WELL-BALANCED SECOND-ORDER APPROXIMATION
OF THE SHALLOW WATER EQUATION
WITH CONTINUOUS FINITE ELEMENTS*
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Abstract. This paper investigates a first-order and a second-order approximation technique
for the shallow water equation with topography using continuous finite elements. Both methods
are explicit in time and are shown to be well-balanced. The first-order method is invariant domain
preserving and satisfy local entropy inequalities when the bottom is flat. Both methods are positivity
preserving. Both techniques are parameter free, work well in the presence of dry states and can be
made high-order in time by using strong-stability preserving time stepping algorithms.
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1. Introduction. The objective of this paper is to develop an invariant do-
main preserving well-balanced approximation of the shallow water equation with
bathymetry using continuous finite elements. There are many finite volume and Dis-
continuous Galerkin (DG) techniques available in the literature that can solve this
problem efficiently up to second and higher-order in space. Examples of schemes that
are well balanced at rest and robust in the presence of dry states can be found, for
example, in Audusse et al. [2], Audusse and Bristeau [1], Bollermann et al. [6], Gal-
lardo et al. [14], Kurganov and Petrova [23], Perthame and Simeoni [27], Ricchiuto
and Bollermann [28]. We refer the reader to the book of Bouchut [7] for a review
on this topic, to the paper of Xing and Shu [32] for a survey on finite volume and
DG methods, and to the paper [23] for a survey of central-upwind schemes. However,
to the best of our knowledge, this type of approximations are not developed in the
context of continuous finite elements. Or we should say that no robust continuous
finite element technique is yet available in the literature that guarantees second-order
accuracy, works properly in every regime (subcritical, transcritical, transcritical with
hydraulic jumps, wet and dry regions) and is well-balanced at rest. We propose such
a method in the present paper. Two variants of the method are discussed: one vari-
ant is first-order accurate in space, positivity preserving and preserves every convex
invariant domain of the system in the absence of bathymetry; the other variant is
second-order accurate in space and positivity preserving. Both variants are explicit
in time and use continuous finite elements on unstructured meshes.

The first building block of the method consists of using the methodology intro-
duced in Guermond and Popov [16]. The second building block consists of making the
schemes well-balanced with respect to rest states by using the so-called hydrostatic
reconstruction from [2, §2.1] and variations thereof. The technique from [16] is a loose
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2 P. AZERAD, J.L. GUERMOND, B. POPOV

extension of Lax’s scheme [24, p.163] to continuous finite elements; it solves general
hyperbolic systems in any space dimension using forward Euler time stepping and
continuous finite elements on non-uniform grids. The artificial dissipation is defined
so that any convex invariant sets containing the initial data is an invariant domain for
the method. The solution thus constructed satisfies a discrete entropy inequality for
every admissible entropy of the system. The accuracy in space is formally first-order
and the accuracy in time can be made high-order by using Strong Stability Preserving
Runge-Kutta time stepping. Some ideas of the method are rooted in the work of Hoff
[20, 21], and Frid [13]. The method is made second-order and positivity preserving
by using techniques introduced in Guermond and Popov [17].

The paper is organized as follows. The model problem and the finite element
setting are introduced in §2. The first-order variant of the method is described in
§3. The main results of this section are Propositions 3.9 and 3.11. The second-
order variant of the method is described in §4. The key results of this section are
Proposition 4.2 and 4.4. The performances of the algorithms introduced in the paper
are numerically illustrated in §5 on standard benchmark problems.

2. Preliminaries. In this section we introduce the model problem, the finite
element setting and we define (recall) the concept of well-balancing at rest.

2.1. The model problem. Let D be a polygonal domain in R?, with d € {1,2},
occupied by a body of water evolving in time under the action of gravity. Assuming
that the deformations of the free surface are small compared to the water elevation and
the bottom topography z varies slowly, the problem can be well represented by Saint-
Venant’s shallow water model. This model describes the time and space evolution
of the water height h and flow rate, or discharge, g in the direction parallel to the
bottom. Using u = (h, q)T as dependent variable the model is as follows:

(2.1) ou+V-f(u)+b(u,Vz)=0, z=ecD,tecR;

_7 qT 14+d)xd - 0
(2.2) flu) = <}1Lq®q+ %gh2ﬂd> e RUADXL " p(y Vz) = <gth> :
The quantity q is related to the horizontal component of the water velocity v by
q = vh. The function 2z : D 3 x — z(x) € R is the given topography.
We assume that either the boundary conditions are periodic or the initial data ug
and the bottom topography are constant outside a compact set in D and the solution
to (2.1) is constant outside this compact set over some time interval [0, 7.

2.2. The finite element space. We approximate the solution of (2.2) with
continuous finite elements. Let (Tp)r~0 be a shape-regular family of matching meshes.
(Here we slightly abuse of notation by denoting the meshsize by h. For instance we
are going to denote by hy, the finite element approximation of the water height.) The
elements in 7, are assumed to be generated from a finite number of reference elements
denoted {K,}1<r<w. For example, the mesh 7, could be composed of a combination
of triangles and quadrangles (co = 2 in this case). Given a set of reference finite
clements in the sense of Ciarlet {(K,, Py, ir)}lﬁrﬁw (the index r € {1:w} is omitted
in the rest of the paper to alleviate the notation) we introduce the finite element space

(2.3) P(Th) := {v € C°(D;R) | vjgoTk € P, VK € Ty}

where for any K € Ty, Tk : f( — K is the geometric bijective transformation that
maps the reference element K to the current element K. We do not assume that
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Second-order CY finite element approximation of the shallow water equation 3

Ty is affine. The exact nature of the degrees of freedom in f]T is not essential, but
the reader who is not familiar with finite elements can think of Lagrange elements
or Bernstein elements. The reference space P is assumed to be composed of scalar-
valued functions (these are polynomials usually). The reference shape functions are
denoted {ai}ie{l:nsl,}; recall that they form a basis of P. We assume that the basis
{é\i}ie{l:nsh} has the partition of unity property: Zie{l:nsh} 51(5) =1,forallZ € K.
The approximation in space of u in (2.2) will be done in P(T3) := [P(T3)]'*?. The
approximation of the bathymetry map will be done in P(7;). The global shape
functions in P(7,) are denoted by {;}icq1:1y; the set {©i}icq1. 1y is a basis of P(7).
The partition of unity property on the reference shape functions implies that

(2.4) > eil@)=1, VxeD.
ie{1:1}

Let D; be the support of ¢; and |D;| be the measure of D;, ¢ € {1:1}. For any
union of cells E C Ty, we define Z(E) := {j € {1:I} | |D; N E| # 0} to be the set
that contains the indices of all the shape functions whose support on E is of nonzero
measure. We are going to regularly invoke Z(K') and Z(D;) and the partition of unity
property: > ez pi(x) = 1forallz € K.

