof. Since χlr(NKl,M ) = NKr ,M owing to theM -matching assumption, we
have

{M ∈ Mh | χlr(il) ∈ NKr,M} = {M ∈ Mh | χlr(il) ∈ χlr(NKl,M )}
= {M ∈ Mh | il ∈ NKl,M}.

Owing to the identity (21.5), we infer that MKl,il = MKr,χlr(il). The second
claim follows readily because MKl,il = MKr,χlr(il) and the two distinct cells
Kl and Kr can be connected by an M -path of length 1 crossing F in such a
way that (trivially) χlr(il) = χlr(il). This proves that (Kl, il)R(Kr, χlr(il)),
i.e., we have j dof(Kl, il) = j dof(Kr, χlr(il)) owing to (21.6). ⊓⊔

Let a ∈ Ah with representative (K, i). Let us set M := MK,i and
χK,K,M (i) := i. For all K ′ ∈ TM such that K 6= K ′, let us set χK,K′,M (i) :=
χǫ
FL

◦ . . . ◦ χǫ
F1
(i), where (K =: K0, . . .KL := K ′) is any M -path connecting

K to K ′. Lemma 21.11 together with Item (i) from Lemma 21.15 gives the
following characterization of the connectivity class a:

a =
⋃

K′∈TM

{(K ′, χK,K′,M (i))}. (21.7)

We conclude by stating the main result of this section.

Theorem 21.16 (Verification of the assumptions from Chapter 19).
Let Assumptions 21.9 and 21.10 hold true. Let j dof be defined in (21.6).
Then Assumptions (19.2) and (19.3) hold true.

Proof. Let us start with (19.3) which is easier to verify. By definition, we
have (K, i)R(K, i′) iff i = i′, that is, j dof(K, i) = j dof(K, i′) implies

that i = i′. Let us now prove (19.2) for all vh ∈ P x,b
k (Th;Rq). Let us start

with the implication =⇒ in (19.2), i.e., we assume that vh ∈ P x
k (Th;Rq).

Let (K, i), (K ′, i′) be two pairs in the same connectivity class and let
M := MK,i = MK′,i′ . We want to show that σK,i(vh|K) = σK′,i′(vh|K′).
Since this claim is obvious if K = K ′, we assume that K 6= K ′ and we con-
sider an M -path connecting K to K ′ in TM , say (K =: K0 . . . ,KL := K ′)
and Fl := ∂Kl−1 ∩ ∂Kl, ∀l ∈ {1:L}. Repeated applications of the implica-
tion =⇒ from Lemma 20.15 show that since [[vh]]

x
Fl

= 0 for all l ∈ {1:L},
we have σK,i(vh|K) = σK′,χǫ

FL
◦...◦χǫ

F1
(i)(vh|K′) = σK′,i′(vh|K′), which is the
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desired result. Let us now prove the other implication ⇐= in (19.2). Let us

consider vh ∈ P x,b
k (Th;Rq) and let F := ∂Kl ∩ ∂Kr ∈ F◦

h be a mesh inter-
face. For all il ∈ NKl,F , we have j dof(Kl, il) = j dof(Kr, χlr(il)) owing to
Lemma 21.15. By assumption, we also have σKl,il(vh|Kl

) = σKr ,χlr(il)(vh|Kr
)

for all il ∈ NKl,F . Owing to the implication ⇐= from Lemma 20.15, we infer
that [[vh]]

x
F = 0. Since this result holds true for all F ∈ F◦

h , we conclude that
vh ∈ P x

k (Th;Rq). ⊓⊔

21.2 Verification of the assumptions

The goal of this section is to verify that Assumptions 21.9 and 21.10 are
indeed satisfied by the Lagrange, canonical hybrid, Nédélec, and Raviart–
Thomas elements. We assume that d = 3.

21.2.1 Lagrange and canonical hybrid elements

For the Lagrange elements there are four types of geometric entities: cells,
faces, edges, and vertices. We have to verify Assumptions 21.9 and 21.10 for
the vertices and the edges.

