Part VII, Chapter 35
The Helmholtz problem

The objective of this chapter is to give a brief overview of the analysis of
the Helmholtz problem and its approximation using H'-conforming finite
elements. The Helmholtz problem arises when modeling electromagnetic or
acoustic scattering problems in the frequency domain. One specificity of this
elliptic problem is that one cannot apply the Lax-Milgram lemma to establish
well-posedness. The correct way to tackle the Helmholtz problem is to invoke
the BNB theorem (Theorem 25.9). In the entire chapter, D is a Lipschitz
domain in R? with d > 1, i.e., a nonempty open bounded and connected
subset of R? with a Lipschitz boundary.

35.1 Robin boundary conditions

We investigate in this section the Helmholtz problem with Robin boundary
conditions. Given f € L*(D), g € L*(0D), and x € R, our goal is to find a
function u : D — C such that

—Au—rKu=f inD, Opu —iku =g on 9D, (35.1)

with i = —1. Notice that the Robin boundary condition couples the real
and imaginary parts of u. The sign of the parameter k is irrelevant in what
follows, but to simplify some expressions, we henceforth assume that « > 0.
All that is said below remains valid when x < 0 by replacing s by |x| in the
definitions of the norms and in the upper bounds. Note that ! is a length
scale. The problem (35.1) can be reformulated as follows in weak form:

{Find u € V := H'(D) such that (35.2)

a(u,w) =L(w), YweV,

with the sesquilinear form
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a(v,w) := /D(VUVE — k7vw)dx — ik /aD 8 (v)v8(w) ds, (35.3)

and the antilinear form ((w) = [, fwdz + [, g78(W)ds, where ~#
HY(D) — Hz(8D) is the trace map.

Remark 35.1 (Sommerfeld radiation condition). The Helmholtz prob-
lem is in general posed on unbounded domains, and the proper “bound-
ary condition to set at infinity” is the Sommerfeld radiation condition
lim, r%(e-Vu(re) — iku(re)) = 0 for every unit vector e € R? and
the convergence must be uniform with respect to n. One usually simplifies
this problem by truncating the domain and replacing the Sommerfeld radia-
tion condition by a Robin boundary condition as in (35.1). O

Remark 35.2 (Wave equation). The Helmholtz problem can be derived
by considering the wave equation 9y v—c?Av = g(x) cos(wt) in Dx (0,T) with
appropriate initial data and boundary conditions; see §46.2.1 and §46.2.2.
Here, ¢ is the wave speed and g is some forcing. Assuming that the solution
is of the form v(z,t) = R(u(x)e*?), the complex amplitude u solves w?u —

¢ Au = g. We then recover (35.1) by setting  := £. 0

35.1.1 Well-posedness

Contrary to what was done in the previous chapters, we cannot apply the
Lax-Milgram lemma to establish that the weak formulation (35.2) is well-
posed since the sesquilinear form a is not coercive. We are going to invoke
instead the BNB theorem (Theorem 25.9), and with this goal in mind, we
first establish an abstract result.

Lemma 35.3 (Garding). Let V < L be two Banach spaces with compact
embedding. Let a : VxV — C be a bounded sesquilinear form. Assume that
there exist two real numbers B,~v > 0 such that the following holds true:

la(v, 0)[ + BllvllL = Alvl}, YveV, (35.4a)
[a(v,w) =0, Vwe V] = [v=0]. (35.4Db)
; ; la(v,w)]
Then there is o > 0 such that inf,cy sup,,cy T elv = @

Proof. Let us argue by contradiction like in the proof of the Peetre-Tartar
lemma (Lemma A.20). Assume that for every integer n > 1, there is v, € V
with [[v,|lv = 1 and sup,cy a(vn, w)|/||w]ly < . Since the embedding
V — L is compact, there is a subsequence (v;);es, S C N, such that (v;)es
converges strongly to some v in L. The assumption (35.4a) implies that

Yvm — Un”%/ < Bllvm — vnH% +[a(vm — Vn, Vi — )]

< Bllom — Un”% + [a(Vm, vim)| + |a(vm, vn)| + [@(vn, v )| + |a(vn, v)l.
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Since |a(vy, v)| = |a(vi, vp)|/|Jor]lv < §, for all 11" € {m,n}, we infer that
Yvm—=vnllZ < Bllvm—vnl|2+2(m = 4+n~1), which in turn implies that (v;)ies
is a Cauchy sequence in V. As aresult, v € V and sup,, ¢y |a(v, w)|/||w]v =0,
which means that a(v, w) = 0 for all w € V. The assumption (35.4b) implies
that v = 0, which contradicts 1 = limss;—0 ||JUi]|v = ||v]v- O

Remark 35.4 (Garding’s inequality). Inequalities like (35.4a) are called
Garding’s inequality in the literature. O

Theorem 35.5 (BNB, Robin BCs). Let V := H'(D) be equipped with the
norm ||v||y = {||VUH2LQ(D) + f<a||v||%2(8D)}%. The sesquilinear form a defined
in (35.3) satisfies the conditions of the BNB theorem.

