Part VIII, Chapter 36

Crouzeix—Raviart approximation

In Part VIII, composed of Chapters 36 to 41, we study various nonconform-
ing approximations of an elliptic model problem. We first study the Poisson
equation with a homogeneous Dirichlet condition and then address a diffu-
sion PDE with contrasted coefficients. Nonconformity means that the discrete
trial and test spaces are not subspaces of H'(D). Nonconformity has many
sources. It may be that the discrete shape functions have nonzero jumps
across the mesh interfaces. It may be that the Dirichlet conditions are en-
forced weakly. Another possible reason is that the approximation involves
discrete unknowns associated with the mesh faces as in hybrid methods. All
of these situations are studied in the following chapters. The objective of the
present chapter is to study the nonconforming approximation of the Pois-
son equation by Crouzeix—Raviart finite elements. Another objective is to
illustrate the abstract error analysis of Chapter 27.

36.1 Model problem

Let D be a Lipschitz domain in R?. We assume for simplicity that D is a
polyhedron. We focus on the Poisson equation with homogeneous Dirichlet
boundary conditions:

—Au=f inD, u=0 ondD, (36.1)
with source term f € L?(D). The weak formulation is as follows:

{Find u € V := H}(D) such that (36.2)

a(u,w) =L(w), YweV,

alv = Vou-Vw dx 4 = dz. 36.3
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Owing to the Poincaré-Steklov inequality (see (3.11) with p := 2), there is
Cps > 0 such that Cpsl|v||z2(py < €p||Vv|[L2(py for all v € V, where (p is a
length scale associated with D, e.g., p := diam(D). Hence, V equipped with
the norm |[v||v := [|Vv||L2(p) = |[v|m1(p) is a Hilbert space, and the bilinear
form a coincides with the inner product in V. Owing to the Lax—Milgram
lemma, (36.2) is well-posed. We refer the reader to §41.2 for the more general
PDE —V:(AVu) = f with contrasted diffusivity A.

36.2 Crouzeix—Raviart discretization

In this section, we recall Crouzeix—Raviart finite element, we define the cor-
responding approximation space, we formulate the discrete problem, and we
establish its well-posedness. We also derive some important stability esti-
mates for Crouzeix—Raviart finite elements.

36.2.1 Crouzeix—Raviart finite elements

The Crouzeix—Raviart finite element is introduced in §7.5; see [151] for the
original work to approximate the Stokes equations. Let E be the unit simplex
in R? with vertices {Z;}ic{0.4}- Let F; be the face of K opposite to z;. The
Crouzeiz—Raviart finite element is defined by setting P:= P; 4 and by using
the following degrees of freedom (dofs) on P:

1
oM (p) = T/ pds, Vi€ {0:d}. (36.4)

Let (Tn)newn be a shape-regular matching mesh sequence composed of
affine simplices so that each mesh covers D exactly. Let 7, be a mesh and
let K be a cell in T;,. Using the Crouzeix—Raviart element as reference finite
element and letting the transformation ¢ be the pullback by the geomet-
ric mapping, i.e., ¥i (v) := v o Tk, Proposition 9.2 allows us to generate a
Crouzeix—Raviart finite element in K. We have Py = 1/1;(1 (ﬁ) =Py q0Ty 1=
Py 4 since Tk is affine, and the local dofs in K are for all p € P,

; ~ 1 ~ 1
oxi(p) =0 (YK (p) = ﬁ/ﬁ poTgds= il ) pds,  (36.5)
7 i st K,i

~

for all i € {1:d}, where {Fk ; := Tk (F;)}icqo.4) are the faces of K. The
local interpolation operator Z¢% : V(K) = WHY(K) — Pg is such that
I (v) =2 icq0:ay Ok (0)0R,; for all v € V(K), where {0k,i}ie{0.4) are the
local shape functions in K s.t. o3, (0%";) = 0;; for all 4,5 € {0:d}. Recall
that Of" := 1 — d\;, where {\;}ic(0:4} are the barycentric coordinates in K.
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Lemma 36.1 (Local interpolation). There is ¢ s.t. for all v € [0,1], all
p € [1,00], allv e WHHP(K), all K € Ty, and all h € H,

lv = TR 0)l| Lo x0) + Prclo = T (W) lwro ) < ehgd T [olwiernx).  (36.6)

Proof. Let v € WP(K). The error estimates for r € {0,1} follow from
Theorem 11.13 with k := 1 and [ := 1 since V(K ) := WH(K). For r € (0,1),
we use Corollary 12.13, the W!P-stability of Z¢¥, and the fact that Px := Py 4
is pointwise invariant under Zg¥ to infer that

