
Part V, Chapter 25

Main results on well-posedness

The starting point of this chapter is the model problem derived in §24.4. Our
goal is to specify conditions under which this problem is well-posed. Two
important results are presented: the Lax–Milgram lemma and the more fun-
damental Banach–Nečas–Babuška theorem. The former provides a sufficient
condition for well-posedness, whereas the latter, relying on slightly more so-
phisticated assumptions, provides necessary and sufficient conditions. The
reader is invited to review the material of Appendix C on bijective operators
in Banach spaces before reading this chapter.

25.1 Mathematical setting

To stay general, we consider complex vector spaces. The case of real vector
spaces is recovered by replacing the field C by R, by removing the real part
symbol ℜ(·) and the complex conjugate symbol ·, and by interpreting the
symbol |·| as the absolute value instead of the modulus.

We consider the following model problem:

{
Find u ∈ V such that

a(u,w) = ℓ(w), ∀w ∈W.
(25.1)

The spaces V and W are complex Banach spaces equipped with norms de-
noted by ‖·‖V and ‖·‖W , respectively. In many applications, V and W are
Hilbert spaces. The map a : V×W → C is a sesquilinear form (bilinear in
the real case). We assume that a is bounded, which means that

‖a‖V×W := sup
v∈V

sup
w∈W

|a(v, w)|
‖v‖V ‖w‖W

<∞. (25.2)

It is henceforth implicitly understood that this type of supremum is taken
over nonzero arguments (notice that the order in which the suprema are taken
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in (25.2) does not matter). Furthermore, the map ℓ :W → C is an antilinear
form (linear in the real case). We assume that ℓ is bounded, and we write
ℓ ∈W ′. The boundedness of ℓ means that

‖ℓ‖W ′ := sup
w∈W

|ℓ(w)|
‖w‖W

<∞. (25.3)

Notice that it is possible to replace the modulus by the real part in (25.2)
and (25.3) (replace w by ξw with a unitary complex number ξ), and in the
real case, the absolute value is not needed (replace w by ±w).

Definition 25.1 (Well-posedness, Hadamard [236]). We say that the
problem (25.1) is well-posed if it admits one and only one solution for all
ℓ ∈ W ′, and there is c, uniform with respect to ℓ, s.t. the a priori estimate
‖u‖V ≤ c ‖ℓ‖W ′ holds true.

The goal of this chapter is to study the well-posedness of (25.1). The
key idea is to introduce the bounded linear operator A ∈ L(V ;W ′) that is
naturally associated with the bilinear form a on V×W by setting

〈A(v), w〉W ′ ,W := a(v, w), ∀(v, w) ∈ V×W. (25.4)

This definition implies that A is linear and bounded with norm ‖A‖L(V ;W ′) =
‖a‖V×W . The problem (25.1) can be reformulated as follows: Find u ∈ V
such that A(u) = ℓ in W ′. Hence, proving the existence and uniqueness of
the solution to (25.1) amounts to proving that the operator A is bijective.
Letting A∗:W ′′→V ′ be the adjoint of A, the way to do this is to prove the
following three conditions:

(i) A is injective, (ii) im(A) is closed︸ ︷︷ ︸
⇐⇒ ∃α>0, ‖A(v)‖W ′≥α‖v‖V , ∀v∈V

,

⇐⇒ A is surjective︷ ︸︸ ︷
(iii) A∗ is injective . (25.5)

The conditions (ii)-(iii) in (25.5) are equivalent to A being surjective since
the closure of im(A) is (ker(A∗))⊥ ⊂ W ′ owing to Lemma C.34 (see also
(C.14b)). That the conditions (i)-(ii) are equivalent to the existence of some
α > 0 s.t. ‖A(v)‖W ′ ≥ α‖v‖V , for all v ∈ V, is established in Lemma C.39
(these two conditions are also equivalent to the surjectivity of A∗).

25.2 Lax–Milgram lemma

The Lax–Milgram lemma is applicable only if the solution and the test spaces
are identical. Assuming W = V, the model problem (25.1) becomes
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{
Find u ∈ V such that

a(u,w) = ℓ(w), ∀w ∈ V.
(25.6)

Lemma 25.2 (Lax–Milgram). Let V be a Hilbert space, let a be a bounded
sesquilinear form on V×V, and let ℓ ∈ V ′. Assume the following coercivity
property: There is a real number α > 0 and a complex number ξ with |ξ| = 1
such that

ℜ (ξa(v, v)) ≥ α‖v‖2V , ∀v ∈ V. (25.7)

Then (25.6) is well-posed with the a priori estimate ‖u‖V ≤ 1
α‖ℓ‖V ′ .

