
Part VII, Chapter 35

The Helmholtz problem

The objective of this chapter is to give a brief overview of the analysis of
the Helmholtz problem and its approximation using H1-conforming finite
elements. The Helmholtz problem arises when modeling electromagnetic or
acoustic scattering problems in the frequency domain. One specificity of this
elliptic problem is that one cannot apply the Lax-Milgram lemma to establish
well-posedness. The correct way to tackle the Helmholtz problem is to invoke
the BNB theorem (Theorem 25.9). In the entire chapter, D is a Lipschitz
domain in Rd with d ≥ 1, i.e., a nonempty open bounded and connected
subset of Rd with a Lipschitz boundary.

35.1 Robin boundary conditions

We investigate in this section the Helmholtz problem with Robin boundary
conditions. Given f ∈ L2(D), g ∈ L2(∂D), and κ ∈ R, our goal is to find a
function u : D → C such that

−∆u− κ2u = f in D, ∂nu− iκu = g on ∂D, (35.1)

with i2 = −1. Notice that the Robin boundary condition couples the real
and imaginary parts of u. The sign of the parameter κ is irrelevant in what
follows, but to simplify some expressions, we henceforth assume that κ > 0.
All that is said below remains valid when κ < 0 by replacing κ by |κ| in the
definitions of the norms and in the upper bounds. Note that κ−1 is a length
scale. The problem (35.1) can be reformulated as follows in weak form:

{
Find u ∈ V := H1(D) such that

a(u,w) = ℓ(w), ∀w ∈ V,
(35.2)

with the sesquilinear form
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a(v, w) :=

∫

D

(∇v·∇w − κ2vw) dx − iκ

∫

∂D

γg(v)γg(w) ds, (35.3)

and the antilinear form ℓ(w) :=
∫
D
fw dx +

∫
∂D

gγg(w) ds, where γg :

H1(D) → H
1
2 (∂D) is the trace map.

Remark 35.1 (Sommerfeld radiation condition). The Helmholtz prob-
lem is in general posed on unbounded domains, and the proper “bound-
ary condition to set at infinity” is the Sommerfeld radiation condition

limr→∞ r
d−1
2 (e·∇u(re) − iκu(re)) = 0 for every unit vector e ∈ Rd and

the convergence must be uniform with respect to n. One usually simplifies
this problem by truncating the domain and replacing the Sommerfeld radia-
tion condition by a Robin boundary condition as in (35.1). ⊓⊔

Remark 35.2 (Wave equation). The Helmholtz problem can be derived
by considering the wave equation ∂ttv−c2∆v = g(x) cos(ωt) inD×(0, T ) with
appropriate initial data and boundary conditions; see §46.2.1 and §46.2.2.
Here, c is the wave speed and g is some forcing. Assuming that the solution
is of the form v(x, t) = ℜ(u(x)eiωt), the complex amplitude u solves ω2u −
c2∆u = g. We then recover (35.1) by setting κ := ω

c . ⊓⊔

35.1.1 Well-posedness

Contrary to what was done in the previous chapters, we cannot apply the
Lax–Milgram lemma to establish that the weak formulation (35.2) is well-
posed since the sesquilinear form a is not coercive. We are going to invoke
instead the BNB theorem (Theorem 25.9), and with this goal in mind, we
first establish an abstract result.

Lemma 35.3 (G̊arding). Let V →֒ L be two Banach spaces with compact
embedding. Let a : V×V → C be a bounded sesquilinear form. Assume that
there exist two real numbers β, γ > 0 such that the following holds true:

|a(v, v)| + β‖v‖2L ≥ γ‖v‖2V , ∀v ∈ V, (35.4a)

[ a(v, w) = 0, ∀w ∈ V ] =⇒ [ v = 0 ]. (35.4b)

Then there is α > 0 such that infv∈V supw∈V
|a(v,w)|

‖v‖V ‖w‖V ≥ α.

Proof. Let us argue by contradiction like in the proof of the Peetre–Tartar
lemma (Lemma A.20). Assume that for every integer n ≥ 1, there is vn ∈ V
with ‖vn‖V = 1 and supw∈V |a(vn, w)|/‖w‖V ≤ 1

n . Since the embedding
V →֒ L is compact, there is a subsequence (vl)l∈S , S ⊂ N, such that (vl)l∈S
converges strongly to some v in L. The assumption (35.4a) implies that

γ‖vm − vn‖2V ≤ β‖vm − vn‖2L + |a(vm − vn, vm − vn)|
≤ β‖vm − vn‖2L + |a(vm, vm)|+ |a(vm, vn)|+ |a(vn, vm)|+ |a(vn, vn)|.
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Since |a(vl, vl′)| = |a(vl, vl′)|/‖vl′‖V ≤ 1
l , for all l, l

′ ∈ {m,n}, we infer that
γ‖vm−vn‖2V ≤ β‖vm−vn‖2L+2(m−1+n−1), which in turn implies that (vl)l∈S
is a Cauchy sequence in V. As a result, v ∈ V and supw∈V |a(v, w)|/‖w‖V = 0,
which means that a(v, w) = 0 for all w ∈ V. The assumption (35.4b) implies
that v = 0, which contradicts 1 = limS∋l→∞ ‖vl‖V = ‖v‖V . ⊓⊔

Remark 35.4 (G̊arding’s inequality). Inequalities like (35.4a) are called
G̊arding’s inequality in the literature. ⊓⊔

Theorem 35.5 (BNB, Robin BCs). Let V := H1(D) be equipped with the

norm ‖v‖V := {‖∇v‖2L2(D) + κ‖v‖2L2(∂D)}
1
2 . The sesquilinear form a defined

in (35.3) satisfies the conditions of the BNB theorem.

Proof. We are going to verify (35.4a) and (35.4b) from Lemma 35.3.
(1) Let v ∈ V. The real and imaginary parts of a(v, v) are

ℜ(a(v, v)) = ‖∇v‖2L2(D) − κ2‖v‖2L2(D), (35.5a)

ℑ(a(v, v)) = −κ‖v‖2L2(∂D). (35.5b)

Using that
√
2(x2 + y2)

1
2 ≥ x− y for all x, y ∈ R, this implies that

√
2|a(v, v)| ≥ ‖v‖2V − κ2‖v‖2L2(D).

Hence, (35.4a) holds true with β := 1√
2
κ2 and γ := 1√

2
.

