
Part XI, Chapter 54

Stokes equations: Stable pairs (I)

This chapter reviews various stable finite element pairs that are suitable to
approximate the Stokes equations, i.e., the discrete velocity space and the
discrete pressure space satisfy the inf-sup condition (53.15) (or its W 1,p-
Lp

′

version (53.16)) uniformly with respect to h ∈ H. We first review two
standard techniques to prove the inf-sup condition, one based on the Fortin
operator and one hinging on a weak control of the pressure gradient. Then
we show how these techniques can be applied to finite element pairs where
the discrete pressure space is H1-conforming. The two main examples are the
mini element based on the (PPP1-bubble,P1) pair and the Taylor–Hood element
based on the (PPP2,P1) pair. In the next chapter, we introduce another tech-
nique based on macroelements to prove the inf-sup condition and we review
stable finite element pairs where the discrete pressures are discontinuous. We
assume in the entire chapter that Dirichlet conditions are enforced on the
velocity over the whole boundary, that D is a polyhedron in Rd, and that
(Th)h∈H is a shape-regular sequence of affine meshes so that each mesh covers
D exactly.

54.1 Proving the inf-sup condition

We briefly review two standard techniques to prove the inf-sup condi-
tion (53.15): one uses a Fortin operator and the other uses a weak control on
the pressure gradient. Since this section is only meant to be a short introduc-
tion, the reader is referred to Boffi et al. [65, Chap. 8], Girault and Raviart
[217, §II.1.4] for thorough reviews of the topic.

54.1.1 Fortin operator

One way to prove the inf-sup condition (53.15) consists of using the notion of
Fortin operator. The theory behind the Fortin operator theory is investigated
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in detail §26.2.3. We now briefly summarize the main features of this theory
and adapt the notation to the setting of the Stokes equations.

Let V , Q be two complex Banach spaces and let b be a bounded sesquilin-
ear form on V ×Q. Let β and ‖b‖ be the inf-sup and the boundedness con-
stants of b. Let Vh0 ⊂ V and let Qh ⊂ Q be finite-dimensional subspaces
equipped, respectively, with the norms of V and Q. A mapΠh : V → Vh0, is
called a Fortin operator if b(Πh(v)− v, qh) = 0 for all (v, qh) ∈ V ×Qh, and
there is real number γh > 0 such that γh‖Πh(v)‖V ≤ ‖v‖V for all v ∈ V .
The key result we are going to use is the following statement (see Lemma 26.9,
Boffi et al. [65, Prop. 8.4.1], and the work by the authors [187, Thm. 1]).

Lemma 54.1 (Fortin operator). If there exists a Fortin operator, then the
inf-sup condition

inf
qh∈Qh

sup
vh∈Vh0

|b(vh, qh)|
‖vh‖V ‖qh‖Q

=: βh > 0, (54.1)

holds true with βh ≥ γhβ. Conversely, if the inf-sup condition (54.1) holds
true, then there exists a Fortin operator with γh ≥ βh

‖b‖ .

Hence, proving the inf-sup condition (54.1) can be done by constructing a
Fortin operator. A practical way to do this is given by the following result.

Lemma 54.2 (Decomposition). Let Π1h,Π2h : V → Vh0 be two opera-
tors. Assume the following: (i) Π2h is linear; (ii) b(v −Π2h(v), qh) = 0 for
all (v, qh) ∈ V ×Qh; (iii) The real numbers

c1h := sup
v∈V

‖Π1h(v)‖V
‖v‖V

and c2h := sup
v∈V

‖Π2h(v −Π1h(v))‖V
‖v‖V

(54.2)

are finite. Then (recalling that IV : V → V is the identity)

Πh :=Π1h +Π2h(IV −Π1h) (54.3)

is a Fortin operator with γh ≥ (c1h + c2h)
−1.