Proof. We are going to verify (35.4a) and (35.4b) from Lemma 35.3.
(1) Let v € V. The real and imaginary parts of a(v,v) are

R(a(v,0)) = [Vullz2p) = £ 0]1Z2(p), (35.5a)
S(a(v,v)) = =kllvlZ20p)- (35.5Db)

Using that v/2(z? + y2)% > x — vy for all z,y € R, this implies that
V2la(v,0)] = [l = &|[v]Z2(p)-

Hence, (35.4a) holds true with § := \/iikﬂ and v := %

(2) Let us now assume that a(v,w) = 0 for all w € V. We are going to
prove that v = 0 by arguing by contradiction. The inequality |a(v,v)| >
—S(a(v,v)) = &l|v[|72(5p) implies that v#(v) = 0. Hence, v € Hg(D). Let
us embed D into a ball of radius R large enough, say R > Ry := diam(D),
and without loss of generality, we assume that this ball is centered at O.
Let Br be the ball in question and let us set D% := D° N Bpr, where D°
denotes the complement of D in R?. Since vjgp = 0, we can extend v by
zero over D%, and we denote by U the extension in question. We have vg €
Hg(Br), (Vor)p € H(div; D), and (VUg)ps, € H(div; D%). Since the
Robin boundary condition implies that 9,v/sp = 0, we infer that the normal
component of Vug is continuous across 0D. Reasoning as in the proof of
Theorem 18.10, we conclude that Vvg is a member of H(div; Bg). This
means that Avp € L?(Bpg). Since vr € H}(Bgr) and vg vanishes on an
open subset of Br, we can invoke the unique continuation principle (see
Theorem 31.4) to infer that v = 0 in Bgr. Hence, v = 0 in D and the
property (35.4b) holds true. O

Remark 35.6 (Alternative proof). Instead of invoking the unique con-
tinuation principle in the above proof, one can use the spectral theorem
for symmetric compact operators (see Theorem 46.21). The above reasoning
shows that Ug € H}(Br) and —Avg = k20 in Bg. Hence, if Ug is not zero,
then 2 is an eigenvalue of the Laplace operator equipped with homogeneous
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Dirichlet boundary conditions on every ball centered at 0 in R? with radius
larger than Ry. However, Theorem 46.21 says that the eigenvalues of the
Laplace operator in H{(Bg) are countable with no accumulation point and
are of the form (R™2\,)nen for every R > 0, where (\,)nen are the eigen-
values of the Laplace operator in Hg (B1). Assuming that the eigenvalues are
ordered in increasing order, let R{; > Ry be large enough so that there is
some n € N such that x%(R})? = A, with A, < A\,41. Let 6 be defined by
K2(Ry+6)% := $(An+ An1). Then r?(R{+6)? cannot be in the set {\, fnen,
but this is a contradiction since the above reasoning with R := R{, + ¢ shows
that xk2R? = k?(R{, + §)? is a member of the sequence (A, )nen if Vg is not
zero. This proves that v = 0. O

35.1.2 A priori estimates on the solution

In this section, we derive a priori estimates on the weak solution of (35.2).
We are particularly interested in estimating the possible dependence of the
upper bound on the (nondimensional) quantity xfp with ¢p = diam(D).
The following result, established in Melenk [299, Prop. 8.1.4] and Hetmaniuk
[243], delivers a sharp upper bound on the V-norm of the weak solution that
relies on the relatively strong assumption that the domain D is star-shaped
with respect to some point in D which we take to be 0.

Lemma 35.7 (A priori estimate). Assume that D is a bounded Lipschitz
domain and star-shaped w.r.t. 0, i.e., there exists v > 0 s.t. xn > rlp
for all @ € OD. Let V. := HY(D) be equipped with the norm ||v||y :=
{||VU||2L2(D) + KHU||%2(8D)}%. There is a constant c that depends only on D
(i.e., it is independent of klp) such that the weak solution of (35.2) satisfies

1
wllull 2oy + llullv < (ol fllz2o) +€bllgllz2op))- (35.6)

Proof. We only give the proof when « is bounded away from zero, say klp > 1
since the proof in the other case is similar; see [299, 243|. Since we assume that
0 € D, we have ||z|[,» < {p forallz € D. We write C(f, g) := c({pl| fll2(p)+

E%HgHLz(aD)), where as usual the value of the constant ¢ can change at each
occurrence as long as it is independent of x.
(1) In the first step of the proof, we assume that Vuyp € L*(9D) (we
establish this smoothness property in the second step). Let us multiply the
PDE —Au — k?u = f with &-Vu and integrate over D. The identity (35.11)
from Lemma 35.8 with m := « implies that

_ d 2
-R (/D Au :B-Vud:b) = (1 - i)HVUHLz(D)

5 [ @alvitas-n( [ @w@ns).
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since Vo = (Va)T = Iy and V- = d so that e(z) = (1 — 9)I; (see
Lemma 35.8). This identity is often called Rellich’s identity in the literature.
Using the PDE —Au—k2u = f, the Robin boundary condition d,u = iku+g,
and the assumption x-n > rfp on 0D, we obtain

TKD d 2 2 _
2 Vullaom) < (5 - 1) IVull2apy + R </D K2u(z-Va) do
+ 3 (/ f(z-Va) da:> +R (/ (iku + g)(z-Va) ds> .
D oD
Since R( [, u(x-Va) dz) = ||u||L2(D) + 3 [op(@n)|ul?*ds, this leads to
TfD R KD

dk? d
2NVl op) + G- lullie) < (5 = 1) IVuldam) + 52

+R (/D f@-va) d:v) +R (/aD(ifw + g)(2-Va) ds) .