(2) Let us now assume that a(v, w) = 0 for all w ∈ V. We are going to
prove that v = 0 by arguing by contradiction. The inequality |a(v, v)| ≥
−ℑ(a(v, v)) = κ‖v‖2L2(∂D) implies that γg(v) = 0. Hence, v ∈ H1

0 (D). Let

us embed D into a ball of radius R large enough, say R > R0 := diam(D),
and without loss of generality, we assume that this ball is centered at 0.
Let BR be the ball in question and let us set Dc

R := Dc ∩ BR, where D
c

denotes the complement of D in Rd. Since v|∂D = 0, we can extend v by
zero over Dc

R, and we denote by ṽR the extension in question. We have ṽR ∈
H1

0 (BR), (∇ṽR)|D ∈ H(div;D), and (∇ṽR)|Dc
R

∈ H(div;Dc
R). Since the

Robin boundary condition implies that ∂nv|∂D = 0, we infer that the normal
component of ∇ṽR is continuous across ∂D. Reasoning as in the proof of
Theorem 18.10, we conclude that ∇ṽR is a member of H(div;BR). This
means that ∆ṽR ∈ L2(BR). Since ṽR ∈ H1

0 (BR) and ṽR vanishes on an
open subset of BR, we can invoke the unique continuation principle (see
Theorem 31.4) to infer that ṽR = 0 in BR. Hence, v = 0 in D and the
property (35.4b) holds true. ⊓⊔

Remark 35.6 (Alternative proof). Instead of invoking the unique con-
tinuation principle in the above proof, one can use the spectral theorem
for symmetric compact operators (see Theorem 46.21). The above reasoning
shows that ṽR ∈ H1

0 (BR) and −∆ṽR = κ2ṽR in BR. Hence, if ṽR is not zero,
then κ2 is an eigenvalue of the Laplace operator equipped with homogeneous
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Dirichlet boundary conditions on every ball centered at 0 in Rd with radius
larger than R0. However, Theorem 46.21 says that the eigenvalues of the
Laplace operator in H1

0 (BR) are countable with no accumulation point and
are of the form (R−2λn)n∈N for every R > 0, where (λn)n∈N are the eigen-
values of the Laplace operator in H1

0 (B1). Assuming that the eigenvalues are
ordered in increasing order, let R′

0 > R0 be large enough so that there is
some n ∈ N such that κ2(R′

0)
2 = λn with λn < λn+1. Let δ be defined by

κ2(R′
0+δ)

2 := 1
2 (λn+λn+1). Then κ

2(R′
0+δ)

2 cannot be in the set {λn}n∈N,
but this is a contradiction since the above reasoning with R := R′

0 + δ shows
that κ2R2 = κ2(R′

0 + δ)2 is a member of the sequence (λn)n∈N if ṽR is not
zero. This proves that ṽR = 0. ⊓⊔

35.1.2 A priori estimates on the solution

In this section, we derive a priori estimates on the weak solution of (35.2).
We are particularly interested in estimating the possible dependence of the
upper bound on the (nondimensional) quantity κℓD with ℓD := diam(D).
The following result, established in Melenk [299, Prop. 8.1.4] and Hetmaniuk
[243], delivers a sharp upper bound on the V -norm of the weak solution that
relies on the relatively strong assumption that the domain D is star-shaped
with respect to some point in D which we take to be 0.

Lemma 35.7 (A priori estimate). Assume that D is a bounded Lipschitz
domain and star-shaped w.r.t. 0, i.e., there exists r > 0 s.t. x·n > rℓD
for all x ∈ ∂D. Let V := H1(D) be equipped with the norm ‖v‖V :=

{‖∇v‖2
L2(D) + κ‖v‖2L2(∂D)}

1
2 . There is a constant c that depends only on D

(i.e., it is independent of κℓD) such that the weak solution of (35.2) satisfies

κ‖u‖L2(D) + ‖u‖V ≤ c (ℓD‖f‖L2(D) + ℓ
1
2

D‖g‖L2(∂D)). (35.6)

Proof. We only give the proof when κ is bounded away from zero, say κℓD ≥ 1
since the proof in the other case is similar; see [299, 243]. Since we assume that
0 ∈ D, we have ‖x‖ℓ2 ≤ ℓD for all x ∈ D. We write C(f, g) := c(ℓD‖f‖L2(D)+

ℓ
1
2

D‖g‖L2(∂D)), where as usual the value of the constant c can change at each
occurrence as long as it is independent of κ.
(1) In the first step of the proof, we assume that ∇u|∂D ∈ L2(∂D) (we
establish this smoothness property in the second step). Let us multiply the
PDE −∆u− κ2u = f with x·∇u and integrate over D. The identity (35.11)
from Lemma 35.8 with m := x implies that

−ℜ
(∫

D

∆ux·∇udx
)

=
(
1− d

2

)
‖∇u‖2L2(D)

+
1

2

∫

∂D

(x·n)‖∇u‖2ℓ2 ds−ℜ
(∫

∂D

(∂nu)(x·∇u) ds
)
,
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since ∇x = (∇x)T = Id and ∇·x = d so that e(x) = (1 − d
2 )Id (see

Lemma 35.8). This identity is often called Rellich’s identity in the literature.
Using the PDE −∆u−κ2u = f , the Robin boundary condition ∂nu = iκu+g,
and the assumption x·n > rℓD on ∂D, we obtain

rℓD
2

‖∇u‖2L2(∂D) ≤
(d
2
− 1
)
‖∇u‖2L2(D) + ℜ

(∫

D

κ2u(x·∇u) dx
)

+ ℜ
(∫

D

f(x·∇u) dx
)
+ ℜ

(∫

∂D

(iκu+ g)(x·∇u) ds
)
.

Since ℜ(
∫
D u(x·∇u) dx) = − d

2‖u‖2L2(D) +
1
2

∫
∂D(x·n)|u|2 ds, this leads to

rℓD
2

‖∇u‖2L2(∂D) +
dκ2

2
‖u‖2L2(D) ≤

(d
2
− 1
)
‖∇u‖2L2(D) +

κ2ℓD
2

‖u‖2L2(∂D)

+ ℜ
(∫

D

f(x·∇u) dx
)
+ ℜ

(∫

∂D

(iκu+ g)(x·∇u) ds
)
.