Proof. Since the operatorΠ2h is linear owing to the assumption (i), we have

b(v −Πh(v), qh) = b(v −Π2h(v), qh)− b(Π1h(v)−Π2h(Π1h(v)), qh),

for all (v, qh) ∈ V ×Qh, and both terms on the right-hand side are zero owing

to the assumption (ii). Furthermore, we have supv∈V
‖Πh(v)‖V

‖v‖V

≤ c1h + c2h,

i.e., γh‖Πh(v)‖V ≤ ‖v‖V for all v ∈ V with γh ≥ (c1h + c2h)
−1 > 0 owing

to the assumption (iii). ⊓⊔

54.1.2 Weak control on the pressure gradient

A second possibility to prove the inf-sup condition (54.1) consists of es-
tablishing a weak control on the gradient of the pressure. This technique
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can be used when the discrete pressure space is H1-conforming. Let us fo-
cus more specifically on the bilinear form b(v, q) := −(∇·v, q)L2(D). Let

p ∈ (1,∞), V := W
1,p
0 (D) equipped with the norm ‖v‖V := |v|W 1,p(D),

and Q := Lp
′

∗ (D) := {q ∈ Lp
′

(D) |
∫
D q dx = 0} equipped with the norm

‖q‖Q := ‖q‖Lp′(D) with p′ ∈ (1,∞) s.t. 1
p + 1

p′ = 1. The discrete velocity
space is Vh0 ⊂ V , and the discrete pressure space is Qh ⊂ Q.

Lemma 54.3 (Pressure gradient control). Assume that the discrete pres-
sure space Qh is H1-conforming, and that there is c such that the following
holds true for all p ∈ (1,∞) and all h ∈ H:

sup
vh∈Vh0

|b(vh, qh)|
|vh|W 1,p(D)

≥ c

( ∑

K∈Th
hp

′

K‖∇qh‖p
′

Lp
′(K)

) 1
p′

. (54.4)

Then the inf-sup condition (54.1) holds true uniformly w.r.t. h ∈ H.

Proof. Let qh ∈ Qh. Since Qh ⊂ Q, the continuous inf-sup condition (53.9)
implies that

βD‖qh‖Q ≤ sup
v∈V

|b(v, qh)|
|v|W 1,p(D)

≤ sup
v∈V

|b(IIIav
h (v), qh)|

|v|W 1,p(D)
+ sup
v∈V

|b(v −IIIav
h (v), qh)|

|v|W 1,p(D)
,

where IIIav
h0 is the R

d-valued version of theW 1,p
0 -conforming quasi-interpolation

operator introduced in §22.4.2. This means that IIIav
h0(v) :=

∑
i∈{1:d} Iav

h0(vi)ei,

where v :=
∑
i∈{1:d} viei and {ei}i∈{1:d} is the canonical Cartesian basis

of Rd. Let T1,T2 denote the two terms on the right-hand side. Owing to
the W 1,p

0 -stability of IIIav
h0, we have |IIIav

h0(v)|W 1,p(D) ≤ cI |v|W 1,p(D). Since
IIIav
h0(v) ∈ Vh0, we infer that

|T1| ≤ cI sup
v∈V

|b(IIIav
h0(v), qh)|

‖IIIav
h0(v)‖W 1,p(D)

≤ cI sup
vh∈Vh0

|b(vh, qh)|
|vh|W 1,p(D)

.

Moreover, using that Qh is H1-conforming to integrate by parts, and then
invoking Hölder’s inequality and the approximation properties of IIIav

h0, we
infer that

|b(v −IIIav
h0(v), qh)| =

∣∣(∇qh,v −IIIav
h0(v))L2(D)

∣∣

≤ c
∑

K∈Th
‖∇qh‖Lp′(K)hK‖∇v‖Lp(DK),

where DK is the set of the points composing the mesh cells touching K. Since∑
K∈Th ‖∇v‖

p
Lp(DK) ≤ c‖∇v‖p

Lp(D) = c|v|p
W 1,p(D) owing to the regularity of

the mesh sequence, Hölder’s inequality combined with the assumption (54.4)
implies that
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|T2| ≤ c′
( ∑

K∈Th
hp

′

K‖∇qh‖p
′

Lp
′(K)

) 1
p′

≤ c′′ sup
vh∈Vh0

|b(vh, qh)|
|vh|W 1,p(D)

.