Proof. Although this lemma is a consequence of the more abstract BNB
theorem (Theorem 25.9), we present a direct proof for completeness. Let
A : V → V ′ be the bounded linear operator defined in (25.4) and let us
prove the three conditions (i)-(ii)-(iii) in (25.5). Since ξa(v, v) = a(v, ξv), the
coercivity property (25.7) implies that

α‖v‖V ≤ ℜ(a(v, ξv))
‖v‖V

≤ sup
w∈V

ℜ(a(v, ξw))
‖w‖V

= sup
w∈V

|a(v, w)|
‖w‖V

= ‖A(v)‖V ′ ,

so that the conditions (i)-(ii) hold true. Since V is reflexive, we identify V and
V ′′, so that the adjoint operator A∗ : V → V ′ is such that 〈A∗(v), w〉V ′,V =

〈A(w), v〉V ′,V for all v, w ∈ V. Let v ∈ V and assume that A∗(v) = 0.

Then 0 = 0 = 〈A∗(v), ξv〉V ′,V = ξa(v, v). We then infer from (25.7) that
α‖v‖2V ≤ ℜ (ξa(v, v)) = 0, i.e., v = 0. This proves that A∗ is injective. Hence,
the condition (iii) also holds true. Finally, the a priori estimate follows from

α‖u‖V ≤ ℜ(a(u,ξu))
‖u‖V = ℜ(ℓ(ξu))

‖u‖V ≤ ‖ℓ‖V ′ . ⊓⊔

Remark 25.3 (Hilbertian setting). An important observation is that the
Lax–Milgram lemma relies on the notion of coercivity which is applicable only
in Hilbertian settings; see Proposition C.59. ⊓⊔

Example 25.4 (Laplacian). Consider the weak formulation (24.7) of the
Poisson equation with homogeneous Dirichlet condition. The functional set-
ting is V =W := H1

0 (D) equipped with the norm ‖·‖H1(D), the bilinear form
is a(v, w) :=

∫
D
∇v·∇w dx, and the linear form is ℓ(w) :=

∫
D
fw dx. Owing

to the Cauchy–Schwarz inequality, the forms a and ℓ are bounded on V×V
and V, respectively. Moreover, the Poincaré–Steklov inequality (3.11) (with
p := 2) implies that (see Remark 3.29)

a(v, v) = ‖∇v‖2L2(D) = |v|2H1(D) ≥ ℓ−2
D

C2
ps

1 + C2
ps

‖v‖2H1(D),

for all v ∈ V. Hence, (25.7) holds true with α := ℓ−2
D

C2
ps

1+C2
ps

and ξ := 1, and by

the Lax–Milgram lemma, the problem (24.7) is well-posed. Alternatively one
can equip V with the norm ‖v‖V := ℓ−1

D ‖∇v‖L2(D) which is equivalent to
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the norm ‖·‖H1(D) owing to the Poincaré–Steklov inequality. The coercivity

constant of a is then α := ℓ−2
D . ⊓⊔

Example 25.5 (Complex case). Consider the PDE iu − ν∆u = f in D
with i2 = −1, a real number ν > 0, a source term f ∈ L2(D;C), and a homo-
geneous Dirichlet condition. The functional setting is V = W := H1

0 (D;C)
equipped with the norm ‖·‖H1(D;C), the sesquilinear form is a(v, w) :=∫
D
ivw dx + ν

∫
D
∇v·∇w dx, and the antilinear form is ℓ(w) :=

∫
D
fw dx.

Then (24.25) shows that the coercivity property (25.7) holds true with
ξ := e−iπ4 and α := 1√

2
min(1, νℓ−2

D ). ⊓⊔

Remark 25.6 (Definition of coercivity). The coercivity property can
also be defined in the following way: There is a real number α > 0 such that
|a(v, v)| ≥ α‖v‖2V for all v ∈ V. It is shown in Lemma C.58 that this definition
and (25.7) are equivalent. ⊓⊔

Definition 25.7 (Hermitian/symmetric form). Let V be a Hilbert space.
In the complex case, we say that a sesquilinear form a : V×V → C is Hermi-
tian whenever a(v, w) = a(w, v) for all v, w ∈ V. In the real case, we say that
a bilinear form a is symmetric whenever a(v, w) = a(w, v) for all v, w ∈ V.