0= ZE@)hwis € it o= p - T8 - lwss )
pEP1 g4

<c il o= plws o < ¢ Riclolwsns o,
The bound on |[v — Zg(v)||Ls (k) follows by proceeding similarly and using
that [|Z58 (v) || Lr () < [Vl Lo (i) + chr|vlwie k)- O

36.2.2 Crouzeix—Raviart finite element space

Consider the broken finite element space defined in (18.4) with k := 1,
PP(Ty) == {vy € L®(D) | vpx € P14, VK € Ty}

Recall that the set F; is the collection of the interior faces (interfaces) in
the mesh, and the faces are oriented by the unit normal vector np (see
Chapter 10 on mesh orientation). For all F' € F}, there are two cells K;, K,
s.t. F':= 0K;NOK, and nr points from K; to K,, i.e., np :=ng, = —ngk,.
The notion of jump across F' is defined by setting [v]r := v, — vk, . It is
convenient to use a common notation for interfaces and boundary faces by
writing [v]r = vk, for every boundary face F' := 0K; N 9D € F?. The
Crouzeix—Raviart finite element space is defined as

PO = (o € PT) | [ Inlrds=0.vF e ). (301

The condition f rlvn]Fds = 0 is equivalent to the continuity of vj at the
barycenter r of F. Note that PS*(Ty) is not H'-conforming since member-
ship in H'(D) requires having zero-jumps pointwise (see Theorem 18.8).
Let F' € Fj, be a mesh face. Let us denote by Tr := {K € Tj, | F € Fk} the
collection of the mesh cells having F as face (7r contains two cells for F' € Fp
and one cell for F' € F?). Let %% be the function such that tp%RI'K is the local

shape function in K associated with F' if K € Tr and go%lT = 0 otherwise;

see Figure 36.1 for d = 2. Note that supp(¢3) = Dr = int(Uger, K), ie.,
Dp is the collection of all the points in the (one or two) mesh cells containing
F. Let v§" be the linear form on P{™(7;,) such that y¢*(v) == [F|~! [, vn ds
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for all vy, € P (7). Although vy, may be multivalued at F, the quantity
Y@ (vp) is well defined since [,.[vn]r ds = 0.

Fig. 36.1 Global shape function for
the Crouzeix—Raviart finite element. The
support is materialized by thick lines and
the graph by thin lines. Bullets indicate
the barycenter of the edges.

Proposition 36.2 (Global dofs). {¢§'}rer, is a basis of PI*(Tn), and
{VF'trer, is a basis of LIPT™(Th); R).

Proof. o3 is a member of P{*(7},) since 5 is piecewise affine by construc-

tion and its mean value on a mesh face is 0 or 1. Consider now real numbers
{ar}rer, st. the function w = 3 pr appy vanishes identically. Ob-
serving that vi5 (¢®) = dpps for all F,F' € Fj,, where dpps denotes the
Kronecker symbol, we infer that ap = v%(w) = 0 for all F' € F},. Hence,
the functions {¢% '} per, are linearly independent. Finally, let v, € P*(Tp)
and set wy, = ZFGJ—';,, Y@ (vn)e@. Then, v,k and wy gk are in Py for all
K € T, and ok i(wp k) = 0K i(vp i) for all i € {0:d}. Unisolvence implies
that v, x = wy i, so that v, = wy, since K € Tj, is arbitrary. This shows
that {3} per, is a basis of P{™(75). By using similar arguments, it follows
that {v#}per, is a basis of L(P{*(Tp); R). O

Proposition 36.2 implies that the dimension of P{*(7) is equal to the
number of faces (edges in dimension two) in the mesh. Moreover, the global
Crouzeix—Raviart interpolation operator acts on every function v in W1(D)
as follows: For all € D,

. . . 1 ,
L) = ¥ R0t = 3 (g [ eas) et
FEF), FEF), F
Since Z;%(v)|x = Z§(vx) for all K € T, the approximation results of

Lemma 36.1 can be rephrased in terms of Z;®.

36.2.3 Discrete problem and well-posedness

We account for the homogeneous Dirichlet boundary condition by considering
the following subspace of P (Tp):

PINT) = {o e PO | [mds =0 P e} @0y
F
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where }',? is the collection of the mesh faces located at the boundary. By
proceeding as in Proposition 36.2, one can verify that {¢3} rere is a basis
of P{§(7Tn), and {75} rerp is a basis of L(P{§(7x);R). The dimension of
PPE(Ty) is the number of internal faces (edges if d = 2) in the mesh.

