
Part VIII, Chapter 36

Crouzeix–Raviart approximation

In Part VIII, composed of Chapters 36 to 41, we study various nonconform-
ing approximations of an elliptic model problem. We first study the Poisson
equation with a homogeneous Dirichlet condition and then address a diffu-
sion PDE with contrasted coefficients. Nonconformity means that the discrete
trial and test spaces are not subspaces of H1(D). Nonconformity has many
sources. It may be that the discrete shape functions have nonzero jumps
across the mesh interfaces. It may be that the Dirichlet conditions are en-
forced weakly. Another possible reason is that the approximation involves
discrete unknowns associated with the mesh faces as in hybrid methods. All
of these situations are studied in the following chapters. The objective of the
present chapter is to study the nonconforming approximation of the Pois-
son equation by Crouzeix–Raviart finite elements. Another objective is to
illustrate the abstract error analysis of Chapter 27.

36.1 Model problem

Let D be a Lipschitz domain in Rd. We assume for simplicity that D is a
polyhedron. We focus on the Poisson equation with homogeneous Dirichlet
boundary conditions:

−∆u = f in D, u = 0 on ∂D, (36.1)

with source term f ∈ L2(D). The weak formulation is as follows:

{
Find u ∈ V := H1

0 (D) such that

a(u,w) = ℓ(w), ∀w ∈ V,
(36.2)

with

a(v, w) :=

∫

D

∇v·∇w dx, ℓ(w) :=

∫

D

fw dx. (36.3)
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Owing to the Poincaré–Steklov inequality (see (3.11) with p := 2), there is
Cps > 0 such that Cps‖v‖L2(D) ≤ ℓD‖∇v‖L2(D) for all v ∈ V, where ℓD is a
length scale associated with D, e.g., ℓD := diam(D). Hence, V equipped with
the norm ‖v‖V := ‖∇v‖L2(D) = |v|H1(D) is a Hilbert space, and the bilinear
form a coincides with the inner product in V. Owing to the Lax–Milgram
lemma, (36.2) is well-posed. We refer the reader to §41.2 for the more general
PDE −∇·(λ∇u) = f with contrasted diffusivity λ.

36.2 Crouzeix–Raviart discretization

In this section, we recall Crouzeix–Raviart finite element, we define the cor-
responding approximation space, we formulate the discrete problem, and we
establish its well-posedness. We also derive some important stability esti-
mates for Crouzeix–Raviart finite elements.

36.2.1 Crouzeix–Raviart finite elements

The Crouzeix–Raviart finite element is introduced in §7.5; see [151] for the

original work to approximate the Stokes equations. Let K̂ be the unit simplex
in Rd with vertices {ẑi}i∈{0:d}. Let F̂i be the face of K̂ opposite to ẑi. The

Crouzeix–Raviart finite element is defined by setting P̂ := P1,d and by using

the following degrees of freedom (dofs) on P̂ :

σ̂cr

i (p̂) :=
1

|F̂i|

∫

F̂i

p̂ds, ∀i ∈ {0:d}. (36.4)

Let (Th)h∈H be a shape-regular matching mesh sequence composed of
affine simplices so that each mesh covers D exactly. Let Th be a mesh and
let K be a cell in Th. Using the Crouzeix–Raviart element as reference finite
element and letting the transformation ψK be the pullback by the geomet-
ric mapping, i.e., ψK(v) := v ◦ TK , Proposition 9.2 allows us to generate a

Crouzeix–Raviart finite element inK. We have PK := ψ−1
K (P̂ ) = P1,d◦T−1

K =
P1,d since TK is affine, and the local dofs in K are for all p ∈ PK ,

σcr

K,i(p) := σ̂cr

i (ψK(p)) =
1

|F̂i|

∫

F̂i

p ◦ TK dŝ =
1

|FK,i|

∫

FK,i

p ds, (36.5)

for all i ∈ {1:d}, where {FK,i := TK(F̂i)}i∈{0:d} are the faces of K. The
local interpolation operator Icr

K : V (K) := W 1,1(K) → PK is such that
Icr
K (v) :=

∑
i∈{0:d} σ

cr
K,i(v)θ

cr
K,i for all v ∈ V (K), where {θK,i}i∈{0:d} are the

local shape functions in K s.t. σcr
K,i(θ

cr
K,j) = δij for all i, j ∈ {0:d}. Recall

that θcri := 1− dλi, where {λi}i∈{0:d} are the barycentric coordinates in K.
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Lemma 36.1 (Local interpolation). There is c s.t. for all r ∈ [0, 1], all
p ∈ [1,∞], all v ∈ W 1+r,p(K), all K ∈ Th, and all h ∈ H,

‖v − Icr

K (v)‖Lp(K) + hK |v − Icr

K (v)|W 1,p(K) ≤ c h1+rK |v|W 1+r,p(K). (36.6)

Proof. Let v ∈ W 1+r,p(K). The error estimates for r ∈ {0, 1} follow from
Theorem 11.13 with k := 1 and l := 1 since V (K) :=W 1,1(K). For r ∈ (0, 1),
we use Corollary 12.13, theW 1,p-stability of Icr

K , and the fact that PK := P1,d

is pointwise invariant under Icr
K to infer that

|v − Icr

K (v))|W 1,p(K) ≤ inf
p∈P1,d

|v − p− Icr

K (v − p))|W 1,p(K)

≤ c inf
p∈P1,d

|v − p|W 1,p(K) ≤ c′ hrK |v|W 1+r,p(K).

The bound on ‖v − Icr
K (v)‖Lp(K) follows by proceeding similarly and using

that ‖Icr
K (v)‖Lp(K) ≤ ‖v‖Lp(K) + chK |v|W 1,p(K). ⊓⊔

36.2.2 Crouzeix–Raviart finite element space

Consider the broken finite element space defined in (18.4) with k := 1,

P b
1 (Th) := {vh ∈ L∞(D) | vh|K ∈ P1,d, ∀K ∈ Th}.

