
Part V, Chapter 24

Weak formulation of model problems

In Part V, composed of Chapters 24 and 25, we introduce the notion of
weak formulations and state two well-posedness results: the Lax–Milgram
lemma and the more fundamental Banach–Nečas–Babuška theorem. Weak
formulations are useful for building finite element approximations to partial
differential equations (PDEs). This chapter presents a step-by-step derivation
of weak formulations. We start by considering a few simple PDEs posed over
a bounded subset D of Rd. Our goal is to reformulate these problems in weak
form using the important notion of test functions. We show by examples
that there are many ways to write weak formulations. Choosing one can be
guided, e.g., by the smoothness of the data and the quantities of interest (e.g.,
the solution or its gradient). The reader who is not familiar with functional
analysis arguments is invited to review the four chapters composing Part I
before reading Part V.

24.1 A second-order PDE

Let D be a Lipschitz domain in Rd (see §3.1) and consider a function f : D →
R. The problem we want to solve consists of seeking a function u : D → R

with some appropriate smoothness yet to be clearly defined such that

−∆u = f in D u = 0 on ∂D, (24.1)

where the Laplace operator is defined by ∆u := ∇·(∇u). In Cartesian coor-

dinates, we have ∆u :=
∑
i∈{1:d}

∂2u
∂x2
i
.

The PDE −∆u = f in D is called Poisson equation (and Laplace equation
when f = 0). The Laplace operator is ubiquitous in physics since it is the
prototypical operator modelling diffusion processes. Applications include heat
transfer (where u is the temperature and f the heat source), mass transfer
(where u is the concentration of a species and f the mass source), porous me-
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dia flow (where u is the hydraulic head and f the mass source), electrostatics
(where u is the electrostatic potential and f the charge density), and static
equilibria of membranes (where u is the transverse membrane displacement
and f the transverse load).

The condition enforced on ∂D in (24.1) is called boundary condition. A con-
dition prescribing the value of the solution at the boundary is called Dirichlet
condition, and when the prescribed value is zero, the condition is called homo-
geneous Dirichlet condition. In the context of the above models, the Dirichlet
condition means that the temperature (the concentration, the hydraulic head,
the electrostatic potential, or the transverse membrane displacement) is pre-
scribed at the boundary. Other boundary conditions can be prescribed for
the Poisson equation, as reviewed in Chapter 31 in the more general context
of second-order elliptic PDEs.

To sum up, (24.1) is the Poisson equation (or problem) with a homogeneous
Dirichlet condition. We now present three weak formulations of (24.1).

24.1.1 First weak formulation

We derive a weak formulation of (24.1) by proceeding informally. Consider an
arbitrary test function ϕ ∈ C∞

0 (D), where C∞
0 (D) is the space of infinitely

differentiable functions compactly supported inD. As a first step, we multiply
the PDE in (24.1) by ϕ and integrate over D to obtain

−
∫

D

(∆u)ϕdx =

∫

D

fϕdx. (24.2)

Equation (24.2) is equivalent to the PDE in (24.1) if ∆u is smooth enough
(e.g., integrable overD). Indeed, if an integrable function g satisfies

∫
D gϕdx =

0 for all ϕ ∈ C∞
0 (D), Theorem 1.32 implies that g = 0 a.e. in D.

As a second step, we use the divergence formula stating that for any
smooth vector-valued function Φ,

∫

D

∇·Φ dx =

∫

∂D

Φ·n ds, (24.3)

where n is the outward unit normal to D. We apply this formula to the
function Φ := w∇v, where v and w are two scalar-valued smooth functions.
Since ∇·Φ = ∇w·∇v + w∆v, we infer that

−
∫

D

(∆v)w dx =

∫

D

∇v·∇w dx−
∫

∂D

(n·∇v)w ds. (24.4)

This is Green’s formula, which is a very useful tool to derive weak formulations
of PDEs involving the Laplace operator. This formula is valid for instance
if v ∈ C2(D) ∩ C1(D) and w ∈ C1(D) ∩ C0(D), and it can be extended to
functions in the usual Sobolev spaces. In particular, it remains valid for all
v ∈ H2(D) and all w ∈ H1(D). We apply Green’s formula to the functions
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v := u and w := ϕ, assuming enough smoothness for u. Since ϕ vanishes at
the boundary, we transform (24.2) into