Whenever the sesquilinear form a is Hermitian and coercive (with ξ := 1
for simplicity), setting ((·, ·))V := a(·, ·) one defines an inner product in V,
and the induced norm is equivalent to ‖·‖V owing to the coercivity and the
boundedness of a. Then solving the problem (25.6) amounts to finding the
representative u ∈ V of the linear form ℓ ∈ V ′, i.e., ((u,w))V = ℓ(w) for all w ∈
V. This problem is well-posed by the Riesz–Fréchet theorem (Theorem C.24).
Thus, the Lax–Milgram lemma can be viewed as an extension of the Riesz–
Fréchet theorem to non-Hermitian forms.

Whenever V is a real Hilbert space and the bilinear form a is symmetric
and coercive with ξ := 1, the problem (25.6) can be interpreted as a mini-
mization problem (or a maximization problem if ξ := −1). In this context,
(25.6) is called variational formulation.

Proposition 25.8 (Variational formulation). Let V be a real Hilbert
space, let a be a bounded bilinear form on V×V, and let ℓ ∈ V ′. Assume
that a is coercive with ξ := 1. Assume that a is symmetric, i.e.,

a(v, w) = a(w, v), ∀v, w ∈ V. (25.8)

Then introducing the energy functional E : V → R such that

E(v) :=
1

2
a(v, v)− ℓ(v), (25.9)

u solves (25.6) iff u minimizes E over V.

Proof. The proof relies on the fact that for all u,w ∈ V and all t ∈ R,
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E(u+ tw) = E(u) + t(a(u,w)− ℓ(w)) +
1

2
t2a(w,w), (25.10)

which results from the symmetry of a. (i) Assume that u solves (25.6). Since
a(w,w) ≥ 0 owing to the coercivity of a with ξ := 1, (25.10) implies that
u minimizes E over V. (ii) Conversely, assume that u minimizes E over V.
The right-hand side of (25.10) is a quadratic polynomial in t reaching its
minimum value at t = 0. Hence, the derivative of this polynomial vanishes
at t = 0, which amounts to a(u,w)− ℓ(w) = 0. Since w is arbitrary in V, we
conclude that u solves (25.6). ⊓⊔

25.3 Banach–Nečas–Babuška (BNB) theorem

The BNB theorem plays a fundamental role in this book. We use this ter-
minology since, to our knowledge, the BNB theorem was stated by Nečas
in 1962 [310] and Babuška in 1970 in the context of finite element meth-
ods [33]. From a functional analysis point of view, the BNB theorem is a
rephrasing of two fundamental results by Banach: the closed range theorem
and the open mapping theorem. We present two settings for the BNB the-
orem depending on whether the test functions in the model problem belong
to a reflexive Banach space or to the dual of a Banach space. Recall from
Definition C.18 that a Banach spaceW is said to be reflexive if the canonical
isometry JW : W → W ′′ is an isomorphism. This is always the case if W is
a Hilbert space.

25.3.1 Test functions in reflexive Banach space

Theorem 25.9 (Banach–Nečas–Babuška (BNB)). Let V be a Banach
space and let W be a reflexive Banach space. Let a be a bounded sesquilinear
form on V×W and let ℓ ∈W ′. Then the problem (25.1) is well-posed iff:

(bnb1) inf
v∈V

sup
w∈W

|a(v, w)|
‖v‖V ‖w‖W

=: α > 0, (25.11a)

(bnb2) ∀w ∈W, [ ∀v ∈ V, a(v, w) = 0 ] =⇒ [w = 0 ]. (25.11b)

(It is implicitly understood that the argument is nonzero in the above infimum
and supremum.) Moreover, we have the a priori estimate ‖u‖V ≤ 1

α‖ℓ‖W ′.

Proof. Let A ∈ L(V ;W ′) be defined by (25.4) and let us prove that the
three conditions (i)-(ii)-(iii) in (25.5) are equivalent to (bnb1)-(bnb2). The
conditions (i)-(ii) are equivalent to (bnb1) since for all v ∈ V,

‖Av‖W ′ = sup
w∈W

|〈A(v), w〉W ′ ,W |
‖w‖W

= sup
w∈W

|a(v, w)|
‖w‖W

.
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Since 〈A∗(JW (w)), v〉V ′,V = 〈JW (w), A(v)〉W ′′ ,W ′ = 〈A(v), w〉W ′ ,W = a(v, w)
for all (v, w) ∈ V×W, stating that a(v, w) = 0 for all v ∈ V is equivalent to
stating that (A∗◦JW )(w) = 0. Hence, (bnb2) is equivalent to stating that
A∗◦JW is injective. Furthermore, sinceW is reflexive, the canonical isometry
JW : W → W ′′ from Proposition C.17 is an isomorphism. Hence, (bnb2)
is equivalent to stating that A∗ : W ′′ → V ′ is injective, which is the condi-
tion (iii) in (25.5). Finally, the a priori estimate follows from the inequalities

