Part IX, Chapter 44

Maxwell’s equations: control on the divergence

The analysis of Chapter 43 requires a coercivity property in H (curl). There
is, however, a loss of coercivity when the lower bound on the model parameter
v becomes very small. This situation occurs in the following two situations:
(i) in the low frequency limit (w — 0) when v := iwp as in the eddy current
problem; (ii) if kK € R and ¢ < we when v := —w?e + iwo as in the time-
harmonic problem. We have also seen in Chapter 43 that a compactness
property needs to be established to deduce an improved LZ2-error estimate
by the duality argument. We show in this chapter that robust coercivity and
compactness can be achieved by a weak control on the divergence of the
discrete solution. The material of this chapter is based on [188].

44.1 Functional setting

In this section, we present the assumptions on the model problem and in-
troduce a functional setting leading to a key smoothness result on the curl
operator.

44.1.1 Model problem

We consider the model problem (43.9) on a Lipschitz domain D in R®. For
simplicity, we restrict the scope to the homogeneous Dirichlet boundary con-
dition Ajppxn = 0 (so that 0Dq = dD). The weak formulation is

{Find A € Vj := Ho(curl; D) such that (44.1)

ayn(A,b) = ((b), Vb e Vp,

with a,,.(a,b) = [,(va-b+ kVxa-Vxb)dz and ((b) := [, f-bdz. We
assume that f € L?(D) and that V-f = 0. The divergence-free condition on
f implies the following important property on the solution A:
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V-(rA) = 0. (44.2)

Concerning the material properties v and x, we make the following assump-
tions: (i) Boundedness: v,k € L*(D;C) and we set vy := |[v||1~(p;c) and
Ky = ||K[| Lo (D;c)- (ii) Rotated positivity: there are real numbers 6, v, > 0,
and k, > 0 s.t. (43.12) is satisfied, i.e.,

i i0 > i i0 > K. .
eise%lfﬁ?(e v(z)) > v, eise%lfﬁ?(e k() > Ky (44.3)
We define the contrast factors vy, = Z—ﬁ and Ky, = :—z We also define

the magnetic Reynolds number v, , = I/ﬁé% Ky ! Several magnetic Reynolds
numbers can be defined if the material is highly contrasted, but we will not
explore this situation further. (iii) Piecewise smoothness: there is a partition
of D into M disjoint Lipschitz polyhedra {Dy,}meqi:amy st vip,,,K|D,, €
Whee(D,,) for all m € {1:M}. The reader who is not comfortable with
this assumption may think of v, x being constant without missing anything
essential in the analysis.

44.1.2 A key smoothness result on the curl operator

Let us define the (complex-valued) functional spaces
My :=Hy(D),  M,:={qe H (D) | (q,1)12(p) =0}, (44.4)
as well as the following subspaces of H (curl; D):

Xy 1= {b € Ho(curl; D) | (vb, Vim)rz(py =0, ¥Ym € Mo}, (44.5a)
X, :={be H(cwr; D) | ('b,Vm)2(py =0, Vm € M,}, (44.5b)

where (-, ) £2(p) denotes the inner product in L*(D). The main motivation for
introducing the above subspaces is that A € X, owing to (44.2). Moreover,
we will see below that KVxA € X,,-1. Taking m € C5°(D) in (44.5a)
shows that for all b € X, the field vb has a weak divergence in L?(D) and
V-(vb) = 0. Similarly, the definition (44.5b) implies that for all b € X, -1,
the field £~ 1b has a weak divergence in L?(D) and V-(x~'b) = 0. Invoking
the integration by parts formula (4.12) and the surjectivity of the trace map
~& 1 HY(D) — H=(dD) then shows that y4(x~1b) = 0 for all b € X,,.—1,
where 74 is the normal trace operator (recall that v4(v) = v|gp-n if the field
v is smooth).

Let us first state a simple result related to the Helmholtz decomposition
of vector fields in V) := Hy(curl; D) using the subspace X, (a similar result
is available on H (curl; D) using the subspace X, ,-1).