Recall that the set F◦
h is the collection of the interior faces (interfaces) in

the mesh, and the faces are oriented by the unit normal vector nF (see
Chapter 10 on mesh orientation). For all F ∈ F◦

h , there are two cells Kl, Kr

s.t. F := ∂Kl ∩ ∂Kr and nF points from Kl to Kr, i.e., nF := nKl = −nKr .
The notion of jump across F is defined by setting [[v]]F := v|Kl − v|Kr . It is
convenient to use a common notation for interfaces and boundary faces by
writing [[v]]F := v|Kl for every boundary face F := ∂Kl ∩ ∂D ∈ F∂

h . The
Crouzeix–Raviart finite element space is defined as

P cr

1 (Th) := {vh ∈ P b
1 (Th) |

∫

F

[[vh]]F ds = 0, ∀F ∈ F◦
h}. (36.7)

The condition
∫
F [[vh]]F ds = 0 is equivalent to the continuity of vh at the

barycenter xF of F . Note that P cr
1 (Th) is not H1-conforming since member-

ship in H1(D) requires having zero-jumps pointwise (see Theorem 18.8).
Let F ∈ Fh be a mesh face. Let us denote by TF := {K ∈ Th | F ∈ FK} the

collection of the mesh cells having F as face (TF contains two cells for F ∈ F◦
h

and one cell for F ∈ F∂
h ). Let ϕ

cr
F be the function such that ϕcr

F |K is the local

shape function in K associated with F if K ∈ TF and ϕcr

F |K := 0 otherwise;

see Figure 36.1 for d = 2. Note that supp(ϕcr
F ) = DF := int(

⋃
K∈TF K), i.e.,

DF is the collection of all the points in the (one or two) mesh cells containing
F . Let γcrF be the linear form on P cr

1 (Th) such that γcrF (vh) := |F |−1
∫
F
vh ds
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for all vh ∈ P cr
1 (Th). Although vh may be multivalued at F , the quantity

γcrF (vh) is well defined since
∫
F [[vh]]F ds = 0.

Fig. 36.1 Global shape function for
the Crouzeix–Raviart finite element. The
support is materialized by thick lines and
the graph by thin lines. Bullets indicate
the barycenter of the edges.

Proposition 36.2 (Global dofs). {ϕcr
F }F∈Fh is a basis of P cr

1 (Th), and
{γcrF }F∈Fh is a basis of L(P cr

1 (Th);R).

Proof. ϕcr
F is a member of P cr

1 (Th) since ϕcr
F is piecewise affine by construc-

tion and its mean value on a mesh face is 0 or 1. Consider now real numbers
{αF }F∈Fh s.t. the function w :=

∑
F∈Fh αFϕ

cr
F vanishes identically. Ob-

serving that γcrF ′(ϕcr
F ) = δFF ′ for all F, F ′ ∈ Fh, where δFF ′ denotes the

Kronecker symbol, we infer that αF ′ = γcrF ′(w) = 0 for all F ′ ∈ Fh. Hence,
the functions {ϕcr

F }F∈Fh are linearly independent. Finally, let vh ∈ P cr
1 (Th)

and set wh :=
∑

F∈Fh γ
cr
F (vh)ϕ

cr
F . Then, vh|K and wh|K are in PK for all

K ∈ Th, and σK,i(wh|K) = σK,i(vh|K) for all i ∈ {0:d}. Unisolvence implies
that vh|K = wh|K , so that vh = wh since K ∈ Th is arbitrary. This shows
that {ϕcr

F }F∈Fh is a basis of P cr
1 (Th). By using similar arguments, it follows

that {γcrF }F∈Fh is a basis of L(P cr
1 (Th);R). ⊓⊔

Proposition 36.2 implies that the dimension of P cr
1 (Th) is equal to the

number of faces (edges in dimension two) in the mesh. Moreover, the global
Crouzeix–Raviart interpolation operator acts on every function v inW 1,1(D)
as follows: For all x ∈ D,

Icr

h (v)(x) :=
∑

F∈Fh
γcrF (v)ϕcr

F (x) =
∑

F∈Fh

(
1

|F |

∫

F

v ds

)
ϕcr

F (x).

Since Icr

h (v)|K = Icr
K (v|K) for all K ∈ Th, the approximation results of

Lemma 36.1 can be rephrased in terms of Icr
h .

36.2.3 Discrete problem and well-posedness

We account for the homogeneous Dirichlet boundary condition by considering
the following subspace of P cr

1 (Th):

P cr

1,0(Th) :=
{
vh ∈ P cr

1 (Th) |
∫

F

vh ds = 0, ∀F ∈ F∂
h

}
, (36.8)
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where F∂
h is the collection of the mesh faces located at the boundary. By

proceeding as in Proposition 36.2, one can verify that {ϕcr
F }F∈F◦

h
is a basis

of P cr
1,0(Th), and {γcrF }F∈F◦

h
is a basis of L(P cr

1,0(Th);R). The dimension of
P cr
1,0(Th) is the number of internal faces (edges if d = 2) in the mesh.
The bilinear form a introduced in (36.3) is not well defined on P cr

1,0(Th)
since this space is not H1-conforming. Since functions in P cr

1,0(Th) are piece-
wise smooth, we can localize their gradient to the mesh cells. To this pur-
pose, we introduce the notion of broken gradient on the broken Sobolev
space W 1,p(Th) with p ∈ [1,∞]. Recall from Definition 18.1 that a function
v ∈ W 1,p(Th) is s.t. ∇(v|K) ∈ Lp(K) for all K ∈ Th.