∫

D

∇u·∇ϕdx =

∫

D

fϕdx, ∀ϕ ∈ C∞
0 (D). (24.5)

We now recast (24.5) into a functional framework. Let us take f ∈ L2(D).
We observe that a natural solution space is

H1(D) := {v ∈ L2(D) | ∇v ∈ L2(D)}. (24.6)

Recall from Proposition 2.9 that H1(D) is a Hilbert space when equipped
with the inner product (u, v)H1(D) :=

∫
D
uv dx+ ℓ2D

∫
D
∇u·∇v dx with asso-

ciated norm ‖v‖H1(D) := (
∫
D
v2 dx+ ℓ2D

∫
D
‖∇v‖2ℓ2 dx)

1
2 , where ‖·‖ℓ2 denotes

the Euclidean norm in Rd and ℓD is a length scale associated with the domain
D, e.g., ℓD := diam(D) (one can take ℓD := 1 when working in nondimen-
sional form). In order to account for the boundary condition in (24.1), we
consider the subspace spanned by those functions in H1(D) that vanish at
the boundary. It turns out that this space is H1

0 (D); see Theorem 3.10. Fi-
nally, we can extend the space of the test functions in (24.5) to the closure
of C∞

0 (D) in H1(D), which is by definition H1
0 (D) (see Definition 3.9). To

see this, we consider any test function w ∈ H1
0 (D), observe that there is a

sequence (ϕn)n∈N in C∞
0 (D) converging to w in H1

0 (D), and pass to the limit
in (24.5) with ϕn used as the test function. To sum up, a weak formulation
of the Poisson equation with homogeneous Dirichlet condition is as follows:

{
Find u ∈ V := H1

0 (D) such that∫
D
∇u·∇w dx =

∫
D
fw dx, ∀w ∈ V.

(24.7)

A function u solving (24.7) is called weak solution to (24.1).
We now investigate whether a solution to (24.7) (i.e., a weak solution to

(24.1)) satisfies the PDE and the boundary condition in (24.1). Similarly to
Definition 2.3, we say that a vector-valued field σ ∈ L1

loc(D) := L1
loc(D;Rd)

has a weak divergence ψ ∈ L1
loc(D) if

∫

D

σ·∇ϕdx = −
∫

D

ψϕdx, ∀ϕ ∈ C∞
0 (D), (24.8)

and we write ∇·σ := ψ. The argument of Lemma 2.4 shows that the weak
divergence of a vector-valued field, if it exists, is uniquely defined.

Proposition 24.1 (Weak solution). Assume that u solves (24.7) with f ∈
L2(D). Then −∇u has a weak divergence equal to f , the PDE in (24.1) is
satisfied a.e. in D, and the boundary condition a.e. in ∂D.

Proof. Let u be a weak solution. Then ∇u ∈ L2(D) ⊂ L1
loc(D). Taking

as a test function in (24.7) an arbitrary function ϕ ∈ C∞
0 (D) ⊂ H1

0 (D) and
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observing that f ∈ L2(D) ⊂ L1
loc(D), we infer from the definition (24.8) of the

weak divergence that the vector-valued field σ := −∇u has a weak divergence
equal to f . Hence, the PDE is satisfied in the sense that −∇·(∇u) = f in
L2(D), i.e., both functions are equal a.e. in D. Since u ∈ H1

0 (D), u vanishes
a.e. in ∂D owing to the trace theorem (Theorem 3.10). ⊓⊔

The crucial advantage of the weak formulation (24.7) with respect to the
original formulation (24.1) is that, as we will see in the next chapter, there
exist powerful tools that allow us to assert the existence and uniqueness of
weak solutions. It is noteworthy that uniqueness is not a trivial property in
spaces larger than H1(D), and existence is nontrivial in spaces smaller than
H1(D). For instance, one can construct domains in which uniqueness does
not hold in L2(D), and existence does not hold in H2(D); see Exercise 24.2.

24.1.2 Second weak formulation

To derive our second formulation, we introduce the vector-valued function
σ := −∇u. To avoid notational collisions, we use the letter p instead of u
to denote the scalar-valued unknown function, and we use the symbol u to
denote the pair (σ, p). In many applications, p plays the role of a potential
and σ plays the role of a (diffusive) flux. More generally, p is called primal
variable and σ dual variable.