Lemma 44.1 (Helmholtz decomposition). The following holds true:

Vo = Xow ® VM. (44.6)
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Proof. Let b € V and let p € My solve (vVp, Vq)r2(py = (vb, Vq)r2(p) for
all ¢ € My. Our assumptions on v imply that there is a unique solution to
this problem. Then we set v := b — Vp and observe that v € X,. The sum
is direct because if 0 = v + Vp, then the identity fD vVpvdx = 0, which
holds true for all p € My and all v € Xy, implies that Vp =0 = v. o

We can now state the main result of this section. This result extends
Lemma 43.3 to heterogeneous domains. Given a smoothness index s > 0, we
1 . L
set bl ers(p) = (1bllZ2(py + B bl (py) F, where {p is some characteristic
length of D, e.g., {p := diam(D).

Lemma 44.2 (Regularity pickup). Let D be a Lipschitz domain in R3. (i)
Assume that the boundary 0D is connected and that v is piecewise smooth.
There exist s > 0 and C > 0 (depending on D and the contrast factor Vi /b
but not on v, alone) such that

CéBl||bHHs(D) S HVXbHLz(D), Vb e Xoy. (447)

(il) Assume that D is simply connected and that k is piecewise smooth. There
exist ' >0 and C" > 0 (depending on D and the contrast factor kg, but not
on Kk, alone) such that

C'p bl g oy S IVXBllL2py, Vb€ Xupr. (44.8)
Proof. See Jochmann [259], Bonito et al. [70]. O

Remark 44.3 (Smoothness index). There are some situations where the
smoothness indices s, s’ can be larger than % One example is that of isolated
inclusions in an otherwise homogeneous material. We refer the reader to
Ciarlet [121, §5.2] for further insight and examples. O

Lemma 44.2 has two important consequences. First, by restricting the
smoothness index s to zero in (44.7), we obtain the following important sta-
bility result on the curl operator.

Lemma 44.4 (Poincaré—Steklov). Assume that the boundary 0D is con-
nected and that v is piecewise smooth. There is Cos >0 (depending on D and
the contrast factor vy, ) such that the following Poincaré-Steklov inequality
holds true:

ép3651||b|‘L2(D) < HVXbHLQ(D)a Vb € Xy, (449)

The bound (44.9) is what we need to establish a coercivity property on
X that is robust w.r.t. v,. Indeed, we have
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R(eayx(b,0)) > 1][bl3(p) + ol Vb2 ) > 5[ VxBl 32y

Y

1 no
5 (IVxb] 3 p) + ol 16l %2 ()

Y

1 5 . A
§Hb€D2 mln(lvC}?S)Hb”iI(curl;D)’ (4410)

for all b € X, where we recall that H (curl; D) is equipped with the norm
101l £ curt;p) = (181172 p) —l—@%HVXbH%Q(D))%. This shows that the sesquilin-
ear form a,  is coercive on Xy, with a coercivity constant depending on the
contrast factor v, but not on v, alone (whereas the coercivity constant on
the larger space Vp is min(v,, £5°k,) (see (43.13a))).

Let us now examine the consequences of Lemma 44.2 on the Sobolev
smoothness index of A and VxA. Owing to (44.7), there is s > 0 s.t.
A € H*(D). We will see in §44.3 that the embedding H*(D) — L?(D)
is the compactness property that we need to apply the duality argument and
derive an improved LZ-error estimate. Furthermore, the field R := kVx A
is in X, -1 (notice in particular that VxR = f — vA € L*(D)), so that
we deduce from (44.8) that there is s > 0 s.t. R € H* (D). In addition,
the material property x being piecewise smooth, we infer that the following
multiplier property holds true (see [259, Lem. 2] and [70, Prop. 2.1]): There
exists 7 > 0 and C—1 s.t.

|k €l e (py < Cr1[€l - (D) Véc H™(D), VY7’ e[0,7]. (44.11)

Letting s := min(s’,7) > 0, we conclude that Vx A € H*" (D).