Definition 36.3 (Broken gradient). Let p ∈ [1,∞]. The broken gradient
operator ∇h :W 1,p(Th) → Lp(D) is defined by setting (∇hv)|K := ∇(v|K) for
all K ∈ Th.

A crucial consequence of Lemma 18.9 is that ∇hv = ∇v whenever v ∈
W 1,p(D). This property will be often used for the solution to the model
problem (36.2) since u ∈ H1

0 (D). We define the following discrete bilinear
and linear forms on Vh×Vh and on Vh, respectively:

ah(vh, wh) :=

∫

D

∇hvh·∇hwh dx, ℓh(wh) :=

∫

D

fwh dx, (36.9)

and we consider the following discrete problem:

{
Find uh ∈ Vh := P cr

1,0(Th) such that

ah(uh, wh) = ℓh(wh), ∀wh ∈ Vh.
(36.10)

Lemma 36.4 (Coercivity, well-posedness). (i) The map

vh 7→ ‖vh‖Vh := ah(vh, vh)
1
2 = ‖∇hvh‖L2(D) (36.11)

is a norm on P cr
1,0(Th). (ii) Equipping Vh with this norm, the bilinear form

ah is coercive on Vh with αh := 1. (iii) The discrete problem (36.10) is well-
posed.

Proof. (i) The only nontrivial property is to prove that ‖vh‖Vh = 0 implies
that vh = 0 for all vh ∈ Vh. If ‖vh‖Vh = 0, then vh is piecewise constant. The
additional property

∫
F [[vh]]F ds = 0 for all F ∈ F◦

h implies that vh is globally

constant on D. That vh = 0 follows from
∫
F vh ds = 0 for all F ∈ F∂

h .
(ii)-(iii) Since ‖·‖Vh is a norm on Vh, coercivity follows from the definition of
‖·‖Vh , and well-posedness follows from the Lax–Milgram lemma. ⊓⊔

Remark 36.5 (Nonsmooth right-hand side). We observe that it is not
clear how one should account for a source term f in H−1(D) in (36.10),
since it is not clear how f would act on (discrete) functions that are not
in H1

0 (D). One possibility is to consider the discrete linear form ℓh(wh) :=
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〈f,J av
h,0(wh)〉H−1(D),H1

0 (D) where J av
h,0 : P b

1 (Th) → P g
1,0(Th) is the averaging

operator with boundary conditions introduced in §22.4.1. A general theory
addressing this type of difficulty is developed in Veeser and Zanotti [373]. ⊓⊔

36.2.4 Discrete Poincaré–Steklov inequality

On the H1
0 -conforming subspace P g

1,0(Th) := P cr
1,0(Th) ∩ H1

0 (D), the norm

‖·‖Vh defined in (36.11) coincides with the H1-seminorm. Owing to the
Poincaré–Steklov inequality, we know that there is Cps > 0 s.t. Cps‖vh‖L2(D) ≤
ℓD‖∇vh‖L2(D) = ℓD‖vh‖Vh for all vh ∈ P g

1,0(Th). We now prove that a similar
inequality is available on the larger space P cr

1,0(Th).

Lemma 36.6 (Discrete Poincaré–Steklov inequality). There is Ccr
ps >

0 s.t. for all vh ∈ P cr
1,0(Th) and all h ∈ H,

Ccr

ps ‖vh‖L2(D) ≤ ℓD‖∇hvh‖L2(D). (36.12)

Proof. Let vh ∈ P cr
1,0(Th). Let φ ∈ H1

0 (D) solve ∆φ = vh and let σ := ∇φ.
Then ∇·σ = vh. Elliptic regularity implies that there is s > 1

2 such that
φ ∈ H1+s(D) (see Theorem 31.33) so that σ ∈ Hs(D). Moreover, there is
γD > 0 such that γD(‖σ‖L2(D)+ ℓ

s
D|σ|Hs(D)) ≤ ℓD‖vh‖L2(D). Integrating by

parts cellwise, we infer that

‖vh‖2L2(D) =

∫

D

vh∇·σ dx =
∑

K∈Th

∫

K

vh|K∇·σ dx

= −
∑

K∈Th

∫

K

σ·∇(vh|K) dx+
∑

K∈Th

∑

F∈FK

∫

F

σ·nKvh|K ds

= −
∫

D

σ·∇hvh dx+
∑

K∈Th

∑

F∈FK

∫

F

σ·nKvh|K ds =: T1 + T2,

where FK is the collection of the faces of K and nK the outward unit normal
to K (observe that σ is single-valued on F since σ ∈ Hs(D) with s > 1

2 ).
The Cauchy–Schwarz inequality implies that

|T1| ≤ ‖σ‖L2(D)‖∇hvh‖L2(D).

Consider now T2. If F := ∂Kl ∩ ∂Kr is an interface, the integral over F
appears twice in the sum. Since

∫
F vh|Kl ds =

∫
F vh|Kr ds by definition of

P cr
1 (Th) and since nKl = −nKr , we can subtract from σ a constant function

on F that we take equal to σF := 1
|F |
∫
F
σ ds. The same conclusion is valid for

the boundary faces since
∫
F
vh ds = 0 on such faces by definition of P cr

1,0(Th).
This leads to
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T2 =
∑

K∈Th

∑

F∈FK

∫

F

(σ − σF )·nKvh|K ds

=
∑

K∈Th

∑

F∈FK

∫

F

(σ − σF )·nK(vh|K − vF ) ds,

where the subtraction of the single-valued quantity vF := 1
|F |
∫
F vh ds is

justified as above. Applying Lemma 36.8 below to σ|K and to vh|K , using
hK ≤ ℓD for all K ∈ Th, and invoking the Cauchy–Schwarz inequality yields

|T2| ≤ c
∑

K∈Th
h
s− 1

2

K |σ|Hs(K)h
1
2

K‖∇(vh|K)‖L2(K)

