
Part X, Chapter 47

Symmetric operators, conforming
approximation

The objective of this chapter is to study the approximation of eigenvalue
problems associated with symmetric coercive differential operators using H1-
conforming finite elements. The goal is to derive error estimates on the eigen-
values and the eigenfunctions. The analysis is adapted from Raviart and
Thomas [331] and uses relatively simple geometric arguments. The approxi-
mation of nonsymmetric eigenvalue problems using nonconforming techniques
is studied in Chapter 48 using slightly more involved arguments.

47.1 Symmetric and coercive eigenvalue problems

In this section, we reformulate the eigenvalue problems introduced in §46.2
in a unified setting. This abstract setting will be used in §47.2 to analyze
the approximation of these problems using H1-conforming finite elements.
We restrict ourselves to the real-valued setting since we are going to focus on
symmetric operators.

47.1.1 Setting

Let D be a Lipschitz domain in Rd. Let L2(D) be the real Hilbert space
equipped with the inner product (v, w)L2(D) :=

∫
D vw dx. Let V be a closed

subspace of H1(D) which, depending on the boundary conditions that are
enforced, satisfies H1

0 (D) ⊆ V ⊆ H1(D). We assume that V is equipped with
a norm that is equivalent to that of H1(D). We also assume that the V -norm
is rescaled so that the operator norm of the embedding V →֒ L2(D) is at most
one, e.g., one could set ‖v‖V := C−1

ps ℓD‖∇v‖L2(D) if V := H1
0 (D), where Cps

is the constant from the Poincaré–Steklov inequality (31.12) in H1
0 (D) and

ℓD is a characteristic length associated with D, e.g., ℓD := diam(D).
Let a : V×V → R be a symmetric bilinear form, i.e., a(v, w) = a(w, v),

satisfying the following coercivity and boundedness properties:
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α ‖v‖2V ≤ a(v, v), |a(v, w)| ≤ ‖a‖ ‖v‖V ‖w‖V , (47.1)

for all v, w ∈ V, with 0 < α ≤ ‖a‖ < ∞. For instance, we have a(v, w) :=∫
D(t∇v)·∇w dx and V := H1

0 (D) in (46.18), so that we can take α := τ♭ℓ
−2
D

and ‖a‖ := τ♯ℓ
−2
D , where τ♭ and τ♯ are the smallest and the largest eigenvalues

of t in D.
Our goal is to investigate the H1-conforming approximation of the follow-

ing eigenvalue problem:

{
Find ψ ∈ V \{0} and λ ∈ R such that

a(ψ,w) = λ(ψ,w)L2(D), ∀w ∈ V.
(47.2)

Let T : L2(D) → L2(D) be the solution operator such that for all u ∈ L2(D),

a(T (u), w) := (u,w)L2(D), ∀w ∈ V. (47.3)

By proceeding as in §46.2.1, we conclude that T is symmetric and compact.
We are then in the setting of Theorem 46.14 and Theorem 46.21.

Theorem 47.1 (Hilbert basis). Under the above assumptions on the bilin-
ear form a, the following properties hold true:

(i) (λ, ψ) ∈ (0,∞)×V is an eigenpair for the eigenvalue problem (47.2) iff
(λ−1, ψ) ∈ (0,∞)×V is an eigenpair for T .

(ii) σp(T ) ⊂ (0, 1
α ].

(iii) The eigenvalue problem (47.2) has a countable sequence of isolated real
positive eigenvalues that grows to infinity.

(iv) It is possible to construct a Hilbert basis (ψn)n≥1 of L2(D), where
(λn, ψn)n≥1 are the eigenpairs solving (47.2) (see Definition 46.19). (It
is customary to enumerate the eigenpairs starting with n ≥ 1.)

(v) (λ
− 1

2
n ψn)n≥1 is a Hilbert basis of V equipped with the inner product a(·, ·).

Proof. (i) Let (µ, ψ) be an eigenpair of T . Then ‖ψ‖2L2(D) = a(T (ψ), ψ) =

µa(ψ, ψ), which implies that µ > 0. This proves that σp(T ) = σ(T )\{0} and
σp(T ) ⊂ (0,∞) (see Theorem 46.14(ii) and recall that dim(L2(D)) = ∞).
Let (µ, ψ) be an eigenpair for T . Then a(T (ψ), w) = µa(ψ,w) = (ψ,w)L2(D)

for all w ∈ V. Since µ 6= 0, we conclude that a(ψ,w) = µ−1(ψ,w)L2 for all
w ∈ V, that is, (µ−1, ψ) solves (47.2). The converse is also true: if (λ, ψ) is an
eigenpair for (47.2), then the coercivity of a implies that λ 6= 0, and reasoning
as above shows that (λ−1, ψ) is an eigenpair of T .
(ii) Let (µ, ψ) be an eigenpair of T . The coercivity of a implies that
‖ψ‖2L2(D) = a(T (ψ), ψ) = µa(ψ, ψ) ≥ µα‖ψ‖2V ≥ µα‖ψ‖2L2(D), where the last

bound follows from our assuming that the norm of the embedding V →֒ L2(D)
is at most one. Hence, µ ∈ (0, 1