We now bound the last two terms on the right-hand side by using Young’s
inequality, which yields

R ( [ tavn dx) R ( |+ 9@ ds> < Va2,

1 T‘KD 2£D
+ Hé Dl fIzep) + - IVullzz(op) + == (W llullZzop) + 9]1Z200))

||U||L2 (oD)

where 1 > 0 can be chosen as small as needed. Rearranging the terms gives

rlp drk? d
"2Vl taom) + Gl < (5 =1+ 7) IVulfem)

r+4
+

K2 pllullF2opy + C(f,9)%  (35.7)

Let us now bound the norms ||Vu|\%2(D) and HuH%g(aD) appearing on the
right-hand side. Owing to (35.5a) and Young’s inequality, we infer that

IVull2py = &2 ullZ2(p) + éR((fu u)r2(p) + (9=7g(u))L2(aD))
1 1 1
< (1+y2)r° lullZ2(py + WWH%%D) + %HQH%%aD) + §H||U||%2(6D)7

where v2 > 0 can be chosen as small as needed. Since we assumed above that
k€p > 1, we obtain

1
IVullzap) < (1 +72)8%llullZ2p) + 55lluliz@p) + C(F,9)% (35.8)
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Owing to (35.5b), we infer that
Allullfzop) = =S (U w)na) + (9.9%@) r20) )
and applying Young’s inequality with a positive real number 0 gives
SrllullZaom) < Olulaco) + 5171320y + 5 I9l132(0m).
2 (oD) = (D) " 40k (D) " 9 (D)

Taking 6 := 3k with 3 > 0 as small as needed leads to (recall that kfp > 1)

1
shllullZzop) < 36" ullZzp) + C(f:9) (35.9)
In addition, taking 6 := %ﬁ and multiplying by ”4 klp yields
r+4 1
o K2 p|lullZ2opy < §'€2HU|\%2(D) +C(f,9)% (35.10)

Inserting (35.9) into (35.8) gives |[Vull72(p) < (1 + 72 + v3)r?|ullfz(p) +
C(f,g)?, and inserting this bound into (35.7), we obtain
rlp drk? d
"2 1Vuldaop) + Gl < (5 =14+ 7) (1 +2 + )2 lula o)
r+4
2r

K*plluliz@p) + C(f,9)*

Using now the bound on [|ul[72(yp) from (35.10), we infer that

TfD d
||VU’HL2(8D) + 'k& ||u||L2(D)
d 1
(5 -1+ 71) (L+v2+73) + 5)“2”“”%2@) +C(f,9)"

Letting 71 = 4 2 =3 = 8%1, we observe that (% —14+7)A+v2+93) =

% T gt 16d2 < % — l for all d > 1. We conclude that

T‘KD 2 2
Hvu”m @p) T ||U||L2 ) < C(f.9)°

Invoking once again the bounds (35.8) and (35.9), we infer that
K2 ull2(py + llull2opy + IVullzzpy + €0l Vullz2@p) < C(f,9)%

which shows that the a priori estimate (35.6) holds true.
(2) It remains to prove that indeed Vujpp € L*(0D). Recall that u is in
the functional space Y := {y € HY(D)| Ay € L*(D), d,y € L*D)}
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owing to (35.1) and our assumption that f € L2?(D) and g € L2*(dD).
We are going to show by means of a density argument that any function
y € Y is such that Vyop € L*(0D). Let (¢m)men be a sequence in
C>(D) converging to y in Y (such a sequence can be constructed by us-
ing mollifying operators, as in §23.1). Let us set f,, := —Ap, — @m and
Im = Onom — ik@m. Then (fi)men and (gm)men are Cauchy sequences
in L?(D) and L?(9D), respectively. Moreover, the bound from Step (1) im-
1
plies that ||V (¢m — @p)llz2op) < c(lpllfm = follL2p) + l9m — gpllL200))
for all m,p € N, which shows that (V¢,,)men is a Cauchy sequence in
L?*(dD). The uniqueness of the limit in the distribution sense finally shows

that Vyjop € L*(9D). O
Lemma 35.8 (Special identity). For all ¢ € {v € HY(D;C)| Av €
L?*(D;C), Vv € L*0D;CH} and all m € WH(D;RY), letting @(m) :=
H(Vm + (Vm)T — (V-m)ly), we have
—R (/ Ag(m-V7q) dx) =R (/ Vg (e(m)Vq) da:>
D D
1
+ —/ (mn)| V|7 ds — R (/ (n-Vq)(m-V7q) ds> . (35.11)

2 Jop oD

Proof. See Exercise 35.4 and Hetmaniuk [243, Lem. 3.2]. O

A detailed analysis of the Helmholtz problem (35.2) using integral repre-
sentations is done in Esterhazy and Melenk [195, §2]. The following result is
established therein.