Since σ = −∇p and −∆p = f , we obtain ∇·σ = f . Therefore, the model
problem is now written as follows:

σ +∇p = 0 in D, ∇·σ = f in D, p = 0 on ∂D. (24.9)

This is the mixed formulation of the original problem (24.1). The PDEs
in (24.9) are often called Darcy’s equations (in the context of porous media
flows, p is the hydraulic head and σ the filtration velocity).

We multiply the first PDE in (24.9) by a vector-valued test function τ and
integrate over D to obtain

∫

D

σ·τ dx+

∫

D

∇p·τ dx = 0. (24.10)

We multiply the second PDE in (24.9) by a scalar-valued test function q and
integrate over D to obtain

∫

D

(∇·σ)q dx =

∫

D

fq dx. (24.11)

No integration by parts is performed in this approach.
We now specify a functional framework. We consider H1(D) as the solu-

tion space for p (so that ∇p ∈ L2(D) and p ∈ L2(D)), and H(div;D) as the

solution space for σ with ‖σ‖H(div;D) := (‖σ‖2
L2(D)+ℓ

2
D‖∇·σ‖2L2(D))

1
2 (recall

that ℓD is a characteristic length associated with D, e.g., ℓD := diam(D)).
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Moreover, we enforce the boundary condition explicitly by restricting p to be
in the space H1

0 (D). With this setting, the test function τ can be taken in
L2(D) and the test function q in L2(D). To sum up, a second weak formula-
tion is as follows:
{
Find u := (σ, p) ∈ V such that∫
D
(σ·τ +∇p·τ + (∇·σ)q) dx =

∫
D
fq dx, ∀w := (τ , q) ∈W,

(24.12)

with the functional spaces V :=H(div;D)×H1
0 (D) andW := L2(D)×L2(D).

Note that the space where the solution is expected to be (trial space) differs
from the space where the test functions are taken (test space).

Proposition 24.2 (Weak solution). Assume that u solves (24.12) with
f ∈ L2(D). Then the PDEs in (24.9) are satisfied a.e. in D, and the boundary
condition a.e. in ∂D.

Proof. Left as an exercise. ⊓⊔

24.1.3 Third weak formulation

We start with the mixed formulation (24.9), and we now perform an integra-
tion by parts on the term involving ∇·σ. Proceeding informally, we obtain

−
∫

D

σ·∇q dx+

∫

∂D

(n·σ)q ds =
∫

D

fq dx. (24.13)

We take the test function q in H1(D) for the first integral to make sense.
Moreover, to eliminate the boundary integral, we restrict q to be in the space
H1

0 (D). Now the dual variable σ can be taken in L2(D). To sum up, a third
weak formulation is as follows:
{
Find u := (σ, p) ∈ V such that∫
D(σ·τ +∇p·τ + σ·∇q) dx = −

∫
D fq dx, ∀w := (τ , q) ∈ V,

(24.14)

with the same functional space V := L2(D)×H1
0 (D) for the trial and test

spaces. The change of sign on the right-hand side has been introduced to
make the left-hand side symmetric with respect to (σ, p) and (τ , q).

Proposition 24.3. Let u solve (24.14) with f ∈ L2(D). Then the PDEs
in (24.9) are satisfied a.e. in D, and the boundary condition a.e. in ∂D.

Proof. Left as an exercise. ⊓⊔

24.2 A first-order PDE

For simplicity, we consider a one-dimensional model problem (a more general
setting is covered in Chapter 56). Let D := (0, 1) and let f : D → R be a
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smooth function. The problem we want to solve consists of seeking a function
u : D → R such that

u′ = f in D, u(0) = 0. (24.15)

Proceeding informally, the solution to this problem is the function defined as
follows:

u(x) :=

∫ x

0

f(t) dt, ∀x ∈ D. (24.16)

To give a precise mathematical meaning to this statement, we assume that
f ∈ L1(D), and we introduce the Sobolev space (see Definition 2.8)

W 1,1(D) := {v ∈ L1(D) | v′ ∈ L1(D)}, (24.17)

where as usual we interpret the derivatives in the weak sense.

Lemma 24.4 (Solution in W 1,1(D)). If f ∈ L1(D), the problem (24.15)
has a unique solution in W 1,1(D) which is given by (24.16).