44.2 Coercivity revisited for edge elements

In this section, we revisit the H (curl)-error analysis for the approximation of
the weak problem (44.1) using Nédélec (or edge) elements (see Chapters 15
and 19). The key tool we are going to use is a discrete counterpart of the
Poincaré-Steklov inequality (44.9). We consider a shape-regular sequence of
affine meshes (73 )nen of D. We assume that D is a Lipschitz polyhedron and
that each mesh covers D exactly.

44.2.1 Discrete Poincaré—Steklov inequality

Let Vio be the Hy(curl)-conforming space using Nédélec elements of order
k > 0 defined by

Vo := Pkcyo(’ﬁz) = {bh € PIS(%) | bh|6D Xn = 0}. (4412)

Observe that the Dirichlet condition is enforced strongly in V}o. The discrete
problem is formulated as follows:
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{Find Ay € Vyg such that

44.13
al,ﬁ(Ah,bh) = f(bh), Vbh S VhO- ( )

Since it is not reasonable to consider the space {by € Vio | V-(vby) = 0},
because the normal component of vb;, may jump across the mesh interfaces,
we are going to consider instead the subspace

Xnoo i= {bh € Vo | (Vbh, th)Lz(D) =0, Vmy, € Mho}, (44.14)

where My = Pg; ((Th;C) is conforming in Hg(D;C). Note that the poly-
nomial degrees of the finite element spaces Mpo and Vjo are compatible
in the sense that VMg C V. Using this property and proceeding as in
Lemma 44.1 proves the following discrete Helmholtz decomposition:

Vio = Xnow © V»Mpo. (44.15)

Lemma 44.5 (Discrete solution). Let A, € Vi be the unique solution
to (44.13). Then Ap € Xpoy-

Proof. We must show that (vAp, Vmp)r2(py = 0 for all my, € Myg. Since
Vmy € VMg C Vi, Vimy, is an admissible test function in (44.13). Recalling
that V-f = 0, we infer that

0= [(th) — au)H(Ah, th) = (I/Ah, th)Lz(D)u

since VX (Vmy,) = 0. This completes the proof. O

We now establish a discrete counterpart to the Poincaré—Steklov inequal-
ity (44.9). This result is not straightforward since Xp, is not a subspace
of Xo,. The key tool that we are going to invoke is the stable commuting
quasi-interpolation projections from §23.3.3.

Theorem 44.6 (Discrete Poincaré—Steklov). Under the assumptions of
Lemma 44.4, there is a constant CA'P’,S > 0 (depending on C’PS, the polynomial
degree k, the regularity of the mesh sequence, and the contrast factor vy, but
not on v, alone) s.t. for all Ty, € Xpo, and all h € H,

Clolp lznllemy < IV x@nllL2(m)- (44.16)

Proof. Let @, € X0, be a nonzero discrete field. Let ¢(zp,) € My := Hg (D)
be the solution to the following well-posed Poisson problem:

(vVo(xp), Vm)p2(py = (ven, Vm)p2(p), Vm € M.

Let us define the curl-preserving lifting of xp, s.t. &(xp) = xp — Vo(xy),
and let us notice that &(x,) € Xo,. Upon invoking the quasi-interpolation
operators Jp, and j}?o introduced in §23.3.3, we observe that

zn — Tio(€(xn)) = Tio(@n — &(xn)) = Tio(V((@n))) = V(T (d(@n))),
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where we used that J¢,(xn) = x5 and the commuting properties of 7, th and
Jgo- Since ¢, € Xp,,, we infer that (vay, V(T (6(xh))))L2(py = 0, so that

(van, @n)L2(p) = (VER, Th — Tpo(&(@h))) L2 (D) + (VTh, Tio(§(Tn))) L2(D)
= (vxh, Tpo(&(xn)))L2(D)-

Multiplying by e'?, taking the real part, and using the Cauchy-Schwarz in-
equality, we infer that

Vollznllzzpy < vellenlloz o) | T5o (€ (@)l L2 ()

The uniform boundedness of J<, on L?(D), together with the Poincaré-
Steklov inequality (44.9) and the identity Vx&(x;,) = Vxaxy, implies that