Assume first that M is a vertex, say M := {z}. For all K ∈ Tz , let aK,i

be the unique vertex in K such that aK,i = z and let us set γK,z(p) :=
p(aK,i) for all p ∈ PK . Clearly ker(γK,F ) ⊂ ker(γK,z) for all F ∈ FK . Then
PK,z := γK,z(PK) = R because p(aK,i) = p(zi) spans R when p spans
PK . Furthermore, setting σK,z,i(x) := x for all x ∈ R, we have σK,i(p) =
p(aK,i) = σK,z,i(p(aK,i)) = (σK,z,i ◦ γK,z)(p). We observe that PK,z and
ΣK,z := {σK,z,i} do not depend on K and that (z, PK,z , ΣK,z) is a finite
element.

Assume now that M := E is an edge of K, and let us set Ê := T−1
K (E).

We define γK,E(p) := p|E for all p ∈ PK . Hence, ker(γK,F ) ⊂ ker(γK,E) for

all F ∈ FK . Moreover, γK,E(p) = p̂ ◦ T−1

K|Ê = p̂ ◦ TÊ ◦ T−1

Ê
◦ T−1

K|Ê , where

TÊ : Ŝ1 → Ê is any bijective affine mapping between the unit segment in

R and the reference edge Ê. By proceeding as in the proof of Lemma 7.10,
we conclude that PK,E := γK,E(PK) = Pk,1 ◦ T−1

K,E with TK,E := TK|Ê ◦ TÊ .

By proceeding as in the proof of Lemma 20.6, we conclude that PKl,E =
PKr ,E for all Kl,Kr ∈ TE with a common interface. For every Lagrange node
aK,i located on E, we define σK,E,i(p) := p(aK,i) for all p ∈ PK,E , and we
denote by ΣK,M the collection of these dofs. All the Lagrange finite elements
considered in this book are such that (E,PK,E , ΣK,E) is a finite element.

In conclusion, we have verified that Assumption 21.9 and Item (i) of As-
sumption 21.10 hold true, whether M is a vertex or an edge. It remains to
verify that one can construct a map χlr : NKl,F → NKr ,F s.t. Item (ii) of
Assumption 21.10 also holds true. This construction is done in §21.3.
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Similar arguments as above can be invoked for the canonical hybrid ele-
ment. We invite the reader to verify that Assumption 21.9 and Item (i) of
Assumption 21.10 hold true for the canonical hybrid element, whether M is
a vertex or an edge.

21.2.2 Nédélec elements

We invite the reader to verify that Assumption 21.9 and Item (i) of Assump-
tion 21.10 hold true for the edge dofs of the NNNk,d. It remains to verify that one
can construct a map χlr : NKl,F → NKr,F s.t. Item(ii) of Assumption 21.10
also holds true. This construction is done in §21.3.

21.2.3 Raviart–Thomas elements

There is nothing to prove for these elements since Assumption 21.9 is identical
to Assumption 20.12 and Assumption 21.10 is identical to Assumption 20.14,
and we have already verified in §20.4.1 that Assumption 20.12 and Assump-
tion 20.14 are met by the Raviart–Thomas elements.

21.3 Practical construction

In this section, we investigate systematic ways to construct the maps χlr

and j dof. The construction of χlr is done in such a way that Item (ii) of

Assumption 21.10 holds true. As before, the reference cell K̂ can be either a
simplex or a cuboid in Rd, d ∈ {2, 3}.

21.3.1 Enumeration of the geometric entities in K̂

The construction of χlr is greatly simplified by adopting reasonable enumer-
ation conventions on the reference cell K̂ and by using the orientation of the
mesh. We start by enumerating the geometric entities in K̂. We first enumer-
ate the ncv vertices, say from 1 to ncv, as in Table 10.1 in §10.2. We start
with the origin of K̂, say ẑ1 := 0, then we enumerate d vertices in such a
way that the orientation of the basis (ẑ2 − ẑ1, . . . , ẑd+1 − ẑ1) is the same as
that of the ambient space Rd (assumed to be based on the right-hand rule).