The bilinear form a introduced in (36.3) is not well defined on 0 (Th)
since this space is not H'-conforming. Since functions in P{j(75) are piece-
wise smooth, we can localize their gradient to the mesh cells. To this pur-
pose, we introduce the notion of broken gradient on the broken Sobolev
space WP (Ty,) with p € [1,00]. Recall from Definition 18.1 that a function
ve WHP(Ty) is s.t. V(vk) € LP(K) for all K € .

Definition 36.3 (Broken gradient). Let p € [1,00]. The broken gradient
operator Vy, : WHP(Ty,) — LP(D) is defined by setting (Vav)x = V(vjk) for
all K € T

A crucial consequence of Lemma 18.9 is that Vv = Vv whenever v €
WLP(D). This property will be often used for the solution to the model
problem (36.2) since u € H}(D). We define the following discrete bilinear
and linear forms on Vj, xV}, and on V},, respectively:

ah(vh,wh) 2:/ ththwh dx, Kh(wh) Z:/ fwh d:Z?, (36.9)
D D

and we consider the following discrete problem:

Find up, € V3, := PP§(Tp) such that
: (36.10)
ah(uh,wh) = éh(wh), Ywy, € Vi,.
Lemma 36.4 (Coercivity, well-posedness). (i) The map
v = [Jonllv, = a’h(vhavh)% = IVrvrllL2(py (36.11)

is a norm on P{§(Tx). (ii) Equipping Vi, with this norm, the bilinear form
ap, s coercive on Vi, with oy, := 1. (iii) The discrete problem (36.10) is well-
posed.

Proof. (i) The only nontrivial property is to prove that ||vp||y, = 0 implies
that vy, = 0 for all v, € Vj,. If ||up||v;, = 0, then vy, is piecewise constant. The
additional property [.[vn]r ds = 0 for all F' € Fj implies that vy, is globally
constant on D. That v;, = 0 follows from fF vpds =0 for all F' € ]—',?.

(ii)-(iii) Since ||-||v;, is a norm on V4, coercivity follows from the definition of
Illv,, and well-posedness follows from the Lax-Milgram lemma. O

Remark 36.5 (Nonsmooth right-hand side). We observe that it is not
clear how one should account for a source term f in H~1(D) in (36.10),
since it is not clear how f would act on (discrete) functions that are not
in H}(D). One possibility is to consider the discrete linear form £, (wy,) =
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{f, jhajé(wh)>H—1(D)_’H%(D) where J, : PP(Th) — Pﬁo(ﬁ) is the averaging
operator with boundary conditions introduced in §22.4.1. A general theory
addressing this type of difficulty is developed in Veeser and Zanotti [373]. O

36.2.4 Discrete Poincaré—Steklov inequality

On the Hg-conforming subspace PP (75) = P{§(Tn) N Hg(D), the norm
|-Ilv;, defined in (36.11) coincides with the H'-seminorm. Owing to the
Poincaré-Steklov inequality, we know that there is Cps > 0s.t. Cpsllon || 2(py <
(p||Vurll2(py = €pllvnllv, for all vy, € Pfo(Th). We now prove that a similar
inequality is available on the larger space P§(7h).

Lemma 36.6 (Discrete Poincaré—Steklov inequality). There is CoF >
0 s.t. for all vy, € PLG(Th) and all h € H,

Cesllvnllz>(py < £olVhvnllL2(p)- (36.12)

Proof. Let v, € P{§(Th). Let ¢ € Hi(D) solve Ag = vy, and let o := V.
Then V-0 = vj,. Elliptic regularity implies that there is s > % such that
¢ € H'(D) (see Theorem 31.33) so that o € H*(D). Moreover, there is
vp > 0 such that yp(||lo||L2(py + €510 m: (D)) < €pl|vnlL2(p)- Integrating by

parts cellwise, we infer that

thH%%D):/DUhV'de: Z /th|KV-adx

KeTy
=— Z / o-V(vp k) de + Z Z /a-nth‘de
KeT, VK KeT, FeFx *F
:—/ o-Vyvp do + Z Z /a-nth|de =T+ %o,
D KeTy, Ferg ¥

where Fg is the collection of the faces of K and ng the outward unit normal
to K (observe that o is single-valued on F since o € H*(D) with s > 1).
The Cauchy—Schwarz inequality implies that

1T1| < llollz2(p) [ Vhonll L2(p).-

Consider now Ts. If F := 0K; N 0K, is an interface, the integral over F
appears twice in the sum. Since fF vp K, ds = fF vk, ds by definition of
PP (Ty) and since ng, = —ng,, we can subtract from o a constant function
on F'that we take equal to o := ﬁ J;» o ds. The same conclusion is valid for

the boundary faces since [}, vj, ds = 0 on such faces by definition of P{’(7).
This leads to
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Ty = Z Z / 0 —0p)nKgvy K ds