We now bound the last two terms on the right-hand side by using Young’s
inequality, which yields

ℜ
(∫

D

f(x·∇u) dx
)
+ ℜ

(∫

∂D

(iκu+ g)(x·∇u) ds
)

≤ γ1‖∇u‖2L2(D)

+
1

4γ1
ℓ2D‖f‖2L2(D) +

rℓD
4

‖∇u‖2L2(∂D) +
2ℓD
r

(
κ2‖u‖2L2(∂D) + ‖g‖2L2(∂D)

)
,

where γ1 > 0 can be chosen as small as needed. Rearranging the terms gives

rℓD
4

‖∇u‖2L2(∂D) +
dκ2

2
‖u‖2L2(D) ≤

(d
2
− 1 + γ1

)
‖∇u‖2L2(D)

+
r + 4

2r
κ2ℓD‖u‖2L2(∂D) + C(f, g)2. (35.7)

Let us now bound the norms ‖∇u‖2
L2(D) and ‖u‖2L2(∂D) appearing on the

right-hand side. Owing to (35.5a) and Young’s inequality, we infer that

‖∇u‖2L2(D) = κ2‖u‖2L2(D) + ℜ
(
(f, u)L2(D) + (g, γg(u))L2(∂D)

)

≤ (1 + γ2)κ
2‖u‖2L2(D) +

1

4γ2κ2
‖f‖2L2(D) +

1

2κ
‖g‖2L2(∂D) +

1

2
κ‖u‖2L2(∂D),

where γ2 > 0 can be chosen as small as needed. Since we assumed above that
κℓD ≥ 1, we obtain

‖∇u‖2L2(D) ≤ (1 + γ2)κ
2‖u‖2L2(D) +

1

2
κ‖u‖2L2(∂D) + C(f, g)2. (35.8)
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Owing to (35.5b), we infer that

κ‖u‖2L2(∂D) = −ℑ
(
(f, u)L2(D) + (g, γg(u))L2(∂D)

)
,

and applying Young’s inequality with a positive real number θ gives

1

2
κ‖u‖2L2(∂D) ≤ θκ‖u‖2L2(D) +

1

4θκ
‖f‖2L2(D) +

1

2κ
‖g‖2L2(∂D).

Taking θ := γ3κ with γ3 > 0 as small as needed leads to (recall that κℓD ≥ 1)

1

2
κ‖u‖2L2(∂D) ≤ γ3κ

2‖u‖2L2(D) + C(f, g)2. (35.9)

In addition, taking θ := 1
2ℓD

r
r+4 and multiplying by r+4

r κℓD yields

r + 4

2r
κ2ℓD‖u‖2L2(∂D) ≤

1

2
κ2‖u‖2L2(D) + C(f, g)2. (35.10)

Inserting (35.9) into (35.8) gives ‖∇u‖2
L2(D) ≤ (1 + γ2 + γ3)κ

2‖u‖2L2(D) +

C(f, g)2, and inserting this bound into (35.7), we obtain

rℓD
4

‖∇u‖2L2(∂D) +
dκ2

2
‖u‖2L2(D) ≤

(d
2
− 1 + γ1

)
(1 + γ2 + γ3)κ

2‖u‖2L2(D)

+
r + 4

2r
κ2ℓD‖u‖2L2(∂D) + C(f, g)2.

Using now the bound on ‖u‖2L2(∂D) from (35.10), we infer that

rℓD
4

‖∇u‖2L2(∂D) +
d

2
κ2‖u‖2L2(D) ≤

((d
2
− 1 + γ1

)
(1 + γ2 + γ3) +

1

2

)
κ2‖u‖2L2(D) + C(f, g)2.

Letting γ1 := 1
4d , γ2 = γ3 := 1

8d , we observe that (d2 − 1 + γ1)(1 + γ2 + γ3) =
d
2 − 7

8 + 1
16d2 ≤ d

2 − 1
4 for all d ≥ 1. We conclude that

rℓD
4

‖∇u‖2L2(∂D) +
κ2

4
‖u‖2L2(D) ≤ C(f, g)2.

Invoking once again the bounds (35.8) and (35.9), we infer that

κ2‖u‖2L2(D) + κ‖u‖2L2(∂D) + ‖∇u‖2L2(D) + ℓD‖∇u‖2L2(∂D) ≤ C(f, g)2,

which shows that the a priori estimate (35.6) holds true.
(2) It remains to prove that indeed ∇u|∂D ∈ L2(∂D). Recall that u is in
the functional space Y := {y ∈ H1(D) | ∆y ∈ L2(D), ∂ny ∈ L2(∂D)}
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owing to (35.1) and our assumption that f ∈ L2(D) and g ∈ L2(∂D).
We are going to show by means of a density argument that any function
y ∈ Y is such that ∇y|∂D ∈ L2(∂D). Let (ϕm)m∈N be a sequence in

C∞(D) converging to y in Y (such a sequence can be constructed by us-
ing mollifying operators, as in §23.1). Let us set fm := −∆ϕm − ϕm and
gm := ∂nϕm − iκϕm. Then (fm)m∈N and (gm)m∈N are Cauchy sequences
in L2(D) and L2(∂D), respectively. Moreover, the bound from Step (1) im-

plies that ‖∇(ϕm − ϕp)‖L2(∂D) ≤ c(ℓ
1
2

D‖fm − fp‖L2(D) + ‖gm − gp‖L2(∂D))
for all m, p ∈ N, which shows that (∇ϕm)m∈N is a Cauchy sequence in
L2(∂D). The uniqueness of the limit in the distribution sense finally shows
that ∇y|∂D ∈ L2(∂D). ⊓⊔

Lemma 35.8 (Special identity). For all q ∈ {v ∈ H1(D;C) | ∆v ∈
L2(D;C), ∇v ∈ L2(∂D;Cd)} and all m ∈ W 1,∞(D;Rd), letting e(m) :=
1
2 (∇m+ (∇m)T − (∇·m)Id), we have

−ℜ
(∫

D

∆q(m·∇q) dx
)

= ℜ
(∫

D

∇q·(e(m)∇q) dx
)

+
1

2

∫

∂D

(m·n)‖∇q‖2ℓ2 ds−ℜ
(∫

∂D

(n·∇q)(m·∇q) ds
)
. (35.11)

Proof. See Exercise 35.4 and Hetmaniuk [243, Lem. 3.2]. ⊓⊔

A detailed analysis of the Helmholtz problem (35.2) using integral repre-
sentations is done in Esterhazy and Melenk [195, §2]. The following result is
established therein.