1ThoE@n)llL2(p) < 1 Tioll 2z 1€(@n) L2 ()

<N Tioll(z2p2) Cros nlIV X 12Dy,
so that (44.16) holds true with C/ := Vo HJ,fOHZELQ_LQ)C'PS. O

Remark 44.7 (Literature). There are many ways to prove the discrete
Poincaré-Steklov inequality (44.16). One route described in Hiptmair [244,
84.2] consists of invoking subtle regularity estimates from Amrouche et al. [10,
Lem. 4.7]. Another one, which avoids invoking regularity estimates, is based
on an argument by Kikuchi [267] which is often called discrete compactness;
see also Monk and Demkowicz [304], Caorsi et al. [106]. The proof is not
constructive and is based on an argument by contradiction. The technique
used in the proof of Theorem 44.6, inspired from Arnold et al. [23, Thm. 5.11]
and Arnold et al. [26, Thm. 3.6], is more recent, and uses the stable com-
muting quasi-interpolation projections J;7 and Jy,. It was already observed
in Boffi [61] that the existence of stable commuting quasi-interpolation oper-
ators would imply the discrete compactness property. a

44.2.2 H(curl)-error analysis

We are now in a position to revisit the error analysis of §43.3. Let us first
show that X}, has the same approximation properties as Vjg in X, .

Lemma 44.8 (Approximation in Xy, ). There is ¢, uniform w.r.t. the
model parameters, s.t. for all A € X, and all h € H,

i — oy < i — .D)- .
mhggmu A wh”H(curl,D) > ClUyp bh,léléh,o |A bh||H(Cur1,D) (44.17)
Proof. Let A € X,. We start by computing the Helmholtz decomposition of
JSo(A) in Vi as stated in (44.15). Let pj, € Mpo be the unique solution to the
discrete Poisson problem (vVpn,Van)r2(py = (vT5(A), Van)L2(py for all
qh € Mpo. Let us define yp, := JS,(A)—Vpy. By construction, y;, € Xpo, and
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Vxyn = VxJ5(A). Hence, | VX (A=yn)l|L2(p) = VX (A=Tp(A))l L2 (D)-
Since V-(rA) = 0, we also infer that

(VVpn, Vpn) 2oy = (WTho(A), Vor) 2y = (V(Tho(A) — A), Vi) L2(p),

which in turn implies that ||Vpal L2y < vy | T (A) — Al L2(py. The above
argument shows that

A= ynllL2p)y < 1A = Tio(A)llL2(p) + | Tno(A) — ynllL2(p)
<A = Tno(A) 2y + IVPrRllz2(D)
< (T +vp)lA = Tio(A)llL2o)-

In conclusion, we have proved that

inf ||A - mh”H(Cu]rl;D) < ||A - thH(Curl;D)
xp€Xnov
< (1 + Vﬁ/b)”A - jﬁO(A)”H(Curl;D)-

Invoking the commutation and approximation properties of the quasi-inter-

polation operators, we infer that

1A = Tio (A Fr(eurtipy = 1A = Tio ()12 () + DIV X (A = Tio (A 22(p)
=A- jffo(A)||2L2(D) + 05| VXA - jhdo(VXA)||2L2(D)

<c inf ||A—bh||2Lz<D)+cfe§)d inf )||V><A—dh||2L2(D)

b EPS(Th) nE€PE(Th
< inf A— by +d0%  inf Vx(A—by)|3 ;
= P () | wllza )+ D b, eB5(Th) IV Wz o)

where the last bound follows by restricting the minimization set to Vx Ps (7p)
since VxP¢(Ty) C P&(Ts). The conclusion follows readily. O

Theorem 44.9 (H(curl)-error estimate). Let A solve (44.1) and let Ap,
solve (44.13). Assume that OD is connected and that v is piecewise smooth.
There is ¢, which depends on the discrete Poincaré—Steklov constant CA'}’,S and
the contrast factors vy, and kg, s.t. for all h € H,

||A - AhHH(curl;D) < C:Yv,n inf ”A - bh||H(Curl;D)7 (4418)
b EVio

with Ay, == max(1,v, ) and the magnetic Reynolds number~y, . := VﬁéQDnufl.