This completes the proof of the inf-sup condition. ⊓⊔

Remark 54.4 (Literature). The technique presented above is based on
Bercovier and Pironneau [54, Prop. 1], Verfürth [376] (for p := 2). ⊓⊔

54.2 Mini element: the (PPP1-bubble,P1) pair

Let (Th)h∈H be a shape-regular sequence of affine simplicial meshes. Recall
from §53.4.2 that the reason for which the (PPP1,P1) pair does not satisfy the
inf-sup condition (53.15) is that the velocity space is not rich enough (or
equivalently the pressure space is too rich). To circumvent this difficulty, we
are going to enlarge the velocity space by adding one more degree of freedom
per simplex for each Cartesian component of the velocity.

Let K̂ be the reference simplex and x̂K̂ be its barycenter, and let b̂ be a
function such that

b̂ ∈W 1,∞
0 (K̂), 0 ≤ b̂ ≤ 1, b̂(x̂K̂) = 1. (54.5)

One can use b̂(x̂) := (d + 1)d+1
∏
i∈{0:d} λ̂i(x̂), where {λ̂i}i∈{0:d} are the

barycentric coordinates on K̂. This function is usually called bubble func-
tion in reference to the shape of its graph as shown in Figure 54.1. Another
possibility consists of dividing the simplex K̂ into (d+1) subsimplices by con-

necting the (d+1) vertices of K̂ to x̂K̂ . Then b̂ is defined to be the continuous

piecewise affine function on K̂ that is equal to one at x̂K̂ and zero at the ver-

tices of K̂. We introduce the finite-dimensional space P̂ := PPP1,d⊕ (span{b̂})d
and define Σ̂ to be the Lagrange degrees of freedom associated with the
vertices of K̂ plus x̂K̂ for each Cartesian component of the velocity.

Let (Th)h∈H be a shape-regular sequence of affine simplicial meshes so that
each mesh covers D exactly. Recalling that we are enforcing homogeneous
Dirichlet conditions on the velocity, the approximation spaces are defined by

Vh0 := PPP
g
1,0(Th)⊕Bh, Qh := P g

1 (Th) ∩ L2
∗(D), (54.6)

whereBh :=
⊕

K∈Th(span{bK})d and bK := b̂◦TK being the bubble function
associated with the mesh cell K ∈ Th. Notice that

Vh0 = {vh ∈ C0(D) | ∀K ∈ Th, vh◦TK ∈ P̂ , vh|∂D = 0}, (54.7)
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Velocity Pressure

P1-bubble 3P1 or 4P1 P1

Fig. 54.1 Conventional representation of the (P1-bubble,P1) pair in dimensions two (top)
and three (bottom). The degrees of freedom for the velocity are shown in the first column
(P1-bubble) and in the second column (3P1 in dimension two and 4P1 in dimension three).
Some isolines of the two-dimensional bubble function are drawn. The pressure degrees of
freedom are shown in the third column.

and that Vh0 ⊂ W
1,p
0 (D) for all p ∈ (1,∞). We now show that the

(PPP1-bubble,P1) pair is stable. We do so by constructing a Fortin operator
as in Lemma 54.2.

Lemma 54.5 (Stability). Let p ∈ (1,∞) and let p′ ∈ (1,∞) be s.t. 1
p+

1
p′ =

1. Let Vh0 and Qh be defined in (54.6). There is β0 such that for all h ∈ H,

inf
qh∈Qh

sup
vh∈Vh0

|
∫
D qh∇·vh dx|

‖qh‖Lp′(D)|vh|W 1,p(D)
≥ β0 > 0. (54.8)

Proof. Let us build a Fortin operator by means of the construction devised
in Lemma 54.2 with V := W

1,p
0 (D) equipped with the norm ‖v‖V :=

|v|W 1,p(D). We define the operator Π2h : V → Vh0 by setting

Π2h(v) :=
∑

K∈Th

∫
K
v dx∫

K bK dx
bK ∈ Bh ⊂ Vh0.