≤ c ℓsD
∑

K∈Th
|σ|Hs(K)‖∇(vh|K)‖L2(K) ≤ c ℓsD|σ|Hs(D)‖∇hvh‖L2(D),

since
∑
K∈Th |σ|2Hs(K) ≤ |σ|2

Hs(D). Combining the above bounds on T1 and
T2, we infer that

‖vh‖2L2(D) ≤
(
‖σ‖L2(D) + c ℓsD|σ|Hs(D)

)
‖∇hvh‖L2(D),

and (36.12) follows from γD(‖σ‖L2(D) + ℓsD|σ|Hs(D)) ≤ ℓD‖vh‖L2(D). ⊓⊔
Remark 36.7 (Literature). The above proof is adapted from Temam [363,
Prop. 4.13]; see also Croisille and Greff [150]. ⊓⊔
Lemma 36.8 (Poincaré–Steklov on faces). Let s ∈ (12 , 1]. There is c s.t.

‖ψ − ψ
F
‖L2(F ) ≤ c h

s− 1
2

K |ψ|Hs(K), (36.13)

for all ψ ∈ Hs(K) with ψ
F
:= 1

|F |
∫
F
ψ ds; all K ∈ Th, all F ∈ FK, and all

h ∈ H (the constant c grows unboundedly as s ↓ 1
2).

Proof. Let ψ̃ := ψ − 1
|K|
∫
K
ψ dx. With obvious notation, we have ψ − ψ

F
=

ψ̃ − ψ̃
F
. The triangle inequality and the Cauchy–Schwarz inequality imply

that ‖ψ − ψ
F
‖L2(F ) ≤ 2‖ψ̃‖L2(F ). Using the trace inequality (12.17) yields

‖ψ − ψ
F
‖L2(F ) ≤ c(h

− 1
2

K ‖ψ̃‖L2(K) + h
s− 1

2

K |ψ̃|Hs(K)).

The expected bound follows from |ψ̃|Hs(K) = |ψ|Hs(K) and the Poincaré–

Steklov inequality ((12.13) if s = 1 or (12.14) if s ∈ (12 , 1)) on K, which gives

‖ψ̃‖L2(K) ≤ chsK |ψ|Hs(K). ⊓⊔

36.2.5 Bound on the jumps

Bounding the jumps of functions in P cr
1,0(Th) is useful in many situations. The

following result will be invoked in the next section.



174 Chapter 36. Crouzeix–Raviart approximation

Lemma 36.9 (Bound on the jumps). There is c s.t. for all vh ∈ P cr
1,0(Th)

and all h ∈ H,

c−1
∑

F∈Fh
h−1
F ‖[[vh]]‖2L2(F ) ≤ inf

v∈H1
0 (D)

‖∇h(v − vh)‖2L2(D)

≤ c
∑

F∈Fh
h−1
F ‖[[vh]]‖2L2(F ). (36.14)

Proof. Let vh ∈ P cr
1,0(Th). For all K ∈ Th, let us set H1

∗ (K) := {φ ∈
H1(K) |

∫
K
φdx = 0} and let FK be the collection of the faces of K. For all

F ∈ FK , let ψK,F ∈ H1
∗ (K) solve the local Neumann problem:

∫

K

∇ψK,F ·∇φdx = ǫK,F

∫

F

[[vh]]Fφds, ∀φ ∈ H1
∗ (K), (36.15)

where ǫK,F := nK ·nF = ±1. This problem is well-posed since
∫
F [[vh]]F ds = 0

for all F ∈ Fh. Since ψK,F ∈ H1
∗ (K), the multiplicative trace inequal-

ity (12.17) (with s := 1 and p := 2) together with the Poincaré–Steklov

inequality (12.13) implies that ‖ψK,F ‖L2(F ) ≤ ch
1
2

K‖∇ψK,F ‖L2(K). Taking
φ := ψK,F as a test function in (36.15), we infer that

‖∇ψK,F ‖2L2(K) = ǫK,F

∫

F

[[vh]]FψK,F ds ≤ ‖[[vh]]‖L2(F )‖ψK,F ‖L2(F )

≤ c h
1
2

K‖[[vh]]F ‖L2(F )‖∇ψK,F ‖L2(K).

Owing to the regularity of the mesh sequence, we infer that

‖∇ψK,F ‖L2(K) ≤ c h
1
2

F ‖[[vh]]F ‖L2(F ).

(1) Let us prove the first bound in (36.14). Let v ∈ H1
0 (D). Let cK be the

mean value of the function (vh−v) overK. The restriction of (vh−v−cK) to
K is in H1

∗ (K). Let F ∈ Fh. Taking φK := (vh− v)|K − cK as a test function
in (36.15) and summing over K ∈ TF , we infer that

∑

K∈TF

∫

K

∇ψK,F ·∇(vh − v)|K dx =
∑

K∈TF

∫

K

∇ψK,F ·∇φK dx

=
∑

K∈TF
ǫK,F

∫

F

[[vh]]FφK ds =
∑

K∈TF
ǫK,F

∫

F

[[vh]]F (vh|K − v − cK) ds

=

∫

F

[[vh]]F [[vh − v − cK ]]F ds =

∫

F

[[vh]]F [[vh − v]]F ds =

∫

F

[[vh]]
2
F ds,

where we used that
∫
F
[[vh]]F ds = 0 to eliminate cK and the fact that

v ∈ H1
0 (D) to eliminate [[v]]F . Using the Cauchy–Schwarz inequality and

the above bound on ‖∇ψK,F ‖L2(K), we obtain
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h−1
F ‖[[vh]]F ‖2L2(F ) ≤ c