Proof. Owing to Lemma 44.5, A}, also solves the following problem: Find
Ayp € Xpou s.t.
av,n(Ahv mh) = E(cch),Vcch S XhOv-

Using the discrete Poincaré-Steklov inequality (44.16) and proceeding as
in (44.10), we infer that
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%(eiealjﬁ(w}“ iBh)) > ’ibéff min(17 (éés)2)||$h”%-l(curl;D)7

N~

for all @, € Xpo,. Hence, the above problem is well-posed. Recalling the
boundedness property (43.13b) of the sesquilinear form a,, , and invoking
the abstract error estimate (26.18) leads to

2 max(vy, L5 Ky)

=2 2 H}(
kpl " min(1, (Chy)?) n€Xnow

||A_AhHH(Cur1;D) < HA_whHH(CUT1§D)'

We conclude the proof by invoking Lemma 44.8. a

Remark 44.10 (Neumann boundary condition). The above analysis
can be adapted to handle the Neumann condition (kVxA)japxn = 0; see
Exercise 44.3. This condition implies that (Vx(kVx A))|sp-n = 0. Moreover,
assuming fispp'n = 0 and taking the normal component of the equation
VA + Vx(kVxA) = f at the boundary gives A|sp-n = 0. Since V- f = 0,
we also have V-(vA) = 0. In other words, we have

Aec X,,={bec H(cur; D) | (vb, Vim)r2(py =0, ¥Ym € M.}.

The discrete spaces are now Vj, := Pg(T) and My, := P, (Th;C) N M..
Using V;, for the discrete trial and test spaces, we infer that

Ap € X = {bh ev, | (I/bh,th)Lz(D) =0, Vmy, € Mh*}.

The Poincaré-Steklov inequality (44.16) still holds true provided the assump-
tion that D is connected is replaced by the assumption that D is simply
connected. The error analysis from Theorem 44.9 can be readily adapted. O

44.3 The duality argument for edge elements

Our goal is to derive an improved error estimate in the L2-norm using a
duality argument that invokes a weak control on the divergence. The subtlety
is that, as already mentioned, the setting is nonconforming since Xj, is not a
subspace of Xy,. We assume in the section that the boundary 9D is connected
and that the domain D is simply connected. Recalling the smoothness indices
s,s" > 0 from Lemma 44.2 together with the index 7 > 0 from the multiplier
property (44.11) and letting s” := min(s’,7), we have A € H?*(D) and
VxA € H*' (D) with s,s” > 0. In what follows, we set

o := min(s, s”). (44.19)

Let us first start with an approximation result on the curl-preserving lifting
operator & : Xpo, — X, defined in the proof of Theorem 44.6. Recall that
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for all ), € Xpou, the field &(xy,) € Xo, is s.t. E(xp) == xp — Vo(xy) with
d(xy) € HE(D), implying that Vx&(xp) = Vxxy,.

Lemma 44.11 (Curl-preserving lifting). Let s > 0 be the smooth-
ness index introduced in (44.7). There is ¢, depending on the constant Cp
from (44.7) and the contrast factor vy, s.t. for all xp € Xpoy and all h € H,

€(xn) — @nl|2(p) < ch®05 |V x@n| p2p (44.20)

Proof. Let us set ey, := &(x),) —xp. We have seen in the proof of Theorem 44.6
that Jyo(§(xn)) —xn € V My, so that (ven, Ty, (§(xn)) —Tn)L2(p) = 0 since
&(xn) € Xow, Mpo C My, and @), € Xpo,. Since e = (I — J5)(&(xn)) +
(T5o(&(xn)) — p), we infer that