This operator is linear in agreement with the assumption (i) of Lemma 54.2.
Moreover, the definition of Π2h implies that

∫
KΠ2h(v) dx =

∫
K v dx for all

v ∈ V . Then for all (v, qh) ∈ V ×Qh we infer that
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b(v, qh) = −
∫

D

qh∇·v dx =

∫

D

v·∇qh dx =
∑

K∈Th
∇qh|K ·

∫

K

v dx

=
∑

K∈Th
∇qh|K ·

∫

K

Π2h(v) dx =

∫

D

Π2h(v)·∇qh dx = b(Π2h(v), qh),

which proves the assumption (ii) of Lemma 54.2. We now set Π1h := IIIav
h0,

where IIIav
h0 : V → Vh0 is the Rd-valued version of the W 1,p

0 -conforming
quasi-interpolation operator introduced in §22.4.2. We observe that the real

number c1h := supv∈V
|Π1h(v)|W1,p(D)

|v|
W1,p(D)

is uniformly bounded w.r.t. h ∈ H.

Moreover, the regularity of the mesh sequence and Lemma 11.7 imply that
for all K ∈ Th,

|bK |W 1,p(K) ≤ c ‖J−1
K ‖ℓ2|det(JK)| 1p |̂b|W 1,p(K̂) ≤ c′ h−1

K |K| 1p .

Similar arguments show that
∫
K
bK dx ≥ c|K| and Hölder’s inequality implies

that |
∫
K
v dx| ≤ |K| 1

p′ ‖v‖Lp(K). Putting these estimates together shows that

|Π2h(v)|W 1,p(K) ≤ c h−1
K ‖v‖Lp(K).

Then the approximation properties of IIIav
h0 (see Theorem 22.14) yield

|Π2h(v −Π1h(v))|W 1,p(K) = |Π2h(v −IIIav
h0(v))|W 1,p(K)

≤ c h−1
K ‖v −IIIav

h0(v)‖Lp(K) ≤ c′ |v|W 1,p(DK),

where DK is the set of the points composing the mesh cells touching K.
Summing the above bound over K ∈ Th and using the regularity of the
mesh sequence, we infer that |Π2h(v−Π1h(v))|W 1,p(D) ≤ c |v|W 1,p(D). This

shows that the real number c2h := supv∈V
|Π2h(v−Π1h(v))|W1,p(D)

|v|
W1,p(D)

is uniformly

bounded w.r.t. h ∈ H. In conclusion, all the assumptions of Lemma 54.2 are
met, showing that Πh := Π1h +Π2h(IV −Π1h) is a Fortin operator with
γh ≥ (c1h + c2h)

−1. Notice that γh is bounded from below away from zero
uniformly w.r.t. h ∈ H. Invoking Lemma 54.1, we conclude that the inf-sup
condition (54.8) holds true uniformly w.r.t. h ∈ H. ⊓⊔
Remark 54.6 (Convergence rate). Assume that the solution to (53.6) is
such that u ∈ H2(D) ∩H1

0 (D) and p ∈ H1(D) ∩ L2
∗(D). Owing to Theo-

rem 53.17, the discrete solution (uh, ph) to (53.14) with (Vh0, Qh) defined in
(54.6) satisfies µ|u− uh|H1(D) + ‖p− ph‖L2(D) ≤ ch(µ|u|H2(D) + |p|H1(D)).
If the assumptions of Theorem 53.19 additionally hold true with s := 1, then
µ‖u − uh‖L2(D) ≤ ch2(µ|u|H2(D) + |p|H1(D)). Notice that the convergence
rate of the error on the velocity is that associated with the finite element
space PPPg

1,0(Th), i.e., the bubble functions introduced to approximate the ve-
locity do not contribute to the approximation error, they contribute only to
the stability of the discretization (see also Exercise 54.2). ⊓⊔



Part XI. PDEs in mixed form 413

Remark 54.7 (Literature). The idea of using bubble functions has been
introduced by Crouzeix and Raviart [151]. The analysis of the mini element
is due to Arnold et al. [20]. ⊓⊔