∑

K∈TF
‖∇(v − vh|K)‖2L2(K). (36.16)

Summing over F ∈ Fh leads to the first bound in (36.14).
(2) To prove the second bound in (36.14), we estimate the infimum over v ∈
H1

0 (D) by taking v := J g,av
h,0 (vh) where J g,av

h,0 : P b
1 (Th) → P g

1,0(Th) ⊂ H1
0 (D)

is the averaging operator with zero trace introduced in §22.4.1. Then the
second bound in (36.14) follows from Lemma 22.12 and the regularity of the
mesh sequence. ⊓⊔

The bound (36.14) can be adapted to the case where vh ∈ P cr
1 (Th), i.e.,

without any boundary prescription. The summations over the mesh faces are
then restricted to the mesh interfaces, and the infimum is taken over the func-
tions v in H1(D). The idea of introducing the local Neumann problem (36.15)
has been considered in Achdou et al. [4].

36.3 Error analysis

In this section, we first establish an error estimate by using the coercivity
norm and the abstract error estimate from Lemma 27.5. Then we derive an
improved L2-error estimate by adapting the duality argument from §32.3.

36.3.1 Energy error estimate

We perform the error analysis under the assumption that the solution to the
model problem (36.2) is in H1+r(D) with r > 1

2 , i.e., we set

Vs := H1+r(D) ∩H1
0 (D), r >

1

2
. (36.17)

The assumption u ∈ Vs is reasonable in the setting of the Poisson equation
with Dirichlet conditions in a Lipschitz polyhedron since it is consistent with
the elliptic regularity theory (see Theorem 31.33). The important property
of a function v ∈ Vs that we use here is that its normal derivative nK ·∇v
is meaningful in L2(∂K) for all K ∈ Th. Actually, the full trace of ∇v on
∂K is meaningful on L2(∂K), and this trace is single-valued on any interface
F ∈ F◦

h (see Remark 18.4). Therefore, we have [[∇v]]F = 0 for all v ∈ Vs and
all F ∈ F◦

h .
The discrete space Vh := P cr

1,0(Th) is equipped with the norm ‖·‖Vh defined
in (36.11), and we introduce the space V♯ := Vs+Vh equipped with the norm
‖·‖V♯ defined by

‖v‖2V♯ :=
∑

K∈Th

(
‖∇v‖2L2(K) + hK‖nK ·∇v|K‖2L2(∂K)

)
. (36.18)
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A discrete trace inequality shows that there is c♯ s.t. ‖vh‖V♯ ≤ c♯‖vh‖Vh for
all vh ∈ Vh and all h ∈ H, i.e., (27.5) holds true. Using the forms ah and ℓh
defined in (36.9), the consistency error is s.t.

〈δh(vh), wh〉V ′
h
,Vh := ℓh(wh)− ah(vh, wh), ∀vh, wh ∈ Vh. (36.19)

Lemma 36.10 (Consistency/boundedness). Assume (36.17). There is
ω♯, uniform w.r.t. u ∈ Vs, s.t. for all vh ∈ Vh and all h ∈ H,

‖δh(vh)‖V ′
h
≤ ω♯ ‖u− vh‖V♯ . (36.20)

Proof. Let vh, wh ∈ Vh. Since the normal derivative nK ·∇u is meaningful in
L2(∂K) for all K ∈ Th, we have

ℓh(wh) =
∑

K∈Th

∫

K

fwh|K dx =
∑

K∈Th

∫

K

−(∆u)wh|K dx

=
∑

K∈Th

∫

K

∇u·∇wh|K dx−
∑

K∈Th

∑

F∈FK

∫

F

(nK ·∇u)wh|K ds

=

∫

D

∇u·∇hwh dx−
∑

K∈Th

∑

F∈FK

∫

F

(nK ·∇u)wh|K ds.

Note that we write nK ·∇u instead of nK ·∇u|K since ∇u is single-valued on
F because u ∈ Vs. We want to exchange the order of the summations on the
right-hand side. Recalling that for every interface F := ∂Kl∩∂Kr ∈ F◦

h with
nF pointing from Kl to Kr, i.e., nF := nKl = −nKr , we have

(nKl ·∇u)wh|Kl + (nKr ·∇u)wh|Kr = (nKl ·∇u)[[wh]]F .

For every boundary face F := ∂Kl ∩ ∂D ∈ F∂
h , recall that we have conven-

tionally set [[wh]]F := wh|Kl . Thus, we infer that

∑

K∈Th

∑

F∈FK

∫

F

(nK ·∇u)wh|K ds =
∑

F∈Fh

∫

F

(nKl ·∇u)[[wh]]F ds.

Setting η := u− vh, we can write the consistency error as follows:

〈δh(vh), wh〉V ′
h
,Vh =

∫

D

∇hη·∇hwh dx−
∑

F∈Fh

∫

F

(nKl ·∇u)[[wh]]F ds

=

∫

D

∇hη·∇hwh dx−
∑

F∈Fh

∫

F

(nKl ·∇η|Kl)[[wh]]F ds,

where we used that
∫
F
(nKl ·∇vh|Kl)[[wh]]F ds = 0 for all F ∈ Fh by definition

of the Crouzeix–Raviart space Vh = P cr
1,0(Th). We conclude by invoking the

Cauchy–Schwarz inequality, the first bound on the jumps in (36.14) which
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implies that
∑
F∈Fh h

−1
F ‖[[wh]]F ‖2L2(F ) ≤ c‖wh‖2Vh (bound the infimum by

taking v := 0), and the regularity of the mesh sequence. ⊓⊔

Theorem 36.11 (Convergence). Let u solve (36.2) and let uh solve (36.10).
Assume (36.17). (i) There is c s.t. the following quasi-optimal error estimate
holds true for all h ∈ H,