KeT, FeFk
= Z Z / (0 —ap)nk(vyx —vp)ds,
KeT, FeEFk
where the subtraction of the single-valued quantity vy := \_fl'“l J punds is

justified as above. Applying Lemma 36.8 below to o|x and to vp|k, using
hx < {p for all K € Ty, and invoking the Cauchy—Schwarz inequality yields

s—1 1
|T2| <c Z by 2o ms () RNV (0n )l L2 (1)
K€7-h

<l > ol IV )2 < clhlole: o) Vavnllze (o)
KeTy,

since - ez |05 (x) < |01 (p)- Combining the above bounds on T and
T, we infer that

lonllZ2py < (lollL2p) + ¢ £plo|me () | VavnllL2 (o),

and (36.12) follows from yp(|lo||L2(p) + £Hlo|a=(p)) < {D|lvR|lL2(D)- |

Remark 36.7 (Literature). The above proof is adapted from Temam [363,
Prop. 4.13]; see also Croisille and Greff [150]. O

Lemma 36.8 (Poincaré—Steklov on faces). Let s € (1,1]. There is ¢ s.t.

1
[ =¥ llr2r) < chy * |

H* (K)» (36.13)
for all v € H*(K) with Y= ﬁfFﬂ}dS; all K € Ty, all F € Fg, and all
h € H (the constant ¢ grows unboundedly as s | 3 ).

Proof. Let ¢ 1= — \Ilﬂ J5 ¥ dz. With obvious notation, we have 1) — Yy
1/1 1/1 The triangle inequality and the Cauchy—Schwarz inequality imply
that ||z/1 YpllLery < 2H¢||L2(F Using the trace inequality (12.17) yields

¥ =¥l < c(h 2H¢|\L2(K)+h 2|¢|Hs )

The expected bound follows from |[¢)| (k) = |[¥|Hs (k) and the Poincaré—
Steklov inequality ((12. 13) if s=1or (12.14) if s € (,1)) on K, which gives
100l L2y < chicltolae i O

36.2.5 Bound on the jumps

Bounding the jumps of functions in Py’§(75) is useful in many situations. The
following result will be invoked in the next section.
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Lemma 36.9 (Bound on the jumps). There is c s.t. for all v, € P{§(Th)
and all h € H,

—1 1 2 . 2
¢ h v, < in Vi(v — vp
el <, 1900 0l

<c Y hptlloadliage. (36.14)
Fe]'—h

Proof. Let vy, € P{§(Ty). For all K € Ty, let us set H}(K) = {¢ €
HY(K)| [, ¢dx =0} and let Fx be the collection of the faces of K. For all
F € Fk, let ¥k p € H:(K) solve the local Neumann problem:

/ Vg, p-Vodr = GK,F/ [on]rods, V¢ e HHK), (36.15)
K F

where €x p := ng-np = £1. This problem is well-posed since fF [vr]r ds =0
for all F € F,. Since ¥k p € HI(K), the multiplicative trace inequal-
ity (12.17) (with s := 1 and p := 2) together with the Poincaré-Steklov

1
inequality (12.13) implies that |[¢x rllr2r) < chil|Vik rllL2 (k). Taking
¢ =1k F as a test function in (36.15), we infer that

IV pll T2 k) = 6K,F/ [vrlpr,r ds < ([[onlllL2m) YK, Pl L2 (r)
F

1
< chilllvnlrlle ) VYK, Fll L2 ()

Owing to the regularity of the mesh sequence, we infer that

1
IVYr Fllee k) < chiplllve] el e

(1) Let us prove the first bound in (36.14). Let v € H}(D). Let cx be the
mean value of the function (v, —v) over K. The restriction of (v, —v —ck) to
K isin H}(K). Let F' € Fj. Taking ¢ = (vn —v)|x — ¢k as a test function
in (36.15) and summing over K € Tp, we infer that

Z /}<V1/)K7F-V(vh—v)‘de: Z /KV¢K7F.V¢KdI

KeTr KeTr
= Z GK,F/[[Uh]]F¢KdS: Z GK,F/[[vh]]F(Uh\K—U—CK)dS
KeTr £ KeTr r

:/F[[vh]]F[[vh_v—cK]]Fds:/F[[vh]]p[[vh—v]]Fds:/F[[vh]]%ds,

where we used that fF[[vh]] rds = 0 to eliminate cx and the fact that
v € H(D) to eliminate [v]p. Using the Cauchy-Schwarz inequality and
the above bound on ||V r| L2(k), we obtain
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het ol e ll7zcm < ¢ D IV = va) 2 0)- (36.16)
KeTr

Summing over F' € F}, leads to the first bound in (36.14).