Let M be the consistent mass matrix with entries m; := [, i(x)p;(x) dz, and
let M* be the diagonal lumped mass matrix with entries m; := [, ¢;(x)da. The
partition of unity property implies that m; = > jez(Dy) Mij- One key assumption
that we use in the rest of the chapter is that

(2.5) m; >0, Vie{l:I}.

The identities (2.4) is satisfied by all the standard finite elements and (2.5) is satisfied
by many Lagrange elements and by the Bernstein-Bezier elements of any degree.

Upon denoting by || - ||,z the Euclidean norm in R¢, we introduce the following
two quantities which will play an important in the rest of paper:

cij

(26) cij = / QDlVQDJ d:Z?7 TLij = Z,j € {1]}
D

leijllez
Note that (2.4) implies 3>, .7y €;j = 0. Furthermore, if either ¢; or ¢; is zero on
0D, then ¢;; = —cj;. In particular we have Zie{ltl} cij = 0 if ¢; is zero on 9D.
This property will be used to establish conservation.

LEMMA 2.1. Let k € CY(RYWROFDXd) - Lot oy = Yiea.nUivi € P(Th).
Then - c1(p,) k(Uj)-cij, is a second-order approzimation of Jp V-(k(up))p; da.

Proof. Since we have [}, V-(k(up))pidz =370, k(U;) [}, ¢i Ve dz when
k is linear, the quantity ZjEZ(Di) k(U,)-c;; is a second-order approximation in space
of [, V-(k(up))p;dz, i.e., the error scales like O(h?)||c;;l|¢z. ad

DEFINITION 2.2 (Centro-symmetry). The mesh Ty, is said to be centro-symmetric
if the following conditions hold true: (i) For alli € {1:1}, there is a permutation o; :
I(D;) — I(Dy) such ¢ij = —Ciq,(jy, (ii) If the function D; > & — ZjeI(Di) a;pi(x) €
R is linear over D; then o = 1(aj + agy ;) for all j € I(D;).

For instance, in the context of Lagrange elements, the centro-symmetric assump-
tion holds if for any ¢ € {1:I} the set of the Lagrange nodes with indices in Z(D;)
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4 P. AZERAD, J.L. GUERMOND, B. POPOV

can be partitioned into pairs that are symmetric with respect to the Lagrange node
of index i. Although at some point in the paper we will invoke centro-symmetry of
the mesh to establish formal consistency of some terms, we do not assume that the
mesh is centro-symmetric in the rest of the paper.

2.3. Well-balancing properties. The concept of well-balancing originates in
the seminal work of Bermudez and Vazquez [4] and Greenberg and Leroux [15]. The
idea is that the scheme should at the very least preserve steady states at rest. Of
course, it could be desirable to preserve general steady solutions, i.e., not necessarily
at rest, but this is beyond the scope of the present paper. We refer the reader to
Noelle et al. [26] where this question is addressed. Since at rest ¢ = 0 the balance of
momentum reduces to 0 = gV(3h?) + ghVz = ghV(h + z), one should have either
h + z is constant (so-called wet state) or h is zero (so-called dry state). Hence a
well-balanced scheme in the context of the shallow water equation is one such that, at
rest, dry states remain dry and h+ z remains constant for wet states. This property is
not easy to satisfy for approximation techniques that are second-order and higher in
space. We refer the reader to Bouchut [7] for a concise account and further references
on well-balanced schemes. In this paper we are going to adapt to continuous finite
elements a methodology proposed in Audusse et al. [2], Audusse and Bristeau [1]
known as the “hydrostatic reconstruction” technique.

Let 2, = Zle Z;p; € P(Tp) be the approximation of the bathymetry map.
Let hy = Zle H;p; € P(Tn) be the approximation of the water height. Let g, =
Zle Q;; be the approximation of the flow rate. Let us now define the rest state.
Curiously, defining a rest state is not as trivial as it sounds. We are going to use two
definitions. One of them makes use of the following quantity which is known in the
literature as the hydrostatic reconstruction of the water height:

(2.7) H 7 := max(0, H; + Z; — max(Z;, Z;)), Vi€ {1:1}, j € Z(Dy),

To better understand this definition, assume that the water is at rest and consider
for instance a dry node j in the neighborhood of a wet node i, i.e., j € Z(D;), see left
panel of Fig 1. In this case H; = 0 and Z; > H; + Z;, which then implies Hj” = H}".

Similarly if both i and j are dry states we have H» = ;17

wet states and are such that H; + Z; = H; + Z; we also have H}/ = H;” These
observations motivate the following definition.

and if both ¢ and j are

DEFINITION 2.3 (Rest at large). A numerical state (hy, qn, zn) is said to be at
rest at large if the approximate momentum qp is zero, and if the approrimate water
height hy, and the approzimate bathymetry map zp, satisfy the following property for
alli € {1:1}: HP? = HY' for all j € I(D;).