(ven,en)rz2(p) = (ven, (I — T4o)(&(xn)))L2(p),

thereby implying that ||eh||L2(D) < I/ﬁ/b”(l — jﬁo)(é(mh))an(D) Using the
approximation properties of J, yields

lenllz>py < cvyph®€(@n)|me(D),

and we conclude using the bound [§(xp)|ms(p) < CDK}:)_S||meh||L2(D)
which follows from (44.7) since &(xy) € Xo,, and Vx&(xp) = Vxxp,. O

Lemma 44.12 (Adjoint solution). Let y € X, and let ¢ € X, solve the
(adjoint) problem v¢ 4+ Vx(kVx() = Vb_luy. There is ¢, depending on the
constants Cps from (44.9), C, C' from (44.7)-(44.8), and the contrast factors
Vish, Kish, and kyCy—1, s.t. for all h € H,

|C|H" < Cyﬁ ’YUH U”yHL?(D), (4421&)
|VXC|H” < Cyﬁ ’71/&'71/& ||y||L2 (4421b)

Proof. Proof of (44.21a). Testing the adjoint problem with e~ ¢ leads to
IinVXCH%Q(D) < vy llYllL2pyl€llL2(p)- Using the Poincaré-Steklov inequal-
ity (44.9), we can bound ||C||L2(D) by ||V><C||L2 ), and altogether this gives

IV%¢liL2py < 55 e Cos eollyll 2 ) (44.22)
Invoking (44.7) with o < s yields
ClEe(p) < CpM5 IV XCllLepy < &, v Cpt Cod 0 Yl L2 (),
which proves (44.21a) since n;lﬁ% = mﬁ/bl/[l%ﬁ.

Proof of (44.21b). Invoking (44.8) with o < s’ for b := KV x(, which is a
member of X, .1, we infer that
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CHlp" bl ere(py < [V xb| L2(p) = I\VX(HVXC)|\L2(D)
<viplyllezoy) +vil€llizz o

by definition of the adjoint solution ¢ and the triangle inequality. Invok-
ing again the Poincaré-Steklov inequality (44.9) to bound |[[¢[/z2(py by

||VXC||L2(D) and using (4422) yields HC||L2(D) < Ii;ll/ﬁ/bép_gé%”y”[g(D).
As a result, we obtain

Clp bl rre (py < vap(1+ veky, " Co?09) |yl L2y

and this concludes the proof of (44.21b) since |V x(|go(py < Cr-1[b| o ()
owing to the multiplier property (44.11) and o < 7.

We can now state the main result of this section.

Theorem 44.13 (Improved L2-error estimate). Let A solve (44.1) and
let Ay, solve (44.13). There is ¢, depending on the constants Cps from (44.9),
C, C" from (44.7)-(44.8), and the contrast factors Vish, Kb, and k3Cp-1, s.t.
for all h € H,

|A—Ap|L2p) <c lg‘f/ (1A = vnllL2(p) + 5. b5 | A = Onl| E (cur))-
Vh h0o

Proof. In this proof, we use the symbol c to denote a generic positive constant
that can have the same parametric dependencies as in the above statement.
Let v;, € X0, and let us set ¢, := Aj, — v;,. We observe that x;, € X0..
Let &(x) be the image of @, by the curl-preserving lifting operator and let
¢ € Xy, be the solution to the following adjoint problem:

V¢ + Vx(kVxC) = v, 'vé(zy).

(1) Let us first bound [[§(x4)||L2(p)y from above. Recalling that &(xy,) —xp, =

—Vo¢(xn) and that (v€(xn), §(zn) — xn)L2(p) = —(VE(xh), Vo(xn)) L2 (D) =
0, we infer that

(&(xn), v€(xn))L2 (D) = (Tn, v€(TH))L2(D)

= (A —wvp,v€(xn))L2(p) + (An — A, v€(xh)) L2 (D)

= (A — v, v€(xn))L2(D) + Yoaw,x(An — A, Q)
=(A—-wvpv (wh))L2(D) +VbGU,H(Ah _A,C_j}fo(C)),

where we used the Galerkin orthogonality property on the fourth line. Since
we have |a’l’u‘€(a5 b)| < KﬁKBQ:YVﬁ”aHH(CurI;D)||b||H(Curl;D) by (4313b)? we
infer from the commutation and approximation properties of the quasi-
interpolation operators that
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1€@m)Iz2py < vapllA = vnllL2 o) llé(@n) L2
+ kgl 5 A h” | A = Apl| E(cunt; 0y ([C| 22 (D) + €DV X Ho (D))-