Theorem 35.9 (BNB, Robin BCs). Let D be a Lipschitz domain in Rd,
d ∈ {2, 3}. Let V := H1(D) be equipped with the norm ‖v‖V := κ‖v‖L2(D) +

‖∇v‖L2(D). Let k0 > 0 be a fixed number and set κ0 := k0ℓ
−1
D . Then there

is c > 0, depending on D and k0, such that the following holds true for all
κ ≥ κ0:

inf
v∈V

sup
w∈V

|a(v, w)|
‖v‖V ‖w‖V

≥ c (κℓD)
−s, (35.12)

with s := 7
2 in general, and s := 1 if D is convex or if D is star-shaped or if

∂D is smooth.

This theorem implies, in particular, that for every f ∈ V ′ := (H1(D))′ and
g ∈ H− 1

2 (∂D) = (H
1
2 (∂D))′, the problem (35.2) is uniquely solvable in V, and

its solution satisfies the a priori bound ‖u‖V ≤ c(κℓD)
7
2 (‖f‖V ′+‖g‖

H− 1
2 (∂D)

).

If f ∈ L2(D) and g ∈ L2(∂D), this estimate can be improved to ‖u‖V ≤
c(κℓD)

5
2 (ℓD‖f‖L2(D) + κ−

1
2 ‖g‖L2(∂D)); see [195, Thm. 2.5].
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35.2 Mixed boundary conditions

We consider in this section the Helmholtz problem with mixed Dirichlet and
Robin boundary conditions. The problem is formulated as follows: For f ∈
L2(D), g ∈ L2(∂Dr), and κ ∈ R, find a complex-valued function u such that

−∆u− κ2u = f in D, u = 0 on ∂Dd, ∂nu− iκu = g on ∂Dr, (35.13)

where {∂Dd, ∂Dr} is a partition of ∂D. We assume that the subsets ∂Dd and
∂Dr have a Lipschitz boundary and have positive (surface) measure. As be-
fore, we assume that κ > 0 for simplicity. The above problem is reformulated
as follows:

{
Find u ∈ V := {v ∈ H1(D) | γg(v)|∂Dd

= 0} such that

a(u,w) = ℓ(w), ∀w ∈ V,
(35.14)

with the sesquilinear form

a(v, w) :=

∫

D

(∇v·∇w − κ2vw) dx− iκ

∫

∂Dr

vw ds, (35.15)

and the antilinear form ℓ(w) :=
∫
D
fw dx+

∫
∂Dr

gw ds. Here again, we cannot
apply the Lax–Milgram lemma since a is not coercive on V. We are going to
invoke instead the BNB theorem.

Theorem 35.10 (BNB, mixed BCs). Let the space V defined in (35.14) be
equipped with the norm ‖v‖V := ‖∇v‖L2(D). The sesquilinear form a defined
in (35.15) satisfies the conditions of the BNB theorem.

Proof. We are going to invoke Lemma 35.3. We can proceed as in the proof
of Theorem 35.5 to prove the G̊arding inequality (35.4a), but we proceed
slightly differently to prove (35.4b). Let us assume that a(v, w) = 0 for all
w ∈ V. The inequality |a(v, v)| ≥ κ‖v‖2L2(∂Dr)

implies that v|∂Dr
= 0. Since

|∂Dr| > 0, there exists a point x0 ∈ ∂Dr and there is r0 > 0 such that
B(x0, r0)∩ ∂D ⊂ ∂Dr. Let D

c
r0

:= Dc ∩B(x0, r0). We extend v by zero over

Dc
r0 , denote the extension in question by ṽr0 and set D̃r0 := int(D∪Dc

r0). We

have ṽr0 ∈ H1
0 (D̃r0), (∇ṽr0)|D ∈ H(div;D), and (∇ṽr0)|Dc

r0
∈ H(div;Dc

r0).

Since the Robin boundary condition implies that (∂nv)|∂Dr
= 0, we infer

that the normal component of ∇ṽr0 is continuous across ∂Dr ∩ B(x0, r0).
Reasoning as in the proof of Theorem 18.10, we conclude that ∇ṽr0 is a

member of H(div; D̃r0), i.e., ∆ṽr0 ∈ L2(D̃r0). In conclusion, we have ṽr0 ∈
H1

0 (D̃r0), −∆ṽr0 = κ2ṽr0 in D̃r0 , and ṽr0|Dc
r0

= 0. The unique continuation

principle (Theorem 31.4) implies that ṽr0 = 0. Hence, v = 0. ⊓⊔

Following Ihlenburg and Babuška [251], we now set D := (0, ℓD) and in-
vestigate the one-dimensional version of the problem (35.13). A homoge-
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neous Dirichlet boundary condition is enforced at {x = 0}, and a homo-
geneous Robin condition is enforced at {x = ℓD}. The space V becomes
V := {v ∈ H1(D) | v(0) = 0}.
Theorem 35.11 (BNB, mixed BCs, 1D). Let D := (0, ℓD). Let the space
V be equipped with the norm ‖v‖V := ‖∂xv‖L2(D). There are two constants
0 < c♭ ≤ c♯, both uniform with respect to κ, such that

c♭
1 + κℓD

≤ inf
v∈V

sup
w∈V

|a(v, w)|
‖v‖V ‖w‖V

≤ sup
v∈V

sup
w∈V

|a(v, w)|
‖v‖V ‖w‖V

≤ c♯
1 + κℓD

.

Proof. (1) Let us start with the lower bound. Let v ∈ V, v 6= 0, and let z ∈ V
solve a(w, z) = (w, κ2v)L2(D) for all w ∈ V. It is shown in Exercise 35.1 that
this problem has a unique solution in V, and it is shown in Exercise 35.2 that
‖z‖V ≤ 4κℓD‖v‖V . Then we have

|a(v, v + z)| ≥ ℜ(a(v, v + z)) = ℜ(a(v, v)) + κ2‖v‖2L2(D)

= ‖v′‖2L2(D) = ‖v‖2V =
1

4κℓD + 1
‖v‖V (‖v‖V + 4κℓD‖v‖V )

≥ 1

4κℓD + 1
‖v‖V (‖v‖V + ‖z‖V ) ≥

1

4κℓD + 1
‖v‖V ‖v + z‖V .