α ].
(iii) The number of eigenvalues of T cannot be finite since the eigenspaces are
finite-dimensional (see Theorem 46.13(ii)) and there exists a Hilbert basis of
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L2(D) composed of eigenvectors of T (see Theorem 46.21). We are then in
the third case described in Theorem 46.14(iii): the eigenvalues of T form a
(countable) sequence that converges to zero. Hence, the eigenvalues of (47.2)
grow to infinity.
(iv) This is a consequence of Theorem 46.21 and Item (iii) proved above.
(v) Let ψm, ψn be two members of the Hilbert basis (ψk)k≥1 of L2(D). Re-
calling that (λm, ψm) and (λn, ψn) are eigenpairs of (47.2), we infer that

a(λ
− 1

2
m ψm, λ

− 1
2

n ψn) = λ
1
2
mλ

− 1
2

n (ψm, ψn)L2(D) = δmn.

Let W be the vector space composed of all the finite linear combinations of
vectors in {ψn}n≥1. We have to prove that W is dense in V. Let f ∈ V ′

and assume that f annihilates W. Denoting by (Jrf
V )−1(f) the Riesz–Fréchet

representative of f in V equipped with the inner product a(·, ·), we have

0 = 〈f, λ−
1
2

n ψn〉V ′,V = a((Jrf

V )−1(f), λ
− 1

2
n ψn) = a(λ

− 1
2

n ψn, (J
rf

V )−1(f))

= λ
1
2
n (ψn, (J

rf

V )−1(f))L2(D),

for all n ≥ 1, where we used the symmetry of a. The above identity implies
that (Jrf

V )−1(f) = 0 sinceW is dense in L2(D). Hence, f = 0. Corollary C.15
then implies that W is dense in V as claimed. ⊓⊔

The eigenvalues are henceforth counted with their multiplicity and ordered
as follows: λ1 ≤ λ2 ≤ . . .. Moreover, the associated eigenfunctions ψ1, ψ2, . . .
are chosen and normalized as in Theorem 47.1(iv) so that ‖ψn‖L2(D) = 1. The
coercivity property of a implies that the eigenvalues are all positive and larger
than or equal to α. Notice that since T is symmetric, the notions of algebraic
and geometric multiplicity coincide, and for every eigenvalue λ−1 ∈ σp(T ),
the multiplicity of λ is equal to dim(λ−1IL2(D) − T ).

47.1.2 Rayleigh quotient

We introduce in this section the notion of Rayleigh quotient which will be
instrumental in the analysis of the H1-conforming approximation technique
presented in §47.2.

Definition 47.2 (Rayleigh quotient). The Rayleigh quotient of a function
v ∈ V \{0}, relative to the bilinear form a, is defined as

R(v) :=
a(v, v)

‖v‖2L2(D)

. (47.4)

In this chapter, all the expressions involving R(v) are understood with v 6= 0.
For any functional J : V → R, we write minv∈V J (v) instead of infv∈V J (v)
to indicate that the infimum is attained, i.e., if there exists a minimizer v∗ ∈ V
such that J (v∗) = infv∈V J (v).
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Proposition 47.3 (First eigenvalue). Let λ1 be the smallest eigenvalue of
the problem (47.2) and let ψ1 be a corresponding eigenfunction. Then we have

α ≤ λ1 = R(ψ1) = min
v∈V

R(v). (47.5)

Proof. We have λ1 = R(ψ1) ≥ infv∈V R(v) ≥ α, where the first equality
results from a(ψ1, ψ1) = λ1‖ψ1‖2L2(D) and the second from Theorem 47.1(ii).

It remains to prove that infv∈V R(v) ≥ λ1 (this also proves that the infi-
mum of R over V is attained at ψ1 since λ1 = R(ψ1)). Let v ∈ V \{0}.
Since (ψn)n≥1 is a Hilbert basis of L2(D) (see Theorem 47.1(iv)), the se-
ries (

∑
k∈{1:n} Wkψk)n≥1, with Wk := (v, ψk)L2(D), converges to v in L2(D)

and we have ‖v‖2L2(D) =
∑

n≥1 W
2
n. Furthermore, since (λ

− 1
2

n ψn)n≥1 is

a Hilbert basis of V equipped with the inner product a(·, ·) (see Theo-

rem 47.1(v)), the series (
∑

k∈{1:n} Vkλ
− 1

2

k ψk)n≥1, with Vk := a(v, λ
− 1

2

k ψk),

converges to v in V , and we have a(v, v) =
∑
n≥1 V

2
n. But we also have

Vn = a(v, λ
− 1

2
n ψn) = λ

1
2
n (v, ψn)L2(D) = λ

1
2
nWn. Since λ1 ≤ λn for all n ≥ 1,

we conclude that

R(v) =

∑
n≥1 V

2
n∑

n≥1 W
2
n

=

∑
n≥1 λnW

2
n∑

n≥1 W
2
n

≥ λ1. ⊓⊔

Proposition 47.4 (Min-max principle). Let Vm denote the set of the
subspaces of V having dimension m. For all m ≥ 1, we have

λm = min
Em∈Vm

max
v∈Em

R(v) = max
Em−1∈Vm−1

min
v∈E⊥

m−1

R(v), (47.6)

where for all m > 1, E⊥
m−1 denotes the orthogonal of Em−1 in L2(D) w.r.t.

the L2-inner product and E0 := {0} by convention.