Owing to the bounds from Lemma 44.12 on the adjoint solution with y :=
&(xr), we conclude that

1€(@n)ll2(py < vip(IA — vnllL2(py + Ao R0 | A = Abl (e D))-

(2) The triangle inequality and the identity A — A, = A — vy, — @), imply
that

|A— Aplz2p) < |A—vnlz2p) + 1§(xn) — ZallL2(0) + [1€(2R)] L2 (D)-

We use Lemma 44.11 to bound the second term on the right-hand side as

HS(III}L) - whHL?(D) < Chng_UHVX:BhHLz(D)
S Chgle_a(HVX(A - ’Uh)”Lz(D) + HVX(A - Ah)||L2(D))7

and we use (44.18) to infer that || A — Ax|| g (curl; D) < Yo x| A = V|| H(curt; D)-
For the third term on the right-hand side, we use the bound on ||£(x1)||£2(p)
from Step (1). We conclude by taking the infimum over v;, € X}, and we
use Lemma 44.8 to extend the infimum over V. a

Remark 44.14 (Literature). The construction of the curl-preserving lift-
ing operator invoked in the proof of Theorem 44.6 and Theorem 44.13 is done
in Monk [302, pp. 249-250]. The statement in Lemma 44.11 is similar to that
in Monk [303, Lem. 7.6], but the present proof is simplified by the use of
the commuting quasi-interpolation operators. The curl-preserving lifting of
A — Ay is invoked in Arnold et al. [23, Eq. (9.9)] and denoted therein by
. The estimate of |4 L2(py given one line above [23, Eq. (9.11)] is simi-
lar to (44.3) and is obtained by invoking the commuting quasi-interpolation
operators constructed in [23, §5.4] for natural boundary conditions. Note
that contrary to the above reference, we invoke the curl-preserving lifting of
A, —wvy, instead of A— Aj, and make use of Lemma 44.11, which simplifies the
argument. Furthermore, the statement of Theorem 44.13 is similar to that of
Zhong et al. [405, Thm. 4.1], but the present proof is simpler and does not
require the smoothness index o to be larger than % ad

Exercises

Exercise 44.1 (Gradient). Let ¢ € H}(D). Prove that V¢ € Hy(curl; D)

Exercise 44.2 (Vector potential). Let v € L*(D) with (vv, Vmy,)2(py =
0 for all my, € Mpo. Prove that (vv,wn)r2(py = (VXx2h, VXwy)p2(p) for all
wy, € Vi, where z;, solves a curl-curl problem on Xp,, .
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Exercise 44.3 (Neumann condition). Recall Remark 44.10. Assume that
D is simply connected so that there is Cps > 0 such that C’ps€51|\b||L2(D) <
[Vxb|lg2py for all b € X.,. Prove that there is C}; > 0 such that
CA'}',S€151|bh||L2(D) < ||V xbyllp2(py for all by, € Xps,. (Hint: adapt the proof
of Theorem 44.6 using J5.)

Exercise 44.4 (Discrete Poincaré—Steklov for V-). Let v be as in §44.1.1.
Let Yo, := {v € Ho(div; D) | (vv, Vx@)r2(py = 0, V¢ € Ho(curl; D)} and
accept as a fact that there is Cps > 0 such that C'Psﬁz)l v[lz2py < |V-v]lL2(p)
for all v € Yy,. Let k& > 0 and consider the discrete space Yyo, := {vy €
P,go(ﬁ) | (von, VX@n)L2p) = 0, Yon € Pgo(Tn;C)}. Prove that there is
Cly > 0 such that Clyllvnllz2(py < €pl|V-vnllr2(py for all vy, € Yio,. (Hint:
adapt the proof of Theorem 44.6 using J,3).)