DEFINITION 2.4 (Exact rest). A numerical state (hy, qr, z1) is said to be at exact
rest (or exactly at rest) if qy, is zero, and if the approvimate water height hy, and the

approximate bathymetry map zp, satisfy the following alternative for alli € {1:1}: for
all] € I(Dl), either Hj = Hz =0 or Hj + Zj = Hz + Zz

The existence of an exact rest state is a compatibility condition between the mesh
and the initial data. This compatibility condition is not satisfied by the configuration
depicted in the left panel of Figure 1 whereas it is satisfied by the configuration in the
center panel. Exact rest implies rest at large. Note in passing that the zone where
h + z is constant may not be connected; that is to say, it is possible to have different
free surface heights in disconnected wet zones as shown in the right panel of Figure 1.

This manuscript is for review purposes only.
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Flat free surface

(a) (b) (c)

Fig. 1: Configuration (a) is not an exact rest state according to Definition 2.4 whereas
configuration (b) is. Both states are at rest at large. Panel (¢) shows a typical steady
state at rest with wet and dry areas.

DEFINITION 2.5 (Well-balancing at large). (i) A function K : P(T,)—RIx (R1)4
is said to be a well-balanced fluz approzimation at large if K(up) = 0 when uyp, is a
rest state at large according to Definition 2.3. (ii) A mapping S : P(Ty,) — P(Tp) is
a well-balanced scheme at large if S(up) = wy, when wy is a rest state at large.

DEFINITION 2.6 (Exact well-balancing). (i) A function K : P(T;,) — RIx(R!)4
is said to be an exactly well-balanced flux approxzimation if K(up) = 0 when uyp, is an
exact rest state according to Definition 2.4. (ii) A mapping S : P(Tn) — P(Ty) is an
ezactly well-balanced scheme if S(uj) = u} when u} is an exact rest state.

DEFINITION 2.7 (Conservation).  We say that uj — UZ+1 s a conservative

finite element approzimation of (2.1) if 3 ey np muH? = Yicqny miHIY and if
Zie{ltl} m; Q' = Eie{l:]} m; QP when the topography map is constant.

3. First-order scheme. We describe in this section a time and space approx-
imation of (2.2). The scheme is well-balanced at large but approximates the flux to
first-order in space only. This scheme satisfies local invariant domain properties and
local discrete entropy inequalities when the bottom is flat. It is an adaptation of
the method presented in Audusse et al. [2] to the continuous finite element setting
developed in Guermond and Popov [16]. To the best of our knowledge, this is the
first result of this type for continuous finite elements.

3.1. Flux approximation. Just like in [2, (2.13)], the key is to consider the
hydrostatic reconstruction (2.7) and to observe that ZjGI(Di)%((H;’I)Z — (H")?)ey
is a well-balanced first-order approximation of the flux [}, (V(3h?) 4+ hV2)p; dz.

LEMMA 3.1 (Consistency/Well-balancing). (i) Assume that {gn}ne{l:nsh} con-

sists of Lagrange or Bernstein functions. Then Z]‘ez(pi)%((H?i)Z — (H3)?)eyj is
a first-order approximation of the flux fD‘(V(%hQ) + hVz)p;dx. (ii) The mapping
up = (0,2 c7(py) %((H;")2 - (Hf’j)Q)cij)ie{lzl} is well-balanced at large.

Proof. (i) Let us fix i € {1:I}. We slightly abuse the notation by using h to
denote the meshsize. For the consistency analysis we assume that the water height
and the bathymetry map are smooth and the water height is non-negative. More
precisely, we assume that there is C, such that for all ¢ € {1:I}, |Z; — Z;| < Ch, for
all j € Z(D;) ,

Assume first that Z; > Z;. We immediately get H;’Z = H;. If in addition H; >

This manuscript is for review purposes only.
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6 P. AZERAD, J.L. GUERMOND, B. POPOV

C.h, then HY = max(0,H; + (Z; — Z;)) = H; + (Z; — Z;), and we have 3 ((H}")? —
(H77)?) = 3H2 — $(H; + (Zi — Z;))* = §H? — $HZ + Hi(Z; — Z;) + O(h?). Similarly,
if H; < C.h, then H;”Y = O(h) and we again have 5((H“)2 — (H;7)?) = 3H? —
1H? + H;(Z; — Z;) + O(h?). On the other hand, if Z; < Z;, we obtain % ((H?")? —

‘ J
(H;7)?) = 3H? — 3H? + H;(Z; — Z;) + O(h?). But since H; = H; + O(h), (we are
using continuous finite elements and the water height is assumed to be smooth) we

also have & ((H3")? — (H)?) = 1H2 — 1H? + Hy(Z; — Z;) + O(h?) in this case.

Using Lemma 2.1 we infer that Z JeT(Dy) ( H 1 s H; )cij is a second-order approx-
imation of [, (V(3h?))p;dz. Similarly, ZJeI(Di) (Hl(Zj — Z;))cij is a second-order
approximation of H; [ p(Vz)p;dz. If 2 is linear over D; (which is a sufficient assump-
tion for the consistency analysis), then H; [,(Vz)p;dz = Vzp,H; [, ¢idz. Since
H; f D Pi dz can be shown to be a second-order approximation of f D, ho; dx (at least
for Lagrange and Bernstein basis functions), we conclude that 37 p,) (Hi(Z; —

Z;))cij is a second-order approximation of [, (hVz)y;dz. Combining these obser-
vations with the above argument and upon observing that ||c;; 2O (h?) = m;O(h),
we conclude that 3> 7p,) %((H;”)2 — (H7)?)ey; is a first-order approximation of
[ (V(3h?) + hV2)g; dz.

(11) Let us prove the well-balancing at large Assume that uy is a rest state at
large, according to Definition 2.3 we have H}"* = HJ 7 hence (H;f’l)2 — (H)2 = .