This shows that the lower bound holds true.
(2) Let us now prove the upper bound. Let v ∈ V.
(2.a) If κℓD ≤ 2, then we can invoke the following Poincaré–Steklov inequality

in V : there is a constant C̃ps > 0 s.t. C̃ps(ℓ
−1
D ‖v‖L2(D) + ℓ

− 1
2

D |v(ℓD)|) ≤ ‖v‖V
(see the proof of Proposition 31.21). Using the Cauchy–Schwarz inequality in
(35.3) implies that

|a(v, w)| ≤ ‖v‖V ‖w‖V + κ2‖v‖L2(D)‖w‖L2(D) + κ|v(ℓD)||w(ℓD)|
≤ max(1, C̃−2

ps )(1 + κℓD + (κℓD)
2)‖v‖V ‖w‖V .

Since we assumed κℓD ≤ 2, this leads to the bound |a(v, w)| ≤ c(1 +
κℓD)

−1‖v‖V ‖w‖V with c := max(1, C̃−2
ps )maxt∈[0,2](1 + t+ t2)(1 + t).

(2.b) Let us now assume that κℓD ≥ 2. Let ϕ be a smooth nonnegative
function equal to 1 on [0, 12ℓD] and such that ϕ(ℓD) = ∂xϕ(ℓD) = 0. Let
us set w(x) := ϕ(x) sin(κx)/κ so that w ∈ V, w(0) = 0, w(ℓD) = 0, and
∂xw(ℓD) = 0. Let us set η(x) := ∂xw(x) − ∂xw(0) + κ2

∫ x
0
w(s) ds, and

cϕ := max(2ℓD‖∂xϕ‖L∞(D), ℓ
2
D‖∂xxϕ‖L∞(D)). Since w is real-valued and van-

ishes at x = ℓD and v(0) = 0, we have

a(v, w) =

∫ ℓD

0

∂xv∂xw dx− κ2
∫ ℓD

0

vw dx

=

∫ ℓD

0

(∂xv)η dx+ v(ℓD)∂xw(0) − κ2
∫ ℓD

0

(
vw + ∂xv

∫ x

0

w(s) ds

)
dx.
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The last term is equal to −κ2v(ℓD)
∫ ℓD
0 w(s) ds since v(0) = 0. Since η(ℓD) =

−∂xw(0) + κ2
∫ ℓD
0

w(s) ds and |v(ℓD)| ≤ ℓ
1
2

D‖v‖V , we infer that

|a(v, w)| =
∫ ℓD

0

(∂xv)η dx− v(ℓD)η(ℓD)

≤ ‖v‖V (‖η‖L2(D) + ℓ
1
2

D |η(ℓD)|) ≤ 2ℓ
1
2

D‖v‖V ‖η‖L∞(D).

Since η(0) = 0, we have ‖η‖L∞(D) ≤ ℓD‖∂xη‖L∞(D). After observing that
∂xη(x) = ∂xxϕ(x) sin(κx)/κ + 2∂xϕ(x) cos(κx) and recalling the above
bounds on the derivatives of ϕ, we deduce that ‖η‖L∞(D) ≤ cϕ(1+ (κℓD)

−1).

Hence, we have |a(v, w)| ≤ 2cϕ(1 + (κℓD)
−1)ℓ

1
2

D‖v‖V . After observing that

‖w‖2V ≥
∫ 1

2 ℓD

0

cos(κx)2 dx ≥ ℓD
4

− 1

4κ
≥ ℓD

8
,

since κℓD ≥ 2, we conclude that ‖w‖V ≥ (18ℓD)
1
2 . This proves that |a(v, w)| ≤

c(1 + κℓD)
−1‖v‖V ‖w‖V , and the proof is complete. ⊓⊔

Remark 35.12 (Literature). Theorem 35.11 has been derived in Ihlenburg
and Babuška [251, Thm. 1], and we refer the reader to this work for an
exhaustive analysis of the continuous problem in one dimension with g := 0.
Two- and three-dimensional versions of Lemma 35.7 for mixed boundary
conditions are established in Hetmaniuk [243]. ⊓⊔

35.3 Dirichlet boundary conditions

We consider in this section the Helmholtz problem with Dirichlet boundary
conditions: For f ∈ L2(D;R) and κ ∈ R, find u such that

−∆u− κ2u = f in D, u = 0 on ∂D. (35.16)

As before, we assume that κ > 0 for simplicity. Note that the solution is now
real-valued. We reformulate the above problem as follows:

{
Find u ∈ V := H1

0 (D) such that

a(u,w) = ℓ(w), ∀w ∈ V,
(35.17)

with the bilinear form

a(v, w) :=

∫

D

(∇v·∇w − κ2vw) dx, (35.18)

and the linear form ℓ(v) :=
∫
D
fv dx. As above, we are going to rely on the

BNB theorem to establish the well-posedness (35.17) since a is not coercive.
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But contrary to the case with Robin or mixed boundary conditions, the en-
forcement of Dirichlet conditions leads to a conditional stability depending
on the value of κ. In other words, resonance phenomena can occur if κ takes
values in some discrete subset of R+ associated with the spectrum of the
Laplacian operator in D with Dirichlet conditions.

Since the embedding H1
0 (D) →֒ L2(D) is compact and the operator

(−∆)−1 : L2(D) → L2(D) is self-adjoint, there exists a Hilbertian basis of
L2(D) composed of eigenvectors of the Laplace operator (see Theorem 46.21).
Let (ψl)l∈N be the basis in question and let (λl)l∈N be the corresponding eigen-
values with the normalization ‖ψl‖L2(D) = 1. Then every function v ∈ H1

0 (D)
admits a unique expansion v :=

∑
l∈N

vlψl with ‖∇v‖2L2(D) =
∑
l∈N

λlv
2
l ,

‖v‖2L2(D) =
∑

l∈N
v2l . Notice that a(v, w) =

∑
l∈N

(λl − κ2)vlwl for all

v =
∑

l∈N
vlψl, w =

∑
l∈N

wlψl in H
1
0 (D). Let us denote by l(κ) the largest

integer such that λl(κ) < κ2 with the convention that l(κ) = −1 if κ2 ≤ λ0.
The well-posedness of the problem (35.17) follows from the following result.

Theorem 35.13 (BNB, Dirichlet BCs). Let V := H1
0 (D) be equipped

with the norm ‖v‖V := ‖∇v‖L2(D). Assume that κ2 6∈ {λl}l∈N. Then the
bilinear form a satisfies the conditions of the BNB theorem with the constant
α(κ) := minl∈N |λl − κ2|/λl > 0.