Proof. LetWm := span{ψ1, . . . , ψm}. Using the notation Wk := (v, ψk)L2(D),
a direct computation shows that

min
Em∈Vm

max
v∈Em

R(v) ≤ max
v∈Wm

R(v) = max
v∈Wm

∑
n∈{1:m} λnW

2
n∑

n∈{1:m} W
2
n

= λm.

Consider now any Em ∈ Vm. A dimensional argument shows that there exists
w 6= 0 in Em ∩W⊥

m−1 (apply the rank nullity theorem to the L2-orthogonal
projection from Em onto Wm−1). Since w can be written in the form w =
∑

n≥mWnψn =
∑

n≥m λ
1
2
nWnλ

− 1
2

n ψn, one shows by proceeding as in the proof
of Proposition 47.3 that R(w) ≥ λm. As a result, maxv∈Em R(v) ≥ λm.
Hence, minEm∈Vm maxv∈Em R(v) ≥ λm. This concludes the proof of the first
equality in (47.6). See Exercise 47.4 for the proof of the second equality. ⊓⊔
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Remark 47.5 (Poincaré–Steklov constant). The best Poincaré–Steklov

constant in H1
0 (D) is Cps := infv∈H1

0 (D)\{0}
ℓD‖∇v‖

L2(D)

‖v‖L2(D)
. Letting λ1 be the

smallest eigenvalue of the Laplacian with Dirichlet boundary conditions,

Proposition 47.3 shows that Cps = ℓDλ
1
2
1 , and the Poincaré–Steklov inequal-

ity becomes an equality when applied to the first eigenfunction ψ1. ⊓⊔

47.2 H1-conforming approximation

In this section, we investigate the H1-conforming finite element approxima-
tion of the spectral problem (47.2).

47.2.1 Discrete setting and algebraic viewpoint

We assume that D is a Lipschitz polyhedron in Rd, and we consider a shape-
regular sequence (Th)h∈H of affine meshes so that each mesh coversD exactly.
Depending on the boundary conditions that are imposed in V, we denote by
Vh the H1-conforming finite element space based on Th such that Vh ⊂ V and
P g
k,0(Th) ⊆ Vh ⊆ P g

k (Th) with k ≥ 1 (see §19.2.1 or §19.4). The approximate
eigenvalue problem we consider is the following:

{
Find ψh ∈ Vh\{0} and λh ∈ R such that

a(ψh, wh) = λh(ψh, wh)L2(D), ∀wh ∈ Vh.
(47.7)

Let I := dimVh, let {ϕi}i∈{1:I} be the global shape functions in Vh, and
let Uh ∈ RI be the coordinate vector of ψh relative to this basis. The discrete
eigenvalue problem (47.7) can be recast as follows:

{
Find Uh ∈ RI\{0} and λh ∈ R such that

AUh = λhMUh,
(47.8)

where the stiffness matrix A and the mass matrix M have entries

Aij := a(ϕj , ϕi) and Mij := (ϕj , ϕi)L2(D). (47.9)

Both matrices are symmetric positive definite since they are Gram matrices
(see also §28.1). Because M is not the identity matrix, the problem (47.8) is
called generalized eigenvalue problem.

Proposition 47.6 (Spectral problems). (i) (47.7) and (47.8) admit I
(positive) eigenvalues (counted with their multiplicity) {λhi}i∈{1:I}. (ii) The
eigenfunctions {ψhi}i∈{1:I} ⊂ Vh in (47.7) can be chosen so that a(ψhj , ψhi) =
λhiδij and (ψhj , ψhi)L2(D) = δij. Equivalently, the eigenvectors {Uhi}i∈{1:I} ⊂
RI in (47.8) can be chosen so that UT

hjAUhi = λhiδij and UT
hjMUhi = δij.
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Proof. (i) Since A is symmetric and M is symmetric positive definite, these
two matrices can be simultaneously diagonalized. Let us recall the process
for completeness. Let QQT be the Cholesky factorization of M−1, i.e., M =
Q−TQ−1. Since QTAQ is real and symmetric, there exists an orthogonal
matrix P (with PPT = II), and a diagonal matrix Λ with diagonal entries
(λhi)i∈{1: I}, such that QTAQ = PΛP−1. Then AQP = Q−TPΛ = MQPΛ.
Let us set U := QP and let (Uhi)i∈{1: I} be the columns of the matrix U . The
identity AU = MUΛ is equivalent to

AUhi = λhiMUhi, ∀i ∈ {1:I},

showing that the λhi’s are the eigenvalues of the generalized eigenvalue prob-
lem (47.8) and the Uhi’s are the corresponding eigenvectors.
(ii) One readily sees that UTAU = PTQTQ−TPΛ = Λ and UTMU =
PTQTQ−TQ−1QP = II . This proves the identities on the eigenvectors, and
those on the eigenfunctions follow from the definitions of A and M. ⊓⊔

It is henceforth assumed that the eigenvalues are enumerated in increas-
ing order λh1 ≤ . . . ≤ λhI , where each eigenvalue appears in this list as
many times as its multiplicity. Moreover, the eigenfunctions are chosen and
normalized as in Proposition 47.6(ii) so that ‖ψhi‖L2(D) = 1.