There is no other vertex to enumerate if K̂ is the unit simplex. If K̂ is the
unit square, the last vertex is assigned number 4, and if K̂ is the unit cube,
the last vertex of the face containing {ẑ1, ẑ2, ẑ3} is assigned number 5, then
we set ẑ6 := ẑ2 + ez, ẑ7 := ẑ3 + ez, and ẑ8 := ẑ5 + ez; see Figure 21.2 and
Figure 10.2.

We now enumerate the edges of K̂ from 1 to nce and the faces of K̂
from 1 to ncf . The way the enumeration is done does not really matter for
our purpose, but to be complete, we now propose one possible enumeration
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Fig. 21.2 Orientation of the edges and faces and enumeration of the vertices, edges, and
faces of the reference cell in dimensions two and three. In dimension two, edges and faces
coincide as geometric entities but they are oriented differently: an edge is oriented by a
tangent vector and a face by a normal vector.

technique in Figure 21.2 and Table 21.1. The convention adopted in Table 21.1
is that Ê = (ẑp, ẑq), p < q, means that Ê passes through the two vertices
ẑp, ẑq, and the edge is oriented by setting τ̂E := (ẑq − ẑp)/‖ẑq − ẑp‖ℓ2 . The
point ẑp is called origin of the oriented edge Ê. The notation F̂ = (ẑp, ẑq, ẑr),

p < q < r, means that F̂ passes though the three vertices ẑp, ẑq, ẑr, and

that the unit normal n̂F̂ orienting F̂ is such that (ẑq − ẑp, ẑr − ẑp, n̂F̂ ) is a
right-hand basis, i.e., n̂F̂ = ((ẑq − ẑp)×(ẑr − ẑp))/‖(ẑq − ẑp)×(ẑr − ẑp)‖ℓ2
(see (10.9)). The vertex ẑp is called origin of the oriented face F̂ . Note that
for both the reference simplex and the reference cuboid, the orientation of the
geometric entities is done by using the increasing vertex-index enumeration
technique explained in §10.4.

Let now K be a cell in a mesh Th. Let z, E, F be a vertex, an edge, and
a face of K, respectively. We are going to say in the rest of this section that
the local index of z, E, F in K is, respectively, p, q, r if there is a vertex ẑp,

p ∈ {1:ncv}, an edge Êq, q ∈ {1:nce}, and a face F̂r, r ∈ {1:ncf}, such that

z = TK(ẑp), E = TK(Êq), and F = TK(F̂r).

21.3.2 Example of a construction of χlr and j dof

We now present an example of practical construction of the maps χlr and
j dof. One important advantage of the proposed enumeration is that it can
be implemented in parallel since for each cell K of index m ∈ {1:Nc}, the



Part IV. Finite element spaces 259

2D simplex
V ẑ1 = (0, 0), ẑ2 = (1, 0), ẑ3 = (0, 1)

E Ê1 = (ẑ2, ẑ3), Ê2 = (ẑ1, ẑ3), Ê2 = (ẑ1, ẑ2)

3D simplex

V ẑ1 = (0, 0, 0), ẑ2 = (1, 0, 0), ẑ3 = (0, 1, 0), ẑ4 = (0, 0, 1)

E Ê1 = (ẑ1, ẑ2), Ê2 = (ẑ1, ẑ3), Ê3 = (ẑ1, ẑ4)

Ê4 = (ẑ2, ẑ3), Ê5 = (ẑ2, ẑ4), Ê6 = (ẑ3, ẑ4)

F F̂1 = (ẑ2, ẑ3, ẑ4), F̂2 = (ẑ1, ẑ3, ẑ4)

F̂3 = (ẑ1, ẑ2, ẑ4), F̂4 = (ẑ1, ẑ2, ẑ3)

2D square
V ẑ1 = (0, 0), ẑ2 = (1, 0), ẑ3 = (0, 1), ẑ4 = (1, 1)

E Ê1 = (ẑ1, ẑ2), Ê2 = (ẑ1, ẑ3), Ê3 = (ẑ3, ẑ4), Ê4 = (ẑ2, ẑ4)

3D cube

V ẑ1 = (0, 0, 0), ẑ2 = (1, 0, 0), ẑ3 = (0, 1, 0), ẑ4 = (0, 0, 1)