‖u− uh‖V♯ ≤ c inf
vh∈Vh

‖u− vh‖V♯ . (36.21)

(ii) Letting t := min(1, r), we have

‖u− uh‖V♯ ≤ c

( ∑

K∈Th
h2tK |u|2H1+t(K)

) 1
2

. (36.22)

Proof. (i) The estimate (36.21) follows from Lemma 27.5 combined with sta-
bility (Lemma 36.4) and consistency/boundedness (Lemma 36.10).
(ii) The bound (36.22) follows from (36.21) by taking vh := Icr

h (u). Let-
ting η := u − Icr

h (u), we indeed have ‖∇η|K‖L2(K) ≤ chtK |u|H1+t(K) for all
K ∈ Th owing to Lemma 36.1. Moreover, invoking the multiplicative trace
inequality (12.17), we obtain

h
1
2

K‖nK ·∇η|K‖L2(∂K) ≤ ‖∇η|K‖L2(K) + htK |η|K |H1+t(K),

and we have |η|K |H1+t(K) = |u|H1+r(K) since Icr

h (u) is affine in K. ⊓⊔

Remark 36.12 (Strang 2). The analysis can also be done by invoking
Strang’s second lemma (Lemma 27.15). Let us set V♯ := H1

0 (D)+P cr
1,0(Th) and

let us equip this space with the norm ‖·‖V♯ defined in (36.18). The discrete
bilinear form ah can be extended to a bilinear form a♯ having boundedness
constant equal to 1 on V♯×Vh. Lemma 27.15 leads to the error bound

‖u− vh‖V♯ ≤ c

(
inf

vh∈Vh
‖u− vh‖V♯ + ‖δst2h (u)‖V ′

h

)
,

with the consistency error s.t. for all wh ∈ P cr
1,0(Th),

〈δst2h (u), wh〉V ′
h
,Vh := ℓh(wh)− ah(u,wh) =

∑

K∈Th

∫

K

(fwh −∇u·∇wh|K) dx

= −
∑

K∈Th

∫

∂K

(nK ·∇u)wh|K ds.

Thus, the consistency error does not vanish identically, i.e., the Crouzeix–
Raviart finite element method is not strongly consistent in the sense defined
in Remark 27.16. Since we have
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∑

K∈Th

∫

∂K

(nK ·∇u)wh|K ds =
∑

K∈Th

∫

∂K

(nK ·∇(u − vh))wh|K ds,

for all vh ∈ P cr
1,0(Th), by proceeding as in the proof of Theorem 36.11, we

infer again that the quasi-optimal error estimate (36.21) holds true. ⊓⊔

36.3.2 L2-error estimate

The goal of this section is to derive an improved L2-error estimate of the
form ‖u− uh‖L2(D) ≤ chγℓ1−γD ‖u− uh‖V♯ for some real number γ > 0, where
ℓD is a length scale associated with D, e.g., ℓD := diam(D).

Proceeding as in §32.3, we invoke a duality argument. We consider for all
g ∈ L2(D) the adjoint solution ζg ∈ V := H1

0 (D) such that

a(v, ζg) = (v, g)L2(D), ∀v ∈ V. (36.23)

Notice that −∆ζg = g in D and γg(ζg) = 0. Owing to the elliptic regu-
larity theory (see §31.4), there is s ∈ (0, 1] and a constant csmo such that
‖ζg‖H1+s(D) ≤ csmoℓ

2
D‖g‖L2(D) for all g ∈ L2(D). In the present setting of

the Poisson equation with Dirichlet conditions in a Lipschitz polyhedron, it
is reasonable to assume that s ∈ (12 , 1].

Theorem 36.13 (L2-estimate). Let u solve (36.2) and let uh solve (36.10).
Assume that the elliptic regularity index satisfies s ∈ (12 , 1]. There is c s.t.
for all h ∈ H,

‖u− uh‖L2(D) ≤ c hsℓ1−sD ‖u− uh‖V♯ . (36.24)

Proof. Let e := u − uh and set Yh := P g
1,0(Th) := P cr

1,0(Th) ∩ H1
0 (D). Then

(∇he,∇yh)L2(D) = (∇u,∇yh)L2(D) − (∇huh,∇yh)L2(D) = 0 for all yh ∈ Yh.
Since ‖e‖2L2(D) = −(e,∆ζe)L2(D), we have

‖e‖2L2(D) = (∇he,∇ζe)L2(D) −
(
(e,∆ζe)L2(D) + (∇he,∇ζe)L2(D)

)

= (∇he,∇(ζe − yh))L2(D) − 〈δadj(ζe), e〉V ′
♯
,V♯ ,

where we introduced δadj(ζe) ∈ V ′
♯ s.t. 〈δadj(ζe), v〉V ′

♯
,V♯ := (v,∆ζe)L2(D) +

(∇hv,∇ζe)L2(D) and used that (∇he,∇yh)L2(D) = 0 for all yh ∈ Vh. Let us

set ‖δadj(ζe)‖V ′
♯
:= supv∈V♯

|〈δadj(ζe),v〉V ′
♯
,V♯

|
‖v‖V♯

. The Cauchy–Schwarz inequality

and the definition of the ‖·‖V♯- and ‖·‖V ′
♯
-norms imply that

‖e‖2L2(D) ≤
(

inf
yh∈Yh

‖∇(ζe − yh)‖L2(D) + ‖δadj(ζe)‖V ′
♯

)
‖e‖V♯ .