The conclusion follows immediately. ' ]

Let us introduce the gas dynamics flux g(u) = (¢,+9 ® q)". We now need
to approximate [, g D, (u)p; dz. Since we have seen above that using H* is a good
idea to guarantee Well balancing at large, one could imagine working with the pair
(H; H7 ,Q;)T. The problem with this choice is that if it happens that HZ’J is zero
(because H, + Z;, < max(Z;,Z;)), there is no reason for the approximate flow rate
Q; to be zero; hence the quantity Q;/H; J which approximate the velocity could be
unbounded. To avoid this problem, we proceed as in [2] by working with the quantities

, H*J : , ,
(3.1) Q7= QU= (HL Q)T

%

with the convention that Qf’j := 0 if H; = 0. Note that we have ||Q:’j||g2 < |1Qi ]| 2
since 0 < H;-k J < H; by definition. We now face the question of constructing a
consistent approximation of f D, g(u)p; dz using the state variable U;.k’j . To simplify
the notation let us introduce the approximate velocity v, = ) ;. (0 V;p; with

Q;

i€ {l:1}.
DEFINITION 3.2 (Shoreline). We say that a degree of freedom i is away from the
shoreline if either H; = 0 for all j € Z(D;) ormin(H;, H;) > |Z;—Z;| for all j € Z(D;).

Note that if the bottom topography is smooth, i.e., there is C, such that for all
i € {1:1}, |Z; — Z;] < C.h, then any degree of freedom ¢ such that H; > Ch, for
all j € Z(D;), is away from the shoreline according to the above definition. Roughly
speaking, a degree of freedom 7 is said to be away from the shoreline if either all the
degrees of freedom around ¢ are dry or the water depth around ¢ is at least C,h if the
bottom topography is smooth (h being the meshsize).

This manuscript is for review purposes only.
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LEMMA 3.3. The quantity 3 ;e (p, (g(U V4+g(U;?))-cij is a first-order approz-
imation of fD, -g(u)p; dz away from the shoreline if the mesh is centro-symmetric.

Proof. Let i € {1:1} be a degree of freedom away from the shoreline. The ap-
proximation of the flux is ZjeI(Di)(ij*’Z + V-H*’J))~cij for the mass conservation
equation and > 7 p,)((V; ® Vj)H;f’i + (Vi @ Vi)H?7))-¢;; for the flow rate conser-
vation. Let us start with the mass conservation equation. We proceed as in the proof
of Lemma 3.1 and again assume that the water height and the bathymetry map are
smooth and the water height is non-negative. Since the mesh is centro-symmetric by
hypothesis, we can assume without loss of generality that Z; > Z; > Z,, ;). Then
H" = H; and since 7 is away from the shoreline we have either H;” = H; + Z; — Z;
if H; # 0, or H = 0 if H; = 0. Similarly, HZ’Ui(j) = H; and since i is away from the
shoreline we have either H:;(j) = Ho,(j) + Zo,(j) — Zi if Hy,(j) # 0, or H:’;(j) =0if
Ho,(j) = 0. Hence, if i is a wet state (and all the states in Z(D;) are wet since i is
away from the shoreline), we have

(Vj H;’v + ViH:’j)~Cij + (VUi(j)H;j(j) + ViH?Ui(j))'Ciai(j)
= (ViH; + Vi(Hi + Z; = Z;) = (Vo () (Ho, () + Zou(j) — Zi) + ViHi)) ey
= (V;H; = ViHi)-cij + (Vo,(h)Hoi(j) — ViHi) €ioi()
+VilZi = Z)-cij + Vo, (3)(Zoy(5) = Zi)-Cio ()

where we have used the centro-symmetry property: ¢;; = —c;q,(;). If i is a dry state
(recall that j and o;(j) are also dry states since i is away from the shoreline) then

(V3 H 4+ VGHT )iy 4 (Vo () Ho ) + ViH] T O)-ei0, )

= (VjH VH ) Clj (Vgi(j)Hgi(J) V H; ) Cwl( i)
Since according to Lemma 2.1, 3.7 p )(V Hj — ViHi)-cij = 3 cqp,y ViHjcis
is a second-order approximation of f D vhhh)cpl dz, we have to show that the
contribution of the extra term V,(Z; — Z;)-¢;; — Vgi(])(ZJi(J) — Z;)-¢;j that arises
when i is a wet state is small. Assuming that the velocity is smooth, we have
Vgi(j) =V, + O(h), which shows that VZ(Zz — Zj)-cij - Vgi(j)(Zgi(j) - Zi)-cij =
Vi(2Z; — Zj — Z,,(j))-cij + ||leijll2O(h?). The centro-symmetry assumption implies
that 2Z; — Z; — Z,,5) = O(h?) if the bathymetry map is smooth. In conclusion
> jezrpy)(Vj H* T VHI )i = > jez(py) ViHj-cij +m;O(h) away from the shore-
line. Usmg the same argument one proves that > ..z p,((V; ® Vj)H;ﬂ' +(V; ®
V)H7))-¢ij = > jerpy) (Vi ® V;)H; +m;O(h). This concludes the proof. d

Remark 3.4 (hydrostatic reconstruction). The lack of consistency of the hydro-
static reconstruction at the shoreline or in presence of large gradients in the topogra-
phy map has been identified in Delestre et al. [10, Prop. 2.1]. Various alternatives to
the hydrostatic reconstruction have since been proposed like in Berthon and Foucher
[5], Bryson et al. [9], Duran et al. [12] where the authors propose to work with the
free surface elevation instead of the water height. O

3.2. Full time and space approximation. Let u) = Z Uogol € P(Tr) be
a reasonable approximation of ug. Let n € N, 7 be the time ﬁtep, t, be the current
time, and let us set ¢,41 = t, + 7. Let u} = Zle Ulp; € P(Ty) be the space

This manuscript is for review purposes only.
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8 P. AZERAD, J.L. GUERMOND, B. POPOV

approximation of w at time ¢,,. Upon denoting H:’j’" := max(0, H'+Z;, —max(Z;,Z;)),

we propose to estimate U?‘H as follows:
Un+1 Un * N n *,9,1
(33) mi—/—+ Y (g )+ g(U7™)).cy;
JEL(D;)
0

+<1 . imng .jimng > Z dn(u*zn*U*Jn):O,
Lo((H®5™\2 _ (H*7 y

29(( J ) ( 7 ) )CJ z#jEI(D)

where the artificial viscosity coefficient d7; is defined by

(3.4) d7; = max(dl", dfi"),

1] ? Jt

3.5 d¥m = max (A
ij

max

(ni5, U7, US ) M (i, UF UT9T)) e,

and M. (n,Ur,Ug) is the maximum wave speed in the Riemann problem:
(3.6) 0w+ 0, (f(u)m) =0, u(z,0) = (1 — H(z))Ur + H(z)Ug,

where H(z) is the Heaviside function. Note that d; > 0 and d; = d7; for all j # i
in Z(D;). For convenience we denote dj; := —3_, ,;c7(p,)dij. Therefore we have
ZjeI(Di) di; = ZjeI(Di) dj; = 0; this property will be used in the rest of the paper.