54.3 Taylor–Hood element: the (PPP2,P1) pair

This section is dedicated to the analysis of the Taylor–Hood element based
on the (PPP2,P1) pair. Compared to the mini element which is based on the
(P1-bubble,P1) pair, the idea is to further enrich the discrete velocity space so
as to improve by one order the convergence rate of the error. Let (Th)h∈H be
a shape-regular family of affine simplicial meshes. Recalling that we are en-
forcing homogeneous Dirichlet conditions on the velocity, the approximation
spaces are defined by

Vh0 := P g
2,0(Th), Qh := P g

1 (Th) ∩ L2
∗(D), (54.9)

i.e., the velocity is approximated using continuous PPP2 elements and the pres-
sure is approximated using continuous P1 elements. The conventional repre-
sentation of this element is shown in Figure 54.2. We are going to prove
the inf-sup condition (54.1) by using the technique described in §54.1.2,
i.e., we first establish a weak control on the pressure gradient, then we in-

voke Lemma 54.3. As above, we set V := W
1,p
0 (D) and Q := Lp

′

∗ (D) with
p, p′ ∈ (1,∞) and 1

p + 1
p′ = 1. Notice that Vh0 ⊂ V and Qh ⊂ Q.

Lemma 54.8 (Bound on pressure gradient). Let Vh0, Qh be defined in
(54.9). Assume that d ∈ {2, 3} and that every mesh cell has at least d internal
edges (i.e., at most one face in ∂D). There is c such that the following holds
true for all p ∈ (1,∞) and all h ∈ H:

sup
vh∈Vh0

|
∫
D qh∇·vh dx|
|vh|W 1,p(D)

≥ c

( ∑

K∈Th
hp

′

K‖∇qh‖p
′

Lp
′(K)

) 1
p′

. (54.10)

Proof. We only give the proof for d = 3 since the proof for d = 2 is similar.
Let us number all the internal mesh edges from 1 to N i

e. Consider an oriented
edge Ei with i ∈ {1:N i

e}, and denote its two endpoints by z±i and its midpoint
bymi. Set li := ‖z+i −z−i ‖ℓ2 and τi := l−1

i (z+i −z−i ), so that li is the length
of Ei and τi is the unit tangent vector orienting Ei. Let qh be a function in
Qh and let sgn be the sign function. Let vh ∈ Vh0 be (uniquely) defined by
prescribing its global degrees of freedom in Vh0 as follows:





vh(aj) := 0 if aj is a mesh vertex,

vh(mi) := −lp
′

i sgn(∂τiqh)|∂τiqh|p
′−1τi if Ei 6⊂ ∂D,

vh(mi) := 0 if Ei ⊂ ∂D,
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Velocity Pressure Velocity Pressure

PPP2 P1 QQQ2 Q1

Fig. 54.2 Conventional representation of the (PPP2,P1) pair (left) and of the (QQQ2,Q1) pair
(right) in dimensions two (top) and three (bottom, only visible degrees of freedom are

shown).

where ∂τiqh := τi·∇qh denotes the tangential derivative of qh along the ori-
ented edge Ei. Note that vh(mi) depends only on the values of qh on Ei. Let
K ∈ Th. Using the quadrature formula

∫

K

φdx = |K|
( ∑

m∈MK

φ(m)

5
−
∑

a∈VK

φ(a)

20

)
, ∀φ ∈ P2,

where MK is the set of the midpoints of the edges of K and VK is the set of
the vertices of K and since Qh is H1-conforming, we infer that

∫

D

qh∇·vh dx = −
∫

D

vh·∇qh dx = −
∑

K∈Th

∫

K

vh·∇qh dx

= −
∑

K∈Th
|K|

∑

mi∈K

1

5
vh(mi)·∇qh(mi)

=
∑

K∈Th
|K|

∑

mi∈K

1

5
|∂τiqh(mi)|p

′

lp
′

i ≥ c
∑

K∈Th
hp

′

K‖∇qh‖p
′

Lp
′(K)

.