α‖u‖V ≤ supw∈W
|a(u,w)|
‖w‖W = supw∈W

|ℓ(w)|
‖w‖W = ‖ℓ‖W ′ . ⊓⊔

Remark 25.10 ((bnb1)). Condition (bnb1) is called inf-sup condition and
it is equivalent to the following statement:

∃α > 0, α‖v‖V ≤ sup
w∈W

|a(v, w)|
‖w‖W

, ∀v ∈ V. (25.12)

Establishing (25.12) is usually done by finding two positive real numbers c1, c2
s.t. for all v ∈ V, one can find a “partner” wv ∈ W s.t. ‖wv‖W ≤ c1‖v‖V
and |a(v, wv)| ≥ c2‖v‖2V . If this is indeed the case, then (25.12) holds true
with α := c2

c1
. Establishing coercivity amounts to asserting that wv = ζv is a

suitable partner for some ζ ∈ C with |ζ| = 1. ⊓⊔

Remark 25.11 ((bnb2)). The statement in (bnb2) is equivalent to assert-
ing that for all w in W, either there exists v in V such that a(v, w) 6= 0 or
w = 0. In view of the proof Theorem 25.9, (bnb2) says that for all w in W,
either A∗◦JW (w) 6= 0 or w = 0. ⊓⊔

Remark 25.12 (Two-sided bound). Since ‖ℓ‖W ′ = ‖A(u)‖W ′ ≤ ω‖u‖V
where ω := ‖a‖V×W = ‖A‖L(V ;W ′) is the boundedness constant of the
sesquilinear form a on V×W, we infer the two-sided bound

1

‖a‖V×W
‖ℓ‖W ′ ≤ ‖u‖V ≤ 1

α
‖ℓ‖W ′.

Since α−1 = ‖A−1‖L(W ′;V ) owing to Lemma C.51, the quantity

κ(a) =
‖a‖V×W

α
= ‖A‖L(V ;W ′)‖A−1‖L(W ′;V ) ≥ 1

can be viewed as the condition number of the sesquilinear form a (or of
the associated operator A). A similar notion of conditioning is developed for
matrices in §28.2.1. ⊓⊔

Remark 25.13 (Link with Lax–Milgram). Let V be a Hilbert space
and let a be a bounded and coercive bilinear form on V×V. The proof of the
Lax–Milgram lemma shows that a satisfies the conditions (bnb1) and (bnb2)
(with W = V ). The converse is false: the conditions (bnb1) and (bnb2)
do not imply coercivity. Hence, (25.7) is not necessary for well-posedness,
whereas (bnb1)-(bnb2) are necessary and sufficient. However, coercivity is
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both necessary and sufficient for well-posedness when the bilinear form a is
Hermitian and positive semidefinite; see Exercise 25.7. ⊓⊔

Remark 25.14 (T -coercivity). Let V,W be Hilbert spaces. Then (bnb1)-
(bnb2) are equivalent to the existence of a bijective operator T ∈ L(V ;W )
and a positive real number η such that

ℜ(a(v, T (v))) ≥ η‖v‖2V , ∀v ∈ V.

This property is called T -coercivity in Bonnet-Ben Dhia et al. [72, 73]; see
Exercise 25.10. The advantage of this notion over coercivity is the possibility
of treating different trial and test spaces and using a test function different
from v ∈ V to estimate ‖v‖2V . Note that the bilinear form (u, v) 7→ a(u, T (v))
is bounded and coercive on V×V. Proposition C.59 then implies that V is
necessarily a Hilbert space. This argument proves that T -coercivity is a notion
relevant in Hilbert spaces only. The BNB theorem is more general than T -
coercivity since it also applies to Banach spaces. ⊓⊔

25.3.2 Test functions in dual Banach space

The requirement on the reflexivity of the space W in the BNB theorem can
be removed if the model problem is reformulated in such a way that the
test functions act on the problem data instead of the data acting on the test
functions. Assume that we are given a bounded operator A ∈ L(V ;W ) and
some data f ∈ W, and we want to assert that there is a unique u ∈ V s.t.
A(u) = f . To recast this problem in the general setting of (25.1) using test
functions, we define the bounded sesquilinear form on V×W ′ such that

a(v, w′) := 〈w′, A(v)〉W ′,W , ∀(v, w′) ∈ V×W ′, (25.13)

and we consider the following model problem:

{
Find u ∈ V such that

a(u,w′) = 〈w′, f〉W ′,W , ∀w′ ∈W ′.
(25.14)

Then u ∈ V solves (25.14) iff 〈w′, A(u)− f〉W ′,W = 0 for all w′ ∈ W ′, that is,
iff A(u) = f . In (25.14), the data is f is in W and the test functions belong
to W ′, whereas in the original model problem (25.1) the data is ℓ ∈ W ′ and
the test functions belong to W. The functional setting of (25.14) is useful,
e.g., when considering first-order PDEs; see §24.2.1.

Theorem 25.15 (Banach–Nečas–Babuška (BNB)). Let V,W be Ba-
nach spaces. Let A ∈ L(V ;W ) and let f ∈ W. Let a be the bounded sesquilin-
ear form on V×W ′ defined in (25.13). The problem (25.14) is well-posed
iff:
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(bnb1’) inf
v∈V

sup
w′∈W ′

|a(v, w′)|
‖v‖V ‖w′‖W ′

:= α > 0, (25.15)

(bnb2’) ∀w′ ∈W ′, [ ∀v ∈ V, a(v, w′) = 0 ] =⇒ [w′ = 0 ]. (25.16)

Moreover, we have the a priori estimate ‖u‖V ≤ 1
α‖f‖W .

Proof. The well-posedness of (25.14) is equivalent to the bijectivity of A :
V → W, and this property is equivalent to the three conditions (i)-(ii)-(iii)
in (25.5) with W in lieu of W ′ and A∗ : W ′ → V ′. Since ‖A(v)‖W =

supw′∈W ′

|〈w′,A(v)〉W ′,W |
‖w′‖W ′

owing to Corollary C.14, the condition (bnb1’)

means that ‖A(v)‖W ≥ α‖v‖V for all v ∈ V. This condition is therefore equiv-
alent to the conditions (i)-(ii). Moreover, since a(v, w′) = 〈w′, A(v)〉W ′ ,W =

〈A∗(w′), v〉V ′,V , (bnb2’) amounts to the condition (iii) (i.e., the injectivity
of A∗). ⊓⊔

Remark 25.16 (A vs. a). In the first version of the BNB theorem (The-
orem 25.9), it is equivalent to assume that we are given an operator A ∈
L(V ;W ′) or a bounded sesquilinear form a on V×W. But, in the second
version of the BNB theorem (Theorem 25.15), we are given an operator
A ∈ L(V ;W ), and the bounded sesquilinear form a on V×W ′ is defined
from A. If we were given instead a bounded sesquilinear form a on V×W ′,
proceeding as in (25.4) would be awkward since it would lead to an operator
Ã ∈ L(V ;W ′′) s.t. 〈Ã(v), w′〉W ′′,W ′ := a(v, w′) for all (v, w′) ∈ V×W ′. ⊓⊔

Remark 25.17 (Literature). Inf-sup conditions in nonreflexive Banach
spaces are discussed in Amrouche and Ratsimahalo [9]. ⊓⊔

25.4 Two examples

In this section, we present two examples illustrating the above abstract re-
sults.

25.4.1 Darcy’s equations

The weak formulation (24.12) fits the setting of the model problem (25.1) with
V := H(div;D)×H1

0 (D) and W := L2(D)×L2(D), where ‖σ‖H(div;D) :=

(‖σ‖2
L2(D) + ℓ2D‖∇·σ‖2L2(D))

1
2 (recall that ℓD is a characteristic length scale

associated with D, e.g., ℓD := diam(D)), and with the bilinear and linear
forms

a(v, w) :=

∫

D

(
σ·τ +∇p·τ + (∇·σ)q

)
dx, ℓ(w) :=

∫

D

fq dx, (25.17)

with v := (σ, p) ∈ V and w := (τ , q) ∈ W.
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Proposition 25.18. Problem (24.12) is well-posed.