Theorem 35.9 (BNB, Robin BCs). Let D be a Lipschitz domain in R,
d e {2,3}. Let V := H'(D) be equipped with the norm ||v||v = &l|v||L2(p) +
Vvl 2(py. Let ko > 0 be a fized number and set ko = kolp'. Then there
is ¢ > 0, depending on D and kg, such that the following holds true for all
e (v, w)
. a(v,w s
220 Tyl = €62 (35-12)

with s := % in general, and s =1 if D is convex or if D is star-shaped or if

0D is smooth.
This theorem implies, in particular, that for every f € V'’ := (H'(D))" and
g€ H 2(dD) = (H=(8D))', the problem (35.2) is uniquely solvable in V, and

z
2

its solution satisfies the a priori bound |lul|v < ¢(k€p) (||f||vf—|—||gHH,%(6D)).

If f € L*(D) and g € L*(dD), this estimate can be improved to |jully <
5 1
c(p)% (En 1 fl12() + % (o ); see [195, Thin. 23]
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35.2 Mixed boundary conditions

We consider in this section the Helmholtz problem with mixed Dirichlet and
Robin boundary conditions. The problem is formulated as follows: For f &
L3(D), g € L?(0D,), and k € R, find a complex-valued function u such that

—Au—r*u=fin D, u=0o0ndDg, Oyu—iku=gondD,, (35.13)

where {0Dq, 0D, } is a partition of D. We assume that the subsets 9Dq and
0D, have a Lipschitz boundary and have positive (surface) measure. As be-
fore, we assume that x > 0 for simplicity. The above problem is reformulated
as follows:

Find u € V :={v € H (D) | v8(v)9p, = 0} such that
(35.14)
a(u,w) =~L(w), YweV,
with the sesquilinear form
a(v,w) = / (Vu-V@ — k*0w) dz — i/@/ v ds, (35.15)
D oD,

and the antilinear form ((w) := [, fwdz+ [,,, gwds. Here again, we cannot
apply the Lax—Milgram lemma since a is not coercive on V. We are going to
invoke instead the BNB theorem.

Theorem 35.10 (BNB, mixed BCs). Let the space V defined in (35.14) be
equipped with the norm ||v[|v := [|[Vv||L2(p). The sesquilinear form a defined
in (35.15) satisfies the conditions of the BNB theorem.

Proof. We are going to invoke Lemma 35.3. We can proceed as in the proof
of Theorem 35.5 to prove the Garding inequality (35.4a), but we proceed
slightly differently to prove (35.4b). Let us assume that a(v,w) = 0 for all
w € V. The inequality |a(v,v)| > HHUHQL?(BDT) implies that vjpp, = 0. Since
|0D;| > 0, there exists a point &y € 9D, and there is ro > 0 such that
B(xo,70) NOD C OD;,. Let Dy, := D°N B(xo, 7). We extend v by zero over

Dy, , denote the extension in question by v, and set D,, := int(ﬁuﬁio). We
have @, € H}(Dy,), (Vor,)|p € H(div; D), and (V@) pe € H(div; Df,).
Since the Robin boundary condition implies that (9,v)sp, = 0, we infer
that the normal component of Vu,, is continuous across 0D, N B(xg, 7).
Reasoning as in the proof of Theorem 18.10, we conclude that Vv,, is a
member of H(div; D,,), i.e., Ab,, € L2(D,,). In conclusion, we have 0, €

HY(Dy,), — AV, = £%*0,, in D,,, and Uro|pg, = 0. The unique continuation
principle (Theorem 31.4) implies that v,,, = 0. Hence, v = 0. O

Following Thlenburg and Babuska [251], we now set D := (0,¢p) and in-
vestigate the one-dimensional version of the problem (35.13). A homoge-
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neous Dirichlet boundary condition is enforced at {z = 0}, and a homo-
geneous Robin condition is enforced at {z = ¢p}. The space V becomes
V:={ve H'(D)|v(0) =0}.

Theorem 35.11 (BNB, mixed BCs, 1D). Let D := (0,{p). Let the space
V be equipped with the norm |[v||v = [|0,v||2(py. There are two constants
0 < ¢, < ¢y, both uniform with respect to , such that

la(v, w)| la(v, w)| g

—— < inf sup < sup sup < .
L+klp = vevyey [vllviwllv = vevwev [VvIlwly = 1+ xlp

Cp

Proof. (1) Let us start with the lower bound. Let v € V, v # 0, and let z € V
solve a(w, z) = (w, k*v) 2(py for all w € V. It is shown in Exercise 35.1 that
this problem has a unique solution in V, and it is shown in Exercise 35.2 that
lIzllv < 4klpllv||y. Then we have

la(v, v+ 2)| = R(a(v,v + 2)) = R(a(v,v)) + £°[[v]72(p)

1
= 1V'lIZ2p) = IVl = m”vﬂv(ﬂvﬂv + 4klpllv[lv)

1
[ollv(lvllv +llzllv) = TZ——=llvllvIlv + z]lv.