The last inequality results from the fact that li ≥ chK owing to the regularity
of the mesh sequence, and that every tetrahedron K ∈ Th has at least three
edges in D, i.e., the quantities |∂τiqh(mi)|, where mi spans the midpoints
of the edges of K that are not in ∂D, control ‖∇qh‖ℓ2 . Finally, the inverse
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inequality from Lemma 12.1 (with r := p, l := 1, m := 0) together with
Proposition 12.5 implies that for all K ∈ Th,

|vh|pW 1,p(K) ≤ c h−pK |K|
∑

m∈MK

‖vh(m)‖pℓ2 ,

and since li ≤ chK , we have ‖vh(m)‖ℓ2 ≤ chp
′

K‖∇qh‖p
′−1
ℓ2 . Since p(p′−1) = p′,

combining these bounds shows that |vh|pW 1,p(K) ≤ chp
′

K‖∇qh‖p
′

Lp
′(K)

for all

K ∈ Th. This proves (54.10). ⊓⊔

Lemma 54.9 (Stability). For all p ∈ (1,∞) and under the hypotheses of
Lemma 54.8, the (PPP2,P1) pair satisfies the inf-sup condition (54.8) uniformly
w.r.t. h ∈ H.

Proof. Apply Lemma 54.3. ⊓⊔

Remark 54.10 (Convergence rate). Owing to Theorem 53.17 and as-
suming that the solution to (53.6) is smooth enough, the solution to (53.14)
with (Vh0, Qh) defined in (54.9) satisfies µ|u − uh|H1(D) + ‖p− ph‖L2(D) ≤
ch2(µ|u|H3(D) + |p|H2(D)). Moreover, if the assumptions of Theorem 53.19

are met for some s ∈ (0, 1], then µ‖u − uh‖L2(D) ≤ ch2+sℓ1−sD (µ|u|H3(D) +
|p|H2(D)). ⊓⊔

Remark 54.11 (Literature). Further insight and alternative proofs can
be found in Bercovier and Pironneau [54, Prop. 1], Girault and Raviart [217,
p. 176], Stenberg [354]. We refer the reader to Mardal et al. [294] for the
construction of a Fortin operator associated with the Taylor–Hood element
in dimension two. Well-balanced schemes (see Remark 53.22) using Taylor–
Hood mixed finite elements are analyzed in Lederer et al. [279]. ⊓⊔

54.4 Generalizations of the Taylor–Hood element

In this section, we briefly review some generalizations of the Taylor–Hood
element: extension to quadrangles, higher-order extensions, and the use of a
submesh to build the discrete velocity space.

54.4.1 The (PPPk,Pk−1) and (QQQk,Qk−1) pairs

It is possible to generalize the Taylor–Hood element to quadrangles and hexa-
hedra. For instance, the (QQQ2,Q1) pair has the same properties as the Taylor–
Hood element; see Figure 54.2.

It is also possible to use higher-degree polynomials. For k ≥ 2, the
(PPPk,Pk−1) pair and the (QQQk,Qk−1) pair are stable in dimensions two and
three. Provided the solution to (53.6) is smooth enough, these elements yield
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the error estimates µ|u − uh|H1(D) + ‖p − ph‖L2(D) ≤ c hk(µ|u|Hk+1(D) +

|p|Hk(D)) and µ‖u − uh‖L2(D) ≤ chk+sℓ1−sD (µ|u|Hk+1(D) + |p|Hk(D)) if the
assumptions of Theorem 53.19 are met for some s ∈ (0, 1]. Proofs and further
insight can be found in Stenberg [352, p. 18], Brezzi and Falk [92], Boffi et al.
[65, p. 494], Boffi [60].