(2) To prove the second bound in (36.14), we estimate the infimum over v €
Hg (D) by taking v := J2¢" (vn) where JE¢" : PP(Tr) = PEo(Th) C Hy(D)
is the averaging operator with zero trace introduced in §22.4.1. Then the
second bound in (36.14) follows from Lemma 22.12 and the regularity of the
mesh sequence. O

The bound (36.14) can be adapted to the case where v, € P*(Tp), i.e.,
without any boundary prescription. The summations over the mesh faces are
then restricted to the mesh interfaces, and the infimum is taken over the func-
tions v in H'(D). The idea of introducing the local Neumann problem (36.15)
has been considered in Achdou et al. [4].

36.3 Error analysis

In this section, we first establish an error estimate by using the coercivity
norm and the abstract error estimate from Lemma 27.5. Then we derive an
improved L2-error estimate by adapting the duality argument from §32.3.

36.3.1 Energy error estimate

We perform the error analysis under the assumption that the solution to the
model problem (36.2) is in H'*"(D) with r > 1, i.e., we set

Vi = H™(D)NH(D), r> % (36.17)
The assumption u € Vi is reasonable in the setting of the Poisson equation
with Dirichlet conditions in a Lipschitz polyhedron since it is consistent with
the elliptic regularity theory (see Theorem 31.33). The important property
of a function v € V5 that we use here is that its normal derivative ng-Vv
is meaningful in L?(0K) for all K € Tj. Actually, the full trace of Vv on
OK is meaningful on L?(9K), and this trace is single-valued on any interface
F € Fp (see Remark 18.4). Therefore, we have [Vv]r = 0 for all v € Vi and
all F e Fp.
The discrete space Vj, := Py§(7x) is equipped with the norm ||-||y; defined
in (36.11), and we introduce the space V; := Vs 4V}, equipped with the norm
l|-|lv, defined by

lolid, == >~ (190l + hacling-Foic lz o ) (36.18)
KeTh
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A discrete trace inequality shows that there is c; s.t. [[vallv, < cyllon|lv;, for
all v, € Vj, and all h € H, i.e., (27.5) holds true. Using the forms a;, and ¢,
defined in (36.9), the consistency error is s.t.

<5h(vh), wh>V,{,Vh = Kh(wh) — ah(vh,wh), Vvh,wh e V. (36.19)

Lemma 36.10 (Consistency/boundedness). Assume (36.17). There is
wy, uniform w.r.t. u € Vs, s.t. for all v, € Vi, and all h € H,

[0n(vr)llv: < wy llu—vnl|vy- (36.20)

Proof. Let vy, wy, € Vj. Since the normal derivative ng-Vu is meaningful in
L?(0K) for all K € Ty, we have

Ch(wp) = Z /wamKdJ?: Z /K—(Au)whmdx

KeTy KeTy,

= Z / Vu-Vuwp g dr — Z Z /(nK'VU)wh\KdS
KeT, 7K KeT, FeFx ' F
D KeT, Ferg T

Note that we write nx-Vu instead of nk-Vu| g since Vu is single-valued on
F because u € V5. We want to exchange the order of the summations on the
right-hand side. Recalling that for every interface F' := 0K;NOK, € F; with
np pointing from K; to K,, i.e., np := ng, = —ng,, we have

(nk, Vu)wp x, + (ni, - Vu)wp g, = (nk, - Vu)[ws] p.

For every boundary face F' := 0K; N 90D € }',? , recall that we have conven-
tionally set [wp]r := wp| k- Thus, we infer that

Z Z /F(nK-Vu)medSZ Z /F(nKz'VU)[[wh]]FdS.

KeTy FeEFk FeFy
Setting 1 := u — vy, we can write the consistency error as follows:

(0 (vn)s wn)vy v, :/ Vin-Viywy, do — Z /(nKl-Vu)[[wh]]Fds
D FeFy, F

=/ Vin-Viwy, do — Z /(nKl-VmKl)[[wh]]Fds,
D F

FeFn

where we used that [, (nk, Vo k,)[wp]r ds = 0 for all F' € Fj, by definition
of the Crouzeix-Raviart space Vi, = P{((7n). We conclude by invoking the
Cauchy—Schwarz inequality, the first bound on the jumps in (36.14) which
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implies that 3 ez h;1||[[wh]]F||2L2(F) < c|lwn|[}, (bound the infimum by

taking v := 0), and the regularity of the mesh sequence. a

Theorem 36.11 (Convergence). Let u solve (36.2) and let up, solve (36.10).
Assume (36.17). (i) There is ¢ s.t. the following quasi-optimal error estimate
holds true for all h € H,

lu—wunllv, <c inf |lu—wvsly;. (36.21)
vp €V

(i) Letting t := min(1,r), we have

1
2
Ju— uply, < c( > h%|u|§{1+t(m> : (36.22)
KeTy,

Proof. (i) The estimate (36.21) follows from Lemma 27.5 combined with sta-
bility (Lemma 36.4) and consistency/boundedness (Lemma 36.10).