3.3. Reduction to the 1D Riemann problem. For completeness, we show
how the estimation of A\f . (n,Ur,Ur) can be reduced to estimating the maximum
wave speed in a one-dimensional Riemann problem independent of n. Similarly to [16],
we make a change of basis and introduce ty,...,ts_1 € R? so that {n,¢;,...,ts_1}
is an orthonormal basis of R%. With respect to this basis we have that ¢ = (¢, q")
where ¢ := gn, and q* := (q-t1,...,qts_1)". Then, with the notation v = ¢/h, the
Riemann problem (3.6) can be rewritten in the new orthonormal basis as follows:

h q
(3.7) Ou+0,(n-f(u) =0, u=|q |, fluyn=|vg+gh*|,
q* vgt

with data Uy, = (hr,qr,q91)", Ur = (hgr,qr,q3)" . The solution to (3.7) is henceforth
denoted u(n, U, Ug)(z,t). Following [16], we introduce the following definition.

DEFINITION 3.5 (Invariant set). A convex set A C A is said to be invariant for the
flat bottom system, i.e., (2.1) with b =0, if for any admissible pair (Ur,Ur) € AxA
and any unit vector n € R?, we have u(n,Ur,UR)(z,t) € A for a.e. x € R, t > 0.

Let us w(t,n,Ur,Ug) := fél u(n,Ur,Ug)(x,t) dz. Then, the following result is
2
a consequence of A, (n,Ur,Ug) being finite, see [16, Lem. 2.1].

LEMMA 3.6 (Invariant set and average). (i) Let A C A be an invariant set for
the flat bottom system. If (Up,Ug) € A, then u(t,n,Ur,Ur) € A. (ii) Assume that
2t Amax(n, UL, Ug) < 1, then u(t,n,Ur,Ug) = 5(UL + Ug) — t(f(Ur) — f(UL))n

This lemma is the key motivation for the definition of the viscosity coefficients dfjn
n (3.5) (see [16, §3.3] for more details).

The maximum wave speed in the Riemann problem (3.7) is determined by the
one-dimensional shallow water system for the component (h,q)" because the last
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component is just passively transported and does not influence the first two equations
of the system. That is to say (3.7) reduces to solving the Riemann problem

(3.8) 9(h,q)" + 0x(fin(h,q)) =0,

with data wy, := (hr,qr), ur = (hg,qr) and flux fip(h,q) := (¢,vg + $h*)T. This
establishes the following result which will be useful to estimate df]" in (3.5). When
using a SSP RK method, This is done at the end of every substep of the SSP RK
method

fax(n, UL, Ug), M8 (ur, ur)
be the mazimum wave speed in the Riemann problems (3.7) and (3.8), respectively.
Then M. (n,Ur,Ug) = M5 (ur, ug).

In order to estimate A\f1b (ur,ur) from above, we introduce

(3.9) AT (he) = vr = V/ghy (” (’%L)%(” (h*h_LhL>+> ’
(3.10) A (R —vR+\/ngR<1+( QhIfRL)é(H(W)Jr)

The following result is proved in Guermond and Popov [18]:
LEMMA 3.8. Let hyin=min(hr, hg), hmax=max(hr,hg), xo = (2v/2 — 1)2, and

PROPOSITION 3.7 (Maximum wave speed). Let M,

Nl=

[N

(v —vrR+2vVghL+2vghR)%

169 ) , if case 1,
h, = (—\/thin + \/3hmin + 24/2hminPmax + \/%(’UL — vR)M) if case 2,
hminPmax (1 RERV/7 vy — if case 8,

where case 1 is 0 < f(xohmin), case 2 is f(xohmin) < 0 < f(xohma}) and case 3 is
f(@ohmax) < 0. Then M, (n,Ur,Ur) = ADB (ur, ur) < max(IAT (b)), (A5 (R)]).-

3.4. Stability properties. We collect in his section some remarkable stability
properties of the scheme defined by (3.3)—(3.5).

PROPOSITION 3.9 (Well-balancing/conservation). The scheme defined in (3.3)
is well-balanced at large, and it is conservative in the sense of Definition 2.7.

Proof. Let uj be a rest sate at large, then H}™* B — WP for all i € {1:1} and
all j € Z(D;); this identity implies well- balancmg at large. Let us now establish
conservation. Since ¢;; = —c¢;; and d?j = d?i we have

Z Z CjiOéijZO, Z Z d ﬁz]: 5

1€{1: 1} jeZ(D;) i1€{1: 1} jeZ(D;)

for any symmetric field o;; = «;; and any skew-symmetric field 3;; = —f3;;. Hence, we
only have to deal with the nonconservative flux in (3.3) %g((H;’Z’")2 — (H"™)%) ey
This quantity is zero when the topography map is constant. This concludes the proof.00

Since the shallow water system makes sense only for nonnegative water heights,

and the water discharge should be zero in dry states, we are lead to consider the
following definition for the admissibility of shallow water states.
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DEFINITION 3.10 (Admissible water states). A shallow water state U = (H, Q)T
is admissible if H> 0 and Q = 0 if H = 0. The set of admissible states is denoted A.

Note that a convex combination of admissible states is always an admissible state.