47.2.2 Eigenvalue error analysis

Let m ≥ 1 be a fixed natural number. We assume that h is small enough so
that m ≤ I (recall that I := dim(Vh) grows roughly like (ℓD/h)

d as h → 0).
Our objective is to estimate |λhm−λm|. Let us introduce the discrete solution
map Gh : V → Vh defined s.t. a(Gh(v) − v, vh) = 0 for all v ∈ V and all vh
in Vh (see §26.3.4 and §32.1). Let Wm := span{ψi}i∈{1:m} and let Sm be the
unit sphere of Wm in L2(D). We define

σhm := min
v∈Wm\{0}

‖Gh(v)‖L2(D)

‖v‖L2(D)
= min

v∈Sm
‖Gh(v)‖L2(D). (47.10)

(Note that ‖Gh(v)‖L2(D) attains its infimum over Sm since Sm is compact.)

Lemma 47.7 (Comparing λm and λhm). Let m ∈ {1:I}. Assume that
σhm 6= 0. The following holds true:

λm ≤ λhm ≤ σ−2
hmλm. (47.11)

Proof. Let wh =
∑
i∈{1:m} Wiψhi ∈ Whm := span{ψhi}i∈{1:m}, where the

eigenfunctions are chosen and normalized as in Proposition 47.6(ii), so that
‖ψhi‖L2(D) = 1. Then R(wh) =

∑
i∈{1:m} λhiW

2
i /
∑
i∈{1:m} W

2
i . We in-

fer that λhm = maxwh∈Whm
R(wh), and the first inequality in (47.11) is

a consequence of Proposition 47.4. Let us now prove the second inequal-
ity. We observe that ker(Gh) ∩ Wm = {0} since σhm 6= 0 by assump-
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tion. Hence, the rank nullity theorem implies that dim(Gh(Wm)) = m. Let
Wh,m−1 = span{ψhi}i∈{1:m−1} and consider the L2-projection from Gh(Wm)
onto Wh,m−1. The rank nullity theorem implies that there is a nonzero
vector vh ∈ Gh(Wm) such that vh is L2-orthogonal to Wh,m−1, so that
vh =

∑
i∈{m:I} Viψhi. It follows that R(vh) ≥ λhm. As a result, we have

λhm ≤ R(vh) ≤ max
wh∈Gh(Wm)

a(wh, wh)

‖wh‖2L2(D)

= max
v∈Wm

a(Gh(v), Gh(v))

‖Gh(v)‖2L2(D)

.

Using that a(Gh(v), Gh(v)) = a(v,Gh(v)) ≤ a(v, v)
1
2 a(Gh(v), Gh(v))

1
2 since

a is symmetric and coercive, we infer that a(Gh(v), Gh(v)) ≤ a(v, v). Recall-
ing that maxv∈Wm R(v) = λm, we conclude that

λhm ≤ max
v∈Wm

a(v, v)

‖Gh(v)‖2L2(D)

≤ max
v∈Wm

‖v‖2L2(D)

‖Gh(v)‖2L2(D)

max
v∈Wm

R(v)

= σ−2
hm max

v∈Wm

R(v) = σ−2
hmλm. ⊓⊔

Remark 47.8 (Guaranteed upper bound). It is remarkable that inde-
pendently of the approximation space, but provided conformity holds true,
i.e., Vh ⊂ V, each eigenvalue of the discrete problem (47.8) is larger than the
corresponding eigenvalue of the exact problem (46.17). In other words, the
discrete eigenvalue λhm is a guaranteed upper bound on the exact eigenvalue
λm for all m ∈ {1:I}. Estimating computable lower bounds on the eigenval-
ues using conforming elements is more challenging. We refer the reader to
Cancès et al. [104] for a literature overview and to Remark 48.13 when the
approximation setting is nonconforming. ⊓⊔

Lemma 47.9 (Lower bound on σhm). Letm ∈ {1:I}. Recall that Sm is the
unit sphere of Wm := span{ψi}i∈{1:m} in L2(D) and recall that Gh : Vh → V
is the discrete solution operator. The following holds true:

σ2
hm ≥ 1− 2

√
m
‖a‖
λ1

max
v∈Sm

‖v −Gh(v)‖2V . (47.12)

Proof. Let v ∈ Sm. Let (Vi)i∈{1:m} be the coordinate vector of v relative
to the basis {ψi}i∈{1:m}. Since (ψi, ψj)L2(D) = δij , we have

∑
i∈{1:m} V

2
i =

‖v‖2L2(D) = 1. In addition, ‖Gh(v)‖2L2(D) can be bounded from below as

‖Gh(v)‖2L2(D) = ‖v‖2L2(D) − 2(v, v −Gh(v))L2(D) + ‖v −Gh(v)‖2L2(D)

≥ ‖v‖2L2(D) − 2(v, v −Gh(v))L2(D)

= 1− 2(v, v −Gh(v))L2(D). (47.13)

Using that (λi, ψi) is an eigenpair, the symmetry of a, and the Galerkin
orthogonality property satisfied by the discrete solution map, we have
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(v, v −Gh(v))L2(D) =
∑

i∈{1:m}
Vi(ψi, v −Gh(v))L2(D)

=
∑

i∈{1:m}

Vi

λi
a(ψi, v −Gh(v)) =

∑

i∈{1:m}

Vi

λi
a(ψi −Gh(ψi), v −Gh(v)).