ẑ5 = (1, 1, 0), ẑ6 = (1, 0, 1), ẑ7 = (0, 1, 1), ẑ8 = (1, 1, 1)

E Ê1 = (ẑ1, ẑ2), Ê2 = (ẑ1, ẑ3), Ê3 = (ẑ1, ẑ4), Ê4 = (ẑ2, ẑ5)

Ê5 = (ẑ2, ẑ6), Ê6 = (ẑ3, ẑ5), Ê7 = (ẑ3, ẑ7), Ê8 = (ẑ4, ẑ6)

Ê9 = (ẑ4, ẑ7), Ê10 = (ẑ5, ẑ8), Ê11 = (ẑ6, ẑ8), Ê12 = (ẑ7, ẑ8)

F F̂1 = (ẑ1, ẑ2, ẑ3), F̂2 = (ẑ1, ẑ3, ẑ4), F̂3 = (ẑ1, ẑ2, ẑ4)

F̂4 = (ẑ4, ẑ6, ẑ7), F̂5 = (ẑ2, ẑ5, ẑ6), F̂6 = (ẑ3, ẑ5, ẑ7)

Table 21.1 Enumeration and orientation of the vertices, edges, and faces in simplices and
cuboids in dimensions two and three.

proposed enumeration technique only requires to have access to local infor-
mation like j cv(m, 1:ncv), j ce(m, 1:nce), j cf(m, 1:ncf), which is usually
provided by mesh generators. Recall that j cf(m, i) is the global index of the
i-th vertex of the m-th cell, j ce(m, e) is the global index of the e-th edge of
the m-th cell, and j cf(m, f) is the global index of the f -th face of the m-th
cell.

Enumeration of the vertex dofs. Let us assume that there are nv
sh dofs

per vertex. For scalar-valued Lagrange elements or the scalar-valued canonical
hybrid element, we have nv

sh := 1. We adopt the convention nv
sh := 0 for

H(curl) and H(div) elements. Given a mesh cell K, we enumerate the local
dofs in K as follows. Letting n ∈ {1:nv

sh}, v ∈ {1:ncv}, the n-th dof attached
to the v-th vertex is assigned the index i := (v − 1)nv

sh + n.
Let us now define j dof and, given an interface F := ∂Kl ∩ ∂Kr, let us

define χlr. Let z be vertex of the face F . Let vl, vr ∈ {1:ncv} be the local
index of z in Kl,Kr, respectively, and let ml,mr be the indices of Kl,Kr in
Th, respectively. Hence, j cv(ml, vl) = j cv(mr, vr). Let il0 := (vl−1)nv

sh and
ir0 := (vr−1)nv

sh. Then upon setting χlr(il0+ i) := ir0+ i for all i ∈ {1:nv
sh},

we observe that χlr maps a vertex dof of Kl to a vertex dof of Kr and by
construction the vertex associated with il0+ i (with index j cv(ml, vl)) is the
same as that associated with ir0+ i (with index j cv(mr, vr)). Finally, j dof

is obtained by setting
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i := (v − 1)nv
sh + n, (21.8a)

j dof(m, i) := (j cv(m, v)− 1)nv
sh + n, (21.8b)

for all n ∈ {1:nv
sh} and all v ∈ {1:ncv}. This defines nv

shNv equivalence classes
enumerated from 1 to nv

shNv.

3

1

1

3

2 4

121110

5 6

10

2

21

3

43

1 2

15

9

7

8

11

12 15

13 14

16

43

1 2

21

3

4

5

6

7

8

9

13 14

Fig. 21.3 Enumeration of geometric entities and dofs for triangles (top) and squares (bot-
tom). Orientation of edges and faces, enumeration of vertices and faces (leftmost panels),
enumeration of vertex dofs (center left panels), enumeration of edge dofs for P4,2 and Q3,2

elements (center right panels), enumeration of volume dofs (rightmost panels).

Enumeration of the edge dofs. Let ne
sh be the number of dofs per edge.