Proof. We equip the Hilbert spaces V and W with the norms ‖v‖V :=(
‖σ‖2

H(div;D) + |p|2H1(D)

) 1
2 and ‖w‖W :=

(
‖τ‖2

L2(D) + ℓ−2
D ‖q‖2L2(D)

) 1
2 with

v := (σ, p) and w := (τ , q), respectively. That ‖·‖V is indeed a norm fol-
lows from the Poincaré–Steklov inequality (3.11) (see Remark 3.29). Since
the bilinear form a and the linear form ℓ are obviously bounded, it remains
to check the conditions (bnb1) and (bnb2).

(1) Proof of (bnb1). Let (σ, p) ∈ V and define S := sup(τ ,q)∈W
|a((σ,p),(τ ,q))|

‖(τ ,q)‖W .

Since V ⊂W, we can take (σ, p) as the test function. Since p vanishes at the
boundary, a((σ, p), (σ, p)) = ‖σ‖2

L2(D), whence we infer that

‖σ‖2L2(D) =
a((σ, p), (σ, p))

‖(σ, p)‖W
‖(σ, p)‖W ≤ S ‖(σ, p)‖W .

Since ‖·‖W ≤ γ‖·‖V on V with γ := max(1, C−1
ps ), we infer that ‖σ‖2

L2(D) ≤
γ S ‖(σ, p)‖V . Moreover, we have

(
‖∇p‖2L2(D) + ℓ2D‖∇·σ‖2L2(D)

) 1
2

= sup
(τ ,q)∈W

|
∫
D {∇p·τ + (∇·σ)q} dx|

‖(τ , q)‖W

≤ sup
(τ ,q)∈W

|a((σ, p), (τ , q))|
‖(τ , q)‖W

+ sup
(τ ,q)∈W

|
∫
D
σ·τ dx|

‖(τ , q)‖W
.

Hence,
(
‖∇p‖2

L2(D) + ℓ2D‖∇·σ‖2L2(D)

) 1
2 ≤ S + ‖σ‖L2(D). Squaring this in-

equality and combining it with the above bound on ‖σ‖L2(D), we infer that

‖(σ, p)‖2V = ‖∇p‖2L2(D) + ‖σ‖2H(div;D) ≤ 2S2 + 3‖σ‖2L2(D)

≤ 2S2 + 3γ S ‖(σ, p)‖V .

Hence, the inf-sup condition (bnb1) holds true with α ≥ (4 + 9γ2)−
1
2 .

(2) Proof of (bnb2). Let (τ , q) ∈ W be such that a((σ, p), (τ , q)) = 0 for
all (σ, p) ∈ V. This means on the one hand that

∫
D
∇p·τ dx = 0 for all

p ∈ H1
0 (D), so that ∇·τ = 0. On the other hand we obtain that

∫
D{σ·τ +

(∇·σ)q} dx = 0 for all σ ∈ H(div;D). Taking σ ∈ C∞
0 (D) we infer that

q ∈ H1(D) and ∇q = τ . Observing that τ ∈ H(div;D) and taking σ := τ ,
we infer that 0 =

∫
D{τ ·τ + (∇·τ )q} dx = ‖τ‖2L2(D) since ∇·τ = 0. Hence,

τ = 0. Finally, ∇q = τ = 0, which implies that q is constant on D. Since∫
D(∇·σ)q dx = 0 for all σ ∈ H(div;D), q is identically zero in D (take for
instance σ(x) := x). ⊓⊔

25.4.2 First-order PDE

Consider the weak formulation (24.20) on D := (0, 1). This formulation fits
the setting of the model problem (25.14) with the spaces
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V := {v ∈W 1,1(D) | v(0) = 0}, W := L1(D). (25.18)

The data is f ∈ W and we consider the bounded operator A : V → W s.t.
A(v) := dv

dt for all v ∈ V. (Here, we denote derivatives by d
dt and reserve

the primes to duality.) Recalling that W ′ = L∞(D), the bilinear form a
associated with the operator A is s.t.

a(v, w′) :=
∫ 1

0

dv

dt
w′ dt, ∀(v, w′) ∈ V×W ′, (25.19)

and the right-hand side is 〈w′, f〉W ′,W :=
∫ 1

0 w
′f dt with f ∈W.

Proposition 25.19. Problem (24.20) is well-posed.