Proof. Let v ∈ H1
0 (D) with v :=

∑
l∈N

vlψl. Let us set w :=
∑

l≤l(κ) −vlψl +∑
l(κ)<l vlψl with the convention that l ∈ N in the sums. Then we have

a(v, w) =
∑

l≤l(κ)
(κ2 − λl)v

2
l +

∑

l(κ)<l

(λl − κ2)v2l ≥ α(κ)
∑

l∈N

λlv
2
l = α(κ)‖v‖2V .

The assertion follows readily from ‖w‖V = ‖v‖V . The reader is referred to
Ciarlet [120, §3.1] for more details on this problem. ⊓⊔

In general, α(κ) behaves like α0γ(κ)(κℓD)
−1, where γ(κ) ∈ (0, 1] and α0 only

depends on D. For D := (0, ℓD), the eigenvalues of the Laplace operator are
λl := πl2ℓ−2

D . Let β ∈ (0, 1) and L ∈ N\ {0} be s.t. κ2 := π(L+β)2ℓ−2
D . Then

α(κ) = min(β(2L+β)/L2, (1+β)(2L+1+β)/(L+1)2), and the claim follows
readily. Notice that γ(κ) becomes arbitrarily small as κ approaches an eigen-
value of the Laplace operator, i.e., if β is close to 0.

35.4 H1-conforming approximation

We now formulate an H1-conforming approximation of the Helmholtz prob-
lem with one of the boundary conditions discussed in the previous sections
(Robin, mixed or Dirichlet). At this stage, we do not specify the norm with
which we equip the space V : we just assume that it is an H1-like norm that
can contain some lower-order terms depending on κ (see Example 35.18).
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Let (Th)h∈H be a shape-regular mesh sequence so that each mesh covers
D exactly. In the case of mixed boundary conditions, we also assume that
the meshes are compatible with the corresponding partition of the boundary
∂D. Let k ≥ 1 be the degree of the underlying finite element. Let P g

k (Th) be
the H1-conforming finite element space considered in §18.2.3 and §32.1. For
the Robin problem, we set Vh := P g

k (Th), and for the mixed and the Dirichlet
problems we set

Vh := {vh ∈ P g
k (Th) | vh|∂Dd

= 0}. (35.19)

We construct an approximation of the Helmholtz problem as follows:

{
Find uh ∈ Vh such that

a(uh, wh) = ℓ(wh), ∀wh ∈ Vh.
(35.20)

A first way to investigate the stability of the discrete problem (35.20) con-
sists of reasoning by perturbation using the fact that the continuous problem
is well-posed. Such a result can be obtained by invoking a variation of Fortin’s
lemma (a more abstract version of this variation is discussed in Exercise 35.3).
Recall that the elliptic projection ΠE

h : V → Vh is defined for all v ∈ V s.t.
(∇(v −ΠE

h (v)),∇wh)L2(D) = 0 for all wh ∈ Vh (see §32.4).

Lemma 35.14 (Modified Fortin). Assume that there are positive real
numbers γstb, capp, s such that the elliptic projection satisfies for all v ∈ V,

γstb‖ΠE

h(v)‖V ≤ ‖v‖V , ‖v −ΠE

h(v)‖L2(D) ≤ capph
sℓ1−sD ‖v‖V . (35.21)

Let α be the inf-sup constant of a on V×V. Let ιL,V > 0 be such that

‖v‖L2(D) ≤ ιL,V ℓD‖v‖V . (35.22)

Assume that h ∈ H ∩ (0, ℓ0(κ)] with ℓ0(κ) := (12c
−1
appι

−1
L,V αℓ

s−2
D κ−2)

1
s . Then

the restriction of a to Vh×Vh satisfies the following inf-sup condition:

inf
vh∈Vh

sup
wh∈Wh

|a(vh, wh)|
‖vh‖V ‖wh‖V

≥ α0 :=
1

2
γstbα > 0. (35.23)

Proof. Using that ΠE

h (V ) ⊂ Vh and the assumptions on ΠE

h , we have

γ−1
stb sup

wh∈Vh

|a(vh, wh)|
‖wh‖V

≥ γ−1
stb sup

w∈V

|a(vh, ΠE

h(w))|
‖ΠE

h(w)‖V
≥ sup
w∈V

|a(vh, ΠE

h (w))|
‖w‖V

≥ sup
w∈V

|a(vh, w) + κ2(vh, w −ΠE

h(w))L2(D)|
‖w‖V

≥ sup
w∈V

|a(vh, w)|
‖w‖V

− cappιL,V h
sℓ2−sD κ2‖vh‖V ≥ (α− cappιL,V h

sℓ2−sD κ2)‖vh‖V .
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Since h ≤ ℓ0(κ), using the definition of ℓ0(κ) yields γ
−1
stb supwh∈Vh

|a(vh,wh)|
‖wh‖V ≥

1
2α‖vh‖V , i.e., (35.23) holds true with α0 := 1

2γstbα. ⊓⊔
The above result can be applied with s := 1 when full elliptic regularity is

available. One always has s > 1
2 in polyhedra (see Theorem 31.31).

Remark 35.15 (Duality argument). A duality argument is implicitly
present in the assumptions of Lemma 35.14 since duality has to be invoked
to establish the approximation property ‖v−ΠE

h(v)‖L2(D) ≤ capph
sℓ1−sD ‖v‖V

(see Theorem 32.15). ⊓⊔
A second way to investigate the stability of the discrete problem (35.20) is

a technique introduced by Schatz [343] based on the Aubin–Nitsche duality
argument.

Lemma 35.16 (Schatz). Let V, W be two Banach spaces, W being reflex-
ive. Let a be a bounded sesquilinear form on V×W satisfying the conditions
of the BNB theorem with inf-sup and boundedness constants 0 < α ≤ ‖a‖. Let
L be a Hilbert space such that ‖v‖L ≤ ιL,V ‖v‖V for all v ∈ V (i.e., V →֒ L).
Let (Vh)h∈H, (Wh)h∈H be sequences of finite-dimensional subspaces equipped,
respectively, with the norm of V and the norm of W. Assume the following:

(i) (G̊arding’s inequality) There are cV > 0, cL ≥ 0 s.t. cV ‖vh‖V −
cL‖vh‖L ≤ supwh∈Wh

|a(vh,wh)|
‖wh‖W for all vh ∈ Vh.