54.4.2 The (PPP1-iso-PPP2,P1) and (QQQ1-iso-QQQ2,Q1) pairs

An alternative to the Taylor–Hood element consists of replacing the PPP2 ap-
proximation of the velocity by a PPP1 approximation on a finer simplicial mesh.
This finer mesh, say Th

2
, is constructed as follows. In two dimensions, each

triangle in Th is divided into four new triangles by connecting the midpoints
of the three edges. In three dimensions, each tetrahedron in Th is divided
into eight new tetrahedra (all having the same volume) by dividing each
face into four new triangles and by connecting the midpoints of one pair of
nonintersecting edges (there are three pairs of nonintersecting edges). This
construction is illustrated in the top and bottom left panels of Figure 54.3.
The discrete spaces are

Vh0 := P g
1,0(Th2 ), Qh := P g

1 (Th) ∩ L2
∗(D). (54.11)

These finite element pairs are often called (PPP1-iso-PPP2,P1), or (4PPP1,P1) in two
dimensions and (8PPP1,P1) in three dimensions.

Velocity Pressure Velocity Pressure

PPP1-iso-PPP2 P1 QQQ1-iso-QQQ2 Q1

Fig. 54.3 (PPP1-iso-PPP2,P1) (left) and (QQQ1-iso-QQQ2,Q1) (right) pairs in dimensions two (top)
and three (bottom, only visible degrees of freedom are shown for the (QQQ1-iso-QQQ2,Q1) pair).
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The (PPP1-iso-PPP2,P1) pair can be generalized to quadrangles in two dimen-
sions and hexahedra in three dimensions. Assume that (Th)h∈H is a shape-
regular sequence of meshes composed of quadrangles or hexahedra. A new
mesh Th

2
is defined in two dimensions by dividing each quadrangle in Th into

four new quadrangles and by connecting the midpoints of all the pairs of
nonintersecting edges. In three dimensions, we divide each hexahedron in Th
into eight new hexahedra by dividing each face into four quadrangles and
by connecting the barycenters of all the pairs of nonintersecting faces. This
construction is illustrated in the top and bottom right panels of Figure 54.3.
The discrete spaces are

Vh0 := {vh ∈ C0(D) | ∀K ∈ Th
2
, vh ◦ TK ∈ QQQ1, vh|∂D = 0}, (54.12a)

Qh := {qh ∈ C0(D) ∩ L2
∗(D) | ∀K ∈ Th, qh ◦ TK ∈ Q1}. (54.12b)

These finite elements are often called (QQQ1-iso-QQQ2,Q1), or (4QQQ1,Q1) in dimen-
sion two and (8QQQ1,Q1) in dimension three.

Lemma 54.12 (Stability). For all p ∈ (1,∞), and under the hypothe-
ses of Lemma 54.8 if Th is composed of simplices, the (PPP1-iso-PPP2,P1) and
(QQQ1-iso-QQQ2,Q1) pairs satisfy the inf-sup condition (54.8) uniformly w.r.t.
h ∈ H.

Proof. Adapt the proof of Lemma 54.8; see Bercovier and Pironneau [54] (for
d = 2 and p = 2) and Exercise 54.4. ⊓⊔
Remark 54.13 (Convergence rate). Owing to Theorem 53.17 and as-
suming that the solution to (53.6) is smooth enough, the discrete solu-
tion to (53.14) with (Vh0, Qh) defined in either (54.11) or (54.12) satis-
fies µ|u − uh|H1(D) + ‖p − ph‖L2(D) ≤ ch(µ|u|H2(D) + |p|H1(D)), and if
the assumptions of Theorem 53.19 are met for some s ∈ (0, 1], we have
µ‖u− uh‖L2(D) ≤ ch1+sℓ1−sD (µ|u|H2(D) + |p|H1(D)). ⊓⊔

Exercises

Exercise 54.1 (Mini element). Show that the Fortin operator Πh con-
structed in the proof of Lemma 54.5 is of the form Πh(v) := IIIav

h0(v) +∑
K∈Th

∑
i∈{1:d} γ

i
K(v)bKei, for some coefficients γiK(v) to be determined.

Here, {ei}i∈{1:d} is the canonical Cartesian basis of Rd.