Proof. We equip the Banach spaces V and W ′ with the norms ‖v‖V :=
‖v‖L1(D)+‖dv

dt ‖L1(D) and ‖w′‖W ′ := ‖w′‖L∞(D), and we verify the conditions
(bnb1’) and (bnb2’) from Theorem 25.15.
(1) Proof of (bnb1’). Let v ∈ V and set D± := {t ∈ D | ± dv

dt (t) > 0}. Taking
w′
v := 1D+ − 1D− , where 1S denotes the indicator function of a measurable

set S, we infer that

sup
w′∈W ′

|a(v, w′)|
‖w′‖W ′

≥ |a(v, w′
v)|

‖w′
v‖W ′

=
|
∫ 1

0
dv
dtw

′
v dt|

‖w′
v‖L∞(D)

=

∫ 1

0

∣∣dv
dt

∣∣ dt =
∥∥dv

dt

∥∥
L1(D)

.

Invoking the extended Poincaré–Steklov inequality on V (with p := 1 and
the bounded linear form v 7→ v(0) in (3.13)) yields (bnb1’).

(2) Proof of (bnb2’). Let w′ ∈ W ′ be such that
∫ 1

0
dv
dtw

′ dt = 0 for all v ∈
V. Taking v in C∞

0 (D), we infer that the weak derivative of w′ vanishes.
Lemma 2.11 implies that w′ is a constant. Choosing v(t) := t as a test

function leads to
∫ 1

0
w′ dt = 0. Hence, we have w′ = 0. ⊓⊔

Exercises

Exercise 25.1 (Riesz–Fréchet). The objective is to prove the Riesz–Fréchet
theorem (Theorem C.24) by using the BNB theorem. Let V be a Hilbert space
with inner product (·, ·)V . (i) Show that for every v ∈ V, there is a unique
Jrf
V (v) ∈ V ′ s.t. 〈Jrf

V (v), w〉V ′,V := (v, w)V for all w ∈ V. (ii) Show that
Jrf
V : V ′ → V is a linear isometry.

Exercise 25.2 (Reflexivity). Let V,W be two Banach spaces such that
there is an isomorphism A ∈ L(V ;W ). Assume that V is reflexive. Prove
that W is reflexive. (Hint : consider the map A∗∗ ◦ JV ◦A−1.)

Exercise 25.3 (Space VR). Let V be a set and assume that V has a vector
space structure over the field C. By restricting the scaling λv to λ ∈ R and
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v ∈ V, V has also a vector space structure over the field R, which we denote
by VR (V and VR are the same sets, but they are equipped with different
vector space structures); see Remark C.11. Let V ′ be the set of the bounded
anti-linear forms on V and V ′

R
be the set of the bounded linear forms on VR.

Prove that the map I : V ′ → V ′
R
such that for all ℓ ∈ V ′, I(ℓ)(v) := ℜ(ℓ(v))

for all v ∈ V, is a bijective isometry. (Hint : for ψ ∈ V ′
R
, set ℓ(v) := ψ(v)+iψ(iv)

with i2 = −1.)

Exercise 25.4 (Orthogonal projection). Let V be a Hilbert space with
inner product (·, ·)V and induced norm ‖·‖V . Let U be a nonempty, closed,
and convex subset of V. Let f ∈ V. (i) Show that there is a unique u in
U such that ‖f − u‖V = minv∈U ‖f − v‖V . (Hint : recall that 1

4 (a − b)2 =
1
2 (c− a)2 + 1

2 (c− b)2 − (c− 1
2 (a+ b))2 and show that a minimizing sequence

is a Cauchy sequence.) (ii) Show that u ∈ U is the minimizer if and only
if ℜ((f − u, v − u)V ) ≤ 0 for all v ∈ U . (Hint : proceed as in the proof of
Proposition 25.8.) (iii) Assuming that U is a (nontrivial) subspace of V, prove
that the unique minimizer is characterized by (f − u, v)V = 0 for all v ∈ U ,
and prove that the map ΠU : V ∋ f 7→ u ∈ U is linear and ‖ΠU‖L(V ;U) = 1.
(iv) Let a be a bounded, Hermitian, and coercive sesquilinear form (with
ξ := 1 for simplicity). Let ℓ ∈ V ′. Set E(v) := 1

2a(v, v) − ℓ(v). Show that
there is a unique u ∈ V such that E(u) = minv∈U E(v) and that u is the
minimizer if and only if ℜ(a(u, v − u)− ℓ(v − u)) ≥ 0 for all v ∈ U .

Exercise 25.5 (Inf-sup constant). Let V be a Hilbert space, U a subset

of V, and W a closed subspace of V. Let β := infu∈U supw∈W
|(u,w)V |

‖u‖V ‖w‖W . (i)

Prove that β ∈ [0, 1]. (ii) Prove that β = infu∈U
‖ΠW (u)‖V

‖u‖V , where ΠW is

the orthogonal projection onto W. (Hint : use Exercise 25.4.) (iii) Prove that

‖u−ΠW (u)‖V ≤ (1− β2)
1
2 ‖u‖V . (Hint : use the Pythagorean identity.)