1
>__ -
T 4rlp +1 T 4rklp +1

This shows that the lower bound holds true.
(2) Let us now prove the upper bound. Let v € V.
(2.a) If klp < 2, then we can invoke the following Poincaré-Steklov inequality

- - _1
in V: there is a constant Crs > 0 s.t. Cos(¢5"|[0]|12(p) + €52 [v(¢p)]) < [Jv]lv
(see the proof of Proposition 31.21). Using the Cauchy—Schwarz inequality in
(35.3) implies that

la(v,w)| < [vllvllwlly + &*[[v]lL2(pyllw]l 20y + Klo(Ep)|lw(lp)]
< max(1, Co?) (L + Klp + (5Cp)*)[ollv[lwllv-

Since we assumed kfp < 2, this leads to the bound |a(v,w)| < ¢(1 +
klp) Hvllv]lwlly with ¢ := max(1, C3e?) maxyepo o) (1 4t + 2)(1 + 1)

(2.b) Let us now assume that xlp > 2. Let ¢ be a smooth nonnegative
function equal to 1 on [0, 3¢p] and such that ¢({p) = d,¢({p) = 0. Let
us set w(z) = ¢(z)sin(kx)/k so that w € V, w(0) = 0, w(lp) = 0, and
dsw(lp) = 0. Let us set n(z) = dpw(x) — pw(0) + &2 [ w(s)ds, and
¢p = max(20pl|0z¢| L (D), €D |0l Lo (p)). Since w is real-valued and van-
ishes at = ¢p and v(0) = 0, we have

£p

{p
a(v,w) = 000w da — Iiz/ vw dx
0 0

_ /0 " (@u0)dz + o(p)Byw(0) — £ /0 £D<vw + O /O " w(s) ds) dz.
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The last term is equal to —xk?v({p) fOeD w(s) ds since v(0) = 0. Since n({p) =
—0;w(0) + K2 f(fD w(s)ds and |v(€p)] < K%HUHV, we infer that

1353
la(v,w)] = /0 (Osv)ndz — o(tp)n(tp)

1 1
< lwllvinllzzpy + €5 In(lp)]) < 205 |[vllv[Inll L (p)-

Since 1(0) = 0, we have |1]|z~py < €p||0zn||lL~(p). After observing that
0:n(x) = Opwp(x)sin(kz)/k + 20y¢(x) cos(kx) and recalling the above
bounds on the derivatives of ¢, we deduce that ||| (p) < cp(1+ (klp) ™).

1
Hence, we have |a(v,w)| < 2c,(1+ (k€p)~1)¢3||v|lv. After observing that

lp
1

p
8 )

2 3o 2
[lw]l3 2/ cos(kx)” dx > - >
0

1
4K
since klp > 2, we conclude that ||w|y > (%ép)%. This proves that |a(v, w)| <
c(1 4 wlp)~Hv|lv|Jw|v, and the proof is complete. O
Remark 35.12 (Literature). Theorem 35.11 has been derived in Thlenburg
and Babugka [251, Thm. 1], and we refer the reader to this work for an
exhaustive analysis of the continuous problem in one dimension with ¢ := 0.
Two- and three-dimensional versions of Lemma 35.7 for mixed boundary
conditions are established in Hetmaniuk [243]. O

35.3 Dirichlet boundary conditions

We consider in this section the Helmholtz problem with Dirichlet boundary
conditions: For f € L?(D;R) and € R, find u such that

—Au—kK*u=f inD, u=0 ondD. (35.16)

As before, we assume that x > 0 for simplicity. Note that the solution is now
real-valued. We reformulate the above problem as follows:

Find u € V := H}(D) such that
(35.17)
a(u,w) =L(w), YweV,
with the bilinear form
a(v,w) = / (Vo-Vu — k?vw) dz, (35.18)
D

and the linear form ¢(v) := fD fvdzx. As above, we are going to rely on the
BNB theorem to establish the well-posedness (35.17) since a is not coercive.
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But contrary to the case with Robin or mixed boundary conditions, the en-
forcement of Dirichlet conditions leads to a conditional stability depending
on the value of k. In other words, resonance phenomena can occur if s takes
values in some discrete subset of R associated with the spectrum of the
Laplacian operator in D with Dirichlet conditions.

Since the embedding Hg(D) < L?(D) is compact and the operator
(=A)~t: L3(D) — L*(D) is self-adjoint, there exists a Hilbertian basis of
L?(D) composed of eigenvectors of the Laplace operator (see Theorem 46.21).
Let (¢1)1en be the basis in question and let (\;);en be the corresponding eigen-
values with the normalization ||¢;||,2(py = 1. Then every function v € H{ (D)
admits a unique expansion v = ), vy with ||VU||%2(D) = > en V7,
[0l72p) = 2ienvi- Notice that a(v,w) = 37, cn(N — &%)vwy for all
V=Y enuith, w= Y, cywity in Hi(D). Let us denote by I(x) the largest
integer such that X,y < x* with the convention that I(x) = —1 if k* < Ao.
The well-posedness of the problem (35.17) follows from the following result.

Theorem 35.13 (BNB, Dirichlet BCs). Let V := H(D) be equipped
with the norm |[v|ly = ||Vv||p2py. Assume that * & {N}ien. Then the
bilinear form a satisfies the conditions of the BNB theorem with the constant
a(k) == mingey |\ — 2|/ N > 0.