(ii) (Duality argument) There is a subspace Ws →֒ W and real numbers
csmo, capp, and s ∈ (0, 1] s.t. infwh∈Wh

‖z − wh‖W ≤ capph
s‖z‖Ws

for
all z ∈ Ws and all h ∈ H. Moreover, for all g ∈ L, the unique solution
z ∈ W to the adjoint problem a(v, z) = (v, g)L for all v ∈ V, satisfies
‖z‖Ws

≤ csmo‖g‖L.
Assume that h ∈ H∩ (0, ℓ0(κ)] with ℓ0(κ) := (12cV c

−1
L ‖a‖−1c−1

appc
−1
smo)

1
s . Then

the restriction of a to Vh×Wh satisfies the discrete inf-sup condition (35.23)
with α0 ≥ cV

2(‖a‖+cLιL,V+ 1
2 cV )

α.

Proof. Let vh 6= 0 be a member of Vh. Consider the antilinear form ℓh ∈
(Wh)

′ defined by ℓh(wh) := a(vh, wh) for all wh ∈ Wh. (Note that ℓh :=
Ah(vh) with Ah ∈ L(Vh;W ′

h) s.t. 〈Ah(yh), wh〉W ′
h
,Wh

:= a(yh, wh) for all
(yh, wh) ∈ Vh×Wh.) Owing to the Hahn–Banach theorem (Theorem C.13),

we can extend ℓh to W. Let ℓ̃h be the extension in question with ‖ℓ̃h‖W ′ =
‖ℓh‖W ′

h
. Since a satisfies the conditions of the BNB theorem, there exists

u ∈ V such that a(u,w) := ℓ̃h(w) for all w ∈ W. (Notice that u := A−1(ℓ̃h)
with A ∈ L(V ;W ′) s.t. 〈A(y), w〉W ′ ,W := a(y, w) for all (y, w) ∈ V×W.)
Using the inf-sup condition satisfied by a on V×W , we infer that

sup
wh∈Wh

|a(vh, wh)|
‖wh‖W

= sup
wh∈Wh

|ℓh(wh)|
‖wh‖W

= ‖ℓh‖W ′
h
= ‖ℓ̃h‖W ′

= sup
w∈W

|a(u,w)|
‖w‖W

≥ α‖u‖V .
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The rest of the proof consists of showing that there is c s.t. ‖u‖V ≥ c‖vh‖V
for all h ∈ H. Invoking G̊arding’s inequality on Vh gives

cV ‖vh‖V − cL‖vh‖L ≤ sup
wh∈Wh

|a(vh, wh)|
‖wh‖W

= sup
wh∈Wh

|a(u,wh)|
‖wh‖W

≤ ‖a‖‖u‖V ,

where we used that a(u−vh, wh) = 0 for all wh ∈Wh (Galerkin orthogonality
property) and the boundedness of the sesquilinear form a on V×W. Since
‖v‖L ≤ ιL,V ‖v‖V for all v ∈ V, we infer that

cV ‖vh‖V ≤ cL‖vh − u‖L + (cLιL,V + ‖a‖)‖u‖V .

We now establish an upper bound on ‖vh − u‖L. Let z ∈ W solve a(v, z) =
(v, u− vh)L for all v in V. The Galerkin orthogonality property implies that
‖u− vh‖2L = a(u− vh, z) = a(u− vh, z − zh) for all zh ∈Wh. Hence, we have

‖u− vh‖2L ≤ ‖a‖‖u− vh‖V cahs‖z‖Ws
≤ ‖a‖‖u− vh‖V cappcsmoh

s‖u− vh‖L,

so that ‖u− vh‖L ≤ ‖a‖cappcsmoh
s‖u− vh‖V . This in turn implies that

cV ‖vh‖V ≤ cL‖vh − u‖L + (cLιL,V + ‖a‖)‖u‖V
≤ cL‖a‖cappcsmoh

s‖u− vh‖V + (cLιL,V + ‖a‖)‖u‖V .

Using the triangle inequality gives

(cV − cL‖a‖cappcsmoh
s)‖vh‖V ≤

(
‖a‖+ cLιL,V + cL‖a‖cappcsmoh

s
)
‖u‖V .

Provided h ≤ ℓ0(κ) we obtain cL‖a‖cappcsmoh
s ≤ 1

2cV , so that

cV

2(‖a‖+ cLιL,V + 1
2cV )

‖vh‖V ≤ ‖u‖V .

This concludes the proof. ⊓⊔

Both Lemma 35.14 and Lemma 35.16 imply that there is ℓ0(κ) such that,
if h ∈ H ∩ (0, ℓ0(κ)], the discrete inf-sup condition (35.23) holds true with a
constant that is uniform with respect to the meshsize but may depend on κ.
To emphasize this dependency, let us write this constant as α0(κ). We can
now invoke Babuška’s lemma (Lemma 26.14) to infer a quasi-optimal bound
on the approximation error.

Corollary 35.17 (Error estimate). There is ℓ0(κ) s.t. the following quasi-
optimal error estimate holds true for all h ∈ H ∩ (0, ℓ0(κ)]:

‖u− uh‖V ≤
(
1 +

‖a‖
α0(κ)

)
inf

vh∈Vh
‖u− vh‖V . (35.24)
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Example 35.18 (Dependence on κ). In order to illustrate the above
results, let us assume that we impose Robin boundary conditions with the
norm ‖v‖V := ‖∇v‖L2(D) + κ‖v‖L2(D). Let us also assume that full elliptic
regularity holds true, i.e., the conclusion of Theorem 35.9 is fulfilled with
s := 1. Then α(κ) ∼ (κℓD)

−1 for all κ ≥ κ0. Moreover, we have capp ∼ 1,
s := 1, ιL,V ∼ κℓD in Lemma 35.14, so that ℓ0(κ) ∼ ℓ−1

D κ−2κℓD(ℓDκ)
−1 =

κ−2ℓ−1
D , and α0(κ) ∼ (κℓD)

−1. The error estimate (35.24) gives ‖u− uh‖V ≤
(1 + κℓD) infvh∈Vh ‖u − vh‖V . Let us now use Lemma 35.16 with ‖a‖ ∼ 1,
cV := 1, cL := κ, ιL,V := κ−1, capp ∼ 1, s := 1. In this case, it can be shown
that csmo ∼ κℓD. Then we have again ℓ0(κ) ∼ cV c