PROPOSITION 3.11 (Invariant domain). Let u} ™ be given by (3.3)~(3.5), n > 0.
Let € {1:1}. Assume that 1 +4;-d}; > 0. Let A} be an invariant set of the shallow
water equation that contains {U }jGI(D y- Then the following properties hold true:

(i) If the bathymetry map is constant then U € A?; '
(ii) If the bathymetry is not constant, let AZ} := =37, ic7p, >g((H")2 (H:™)2) e
and AU;™ =20 371 pyy A (1— HHn )U” then U e conv(A?, 0)+(0, AZM)T+

AU, in partzcular the scheme preserves the non-negativity of the water height;
(i) If the states {U'} are admissible then the state {U}™'} are also admissible.

Proof. Recalling that f(u) = g(u)+(0, 2gh?I;)T, then (3.3) can also be rewritten

%(U?Jrl _ U;n)—i— Z f(U;,i,n)'cij dn U*zn_|_f( *,7, n) -Cij _dnU MR

JEZ(D;)
+ 30 (0, —g(H;7™)2ey) T+ (d + dU;" = 0.
JEI(D;)
Using conservation, i.e., ¢;; = — Zi;éjeI(Di) c;;, this equation can be recast into
m; *,1,m n *,1,m
U -Un = Y (U = FUD)) ey + (U 4 U7
i#£j€Z(D;)
+ (UFI™) — F(UM))-cij + di(UFP" 4 U7
2 17 (%] ) 1
i#£j€T(D;)
n *,9,m T n n *,9,m
+ Z (Oag(<Hi )% — (Hy’ )Q)Cij) — (df; + di%)(U; T UY).
i#jEL(D;)

Upon introducing the vectors TZ e R Wi, € R"? and AZ!" € R? defined by

T Cijlle2 *,0,M n *,4,m n

0 = L0l () ) + 2+ 0
ij

W_?fHCinEZ *,,m\ n B } *,4,n n

= UL (FUP) — (U)o (U7 U7)
ij

AZP = Y g((HP)? = (H"))ey;,

i#j€Z(D;)

we finally obtain

U;L“:(l— 3 —d")U"+ 3 —d" (U7, +W7)
i#jeZ(Dy) i#jeZ(Dy)

T T 27 " H’]’ n
+E(O7AZ1') L=l dij(l_ )U

m; H?
i#j€EL(D;)
Upon introducing the fake time ¢ = ”023& and observing that the definition of dJ}

implies that 20A7,,, (n4;, U7, U7 Py < 1and 26\, (i, UT,US7™) < 1, we infer from
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387 Lemma 3.6 that U}, € convjeI(Di)(U;’i’") and W}, € convjeI(Di)(U:’j’"); hence,
388 % € convjez(p,y(U;"", U7”"). In conclusion, under the CFL condition 1 +

~n+1 -
380 4;5-df > 0, the state U? = (1+ fnidZ)U? +Z#jezwi)3n—:d;;(u;; + W) belongs

L
H ™ and we

390 to convjeI(Di)(U;’i’”, U;7™). If the bathymetry map is flat then HZ
~n+1
301 obtain Ut = U? € convez(p,)(U}) C A} and this proves (i). If the bathymetry
392 is not flat, then U;m is in the convex hull of U7 and 0 for all j € Z(D;) and U;*"" is
~n+1

393 in the convex hull of U and O for all j € Z(D;); this proves that U? € conv(A7,0).
304 Hence, if the bathymetry is not flat we get U} € conv(A?,0) + (0, AZ)T + AU
395 as announced. The water height in AU;™ is 2237, . 7 p ) 2 (H? - Hj’j’"> > 0.
306 Since all the states in A7 have non-negative water height, we conclude that H?** >0
307 and this proves (ii). Finally, fix n > 0 and assume that all states {U } are admissible
398 in the sense of Definition 3.10. If H > 0 then we have that

4T
20¢ n+1 _ m n
399 HI T > (1 E —m_dij)Hi > 0,
i#ET(D;) "

100 and this proves that UZLH is admissible. In the remaining case H} = 0, we have that
*,7 . ~n+1 .
101 HPP™ =0 for all j € Z(D;) and AZ] = 0. Hence U*! = U, and using that

~n+1

102 U, is a convex combination of admissible states we conclude that the state U}
103 is admissible and this proves (iii). |
404 We finish with a discrete inequality which reduces to a standard discrete entropy
105 inequality when the bottom topography is flat. The proof is omitted for brevity.

406 PROPOSITION 3.12. Let u}™ be given by (3.3)~(3.5). Assume the CFL condition

7 1+ 4miid?i > 0. Then for any flat bed shallow water entropy pair (n, G), we have the
8 following discrete entropy inequality

409
my; n n *,0,M *,7,M

10 (3.11) - —=(n(U; H—nU)+ Y (G + GUT)ey

i#JEL(D;)
1 < 3 (nurt Ut — 2nur))

i#j€L(D;)

n\ T n Hik’j’n n n+1
412 + ((O,AZZ-) + Y Qdij(l - )ui).vn(ui ).
413 i#jEL(D;)
414 Remark 3.13 (Literature). We refer the reader to Bouchut and Frid [8, §2] for
415 an alternative point of view to derive the invariant domain property and entropy
116 inequality obtained above. O
117 4. Second-order extension. In this section we propose a scheme that is second-Jj

118 order accurate in space, is exactly well-balanced, and is positivity preserving.

119 4.1. Flux approximation. We start by constructing a well-balanced second-
420 order approximation of the quantity [, (V(3h?%) + hVz)y; dz.

121 LEMMA 4.1 (Consistency/Well-balancing). (i) Assume that {5”}"6{1:”5,1} con-
122 sists of Lagrange or Bernstein basis functions. The expression ZjeI(D,-) Hi(H;+Z;)ci;
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is a second-order approzimation of [ (V(3h?) +hVz)p;da. (i) The mapping w, —
(0,22 5ez(p,) Hi(Hj + Zj)cij)icqa:1y is an exactly well-balanced fluz.