Proof. Let u be defined in (24.16).
(1) Let us first show that u ∈ C0(D) (recall that D = [0, 1]). Let x ∈ D and
let (xn)n∈N be a sequence converging to x in D. This gives

u(x)− u(xn) =

∫ x

0

f(t) dt−
∫ xn

0

f(t) dt =

∫ x

xn

f(t) dt =

∫

D

1[xn,x](t)f(t) dt,

where 1[xn,x] is the indicator function of the interval [xn, x]. Since 1[xn,x]f → 0
and |1[xn,x]f | ≤ |f | a.e. in D, Lebesgue’s dominated convergence theorem

(Theorem 1.23) implies that u(xn) → u(x). This shows that u ∈ C0(D).
Hence, the boundary condition u(0) = 0 is meaningful.
(2) Let us now prove that u′ = f a.e. in D. One can verify (see Exercise 24.7)
that

∫ 1

0

(∫ x

0

f(t) dt

)
ϕ′(x) dx = −

∫ 1

0

f(x)ϕ(x) dx, ∀ϕ ∈ C∞
0 (D). (24.18)

Since the left-hand side is equal to
∫ 1

0 u(x)ϕ
′(x) dx and f ∈ L1(D) ⊂ L1

loc(D),
we infer that u has a weak derivative in L1

loc(D) equal to f . This implies that
the PDE in (24.15) is satisfied a.e. in D.
(3) Uniqueness of the solution is a consequence of Lemma 2.11 since the
difference of two weak solutions is constant on D (since it has zero weak
derivative) and vanishes at x = 0. ⊓⊔

We now present two possible mathematical settings for the weak formula-
tion of the problem (24.15).
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24.2.1 Formulation in L1(D)

Since f ∈ L1(D) and u ∈ W 1,1(D) with u(0) = 0, a first weak formulation
is obtained by just multiplying the PDE in (24.15) by a test function w and
integrating over D: ∫

D

u′w dt =

∫

D

fw dt. (24.19)

This equality is meaningful for all w ∈ W (∞) := L∞(D). Moreover, the
boundary condition u(0) = 0 can be explicitly enforced by considering the
solution space V (1) := {v ∈W 1,1(D) | v(0) = 0}. Thus, a first weak formula-
tion of (24.15) is as follows:

{
Find u ∈ V (1) such that∫
D
u′w dt =

∫
D
fw dt, ∀w ∈ W (∞).

(24.20)

Remark 24.5 (Literature). Solving first-order PDEs using L1-based for-
mulations has been introduced by Lavery [276, 277]; see also Guermond
[227], Guermond and Popov [228], and the references therein. ⊓⊔

24.2.2 Formulation in L2(D)

Although the weak formulation (24.20) gives a well-posed problem (as we
shall see in §25.4.2), the dominant viewpoint in the literature consists of using
L2-based formulations. This leads us to consider a second weak formulation
where the source term f has slightly more smoothness, i.e., f ∈ L2(D) instead
of just f ∈ L1(D), thereby allowing us to work in a Hilbertian setting. Since
L2(D) ⊂ L1(D), we have f ∈ L1(D), and we can still consider the function
u defined in (24.16). This function turns out to be in H1(D) if f ∈ L2(D).
Indeed, the Cauchy–Schwarz inequality and Fubini’s theorem imply that

∫ 1

0

|u(x)|2 dx =

∫ 1

0

∣∣∣∣
∫ x

0

f(t) dt

∣∣∣∣
2

dx ≤
∫ 1

0

(∫ x

0

|f(t)|2 dt
)
xdx

=

∫ 1

0

(∫ 1

t

dx

)
|f(t)|2dt =

∫ 1

0

(1− t)|f(t)|2dt ≤
∫ 1

0

|f(t)|2dt,

which shows that ‖u‖L2(D) ≤ ‖f‖L2(D). Moreover, ‖u′‖L2(D) = ‖f‖L2(D).
Hence, u ∈ H1(D). We can then restrict the test functions to the Hilbert
space W (2) := L2(D) and use the Hilbert space V (2) := {v ∈ H1(D) | v(0) =
0} as the solution space. Thus, a second weak formulation of (24.20), provided
f ∈ L2(D), is as follows:

{
Find u ∈ V (2) such that∫
D u

′w dt =
∫
D fw dt, ∀w ∈W (2).