It remains to bound the two terms between parentheses on the right-hand
side. Using the quasi-interpolation operator Ig,av

h0 from §22.4, we infer that
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inf
yh∈Yh

‖∇(ζe − yh)‖L2(D) ≤ ‖∇(ζe − Ig,av
h0 (ζe))‖L2(D)

≤ c hs|ζe|H1+s(D) ≤ c hsℓ−1−s
D ‖ζe‖H1+s(D) ≤ c csmo h

sℓ1−sD ‖e‖L2(D),

where we used the approximation properties of Ig,av
h0 from Theorem 22.14

and the elliptic regularity theory to bound ‖ζe‖H1+s(D) by ‖e‖L2(D). Let us
now estimate ‖δadj(ζe)‖V ′

♯
. By proceeding as in the proof of Lemma 36.10

(observe that [[∇ζe]]F = 0 for all F ∈ F◦
h), we infer that we have, for all

v := vs + vh ∈ V♯ := Vs + Vh with vs ∈ Vs and vh ∈ Vh, and all zh ∈ Vh,

〈δadj(ζe), v〉V ′
♯
,V♯ =

∑

F∈Fh

∫

F

nKl ·∇ζe[[vh]]F ds

=
∑

F∈Fh

∫

F

nKl ·∇(ζe − zh)|Kl [[vh]]F ds

≤ c ‖ζe − zh‖V♯
( ∑

F∈Fh
h−1
F ‖[[vh]]F ‖2L2(F )

) 1
2

,

where we used that nKl ·∇zh|Kl is constant on F . Using the leftmost in-
equality in (36.14) with infw∈H1

0(D) ‖∇h(w−vh)‖2L2(D) ≤ ‖∇h(vs+vh)‖2L2(D),

we infer that
∑
F∈Fh h

−1
F ‖[[vh]]F ‖2L2(F ) ≤ c‖vs + vh‖2V♯ = c‖v‖2V♯ . Thus,

‖δadj(ζe)‖V ′
♯
≤ c′ infzh∈Vh ‖ζe − zh‖V♯ . Using the approximation properties of

Vh, we conclude that ‖δadj(ζe)‖V ′
♯
≤ chs|ζe|H1+s(D), and reasoning as above

yields ‖δadj(ζe)‖V ′
♯
≤ chsℓ1−sD ‖e‖L2(D). ⊓⊔

36.3.3 Abstract nonconforming duality argument

Let us finish with an abstract formulation of the above duality argument that
can be applied in the context of nonconforming approximation techniques.
Let V a Banach space, L be a Hilbert space, and assume that V embeds
continuously into L (i.e., V →֒ L) and V is dense in L. Identifying L with L′,
we are in the situation where

V →֒ L ≡ L′ →֒ V ′, (36.25)

with continuous and dense embeddings. Let a : V×V → C be a bounded
sesquilinear form satisfying the assumptions of the BNB theorem (Theo-
rem 25.9). For all f ∈ L we denote by ξf the unique solution to the problem

a(ξf , v) = (f, v)L, ∀v ∈ V. (36.26)

Similarly, for all g ∈ L we denote by ζg ∈ V the unique solution to the adjoint
problem

a(v, ζg) = (v, g)L, ∀v ∈ V. (36.27)
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These two problems are well-posed since a satisfies the assumptions of the
BNB theorem. Let Aadj ∈ L(V ;V ′) be s.t. 〈Aadj(w), v〉V ′,V = a(v, w) for all
(v, w) ∈ V×V. Owing to (36.25) and (36.27), we have Aadj(ζg) = g in L.

We assume that we have at hand two subspaces Vs ⊂ V and Zs ⊂ V s.t.
the maps V ′ ∋ f 7→ ξf ∈ Vs and V

′ ∋ g 7→ ζg ∈ Zs are bounded. Let Vh ⊂ L
be a finite-dimensional subspace of L (but not necessarily of V ). Let Yh ⊆ Vh.
We set V♯ := Vs + Vh and Z♯ := Zs + Yh, and we equip these spaces with
norms denoted by ‖·‖V♯ and ‖·‖Z♯ .

Lemma 36.14 (L-norm estimate). Let a♯ be a bounded sesquilinear form
on V♯×Z♯. Let ‖a♯‖ be the norm of a♯ on V♯×Z♯. Let u ∈ Vs and uh ∈ Vh.
Assume that the following Galerkin orthogonality property holds true:

a♯(u− uh, yh) = 0, ∀yh ∈ Yh. (36.28)

Let e := u− uh and let δadj(ζe) ∈ V ′
♯ be the adjoint consistency error:

〈δadj(ζe), v〉V ′
♯
,V♯ := (v,Aadj(ζe))L − a♯(v, ζe), ∀v ∈ V♯. (36.29)

Then the following estimate holds true:

‖e‖L ≤
(‖δadj(ζe)‖V ′

♯

‖e‖L
+ ‖a♯‖ inf

yh∈Yh

‖ζe − yh‖Z♯
‖e‖L

)
‖e‖V♯ , (36.30)

Proof. Using the identity Aadj(ζe) = e and the Galerkin orthogonality prop-
erty (36.28), we infer that

‖e‖2L = (e, Aadj(ζe))L = (e, Aadj(ζe))L − a♯(e, ζe) + a♯(e, ζe)

= 〈δadj(ζe), e〉V ′
♯
,V♯ + a♯(e, ζe − yh).