Exercise 54.2 (Bubble⇔Stabilization). Consider the mini element de-
fined in §54.2 and assume that the viscosity µ is constant over D. Recall
that Vh0 := V 1

h0 ⊕Bh and Qh := P g
1 (Th) ∩ L2

∗(D) with V 1
h0 := PPP

g
1,0(Th). Let

(uh, ph) be the solution to the discrete Stokes problem (53.14). (i) Show that
a(vh, bh) = 0 for all vh ∈ V 1

h0 and all bh ∈ Bh. (ii) Set uh := u1
h+u

b
h ∈ Vh0.

Show that
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a(u1
h,vh) + b(vh, ph) = F (vh), ∀vh ∈ V 1

h0. (54.13)

(iii) Let bK := b̂ ◦ TK be the bubble function on K ∈ Th. Let {ei}i∈{1:d} be

the canonical Cartesian basis of Rd. Let SK ∈ Rd×d be defined by SKij :=
1∫

K
bK dx

a(bKej , bKei) for all i, j ∈ {1:d}. Let ubh|K :=
∑
i∈{1:d} c

i
KeibK .

Show that cK = (SK)−1(FK−∇ph|K), where F iK := 1∫
K
bK dx

F (bKei), for all

i ∈ {1:d}. (iv) Set ch(ph, qh) :=
∑

K∈Th ∇qh|K(SK)−1∇ph|K
∫
K bK dx and

Rh(qh) :=
∑
K∈Th ∇qh|K(SK)−1FK

∫
K
bK dx. Show that the mass conserva-

tion equation becomes

b(u1
h, qh)− ch(ph, qh) = G(qh)−Rh(qh), ∀qh ∈ Qh. (54.14)

Note: since (SK)−1 scales like µ−1h2K , ch(ph, qh) behaves like
∑

K∈Th
h2
K

µ

∫
K ∇qh·∇ph dx,

and Rh(qh) scales like
∑

K∈Th
h2
K

µ

∫
K
∇qh|K ·FK dx. This shows that, once the

bubbles are eliminated, the system (54.13)-(54.14) is equivalent to a stabilized
form of the Stokes system for the (PPP1,P1) pair; see Chapters 62 and 63.

Exercise 54.3 (Singular vertex). Let K ⊂ R2 be a quadrangle and let
z be the intersection of the two diagonals of K. Let K1, . . . ,K4 be the
four triangles formed by dividing K along its two diagonals (assume that
K1 ∩ K3 = {z} and K2 ∩ K4 = {z}). (i) Let φ be a scalar field con-
tinuous over K and of class C1 over the triangles K1, . . . ,K4. Prove that∑

i∈{1:4}(−1)in·∇φ|Ki(z) = 0 for every unit vector n. (ii) Let v be a vector

field continuous over K and of class C1 over the triangles K1, . . . ,K4. Prove
that

∑
i∈{1: 4}(−1)i∇·v|Ki(z) = 0. (iii) Assume that v is linear over each

triangle. Show that the four equations
∫
Ki

∇·v dx = 0 for all i ∈ {1:4} are
linearly dependent.

Exercise 54.4 (PPP1-iso-PPP2,P1). Consider the setting of Lemma 54.12 with
the (PPP1-iso-PPP2,P1) pair in dimension three. (i) Let K ∈ Th. Let VK be the
set of the vertices of K. Let MK be the midpoints of the six edges of K. Let
M1

K be the set of the two midpoints that are connected to create the 8 new
tetrahedra. Let M2

K be the set of the remaining midpoints. Let Vh0 be the PPP1

velocity space based of Th/2. Find the coefficients α, β, γ so that the following
quadrature is exact for all wh ∈ Vh0:

∫
K
wh dx = |K|(α∑z∈VK wh(z) +

β
∑
m∈M1

K
wh(m) + γ

∑
m∈M2

K
wh(m)). (Hint : on a tetrahedron K ′ with

vertices {z′}z′∈VK′ , the quadrature
∫
K′ wh dx = |K ′|∑z′∈VK′

1
4wh(z

′) is

exact on PPP1.) (ii) Prove Lemma 54.12 for the (PPP1-iso-PPP2,P1) pair in dimension
three for all p ∈ (1,∞). (Hint : adapt the proof of Lemma 54.8.)