For Pk+1,d and Qk+1,d scalar-valued elements (Lagrange or canonical hybrid)
and for NNNk,d Nédélec elements, we have ne

sh = dim(Pk,1) with k ≥ 0. Let
us now adopt a strategy to enumerate the edge dofs in K that allows us
to generate χlr with information associated with the edges only. Let E :=
(zp, zq) be an oriented edge of K with origin zp, p, q ∈ {1:Nv}. Let e ∈
{1:nce} be the local index of E in K. Setting i0 := ncvn

v
sh + (e − 1)ne

sh, we
enumerate the dofs associated with E from i0+1 to i0+n

e
sh by moving along E

from zp to zq. Since the orientation of the mesh is generation-compatible (see
Definition 10.3), the orientation of the edge is unchanged by the geometric

mapping TK for all K ∈ TE . This implies that no matter which edge Ê of K̂
is mapped to E, the edge dofs {σK,E,i}i∈{1:nce} are always listed in the same
order as those in {σ̂K̂,Ê,i}i∈{1:nce} because the edge dofs are invariant under

any vertex permutation (see Assumption 20.7 and Item (iii) in Lemma 20.22).
The proposed enumeration is illustrated in the two panels in the third column
of Figure 21.3 for the P4,2 and Q3,2 Lagrange elements, in the left panel of
Figure 21.4 for the NNN2,3 Nédélec element, in Figure 21.5 for the P3,3 Lagrange
element, and in Figure 21.6 for the Q3,3 Lagrange element.

Let us now define j dof and, given an interface F := ∂Kl ∩ ∂Kr, let us
define χlr. Let E be an edge of the face F . Let el, er ∈ {1:nce} be the local
index of E inKl,Kr, respectively, and letml,mr be the index ofKl,Kr in Th,
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Fig. 21.4 Enumeration of dofs for the NNN2,3 element. Left: edge dofs. Right: face dofs.

respectively. Hence, j ce(ml, el) = j ce(mr, er). Let il0 := ncvn
v
sh+(el−1)ne

sh

and ir0 := ncvn
v
sh + (er − 1)ne

sh. Then setting χlr(il0 + i) := ir0 + i for all
i ∈ {1:ne

sh}, we observe that χlr maps an edge dof of Kl to an edge dof of Kr

and by construction the edge associated with il0+i (with index j ce(ml, el)) is
the same as that associated with ir0+i (with index j ce(mr, er)). Concerning
j dof, since all the vertex dofs have already been enumerated using (21.8),
we continue with the edge dofs by setting

i := ncvn
v
sh + (e− 1)ne

sh + n, (21.9a)

j dof(m, i) := nv
shNv + (j ce(m, e)− 1)ne

sh + n, (21.9b)

for all n ∈ {1:ne
sh} and all e ∈ {1:nce}. This defines ne

shNe equivalence classes
enumerated from nv

shNv + 1 to nv
shNv + ne

shNe.

Enumeration of the face dofs. Let us proceed with the enumeration of
the face dofs in dimension 3. Let F be a face of K. Let zp be the origin of
F . Let τ1, τ2 be the two unit vectors orienting the edges starting from zp
(recall that nF has been defined s.t. (τ1, τ2,nF ) has the same orientation as
the right-hand basis in R3 (see (10.9)). Let f ∈ {1:ncf} be the local index of
F in K. The face dofs on F are enumerated from i0 + 1 to i0 + nf

sh, where
i0 := ncvn

v
sh+ncen

e
sh+(f − 1)nf

sh. When the dofs in F are attached to nodes
located in F , as for Lagrange elements, one possible enumeration technique
is to look at F with the vector τ1 horizontal, the origin of F on the left, τ2
pointing upward, and nF pointing towards us. Then one enumerates the dofs
on F by moving across F from left to right and bottom to top. The proposed
enumeration is illustrated in Figure 21.5 for the P3,3 Lagrange element (where
there is 1 face dof) and in Figure 21.6 for the Q3,3 Lagrange element (where
there are 4 face dofs). For the Nédélec and Raviart–Thomas elements, the
enumeration of the face dofs can be performed by enumerating the modal
basis associated with these dofs just like above. For the Nédélec elements,
one has two dofs for each modal basis function, say one associated with τ1
and one associated with τ2. One first enumerates the dof associated with τ1,
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then the dof associated with τ2. An example is shown in the right panel of
Figure 21.4.