Proof. Let v € Hj(D) with v := Y,y vt Let us set w := D<) — 0+
Zl(n)d v with the convention that [ € N in the sums. Then we have

a(v,w) = Z (k% = \)v? + Z (N — K2)v? > afk Z)\lvl = a(k)|]v]|%.

1<I(r) I(r)<l 1eN
The assertion follows readily from |Jw||y = ||[v||v. The reader is referred to
Ciarlet [120, §3.1] for more details on this problem. O

In general, a(x) behaves like agy(k)(k€p)~1, where v(x) € (0,1] and g only
depends on D. For D := (0,£p), the eigenvalues of the Laplace operator are
N = w2057 Let B € (0,1) and L € N\ {0} be s.t. k% := 7(L+ 8)%¢5>. Then
a(k) = min(8(2L+8)/L?, (1+8)(2L+1+8)/(L+1)?), and the claim follows
readily. Notice that v(x) becomes arbitrarily small as x approaches an eigen-
value of the Laplace operator, i.e., if § is close to 0.

35.4 H'-conforming approximation

We now formulate an H'-conforming approximation of the Helmholtz prob-
lem with one of the boundary conditions discussed in the previous sections
(Robin, mixed or Dirichlet). At this stage, we do not specify the norm with
which we equip the space V: we just assume that it is an H!-like norm that
can contain some lower-order terms depending on « (see Example 35.18).
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Let (Tn)nen be a shape-regular mesh sequence so that each mesh covers
D exactly. In the case of mixed boundary conditions, we also assume that
the meshes are compatible with the corresponding partition of the boundary
dD. Let k > 1 be the degree of the underlying finite element. Let P£(7y) be
the H'-conforming finite element space considered in §18.2.3 and §32.1. For
the Robin problem, we set V), := Pg(7y), and for the mixed and the Dirichlet
problems we set

Vi = {vh € Pkg(’ﬁl) | Vh|loDg = 0} (3519)

We construct an approximation of the Helmholtz problem as follows:

{Find uy, € V, such that

35.20
a(uh,wh) = ﬂ(wh), Ywy € V. ( )

A first way to investigate the stability of the discrete problem (35.20) con-
sists of reasoning by perturbation using the fact that the continuous problem
is well-posed. Such a result can be obtained by invoking a variation of Fortin’s
lemma (a more abstract version of this variation is discussed in Exercise 35.3).
Recall that the elliptic projection II} : V. — V}, is defined for all v € V' s.t.
(V(’U — H,‘f(v)), vwh)L2(D) =0 for all wp, € V3, (see §32.4).

Lemma 35.14 (Modified Fortin). Assume that there are positive real
numbers Ysib, Capp, S such that the elliptic projection satisfies for all v €'V,

Yol @)llv < flollv, o = ()| 20y < capph® *[lollv. (35.21)
Let o be the inf-sup constant of a on V xV. Let v1, v > 0 be such that
lvllz2py < ervelplvlv. (35.22)

Assume that h € H N (0,4(k)] with y(k) = (%c;plpLzﬁlva€E_2/§72)%. Then
the restriction of a to Vi, xVy, satisfies the following inf-sup condition:

, 1
inf  sup M > ap = =Ystpa > 0. (35.23)
un€Vh wyewy, [[Vnllv [whllv 2

Proof. Using that II}(V) C V3 and the assumptions on I}, we have

IIe IIe
o )] el TR e, )
wnevi  wnllv wev T (w)[lv weV |wllv
la(vh, w) + K2(vp, w — I3 (w)) 12 (|
> sup
wev wllv
a(vp, w _ _
> sup la(on,w)] _ Capptr v 05 K2 [onllv = (o = cappir, v h* Gy °K2)|[on|v -

wev  [wllv
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la(vn,wh)| >

llwrllv

saflvnllv, ie., (35.23) holds true with ag = Sysenov. O

Since h < £o(k), using the definition of £y(x) yields v, sup,, cv,

The above result can be applied with s := 1 when full elliptic regularity is
available. One always has s > % in polyhedra (see Theorem 31.31).

Remark 35.15 (Duality argument). A duality argument is implicitly
present in the assumptions of Lemma 35.14 since duality has to be invoked
to establish the approximation property ||v—ITF(v)||r2(py < capph®lp *||v]lv
(see Theorem 32.15). O

A second way to investigate the stability of the discrete problem (35.20) is
a technique introduced by Schatz [343] based on the Aubin—Nitsche duality
argument.

Lemma 35.16 (Schatz). Let V, W be two Banach spaces, W being reflex-
we. Let a be a bounded sesquilinear form on V xW satisfying the conditions
of the BNB theorem with inf-sup and boundedness constants 0 < o < ||al|. Let
L be a Hilbert space such that ||v||r < cpvl||v|lv for allv eV (ie.,V < L).
Let (Vi) hen, (Wh)nen be sequences of finite-dimensional subspaces equipped,
respectively, with the norm of V' and the norm of W. Assume the following:

(i) (Garding’s inequality) There are cy > 0, ¢, > 0 s.t. cy|opllv —
crllvnll < supy, cw, W for all vy, € V.