This implies that

(v, v −Gh(v))L2(D) ≤
‖a‖
λ1

‖v −Gh(v)‖V
∑

i∈{1:m}
|Vi|‖ψi −Gh(ψi)‖V

≤ ‖a‖
λ1

max
w∈Sm

‖w −Gh(w)‖2V
∑

i∈{1:m}
|Vi|

≤ √
m
‖a‖
λ1

max
w∈Sm

‖w −Gh(w)‖2V ,

where we used the boundedness of a and λ1 ≤ λi for all i ∈ {1:m} in
the first bound, that v ∪ {ψi}i∈{1:m} ⊂ Sm in the second bound, and the
Cauchy–Schwarz inequality and

∑
i∈{1:m} V

2
i = 1 in the third bound. The

expected estimate is obtained by inserting this bound into (47.13) and taking
the infimum over v ∈ Sm (recall that σhm := minv∈Sm ‖Gh(v)‖L2(D)). ⊓⊔

Theorem 47.10 (Error on eigenvalues). Let m ∈ N\{0} and c1(m) :=

4
√
m‖a‖

λ1

‖a‖
α . There is h0(m) > 0 s.t. for all h ∈ H ∩ (0, h0(m)], we have

σhm ≥ 1
2 and

0 ≤ λhm − λm ≤ λmc1(m) max
v∈Sm

min
vh∈Vh

‖v − vh‖2V . (47.14)

Proof. (1) Since I grows unboundedly as h ↓ 0, there is h′0(m) > 0 s.t.
m ∈ {1:I} for all h ∈ H ∩ (0, h′0(m)], i.e., the pair (λhm, ψhm) exists for all
h ∈ H ∩ (0, h′0(m)]. Moreover, since the unit sphere Sm is compact, there is
v∗(m) ∈ Sm such that maxv∈Sm ‖v − Gh(v)‖2V = ‖v∗(m) − Gh(v∗(m))‖2V .
The approximation property of the sequence (Vh)h∈H implies that there is
h′′0(m) > 0 such that c0(m)‖v∗(m) − Gh(v∗(m))‖2V ≤ 1

2 for all h ∈ H ∩
(0, h′′0(m)], with c0(m) := 2

√
m‖a‖

λ1
.We now set h0(m) := min(h′0(m), h′′0 (m)).

Observing that 1
1−x ≤ 1 + 2x for all x ∈ [0, 12 ], and applying this inequal-

ity to (47.12) with x := c0(m)maxv∈Sm ‖v − Gh(v)‖2V ≤ 1
2 , we infer that

σ−2
hm ≤ 1 + 2c0(m)maxv∈Sm ‖v − Gh(v)‖2V . This implies in particular that
σhm ≥ 1√

2
≥ 1

2 for all h ∈ H ∩ (0, h0(m)].

(2) Inserting the above bound into (47.11) yields

λhm − λm ≤ (σ−2
hm − 1)λm ≤ 2λmc0(m) max

v∈Sm
‖v −Gh(v)‖2V .

Since a is symmetric and coercive, Céa’s lemma (Lemma 26.13) implies that
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‖v −Gh(v)‖V ≤
(‖a‖
α

) 1
2

min
vh∈Vh

‖v − vh‖V . (47.15)

The assertion follows readily. ⊓⊔

Remark 47.11 (Units). One readily sees that ‖a‖
λ1

scales as ‖·‖−2
L2(D),

i.e., as ℓ−2d
D . Since ‖·‖2V also scales like ℓ2dD owing to our assumption on

the boundedness of the embedding V →֒ L2(D), we infer that the factor
c1(m)maxv∈Sm minvh∈Vh ‖v − vh‖2V is nondimensional. ⊓⊔

Remark 47.12 (Double rate). The elliptic regularity theory implies that
for all m ≥ 1, there are s(m) > 0 and cm s.t. ‖ψm‖H1+s(m)(D) ≤ cm.
Here, the value of s(m) is not restricted to the interval (0, 1] since there
is a bootstrapping phenomenon that allows s(m) to be large. To illustrate
this property, assume that D is of class Cr+1,1, r ∈ N, and the bilin-
ear form a is associated with an operator A satisfying the assumptions of
Theorem 31.29. Let s := r mod 2 ∈ {0, 1} and let l♯ ∈ N\{0} be s.t.
2(l♯ − 1) + s = r. Theorem 31.29 implies that there is c0(r) such that
‖A−1(v)‖Hs(D) ≤ c0(r)ℓ

2
D‖v‖L2(D) for all v ∈ L2(D), and there are cl(r),

such that ‖A−1(v)‖H2l+s(D) ≤ cl(r)ℓ
2
D‖v‖L2(l−1)+s(D) for all v ∈ H2(l−1)+s(D)

and all l ∈ {1:l♯}. Since A(ψm) = λmψm, we obtain ‖ψm‖Hr+2(D) =

‖ψm‖
H2l♯+s(D)