Proof. (i) If h + z is linear over K € Ty, then [, hV(h + z)p;dz = V(h +
)|k [; heida and the approximation [, he;daz ~ H;%|K| is second-order accu-
rate, at least for Lagrange and Bernstein basis functions. Hence, upon noticing that
Ykep, Vih+2) k5 K| = fD (h+2)pide =3, c7p,)(Hj +Z;)eci;, the expression
Jp BV (h+ 2)p;dz ~ ZJeI(DT;) Hi(H; + Z;)c;; is formally second-order accurate.

(ii) Let us now prove well-balancing. Let us assume exact rest. Let us fix ¢ €
{1:T}. Notice that owing to the partition of unity property we have ZjeI(Di) c; =0;
hence ZjGI(Dt) Hl(HJ + Zj)cij = ZjGI(Di) HZ(HJ + Zj —H; — Zi)cij~ Consider J €
Z(D;). According to our definition of the exact rest state (see Definition 2.4), either
H; =0 and H; =0, or H; + Z; — H; — Z; = 0; whence the conclusion. 0

Let us introduce the gas dynamics flux g(u) := (g, + +q®q)T, then upon invoking
Lemma 2.1, 37 7p.) 9(U;)-c;; is a second-order approximation of fD (g(u))p; dz.

4.2. Full time and space approximation. Let u) = Z LUy € P(Ty) be
a reasonable approximation of ug. Let n € N, 7 be the time step, t, be the current
time, and t,41 :=t, + 7. Let u}} = Zle U@, € P(Ty,) be the space approximation
of w at time , and let u? ™ := 321 U ;. We estimate U as follows:

mg n n n n/yn T
T(Ui+1 Uy = Y —g(U})-ci; — (0,gH} (H + Z;)eiy))

JEI(Ds)
(4.1) L y
b AU U g (U - U (U - Up)
i#jET(D;)
(42)  piy o= max((Ving) -, (Vyng))lleiglle,  df =, i
Here we use the notation a4 := max(a,0) and a_ = — min(a, 0). In the above scheme

dis = dj; can be any non-negative number larger than y; when ¢ # j. One could

Just take di'; = i, but a more robust choice consists of using dis = mau((dfjn7 dfzn),
note that in this case the local maximum wave speed formulae (3.9) and (3.10) used
with ur, := (H}', Q' *ni;) and ur = (H?,Q;"'n;;) imply that di; > p}%. Notice that
piy = pj; because n;; = —nj; owing to the assumed boundary condition. We adopt
again the convention df}, := — Z#jez(Di) d?J

PROPOSITION 4.2. The scheme (4.1)-(4.2) is exactly well-balanced and conserva-
tive. It is positivity preserving provided 1 + 2dj;— >0 for all i € {1:1}.

Proof. The artificial viscosity term on the rlght—hand side of (4.1) at exact rest
is X iziez(py) —ps (= H} + H;‘,O)T = 0, since y;; = 0 at rest state (at large). The
remainder of the proof is a consequence Lemma 4.1, which establishes exact well-

balancing. Since 3 c7(p,) —9(Uj)-¢ij = > ;cz(p,)(9(U}) — g(U7))-cij, the conser-
vation can be shown hke in the proof of Proposition 3.9. Finally, to prove positivity,
let us fix ¢ and assume that H} > 0, for all j € Z(D;). The water height update is

H?-‘rl o Z H” H'n, ‘u”)H* Js n)
"
+ % S (0 = e VO + (= i HE).
b itj
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Second-order CY finite element approximation of the shallow water equation 13

Using that df} — pf% > 0, p > 0, HP > H;?™ > 0 and H}"" > 0 we obtain
+1 T T
HiT 2 Hi - ;d?j) t o g(uz‘j — i Vi Hj.
17] 17#]

The conclusion follows from the assumption on the CFL number and the definition
of pu; which implies that uf — ci;-V)* > (V}*-nij)+ — V"nij)|lcijllee > 0. 0

Remark 4.3. Note that the approximation of the flux in the scheme (4.1) is for-
mally second-order accurate in space and contrary to (3.3) does not suffer from the
small inconsistency of the hydrostatic reconstruction, since the hydrostatic reconstruc-
tion is used only in the artificial viscosity. In particular (4.1) is formally second-order
accurate in space when the artificial viscosity is set to zero. O

4.3. Second-order positivity preserving viscosity. In order to make the
proposed method fully second-order accurate in space, we now propose a new def-
inition of the viscosity along the line of Guermond and Popov [17]. Namely, we

choose the viscous terms dj; and p;; in the scheme (4.1) to be dj; := a?jd;’]in and
piy = oy where djj" = max(dfj’", d{zn) is the first-order viscosity based on the
maximum wave speed, ;3" 1= max((V;-ni;) -, (V;-ni;)4)llcijllz and offy € [0,1] is

appropriately chosen. More precisely, the proposed second-order scheme is
mi n n n T
7(”1“ -Uj) = Z —g(U})-cij — (0, gH} (H} + Zj)ci5)
JET(Dy)
TN AU U g (U - U (U ),
i#j€L(D;)
(44)  ply o= max(ef PG, i #
(45)  dfy = max(uf A", i)

(4.3)

with ¢ € [0,1] yet to be determined. One possible choice for the second-order
coefficient 7" consists of setting I = (o) where we define

(4.6) o o | 2gezoy HY — HY
' ' HY — Hr [

(2

ZjGI(Di)

It is shown in Guermond and Popov [19] that any function + in C%1([0, 1]; [0, 1]) with
(1) =1 gives an algorithm that is positivity preserving up to a CFL condition, (see
also [17] for the scalar version of the method and other possible choices for ¥1). We
take 1(a) = o2 in all the numerical simulations reported at the end of the paper.

PROPOSITION 4.4. Let ky, be the Lipschitz constant of 0. The scheme (4.3)-(4.4)-
(4.5) s positivity preserving provided that mi(—dz + EjGI(Di)(ciij"),) < % and
mi max; ez (p,)(€Cij-Vj)- < 74&11:0” where ¢y = max;eqy. 1y card(Z(D;)).