(i) (Duality argument) There is a subspace Wy — W and real numbers
Csmos Capps and s € (0,1] s.t. infy, ew, ||z — willw < capph®||z]|w. for
all z € Wy and all h € H. Moreover, for all g € L, the unique solution
z € W to the adjoint problem a(v,z) = (v,g)r for all v € V, satisfies

2w < csmollgllz-
Assume that h € HN(0,4o(k)] with bo(k) == (2everal|~teg b el 1 )s. Then

app smo
the restriction of a to Vi, xWp, satisﬁes the dzscrete inf-sup condition (35.23)

. o
with &0 2 g i@

Proof. Let vy, # 0 be a member of V. Consider the antilinear form ¢, €
(Wh)" defined by £y, (wp) = a(vp,wp) for all w, € Wj. (Note that £, :=
Ap(vp) with A, € ﬁ(Vh,Wh) s.t. (An(yn), wh>W/ Wy, = a(yn,wp) for all
(Yn,wp) € Vi xWy.) Owing to the Hahn-Banach fheorem (Theorem C.13),
we can extend £, to W. Let £, be the extension in question with ||¢, |y =
[€nllw; - Since a satisfies the conditions of the BNB theorem, there exists

u € V such that a(u,w) := € (w) for all w € W. (Notice that u := A~1(£))
with A € L(V; W) st (A(y), w)yww = a(y,w) for all (y,w) € VxW.)
Using the inf-sup condition satisfied by a on V' xW we infer that

a(vp, wp, £ (wp, ~

sup 12w wn)l _ 1€ (wn)| _ enllwy = [1nllwe
wnews,  Nwnllw  w,ew, [lwnllw '

~ sup la(u, w)]

> oully.
weW Hw”W
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The rest of the proof consists of showing that there is ¢ s.t. ||ully > c||vp]|v
for all h € H. Invoking Garding’s inequality on V}, gives

al(vp, Wh alu, Wy
evlionlly —collonlly < sup 1ol g el
wnews  |lwn|lw wneWn  ||wn|lw

where we used that a(u—wvyp,wp,) = 0 for all w, € W}, (Galerkin orthogonality
property) and the boundedness of the sesquilinear form a on V' xW. Since
lollL < tp,v]|v]|v for all v € V, we infer that

cvlvallv < cpllvn —ullz + (cer,v + |lal)[Ju]lv-

We now establish an upper bound on ||v, — u||r. Let z € W solve a(v, z) =
(v,u — wvp)y, for all v in V. The Galerkin orthogonality property implies that
lu—vpl|2 = alu —vp, 2) = a(u— vy, 2z — 23,) for all z, € W),. Hence, we have

lu—wall7 < llallle = vnllveah®lIzllw. < llallllu = vallvcappesmoh™ 1w = vn ]z,
so that ||u — vnl|L < ||a]|cappCsmoh® ||t — vp|lv. This in turn implies that

cvvnllv < epllvn —ullL + (cer,v + |lall)[Jullv
< cpllallcappCsmoh®||u — vallv + (crer,v + |lal])[Julv-

Using the triangle inequality gives
(ev — crllallcappesmoh™)l|vnllv < (lall + crer,v + crllallcappcsmolr®) [|ullv-
Provided h < {y(k) we obtain ¢y ||a||CappCsmon® < %cv, so that

cv
2()lall + crer,v + %cv)

lonllv < [Jullv

This concludes the proof. O

Both Lemma 35.14 and Lemma 35.16 imply that there is ¢y(x) such that,
if h € HN(0,%y(k)], the discrete inf-sup condition (35.23) holds true with a
constant that is uniform with respect to the meshsize but may depend on k.
To emphasize this dependency, let us write this constant as ag(k). We can
now invoke Babuska’s lemma (Lemma 26.14) to infer a quasi-optimal bound
on the approximation error.

Corollary 35.17 (Error estimate). There is {y(k) s.t. the following quasi-
optimal error estimate holds true for all h € H N (0,4p(k)]:

llall .
- < |1 f — . 35.24
lu—unlly < ( * ap (k) oneVi = onllv ( )
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Example 35.18 (Dependence on k). In order to illustrate the above
results, let us assume that we impose Robin boundary conditions with the
norm ||[v||y = [|Vv| z2(py + Kl|v]|z2(py- Let us also assume that full elliptic
regularity holds true, i.e., the conclusion of Theorem 35.9 is fulfilled with
s := 1. Then a(k) ~ (klp)~t for all kK > ko. Moreover, we have capp ~ 1,
s:=1,1v ~ klp in Lemma 35.14, so that £o(k) ~ 5" v 2klp(Lpr) ™t =
k205, and ag(k) ~ (k€p)~'. The error estimate (35.24) gives ||u — up||y <
(1 + klp)inf,, cv, ||u — vpllv. Let us now use Lemma 35.16 with |la| ~ 1,
cvi=1,cp =K, iy = kL Capp ~ 1, 5 := 1. In this case, it can be shown
that csmo ~ k€p. Then we have again £o(k) ~ cycy ' |al| ey tegly ~ k205"
and ag(k) ~ (klp)~* leading to the same error estimate. O
Remark 35.19 (Literature). The reader is referred to Ihlenburg and
Babuska [251] for an exhaustive analysis of the one-dimensional Helmholtz
problem with mixed boundary conditions and its Galerkin approximation in
one dimension with ¢g := 0. In particular, the following statements are proved
therein: (i) For piecewise linear continuous finite elements on a uniform mesh,
ay, scales exactly like (kfp)~! uniformly in h € H, i.e., the discrete problem
is well-posed for all h € H (see [251, Thm. 4]); (ii) The P; Galerkin method
delivers a quasi-optimal error estimate in the H'-seminorm with a constant
proportional to klp if kh <1 < klp (see [251, Cor. 2]). O