(24.21)

The main change with respect to (24.20) is in the trial and test spaces.
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24.3 A complex-valued model problem

Some model problems are formulated using complex-valued functions. A
salient example is Maxwell’s equations in the time-harmonic regime; see §43.1.
For simplicity, let us consider here the PDE

iu− ν∆u = f in D, (24.22)

with u : D → C, f : D → C, i2 = −1, and a real number ν > 0. To fix the
ideas, we enforce a homogeneous Dirichlet condition on u at the boundary.

When working with complex-valued functions, one uses the complex con-
jugate of the test function in the weak problem, i.e., the starting point of the
weak formulation is the identity

∫

D

iuw dx+ ν

∫

D

∇u·∇w dx =

∫

D

fw dx. (24.23)

One can then proceed as in §24.1.1 (for instance). The functional setting uses
the functional space V := H1

0 (D;C), and the weak formulation is as follows:

{
Find u ∈ V such that∫
D iuw dx+ ν

∫
D∇u·∇w dx =

∫
D fw dx, ∀w ∈ V.

(24.24)

Proposition 24.1 is readily adapted to this setting.
The reason for using the complex conjugate of test functions is that it

allows us to infer positivity properties on the real and imaginary parts of the
quantity a(u,w) :=

∫
D
iuw dx+ ν

∫
D
∇u·∇w dx by taking w := u as the test

function. Indeed, we obtain

a(u, u) = i

∫

D

|u|2 dx+ ν

∫

D

‖∇u‖2ℓ2(Cd) dx = i‖u‖2L2(D;C) + ν‖∇u‖2L2(D;Cd).

This means that ℜ(a(u, u)) = ν‖∇u‖2L2(D;Cd) and ℑ(a(u, u)) = ‖u‖2L2(D;C).

These results imply that

ℜ(e−iπ4 a(u, u)) ≥ 1√
2
min(1, νℓ−2

D )‖u‖2H1(D;C), (24.25)

where we recall that the Hilbert space L2(D;C) is equipped with the inner
product (v, w)L2(D) :=

∫
D vw dx and the Hilbert space H1(D;C) is equipped

with the inner product (v, w)H1(D) :=
∫
D vw dx+ ℓ2D

∫
D∇v·∇w dx, where ℓD

is a characteristic length associated with D, e.g., ℓD := diam(D).
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24.4 Toward an abstract model problem

We conclude this chapter by casting all of the above weak formulations into
a unified setting. We consider complex-valued functions since it is in general
simpler to go from complex to real numbers than the other way around.
Whenever relevant, we indicate the (minor) changes to apply in this situation
(apart from replacing C by R).

The above weak formulations fit into the following abstract model problem:

{
Find u ∈ V such that

a(u,w) = ℓ(w), ∀w ∈W,
(24.26)

with maps a : V×W → C and ℓ : W → C, where V,W are complex vector
spaces whose elements are functions defined on D. V is called trial space
or solution space, and W is called test space. Members of V are called trial
functions and members of W are called test functions. The maps a and ℓ are
called forms since their codomain is C (or R in the real case).

Recall that a map A : V → C is said to be linear if A(v1 + v2) = A(v1) +
A(v2) for all v1, v2 ∈ V and A(λv) = λA(v) for all λ ∈ C and all v ∈ V,
whereas a map B :W → C is said to be antilinear if B(w1 +w2) = B(w1) +
B(w2) for all w1, w2 ∈ W and B(λw) = λB(w) for all λ ∈ C and all w ∈ W.
Then ℓ in (24.26) is an antilinear form, whereas a is a sesquilinear form (that
is, the map a(·, w) is linear for all w ∈W, and the map a(v, ·) is antilinear for
all v ∈ V ). In the real case, ℓ is a linear form and a is a bilinear form (that
is, it is linear in each of its arguments).