≤ cl♯(r) . . . c1(r)c0(r)(λmℓ
2
D)

l♯+1‖ψm‖L2(D). Recalling the

normalization ‖ψm‖L2(D) = 1, this argument shows that if D is of class
Cr+1,1, we have ‖ψm‖H1+s(m)(D) ≤ cm with s(m) := r + 1 and cm :=

cl♯(r) . . . c1(r)c0(r)(λmℓ
2
D)

l♯+1. Recalling that k is the approximation degree
of Vh, let s♭(m) := min(s(1), . . . , s(m), k) for all m ≥ 1, and χ(m) :=

maxv∈Sm ℓ
1+s♭(m)
D |v|H1+s♭(m)(D) (recall that Sm is the unit sphere of Wm in

L2(D)). The best-approximation estimates established in §22.3 and §22.4
imply that there exists capp such that the following holds true for all
h ∈ H ∩ (0, h0(m)]:

max
v∈Sm

min
vh∈Vh

‖v − vh‖V ≤ capp χ(m)(h/ℓD)
s♭(m).

Owing to Theorem 47.10, this implies that

0 ≤ λhm − λm ≤ λmc1(m)c2appχ(m)2(h/ℓD)
2s♭(m). (47.16)

In the best-case scenario where s(n) ≥ k for all n ∈ {1:m}, we have s♭(m) = k
so that the convergence rate for the error on λm is O(h2k), i.e., this error
converges at a rate that is double that of the best-approximation error on
the eigenvectors in the H1-norm; see Remark 47.16 below. Note that the
convergence rate on λm in (47.16) depends on the smallest smoothness index
of all the eigenfunctions {ψn}n∈{1:m}. This shortcoming is circumvented with
the more general theory presented in Chapter 48, where the convergence rate
on λm only depends on the smoothness index of the eigenfunctions associated
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with λm. Note also that since c1(m) grows unboundedly with m, (47.16)
shows that when h is fixed the accuracy of the approximation decreases as
m increases. ⊓⊔
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Fig. 47.1 P1 approximation of the eigenvalues of the Laplacian in one dimension. Left:
discrete and exact eigenvalues, I := 50. Right: Graph of the 80th exact (dashed line) and
discrete (solid line) eigenfunctions in the interval (0.4, 0.6), I := 100.

Example 47.13 (1D Laplacian). Let us consider the eigenvalue problem
for the one-dimensional Laplacian discretized using P1 Lagrange elements on
a uniform mesh on D := (0, 1). It is shown in Exercise 47.5 that λm = m2π2

and λhm = 6
h2

1−cos(mπh)
2+cos(mπh) for all m ≥ 1. The left panel of Figure 47.1 shows

the first 50 exact eigenvalues and the 50 discrete eigenvalues on a mesh hav-
ing I := 50 internal vertices. The exact eigenvalues are approximated from
above as predicted in Lemma 47.7. Observe that only the first eigenvalues
are approximated accurately. The reason for this is that the eigenfunctions
corresponding to large eigenvalues oscillate too much to be represented ac-
curately on the mesh as illustrated in the right panel of Figure 47.1. A rule

of thumb is that a meshsize smaller than
√
ǫ
m must be used to approximate

the m-th eigenvalue with relative accuracy ǫ, i.e., |λhm − λm| < ǫλm. For
instance, only the first 10 eigenvalues are approximated within 1% accuracy
when I := 100. We refer the reader to Exercise 47.5 for further details. ⊓⊔

47.2.3 Eigenfunction error analysis

The goal of this section is to estimate the approximation error on the eigen-
functions. We first estimate this error in the L2-norm and then in the H1-
norm. Let m ≥ 1 be a fixed natural number, and let us assume as in the
previous section that the meshsize h ∈ H is small enough so that m ≤ I and
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σhm > 0 (see Theorem 47.10). For the sake of simplicity, we also assume
that the eigenvalue λm is simple, and we set γm := 2maxi∈N\{0,m}

λm
|λm−λi| .

Observe that γm = 2max( λm
λm−λm−1

, λm
λm+1−λm ). Since λhi → λi as h → 0

for all i ∈ {1:m+1} (see Theorem 47.10), there exists h0(m) > 0 so that
λm

|λm−λhi| ≤ γm for all i ∈ {1:m + 1}\{m} and all h ∈ H ∩ (0, h0(m)]. More-

over, using that |λm−λhi| ≤ |λm−λm+1| for all i ≥ m+1, we infer that the
following holds true for all h ∈ H ∩ (0, h0(m)]:

max
i∈{1:I}
i6=m

λm
|λm − λhi|

≤ γm. (47.17)

Theorem 47.14 (L2-error on eigenfunctions). Let m ∈ N\{0}. Assume
that λm is simple and let h0(m) > 0 be s.t. (47.17) holds true. Let c2(m) :=
2(1 + γm). There is an eigenfunction ψm such that the following holds true
for all h ∈ H ∩ (0, h0(m)]:

‖ψm − ψhm‖L2(D) ≤ c2(m)‖ψm −Gh(ψm)‖L2(D). (47.18)

Proof. Recall that Gh(ψm) =
∑

i∈{1:I} Viψhi with Vi := (Gh(ψm), ψhi)L2(D).