Remark 35.20 (Dispersion error). It is shown in [251, Thm. 5] that
IV (u—un)||l2py < €p(hk/m)(1 + chi?lp)]| f|| L2, where ¢ is independent of
h € H and k > 0. The term proportional to hx?(p is usually called pollution
error or dispersion error. This term grows unboundedly when k grows even
if hk < 1. The question whether the pollution error could be reduced or
eliminated by using stabilization techniques (i.e., discontinuous approxima-
tion techniques or methods similar to those presented in Chapters 57—60) has
been extensively addressed in the literature. We refer the reader to Burman
et al. [102], Feng and Wu [200], Melenk and Sauter [300], Peterseim [325],
and the literature therein for more details. For instance, it is shown in [300,
Thm. 5.8] that under some appropriate assumptions the pollution effect can
be suppressed if one assumes that «h/k is sufficiently small and that the
polynomial degree k is at least O(In(k)). It is shown in [102, Thm. 6] that
the pollution error disappears in one dimension for some specific k-dependent
choices of the penalty parameter of the CIP method (see §58.3 for details on
CIP). The pollution error is also shown to disappear in [325, Thm. 6.2] for
a localized Petrov-Galerkin method where the global shape functions each
have a support of size rh with the oversampling condition r 2 In(kfp). O

Exercises

Exercise 35.1 (1D Helmbholtz, well-posedness). Let D := (0,¢p), k >
0, and consider the Helmholtz problem with mixed boundary conditions:
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—Oppu—kK?u = fin D, u(0) = 0, and d,u(fp) —iku(fp) = 0. (i) Give a weak
formulation in V := {v € H*(D) | v(0) = 0}. (ii) Show by invoking an ODE
argument that if the weak formulation has a solution, then it is unique. (iii)
Show that the weak problem is well-posed. (Hint: use Lemma 35.3.)

Exercise 35.2 (Green’s function, 1D). Let G : DxD — C be the func-
tion defined by

Gla,s) i ! sin(kx)e® if z € [0, 5,
T sin(ks)el"® if x € [s,1].

(i) Prove that for all x € D, the function D 5 s — G(z,s) € C solves
the PDE —0s5u — k*u = 04—, in D with the boundary conditions u(0) = 0
and dsu(fp) — iku(fp) = 0 (i.e., G is the Green’s function of the Helmholtz
problem from Exercise 35.1). (ii) Find H(x,s) s.t. 0:H(z,s) = 0,G(x,s).
(iii) Let u(z) = [o” G(z,s)f(s)ds. Prove that |[u]lr2m) < &Y f]l L2,
lular oy < [1fllz2py, and Julpz(py < (& + DI fllz2p). (iv) Let v € L*(D)
and let z(x) = K2 fOED G(z,s)v(s)ds. What is the PDE solved by z? Same

question for z(x) = &2 OED G(x,s)v(s)ds. Note: The function z is in-
voked in Step (1) of the proof of Theorem 35.11. (v) Assume now that
v € HY(D) with v(0) = 0, and let z and z be defined as above. Prove that
max(|z| g1 (py, |2|m1(py) < 4klplv|gi(py. (Hint: see Ihlenburg and Babuska

[251, p. 14] (up to the factor 4).)

Exercise 35.3 (Variation on Fortin’s lemma). Let V, W be two Banach
spaces and let a be a bounded sesquilinear form on V xW like in Fortin’s
Lemma 26.9. Let (Vi)nen, (Wh)nen be sequences of subspaces of V' and
W equipped with the norm of V' and W, respectively. Assume that there
exists a map ITp, : W — W), and constants vy, > 0, ¢(h) > 0 such that
la(vn, w — T (w))| < eWlfonlly lwllw, v, [TTn (w)llw < [wlly for all vy €
Vi, all w € W, and all h € H. Assume that lim,_, c(h) = 0. Prove that the
discrete inf-sup condition (26.5a) holds true for h € H small enough.

Exercise 35.4 (Lemma 35.8). (i) Prove that R((m-Vu)v) = $m-V|v|?
for all v € HY(D;C) and m € R? (ii) Prove that R(m-((Vv) ™)) =
%m~VHvH§2(Cd) for all v € HY(D;C%) and m € RY. (iii) Let ¢ € H%(D;C)
and let D?q denote the Hessian matrix of g, i.e., (D?q);; = (ﬁﬂjq for all
i,j € {1:d}. Show that R(m-((D?*q)Vq)) = %m-VHVqH?Q(Cd). (iv) Prove
that (35.11) holds true for all ¢ € {v € HY(D;C) | Av € L*(D;C), Vv €
L?(0D;C%} and all m € WH*°(D;R?). (Hint: assume first that ¢ €
H?*(D;C).)