Exercise 25.6 (Fixed-point argument). The goal of this exercise is to
derive another proof of the Lax–Milgram lemma. Let A ∈ L(V ;V ) be defined
by (A(v), w)V := a(v, w) for all v, w ∈ V (note that we use an inner product
to define A). Let L be the representative in V of the linear form ℓ ∈ V ′. Let
λ be a positive real number. Consider the map Tλ : V → V s.t. Tλ(v) :=
v − λξ(A(v) − L) for all v ∈ V. Prove that if λ is small enough, ‖Tλ(v) −
Tλ(w)‖V ≤ ρλ‖v−w‖V for all v, w ∈ V with ρλ ∈ (0, 1), and show that (25.6)
is well-posed. (Hint : use Banach’s fixed-point theorem.)

Exercise 25.7 (Coercivity as necessary condition). Let V be a reflexive
Banach space and let A ∈ L(V ;V ′) be a monotone self-adjoint operator; see
Definition C.31. Prove that A is bijective if and only if A is coercive (with

ξ := 1). (Hint : prove that ℜ(〈A(v), w〉V ′,V ) ≤ 〈A(v), v〉
1
2

V ′,V 〈A(w), w〉
1
2

V ′,V for
all v, w ∈ V.)

Exercise 25.8 (Darcy). Prove that the problem (24.14) is well-posed.
(Hint : adapt the proof of Proposition 25.18.)
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Exercise 25.9 (First-order PDE). Prove that the problem (24.21) is well-
posed. (Hint : adapt the proof of Proposition 25.19.)

Exercise 25.10 (T -coercivity). Let V,W be Hilbert spaces. Prove that
(bnb1)-(bnb2) are equivalent to the existence of a bijective operator T ∈
L(V ;W ) and a real number η > 0 such that ℜ(a(v, T (v))) ≥ η‖v‖2V for all
v ∈ V. (Hint : use J−1

W , (A−1)∗, and the map Jrf
V from the Riesz–Fréchet

theorem to construct T .)

Exercise 25.11 (Sign-changing diffusion). Let D be a Lipschitz do-
main D in Rd partitioned into two disjoint Lipschitz subdomains D1 and
D2. Set Σ := ∂D1 ∩ ∂D2, each having an intersection with ∂D of pos-
itive measure. Let κ1, κ2 be two real numbers s.t. κ1 > 0 and κ2 < 0.
Set κ(x) := κ11D1(x) + κ21D2(x) for all x ∈ D. Let V := H1

0 (D) be
equipped with the norm ‖∇v‖L2(D). The goal is to show that the bilinear
form a(v, w) :=

∫
D κ∇v·∇w satisfies conditions (bnb1)-(bnb2) on V×V ;

see Chesnel and Ciarlet [118]. Set Vm := {v|Dm | v ∈ V } for all m ∈ {1, 2},
equipped with the norm ‖∇vm‖L2(Dm) for all vm ∈ Vm, and let γ0,m be the
traces of functions in Vm on Σ. (i) Assume that there is S1 ∈ L(V1;V2) s.t.
γ0,2(S1(v1)) = γ0,1(v1). Define T : V → V s.t. for all v ∈ V, T (v)(x) := v(x) if
x ∈ D1 and T (v)(x) := −v(x)+2S1(v|D1)(x) if x ∈ D2. Prove that T ∈ L(V )
and that T is an isomorphism. (Hint : verify that T ◦ T = IV , the iden-
tity in V.) (ii) Assume that κ1

|κ2| > ‖S1‖2L(V1;V2)
. Prove that the conditions

(bnb1)-(bnb2) are satisfied. (Hint : use T -coercivity from Remark 25.14.)
(iii) Let D1 := (−a, 0)×(0, 1) and D2 := (0, b)×(0, 1) with a > b > 0.
Show that if κ1

|κ2| 6∈ [1, ab ], (bnb1)-(bnb2) are satisfied. (Hint : consider the

map S1 ∈ L(V1;V2) s.t. S1(v1)(x, y) := v1(−a
bx, y) for all v1 ∈ V1, and

the map S2 ∈ L(V2;V1) s.t. S2(v2)(x, y) := v2(−x, y) if x ∈ (−b, 0) and
S2(v2)(x, y) := 0 otherwise, for all v2 ∈ V2.)