The boundedness of a♯ on V♯×Z♯ and the definition of the dual norm
‖δadj(ζe)‖V ′

♯
imply that (36.30) holds true. ⊓⊔

Example 36.15 (Crouzeix–Raviart). Lemma 36.14 can be applied to
the Crouzeix–Raviart approximation with Vs := H1+r(D) ∩ H1

0 (D), Zs :=
H1+s(D) ∩ H1

0 (D), a♯(v, w) := (∇hv,∇hw)L2(D), and equipping the spaces
V♯ := Vs + Vh, Z♯ := Zs + Yh, Yh := Vh ∩ H1

0 (D), with the broken energy
norm. Note that the adjoint consistency error is nonzero, and that the proof
of Theorem 36.13 shows that both terms on the right-hand side of (36.30)
converge with the same rate w.r.t. h ∈ H. ⊓⊔

Exercises

Exercise 36.1 (Commuting properties). Let K be a simplex in Rd and
let Π0

K denote the L2-orthogonal projection onto constants. Prove that
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∇(Icr
K (p)) = Π0

K(∇p) and ∇·(IIIcr
K (σ)) = Π0

K(∇·σ) for all p ∈ H1(K) and all
σ ∈ L2(K) with ∇·σ ∈ L1(K) and IIIcr

K defined componentwise using Icr
h .

Exercise 36.2 (Best approximation). Let v ∈ H1(D). A global best-
approximation of v in P cr

1 (Th) in the broken H1-seminorm is a function
vcrh ∈ P cr

1 (Th) s.t.
∑

K∈Th
‖∇(v − vcrh )‖2L2(K) = min

vh∈P cr
1 (Th)

∑

K∈Th
‖∇(v − vh)‖2L2(K).

(i) Write a characterization of vcrh in weak form and show that vcrh is unique up
to an additive constant. (Hint : adapt Proposition 25.8.) (ii) Let vbh be a global
best-approximation of v in the broken finite element space P b

1 (Th); see §32.2.
Prove that

∑
K∈Th ‖∇(v − vcrh )‖2

L2(K) =
∑

K∈Th ‖∇(v − vbh)‖2L2(K). (Hint :

using Exercise 36.1, show that vcrh = Icr
h (v) up to an additive constant.)

Exercise 36.3 (H(div)-flux recovery). Let uh solve (36.10). Assume that
f is piecewise constant on Th. Set σh|K := −∇uh|K + 1

df|K(x− xK), where
xK is the barycenter of K for all K ∈ Th. Prove that σh is in the lowest-order
Raviart–Thomas finite element space P d

0 (Th) and that ∇·σ = f ; see Marini
[295] (Hint : evaluate

∫
F
[[σh]]·nFϕcr

F ds for all F ∈ F◦
h .)

Exercise 36.4 (Discrete Helmholtz). Let D ⊂ R2 be a simply connected
polygon. Prove that P b

0 (Th) = ∇P g
1 (Th)⊕∇⊥

h P
cr
1,0(Th), where

∇⊥
h P

cr

1,0(Th) := {vh ∈ P b
0 (Th) | ∃qh ∈ P cr

1,0(Th) | vh|K = ∇⊥(qh|K), ∀K ∈ Th},

and ∇⊥ is the two-dimensional curl operator defined in Remark 16.17. (Hint :
prove that the decomposition is L2-orthogonal and use a dimension argument
based on Euler’s relations.)

Exercise 36.5 (Rannacher–Turek). Let K := [−1, 1]d. For all i ∈ {1:d}
and α ∈ {l, r}, let Fi,α be the face of K corresponding to {xi = −1} when
α = l and to {xi = 1} when α = r. Observe that there are 2d such faces, each
of measure 2d−1. Let P be spanned by the 2d functions {1, x1, . . . , xd, x21 −
x22, . . . , x

2
d−1 − x2d}. Consider the linear forms σi,α(p) := 21−d

∫
Fi,α

p ds for

all i ∈ {1:d} and α ∈ {l, r}. Setting Σ := {σi,α}i∈{1:d},α∈{l,r}, prove that
(K,P,Σ) is a finite element. Note: this element has been introduced by [330]
for the mixed discretization of the Stokes equations on Cartesian grids.

Exercise 36.6 (Quadratic space). Let Th be a triangulation of a simply
connected domain D ⊂ R2 and let

P cr

2 (Th) := {vh ∈ P b
2 (Th) |

∫

F

[[vh]]F (q ◦ T−1
F ) ds = 0, ∀F ∈ F◦

h , ∀q ∈ P1,1},

where TF is an affine bijective mapping from the unit segment Ŝ1 = [−1, 1] to
F . Orient all the faces F ∈ Fh and define the two Gauss points g±F on F that



182 Chapter 36. Crouzeix–Raviart approximation

are the image by TF of ĝ± := ±
√
3
3 , in such a way that the orientation of F

goes from g−F to g+F . For all K ∈ Th, let {λ0,K , λ1,K , λ2,K} be the barycentric
coordinates in K and set bK := 2 − 3(λ20,K + λ21,K + λ22,K) (this function is
usually called Fortin–Soulié bubble [204]). One can verify that a polynomial
p ∈ P2,2 vanishes at the six points {g±F }F∈FK if and only if p = αbK for some
α ∈ R. Note: this shows that these six points, which lie on an ellipse, cannot
be taken as nodes of a P2,2 Lagrange element. (i) Extending bK by zero outside
K, verify that bK ∈ P cr

2 (Th). (ii) Set B := spanK∈Th{bK} and B∗ := {vh ∈
B |

∫
D vh dx = 0}. Prove that P g

2 (Th)+B∗ ⊂ P cr
2 (Th) and that P g

2 (Th)∩B∗ =

{0}. (iii) Define J : P cr
2 (Th) → R2Nf s.t. J(vh) := (vh(g

−
F ), vh(g

+
F ))F∈Fh for

all vh ∈ P cr
2 (Th). Prove that dim(ker(J)) = Nc and dim(im(J)) ≤ 2Nf −Nc.

(Hint : any polynomial p ∈ P2,2 satisfies
∑
F∈FK (p(g

+
F ) − p(g−F )) = 0 for all

K ∈ Th.) (iv) Prove that P cr
2 (Th) = P g

2 (Th)⊕B∗; see Greff [222]. (Hint : use
a dimensional argument and Euler’s relation from Remark 8.13.)