(ii) The bound (36.22) follows from (36.21) by taking vy, := Z;*(u). Let-
ting 7 := u — Z,%(u), we indeed have |V k||l L2(x) < chlc|u| g+ k) for all
K € 75, owing to Lemma 36.1. Moreover, invoking the multiplicative trace
inequality (12.17), we obtain

1
hicllng Vi llzor) < IVaklleze) + bl ),
and we have [0k |g1+e(x) = [u|gi+r (k) since Z;% (u) is affine in K. O

Remark 36.12 (Strang 2). The analysis can also be done by invoking
Strang’s second lemma (Lemma 27.15). Let us set V4 := Hj(D)+P{(Ty) and
let us equip this space with the norm ||-||y; defined in (36.18). The discrete
bilinear form a; can be extended to a bilinear form a; having boundedness
constant equal to 1 on V4 xV},. Lemma 27.15 leads to the error bound

inf
v €V

lu —vnllv, §C< lu—onllv, +||5Zt2(u)|v};)a

with the consistency error s.t. for all wy, € Py§(Th),

(632 (W), wn)vy v, = Ln(wn) — an(u,wy) = > / (fon = Vur-Vwy ) dz
KeTy K

= — Z /BK(TLK-VU)U)MK ds.

KeTn

Thus, the consistency error does not vanish identically, i.e., the Crouzeix—
Raviart finite element method is not strongly consistent in the sense defined
in Remark 27.16. Since we have
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Z/ (nx-Vu)wy g ds = Z/ (nx-V(u —vp))wy x ds,

KeTy KeTh

for all v, € Py§(Tn), by proceeding as in the proof of Theorem 36.11, we
infer again that the quasi-optimal error estimate (36.21) holds true. O

36.3.2 L’-error estimate

The goal of this section is to derive an improved L2-error estimate of the
form ||u —un||r2(py < ch 05 |Ju— up||v, for some real number v > 0, where
{p is a length scale associated with D, e.g., {p := diam(D).

Proceeding as in §32.3, we invoke a duality argument. We consider for all
g € L?(D) the adjoint solution ¢, € V := Hj (D) such that

a(v,¢g) = (v,9)r2(p)y,  YweV. (36.23)

Notice that —A{, = ¢ in D and +8(¢,) = 0. Owing to the elliptic regu-
larity theory (see §31.4), there is s € (0,1] and a constant cgme such that
¢oll err+2(py < CsmolB |9l L2(py for all g € L*(D). In the present setting of
the Poisson equation with Dirichlet conditions in a Lipschitz polyhedron, it
is reasonable to assume that s € (%, 1].

Theorem 36.13 (L2-estimate). Let u solve (36.2) and let uy, solve (36.10).
Assume that the elliptic reqularity index satisfies s € (%, 1]. There is ¢ s.t.
for all h € H,

lw—unllz2(py < ch®05 *|lu — un|lv,. (36.24)

Proof. Let e := u — up, and set Yy, := PF(Ty) == P{§(Tn) N Hg (D). Then
(Vhe,vyh)Lz(D) = (Vu,vyh)Lz(D) - (thh, Vyh)Lz(D) =0 for all Yn € Yh.
Since ||e||2L2(D) = —(e, Ale)2(py, we have

lellZ2(py = (Vhe, VE)L2(py — ((6, Ae) L2(py + (Vie, Vo) L2(p))
= (Vre, V(¢ — yn))L2(p) — <5adj(§e)=€>vu',vw

where we introduced §*%(¢.) € V' s.t. (6‘“”((6),@%/% = (v, Ale)2(p) +
(Viv, V)2 (py and used that (Vine, Vyn)p2(py = 0 for all y, € V. Let us