Let us set vhm := Vmψhm so that Gh(ψm)−vhm =
∑
i∈{1: I}\{m} Viψhi. Since

the bilinear form a is symmetric and (λhi, ψhi) is a discrete eigenpair, we have

Vi =
1

λhi
a(ψhi, Gh(ψm)) =

1

λhia(Gh(ψm), ψhi)

=
1

λhi
a(ψm, ψhi) =

λm
λhi

(ψm, ψhi)L2(D),

where we used the definition of Gh and that (λm, ψm) is an eigenpair. This
implies that

(λhi − λm)Vi = λhiVi − λmVi = λm(ψm, ψhi)L2(D) − λmVi

= λm(ψm, ψhi)L2(D) − λm(Gh(ψm), ψhi)L2(D)

= λm(ψm −Gh(ψm), ψhi)L2(D).

Hence, we have Vi =
λm

λhi−λm (ψm−Gh(ψm), ψhi)L2(D) for all i ∈ {1:I}\{m}.
Since the discrete eigenfunctions {ψhi}i∈{1:I} are L2-orthonormal, we obtain

‖Gh(ψm)− vhm‖2L2(D) =
∑

i∈{1:I}
i6=m

V2
i ≤ γ2m

∑

i∈{1: I}
i6=m

(ψm −Gh(ψm), ψhi)
2
L2(D)

≤ γ2m‖ψm −Gh(ψm)‖2L2(D), (47.19)

where the first bound follows from (47.17) and the last one from Bessel’s
inequality

∑
i∈{1: I}(ψm−Gh(ψm), ψhi)

2
L2(D) ≤ ‖ψm−Gh(ψm)‖2L2(D). Let us
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now estimate ‖ψhm − vhm‖L2(D). Since ‖ψhm‖L2(D) = 1, we have

‖ψhm − vhm‖L2(D) = ‖(1− Vm)ψhm‖L2(D) = |Vm − 1|
= |(Gh(ψm), ψhm)L2(D) − 1|.

Assume that ψhm is chosen so that Vm = (Gh(ψm), ψhm)L2(D) ≥ 0. Then we
have ‖vhm‖L2(D) = |Vm| = (Gh(ψm), ψhm)L2(D), and ‖ψhm − vhm‖L2(D) =
|‖vhm‖L2(D) − 1|. Since the triangle inequality implies that

‖ψm‖L2(D)−‖ψm−vhm‖L2(D) ≤ ‖vhm‖L2(D) ≤ ‖ψm‖L2(D)+‖ψm−vhm‖L2(D),

and since ‖ψm‖L2(D) = 1, we infer that |‖vhm‖L2(D)−1| ≤ ‖ψm−vhm‖L2(D).
This implies that

‖ψhm − vhm‖L2(D) = |‖vhm‖L2(D) − 1| ≤ ‖ψm − vhm‖L2(D).

Invoking the triangle inequality, the above bound, and the triangle inequality
one more time gives

‖ψm − ψhm‖L2(D)

≤ ‖ψm −Gh(ψm)‖L2(D) + ‖Gh(ψm)− vhm‖L2(D) + ‖ψhm − vhm‖L2(D)

≤ ‖ψm −Gh(ψm)‖L2(D) + ‖Gh(ψm)− vhm‖L2(D) + ‖ψm − vhm‖L2(D)

≤ 2(‖ψm −Gh(ψm)‖L2(D) + ‖Gh(ψm)− vhm‖L2(D))

≤ 2(1 + γm)‖ψm −Gh(ψm)‖L2(D),

where the last bound follows from (47.19). Using the definition of c2(m) leads
to the expected estimate. ⊓⊔

Theorem 47.15 (H1-error on eigenfunctions). Let m ∈ N\{0}. Assume
that λm is simple and let h0(m) > 0 be s.t. (47.14) and (47.17) hold for
all h ∈ H ∩ (0, h0(m)]. There is an eigenfunction ψm such that the following
holds true for all h ∈ H ∩ (0, h0(m)]:

‖ψm − ψhm‖V ≤ c3(m) max
v∈Sm

min
vh∈Vh

‖v − vh‖V , (47.20)

where c3(m) := (λmα )
1
2 (c1(m) + c2(m)2 ‖a‖

α )
1
2 is independent of h ∈ H.