−1
L ‖a‖−1c−1

a c−1
smo ∼ κ−2ℓ−1

D

and α0(κ) ∼ (κℓD)
−1 leading to the same error estimate. ⊓⊔

Remark 35.19 (Literature). The reader is referred to Ihlenburg and
Babuška [251] for an exhaustive analysis of the one-dimensional Helmholtz
problem with mixed boundary conditions and its Galerkin approximation in
one dimension with g := 0. In particular, the following statements are proved
therein: (i) For piecewise linear continuous finite elements on a uniform mesh,
αh scales exactly like (κℓD)

−1 uniformly in h ∈ H, i.e., the discrete problem
is well-posed for all h ∈ H (see [251, Thm. 4]); (ii) The P1 Galerkin method
delivers a quasi-optimal error estimate in the H1-seminorm with a constant
proportional to κℓD if κh < 1 < κℓD (see [251, Cor. 2]). ⊓⊔
Remark 35.20 (Dispersion error). It is shown in [251, Thm. 5] that
‖∇(u− uh)‖L2(D) ≤ ℓD(hκ/π)(1 + chκ2ℓD)‖f‖L2, where c is independent of
h ∈ H and κ ≥ 0. The term proportional to hκ2ℓD is usually called pollution
error or dispersion error. This term grows unboundedly when κ grows even
if hκ < 1. The question whether the pollution error could be reduced or
eliminated by using stabilization techniques (i.e., discontinuous approxima-
tion techniques or methods similar to those presented in Chapters 57–60) has
been extensively addressed in the literature. We refer the reader to Burman
et al. [102], Feng and Wu [200], Melenk and Sauter [300], Peterseim [325],
and the literature therein for more details. For instance, it is shown in [300,
Thm. 5.8] that under some appropriate assumptions the pollution effect can
be suppressed if one assumes that κh/k is sufficiently small and that the
polynomial degree k is at least O(ln(κ)). It is shown in [102, Thm. 6] that
the pollution error disappears in one dimension for some specific κ-dependent
choices of the penalty parameter of the CIP method (see §58.3 for details on
CIP). The pollution error is also shown to disappear in [325, Thm. 6.2] for
a localized Petrov-Galerkin method where the global shape functions each
have a support of size rh with the oversampling condition r & ln(κℓD). ⊓⊔

Exercises

Exercise 35.1 (1D Helmholtz, well-posedness). Let D := (0, ℓD), κ >
0, and consider the Helmholtz problem with mixed boundary conditions:
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−∂xxu−κ2u = f in D, u(0) = 0, and ∂xu(ℓD)− iκu(ℓD) = 0. (i) Give a weak
formulation in V := {v ∈ H1(D) | v(0) = 0}. (ii) Show by invoking an ODE
argument that if the weak formulation has a solution, then it is unique. (iii)
Show that the weak problem is well-posed. (Hint : use Lemma 35.3.)

Exercise 35.2 (Green’s function, 1D). Let G : D×D → C be the func-
tion defined by

G(x, s) := κ−1

{
sin(κx)eiκs if x ∈ [0, s],

sin(κs)eiκx if x ∈ [s, 1].

(i) Prove that for all x ∈ D, the function D ∋ s 7→ G(x, s) ∈ C solves
the PDE −∂ssu − κ2u = δs=x in D with the boundary conditions u(0) = 0
and ∂su(ℓD)− iκu(ℓD) = 0 (i.e., G is the Green’s function of the Helmholtz
problem from Exercise 35.1). (ii) Find H(x, s) s.t. ∂sH(x, s) = ∂xG(x, s).

(iii) Let u(x) :=
∫ ℓD
0 G(x, s)f(s) ds. Prove that ‖u‖L2(D) ≤ κ−1‖f‖L2(D),

|u|H1(D) ≤ ‖f‖L2(D), and |u|H2(D) ≤ (κ + 1)‖f‖L2(D). (iv) Let v ∈ L2(D)

and let z̃(x) := κ2
∫ ℓD
0

G(x, s)v(s) ds. What is the PDE solved by z̃? Same

question for z(x) := κ2
∫ ℓD
0 G(x, s)v(s) ds. Note: The function z is in-

voked in Step (1) of the proof of Theorem 35.11. (v) Assume now that
v ∈ H1(D) with v(0) = 0, and let z and z̃ be defined as above. Prove that
max(|z|H1(D), |z̃|H1(D)) ≤ 4κℓD|v|H1(D). (Hint : see Ihlenburg and Babuška
[251, p. 14] (up to the factor 4).)

Exercise 35.3 (Variation on Fortin’s lemma). Let V, W be two Banach
spaces and let a be a bounded sesquilinear form on V×W like in Fortin’s
Lemma 26.9. Let (Vh)h∈H, (Wh)h∈H be sequences of subspaces of V and
W equipped with the norm of V and W, respectively. Assume that there
exists a map Πh : W → Wh and constants γΠh > 0, c(h) > 0 such that
|a(vh, w −Πh(w))| ≤ c(h)‖vh‖V ‖w‖W , γΠh‖Πh(w)‖W ≤ ‖w‖W for all vh ∈
Vh, all w ∈ W, and all h ∈ H. Assume that limh→0 c(h) = 0. Prove that the
discrete inf-sup condition (26.5a) holds true for h ∈ H small enough.

Exercise 35.4 (Lemma 35.8). (i) Prove that ℜ((m·∇v)v) = 1
2m·∇|v|2

for all v ∈ H1(D;C) and m ∈ Rd. (ii) Prove that ℜ(m·((∇v)Tv)) =
1
2m·∇‖v‖2ℓ2(Cd) for all v ∈ H1(D;Cd) and m ∈ Rd. (iii) Let q ∈ H2(D;C)

and let D2q denote the Hessian matrix of q, i.e., (D2q)ij = ∂2xixjq for all

i, j ∈ {1:d}. Show that ℜ(m·((D2q)∇q)) = 1
2m·∇‖∇q‖2ℓ2(Cd). (iv) Prove

that (35.11) holds true for all q ∈ {v ∈ H1(D;C) | ∆v ∈ L2(D;C), ∇v ∈
L2(∂D;Cd)} and all m ∈ W 1,∞(D;Rd). (Hint : assume first that q ∈
H2(D;C).)