. |<5adj(<c)v”>vl,vu| . .
set H5“‘dJ(§e)||Vﬁ/ = SUPycy, T\/ﬁ The Cauchy—Schwarz inequality

and the definition of the ||-||y,- and ||-|\Vu/—norms imply that

el < (1, 196G = wn)lzacoy + 16y ) el

It remains to bound the two terms between parentheses on the right-hand
side. Using the quasi-interpolation operator Z;;;™ from §22.4, we infer that
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inf [|[V(Ce —wyn)ll2py < IV(C — iy (Ce))llz2 (o)
Y €Y
< e®|Cel s (py < eh* 05" 0| Cell s (py < € Csmo 0L °|lell L2y,

where we used the approximation properties of Z;;y™ from Theorem 22.14
and the elliptic regularity theory to bound |||l g1+s(py by [lellz2(py. Let us
now estimate ||5a“‘j(Ce)Hw. By proceeding as in the proof of Lemma 36.10
(observe that [V(.]r = 0 for all F € F7), we infer that we have, for all
vi=vs+uv € Vg =V + V), with vgs € Vi and vy, € V3, and all 2, € Vj,

<5adj(<e)7v>Vu’,Vu: Z LnKl~V<eﬂvhﬂFdS

FeFy
= > | nrV(C — zn)ix [onl F ds
FeF, ' F
2
sdce—zm( 3 hF1|[[vhnF|%2<F>) |

FeFn

where we used that ny -Vzy g, is constant on F. Using the leftmost in-
equality in (36.14) with inf,,c g1 (p) ||Vh(w—vh)||i2(D) < ||Vh(vs+vh)|\2Lz(D),
we infer that ) pcr h;-1|||1’l}h]]FH%2(F) < c|lvs + UhH%/u = c|\v||%,ﬁ. Thus,
||6a‘”(§e)||vﬁ/ < cdinf., ey, [|Ce — 2nllv;. Using the approximation properties of
Vi, we conclude that H5“‘dj(§e)||vﬁl < ch®|Ce| i+ (py, and reasoning as above
yields 16 () v, < ch* €% *lell (o). 0

36.3.3 Abstract nonconforming duality argument

Let us finish with an abstract formulation of the above duality argument that
can be applied in the context of nonconforming approximation techniques.
Let V a Banach space, L be a Hilbert space, and assume that V embeds
continuously into L (i.e., V < L) and V is dense in L. Identifying L with L/,
we are in the situation where

Ve L=L <V, (36.25)

with continuous and dense embeddings. Let a : VxV — C be a bounded
sesquilinear form satisfying the assumptions of the BNB theorem (Theo-
rem 25.9). For all f € L we denote by &; the unique solution to the problem

a,v) = (f,v)r, YweW (36.26)

Similarly, for all g € L we denote by (, € V' the unique solution to the adjoint
problem
a(v,G) = (v,9)L, YweV. (36.27)
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These two problems are well-posed since a satisfies the assumptions of the
BNB theorem. Let A*% € L(V; V') be s.t. (A*(w),v)y' v = a(v,w) for all
(v,w) € VxV. Owing to (36.25) and (36.27), we have A*¥({,) =¢ in L.

We assume that we have at hand two subspaces Vs C V and Zg C V s.t.
the maps V'3 f — &y € Vs and V' 3 g — (, € Zs are bounded. Let V}, C L
be a finite-dimensional subspace of L (but not necessarily of V). Let Y}, C V},.
We set Vy := Vi + Vj, and Zy := Zs + Y}, and we equip these spaces with
norms denoted by |||y, and ||-||z,.

Lemma 36.14 (L-norm estimate). Let ay be a bounded sesquilinear form
on VyxZy. Let |ag]| be the norm of ay on VyxZy. Let uw € Vi and up, € Vj,.
Assume that the following Galerkin orthogonality property holds true:

aﬁ(u — Up, yh) =0, Vyh cv,. (36.28)
Let e :=u —up, and let 6*9((.) € V{ be the adjoint consistency error:
(0*(Ce)sv)vy vy o= (0, A(C))L —ag(v, Ce), Vv €V (36.29)

Then the following estimate holds true:

@y =l
el = (Fpret ool jng, P Ve, (3030

Proof. Using the identity A*¥((.) = e and the Galerkin orthogonality prop-
erty (36.28), we infer that

lellZ = (e, A*(¢e)) = (e, A*(Ce))r — az(e, Ce) + ag(e, C)
= (6" (Ce), 6>V,{7Vu + aj(e, Ce — yn).

The boundedness of ay on Vy;xZ; and the definition of the dual norm
||5adj(§e)||vn/ imply that (36.30) holds true. O

Example 36.15 (Crouzeix—Raviart). Lemma 36.14 can be applied to
the Crouzeix-Raviart approximation with Vs := H" (D) N Hg(D), Zs :=
H'Y (D) N Hy(D), az(v,w) := (Vhv, Vaw)r2(p), and equipping the spaces
Vi = Vs + Vi, Zy := Zs+ Yy, Yy, ==V, N HJ(D), with the broken energy
norm. Note that the adjoint consistency error is nonzero, and that the proof
of Theorem 36.13 shows that both terms on the right-hand side of (36.30)
converge with the same rate w.r.t. h € H. O

Exercises

Exercise 36.1 (Commuting properties). Let K be a simplex in R? and
let 7% denote the L?-orthogonal projection onto constants. Prove that
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V(ZE(p)) = % (Vp) and V-(Z% (o)) = 1% (V-0o) for all p € H'(K) and all
o € L*(K) with V-o € L'(K) and I} deﬁned componentwise using Z;*.