Proof. Owing to the coercivity of a, we infer that

α‖ψm − ψhm‖2V ≤ a(ψm − ψhm, ψm − ψhm)

= λhm + λm − 2λm(ψm, ψhm)L2(D)

= λhm − λm + λm‖ψm − ψhm‖2L2(D),

since ‖ψm‖L2(D) = ‖ψhm‖L2(D) = 1 implies that ‖ψm − ψhm‖2L2(D) = 2 −
2(ψm, ψhm)L2(D). The inequality (47.20) is obtained by estimating (λhm−λm)
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and ‖ψm − ψhm‖2L2(D). The estimate on (λhm − λm) is given by (47.14) in

Theorem 47.10, and Theorem 47.14 gives ‖ψm − ψhm‖L2(D) ≤ c2(m)‖ψm −
Gh(ψm)‖L2(D). We observe that

‖ψm −Gh(ψm)‖L2(D) ≤ ‖ψm −Gh(ψm)‖V ≤ max
v∈Sm

‖v −Gh(v)‖v

≤
(‖a‖
α

) 1
2

min
vh∈Vh

‖v − vh‖V ,

where the last bound follows from (47.15) (Céa’s lemma). Putting everything
together leads to the expected estimate. ⊓⊔

Remark 47.16 (Convergence rates). Let us use the notation of Re-
mark 47.12. Assume that the eigenvalue λm is simple. We can then invoke the
estimates from Theorem 47.14 and Theorem 47.15. The best-approximation
estimates in the H1-norm established in §22.3 and §22.4 and the Aubin–
Nitsche lemma (Lemma 32.11) imply that the following holds true for all
h ∈ H ∩ (0, h0(m)]:

‖ψm − ψhm‖L2(D) ≤ č2(m)χ(m)(h/ℓD)
s♭(m)+s, (47.21a)

‖ψm − ψhm‖H1(D) ≤ č3(m)χ(m)(h/ℓD)
s♭(m), (47.21b)

where the constants č2(m), č3(m) have the same dependencies w.r.t. m as
the constants c2(m), c3(m), and χ(m) is defined in Remark 47.12. The best
possible convergence rates are obtained when sn(m) ≥ k for all n ∈ {1:m}
so that s♭(m) = k, yielding the rates O(hk+1) in the L2-norm and O(hk)
in the H1-norm. Moreover, it can be shown that if λm has multiplicity p,
i.e., λm = λm+1 = . . . = λm+p−1, then there exists an eigenfunction ψ†

m ∈
span{ψm, . . . , ψm+p−1} with ‖ψ†

m‖L2(D) = 1 such that (47.21) holds true

with ψm replaced by ψ†
m. Note that (47.21) shows that when h is fixed, the

accuracy of the approximation decreases as m increases, since c2(m), c3(m)
grow unboundedly with m. ⊓⊔

Exercises

Exercise 47.1 (Real eigenvalues). Consider the eigenvalue problem: Find
ψ ∈ H1

0 (D;C)\{0} and λ ∈ C s.t.
∫
D
(∇ψ·∇w + ψw) dx = λ

∫
D
ψw dx for all

w ∈ H1
0 (D;C). Prove directly that λ is real. (Hint : test with w := ψ.)

Exercise 47.2 (Smallest eigenvalue). Let D1 ⊂ D2 be two Lipschitz do-
mains in Rd. Let ai : H

1
0 (Di)×H1

0 (Di) → R, i ∈ {1, 2}, be two symmetric,
coercive, bounded bilinear forms. Assume that a1(v, w) = a2(ṽ, w̃) for all
v, w ∈ H1

0 (D1), where ṽ, w̃ denote the extension by zero of v, w, respec-
tively. Let λ1(Di) be the smallest eigenvalue of the eigenvalue problem: Find
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ψ ∈ H1
0 (Di)\{0} and λ ∈ R s.t. ai(ψ,w) = λ(ψ,w)L2(Di) for all w ∈ H1

0 (Di).
Prove that λ1(D2) ≤ λ1(D1). (Hint : use Proposition 47.3.)

Exercise 47.3 (Continuity of eigenvalues). Consider the setting defined
in §47.1. Let a1, a2 : V×V → R be two symmetric, coercive, bounded bi-
linear forms. Let A1, A2 : V → V ′ be the linear operators defined by
〈Ai(v), w〉V ′,V := ai(v, w), i ∈ {1, 2}, for all v, w ∈ A. Let λk(a1) and
λk(a2) be the k-th eigenvalues, respectively. Prove that |λk(a1) − λk(a2)| ≤
supv∈S |〈(A1 − A2)(v), v〉V ′,V |, where S is the unit sphere in L2(D). (Hint :
use the min-max principle.)

Exercise 47.4 (Max-min principle). Prove the second equality in (47.6).
(Hint : let Em−1 ∈ Vm−1 and observe that E⊥

m−1 ∩Wm 6= {0}.)

Exercise 47.5 (Laplacian, 1D). Consider the spectral problem for the 1D
Laplacian on D := (0, 1). (i) Show that the eigenpairs (λm, ψm) are λm =
m2π2, ψm(x) = sin(mπx), for all x ∈ D and all m ≥ 1. (ii) Consider a
uniform mesh of D of size h := 1

I+1 and H1-conforming P1 finite elements.
Compute the stiffness matrix A and the mass matrix M. (iii) Show that the

eigenvalues of the discrete problem (47.8) are λhm = 6
h2 (

1−cos(mπh)
2+cos(mπh) ) for all

m ∈ {1:I}. (Hint : consider the vectors (sin(πhml))l∈{1:I} for all m ∈ {1:I}.)

Exercise 47.6 (Stiffness matrix). Assume that the mesh sequence (Th)h∈H
is quasi-uniform. Estimate from below the smallest eigenvalue of the stiffness
matrix A defined in (47.9) and estimate from above its largest eigenvalue.
(Hint : see §28.2.3.)