Fig. 21.5 Enumeration of dofs in dimen-

sion three for the P3,3 element.
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Fig. 21.6 Enumeration of Q3,3 dofs in a cube. The enumeration of the edges and faces is
shown in the top panels. The enumeration of the dofs is shown in the bottom panels for
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white, and the face dofs are shown in gray. The remaining 8 volume dofs are hidden.

Assume now that F := ∂Kl ∩ ∂Kr. Let fl, fr ∈ {1:ncf} be the in-
dex of F in Kl,Kr, and let ml,mr be the indices of Kl,Kr in Th, i.e.,
j cf(ml, fl) = j cf(mr, fr). Let il0 := ncvn

v
sh + ncen

e
sh + (fl − 1)nf

sh and
ir0 := ncvn

v
sh + ncen

e
sh + (fr − 1)nf

sh. Then we set χlr(il0 + i) := ir0 + i for
all i ∈ {1:nf

sh}. Concerning j dof, since all the vertex and edge dofs have
already been enumerated using (21.8) and (21.9), we continue with the face
dofs by setting

i := ncvn
v
sh + ncen

e
sh + (f − 1)nf

sh + n, (21.10a)

j dof(m, i) := nv
shNv + ne

shNe + (j cf(m, f)− 1)nf
sh + n, (21.10b)

for all n ∈ {1:nf
sh} and all f ∈ {1:ncf}. This defines nf

shNf equivalence classes
enumerated from nv

shNv + ne
shNe +1 to nv

shNv + ne
shNe + nf

shNf. An example
using the proposed enumeration for the P3,3 element is shown in Figure 21.5.
An example of enumeration for the Q3,3 element is shown in Figure 21.6.
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Enumeration of the volume dofs. The way the enumeration of the vol-
ume dofs is done does not matter, but to be consistent with the above def-
initions, one can proceed as follows. For Lagrange elements, one starts with
the dof that is the closest to the origin of K and traverse the volume dofs by
using the orientation of K. In dimension two, for instance, one can proceed
as above since K can be viewed as a two-dimensional face, as illustrated in
the rightmost panels in Figure 21.3 for the P4,2 and Q3,2 Lagrange elements.
In dimension three, one can traverse all the volume dofs by moving first along
the direction τ1, then along the direction τ2, and finally along the direction
τ3. For Nédélec and Raviart–Thomas elements, one uses the enumeration of
the modal basis functions defining the volume dofs. For these elements one
has 3 dofs for each modal basis function (in dimension 3), say one associated
with each direction τ1, τ2, τ3. For each modal function one first enumerates
the dof associated with τ1, then the dof associated with τ2, and one finishes
with the dof associated with τ3, then one moves to the next modal function.
The connectivity array can now be completed by setting

i := ncvn
v
sh + ncen

e
sh + ncfn

f
sh + n, (21.11a)

j dof(m, i) := nv
shNv + ne

shNe + nf
shNf + (m− 1)nv

sh + n, (21.11b)

for all n ∈ {1:nc
sh} and all m ∈ {1:Nc}.

Exercises

Exercise 21.1 (Mesh orientation, NK,F , χlr). Consider the mesh Th
shown in Exercise 19.1. (i) Orient the mesh by using the increasing vertex-
index enumeration technique. (ii) Consider the corresponding space P g

2 (Th).
Use the enumeration convention adopted in this chapter for the dofs. Find the
two cellsKl,Kr for the second face of the cell 5 and for the first face of the cell
3. (iii) Let F be the second face of the cell 5. Identify N5,F , j dof(5,N5,F ),
and the map χlr. (iv) Let F ′ be the first face of the cell 3. Identify N3,F ′ ,
j dof(3,N3,F ′), and the map χlr.

Exercise 21.2 (M-dofs). Let K ∈ Th, let F ∈ FK , and let M ∈ Mh be a
geometric entity s.t. M ⊂ F . Prove that NK,M ⊂ NK,F .

Exercise 21.3 (Qk,3 dofs). Determine nv
sh, n

e
sh, n

f
sh, n

c
sh for scalar-valued

Qk,3 Lagrange elements.