Remark 24.6 (Linearity). The linearity of a w.r.t. to its first argument is
a consequence of the linearity of the problem, whereas the (anti)linearity of
a w.r.t. its second argument results from the weak formulation. ⊓⊔

Remark 24.7 (Bilinearity). Bilinear forms and linear forms on V×W are
different objects. For instance, the action of a linear form on (v, 0) ∈ V×W
is not necessarily zero, whereas a(v, 0) = 0 if a is a bilinear form. ⊓⊔

Remark 24.8 (Test functions). The role of the test functions in the weak
formulations (24.20) and (24.26) are somewhat different. Since L∞(D) is the
dual space of L1(D) (the reverse is not true), the test functions w ∈ L∞(D)
in (24.20) act on the function f ∈ L1(D). Hence, in principle it should be
more appropriate to write w(ℓ) instead of ℓ(w) in (24.26). Although this
alternative viewpoint is not often considered in the literature, it actually
allows for a more general setting regarding well-posedness. We return to this
point in §25.3.2. This distinction is not relevant for model problems set in a
Hilbertian framework. ⊓⊔
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Exercises

Exercise 24.1 (Forms). Let D := (0, 1). Which of these maps are linear
or bilinear forms on L2(D)×L2(D): a1(f, g) :=

∫
D(f + g + 1) dx, a2(f, g) :=∫

D
x(f − g) dx, a3(f, g) :=

∫
D
(1 + x2)fg dx, a4(f, g) :=

∫
D
(f + g)2 dx?

Exercise 24.2 ((Non)-uniqueness). Consider the domain D in R2 whose
definition in polar coordinates is D := {(r, θ) | r ∈ (0, 1), θ ∈ (πα , 0)} with
α ∈ (−1,− 1

2 ). Let ∂D1 := {(r, θ) | r = 1, θ ∈ (πα , 0)} and ∂D2 := ∂D\∂D1.
Consider the PDE −∆u = 0 in D with the Dirichlet conditions u = sin(αθ)
on ∂D1 and u = 0 on ∂D2. (i) Let ϕ1 := rα sin(αθ) and ϕ2 := r−α sin(αθ).
Prove that ϕ1 and ϕ2 solve the above problem. (Hint : in polar coordinates
∆ϕ = 1

r∂r(r∂rϕ) +
1
r2 ∂θθϕ.) (ii) Prove that ϕ1 and ϕ2 are in L2(D) if α ∈

(−1,− 1
2 ). (iii) Consider the problem of seeking u ∈ H1(D) s.t. u = sin(αθ)

on ∂D1, u = 0 on ∂D2, and
∫
D
∇u·∇v = 0 for all v ∈ H1

0 (D). Prove that ϕ2

solves this problem, but ϕ1 does not. Comment.

Exercise 24.3 (Poisson in 1D). Let D := (0, 1) and f(x) := 1
x(1−x) . Con-

sider the PDE −∂x((1 + sin(x)2)∂xu) = f in D with the Dirichlet conditions
u(0) = u(1) = 0. Write a weak formulation of this problem with both trial and
test spaces equal to H1

0 (D) and show that the linear form on the right-hand
side is bounded on H1

0 (D). (Hint : notice that f(x) = 1
x + 1

1−x .)

Exercise 24.4 (Weak formulations). Prove Propositions 24.2 and 24.3.

Exercise 24.5 (Darcy). (i) Derive another variation on (24.12) and (24.14)
with the functional spaces V = W := H(div;D)×L2(D). (Hint : use The-
orem 4.15.) (ii) Derive yet another variation with the functional spaces
V := L2(D)×L2(D) and W :=H(div;D)×H1

0 (D).

Exercise 24.6 (Variational formulation). Prove that u solves (24.7) if
and only if u minimizes over H1

0 (D) the energy functional

E(v) :=
1

2

∫

D

|∇v|2 dx −
∫

D

fv dx.

(Hint : show first that E(v + tw) = E(v) + t
{∫
D
∇v·∇w dx−

∫
D
fw dx

}
+

1
2 t

2
∫
D
|∇w|2 dx for all v, w ∈ H1

0 (D) and all t ∈ R.)

Exercise 24.7 (Derivative of primitive). Prove (24.18). (Hint : use The-
orem 1.38 and Lebesgue’s dominated convergence theorem.)

Exercise 24.8 (Biharmonic problem). Let D be an open, bounded, set
in Rd with smooth boundary. Derive a weak formulation for the biharmonic
problem

∆(∆u) = f in D, u = ∂nu = 0 on ∂D,

with f ∈ L2(D). (Hint : use Theorem 3.16.)