Exercise 36.2 (Best approximation). Let v € H'(D). A global best-

approximation of v in P{®(7;,) in the broken H'!-seminorm is a function
CR c PCR(’E) S. t

> IVE vl = min 3 IV - ) e,

KeTy, KeTh

CR 3 CR 3

(i) Write a characterization of v$* in weak form and show that vy, 1s unique up
to an additive constant. (Hint: adapt Proposition 25.8.) (ii) Let v? be a global
best-approximation of v in the broken finite element space PP(7y,); see §32.2.
Prove that >, |V (v — ng)HQLz(K) = Y ke, IV(v = U}E)HQLz(K)- (Hint:
using Exercise 36.1, show that v;® = Zy"(v) up to an additive constant.)

Exercise 36.3 (H (div)-flux recovery). Let uj solve (36.10). Assume that
[ is piecewise constant on 7. Set ok = —Vup x + éf‘K(a} — x k), where
x i is the barycenter of K for all K € Tp. Prove that o, is in the lowest-order
Raviart-Thomas finite element space Pg(T,) and that V-0 = f; see Marini
[295] (Hint: evaluate [.[o4]-npetds for all F e Fy.)

Exercise 36.4 (Discrete Helmholtz). Let D C R? be a simply connected
polygon. Prove that Py (7y) = VPE(Th) @ Vi- P (Th), where

Vi PL6(Th) = {vn € Py(Th) | 3an € PL5(Th) | vnixe = V7 (anix), VK € Ta},

and V+ is the two-dimensional curl operator defined in Remark 16.17. (Hint:
prove that the decomposition is L?-orthogonal and use a dimension argument
based on Euler’s relations.)

Exercise 36.5 (Rannacher—Turek). Let K := [—1,1]% For all i € {1:d}
and « € {l,r}, let F; 5, be the face of K corresponding to {z; = —1} when
a =1land to {x; = 1} when a = r. Observe that there are 2d such faces, each
of measure 2?71, Let P be spanned by the 2d functions {L,21,...,2q,2% —
x3,...,2% | — 22}, Consider the linear forms o; ,(p) := 2!7¢ fFi _pds for
all i € {1:d} and a € {l,r}. Setting X' := {0 .a}ic{1:d},0e{1,r}> brove that
(K, P, X)) is a finite element. Note: this element has been introduced by [330]
for the mixed discretization of the Stokes equations on Cartesian grids.

Exercise 36.6 (Quadratic space). Let 7, be a triangulation of a simply
connected domain D C R? and let

Py (T == {uy € P2b(771) | / [vn] F(qo Tgl)ds =0,YF € F,Vq € P11},
F

where T is an affine bijective mapping from the unit segment St = [—1,1] to
F. Orient all the faces F' € F}, and define the two Gauss points gfj,E on F' that
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are the image by Tr of g+ := :I:@, in such a way that the orientation of F

goes from g to g;.. For all K € Ty, let {\o,x, A\1,Kx, A2, i } be the barycentric
coordinates in K and set bx 1= 2 — 3(\§ x + A]  + A3 ) (this function is
usually called Fortin—Soulié bubble [204]). One can verify that a polynomial
p € Py 5 vanishes at the six points {gf}pef,( if and only if p = aby for some
a € R. Note: this shows that these six points, which lie on an ellipse, cannot
be taken as nodes of a Py o Lagrange element. (i) Extending bx by zero outside
K, verify that bx € Py®(Tn). (ii) Set B := spangc7, {bx} and B, 1= {v; €
B| [, vndx = 0}. Prove that P§(Ty)+B. C Ps™(Ty) and that P§(T,)NB, =
{0}. (iii) Define J : P§*(T) — RVt s.t. J(vp,) := (vi(gr), vn(gf)) rer, for
all v, € Ps™(Ty,). Prove that dim(ker(J)) = N, and dim(im(J)) < 2Ny — Ne.
(Hint: any polynomial p € Py 5 satisfies Y pc 7 (p(97) — p(gr)) = 0 for all
K € Tp.) (iv) Prove that P§®(T,) = P§(Tn) @ B.; see Greff [222]. (Hint: use
a dimensional argument and Euler’s relation from Remark 8.13.)