Proof. By proceeding as in the proof of Proposition 4.2, we obtain
T ],
HEHL = Y — 2 S (i (8 — gy H )
b i)

ST (e VM (i H ).
b ity
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14 P. AZERAD, J.L. GUERMOND, B. POPOV
Using that df} > pf and H™" >0, H? > H;/™ for all j, we obtain

-
H D > HP (1 - — Zd — — Y (i = cij VIOHY.
"] " i#j
To finish the proof, it remains to show that the right-hand side is nonnegative under
the appropriate CFL condition. The reader is referred to [19] for the proof of this result
and for other choices for aj; that also make the scheme (4.3) positivity preserving. O

Remark 4.5 (Linearity-preserving). It is possible to modify the definition of o
in (4.6) to make the method linearity-preserving (the reader is referred to Berger
et al. [3] for a review on linearity-preserving limiters in the finite volume litera-
ture). More precisely, when the shape functions are Lagrange-based, one can set

al' == ‘Zjez(D )ﬂ”( Hn)‘ /ZjeI(D )5U|H — H?| where the coefficients j;; are
generalized barycentric coordinates; see Guermond and Popov [17] for details. We
take 3;; = 1 in all the numerical simulations reported at the end of the paper. O

5. Numerical illustrations. In this section we illustrate the performance of
the various algorithms introduced in the paper. Most of the test cases are taken from
the so-called SWASHES suite from Delestre et al. [11].

5.1. Technical details. All the numerical simulations are done in two space
dimensions even when the problem under consideration has a one-dimensional solu-
tion. In order to avoid extraneous super-convergence effects we use unstructured,
non-nested, Delaunay meshes composed of triangles. The computations are done
with continuous Lagrange IP; finite elements. The time stepping is done with the SSP
RK(3,3) method (three stages, third-order), see Shu and Osher [30, Eq. (2.18)] and
Kraaijevanger [22, Thm. 9.4]. All the computations reported in this section have been
done with the upper bound on A5 (vy,, vg) given by Lemma 3.8.

To avoid division by zero in the presence of dry states we introduce h. :=
emaxgep ho(x) with e = 10716, where hg is the initial water height. That is to
say, we approximate the 0 water height by 107!® times the maximum water height
at the initial time. Then we regularize the gas dynamics flux g as follows: g.(u) :=
(q, mq ® q)". That is to say the speed v := g/h is regularized by setting
Ve = mq Note that we obtain g(u) = g.(u) and v, = v when h > h,;
that is, the regularization is active only when h < h..

All the schemes proposed in this paper are positivity preserving on the water
height provided they are programmed correctly. Hence provided the initial water is
non-negative, the water height should never become negative up to roundoff errors.
We have observed that is is possible to avoid the effects of roundoff errors in the
presence of dry regions by programming the update of the water height as follows:

n n n 3 n H:’j7n
(5.1) HIHL = H! (1 - E(c“ VD (= i) ))
7

i#]

3 (e QY H (]~ H ),
i#]

instead of setting H'*" = H + AR with

AR} = Z —cij Q) + pi(HF — ) + (d — ) (H7"" = HP ™).
JEI(D;)
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Second-order CY finite element approximation of the shallow water equation 15

When doing convergence tests over meshes of different meshsize, the convergence
rates are estimated as follows: given two errors ey, es obtained on two meshes 7p1,
Tho, and denoting I; := dim P(Tp1) Iz := dim P(Tp2), the convergence rate is defined
to be the ratio dlog(e1 /e2)/ log(I3/ 1) since the quantity I~ scales like the meshsize.
In all the test cases we take g = 9.81ms™! and d = 2.

5.2. Well-balancing. We have verified on various tests, not reported here for
brevity, that the proposed methods are well-balanced. More precisely, the first-order
algorithm (3.3)—(3.5) is well-balanced irrespective of the structure of the mesh, i.e.,
the discharge stays close to the roundoff error indefinitely. The well-balancing of the
second-order algorithm depends whether exact rest is possible or not as defined in
Definition 2.4. If the mesh is such that exact rest is possible, then the algorithm is
well-balanced up to machine accuracy indefinitely. If exact rest is not supported by
the mesh, approximate well-balancing is achieved up to truncation error indefinitely.

5.3. Flows over a bump. We consider in this section several classical test
cases detailed in [11, §3.1]. The domain is a one-dimensional channel [0, L] with length
L = 25m. The bathymetry profile proposed in [11, §3.1] is flat with a parabolic bump,
but to increase the smoothness of the solution in order to estimate the convergence
rate properly, we modify a little bit the profile as follows:

(5.2)

(x) = %’f(x -8)3(12 — )3 if8<z <12
z(x) =
0, otherwise.

Steady solutions satisfy mass conservation ¢(x) = ¢(0) and the Bernoulli relation

q2

(5.3) e

+ h(z) + 2(x) = Cier-

where the Bernoulli constant Cpe, depends on the data. All the computations in §5.3
are done in two dimensions in the channel D = [0, L] x[0, 1].

5.3.1. Subcritical flow. We now consider a steady state solution with the in-
flow discharge —q-n = ¢, = 4.42m?s~! imposed at {z = 0} and g-n = 0 on the
sides of the channel {y = 0} U {y = 1}. The water height is enforced to be equal to

2

hr = 2m at {z = L}; hence Cpe := 2’91% + hr. The initial condition is go(x) = 0
L
and ho(x) = hy — z(z). We look for the solution at ¢ = 80s which should be close to
2
steady state. From Bernoulli’s relation (5.3), z(x) + h(z) + 292372“(95) = Cper One gets
that the exact steady state solution h(x) solves the algebraic equation

(54) B(@) + (+(2) = O H¥(a) + 22

=0, Vzelo,L]

2

Let b(z) := z(z) — Cper and d := g‘;. With the considered data, the cubic equation

h3 + bh? + d = 0 has three real zeros. The one that corresponds to the steady state
solution is the largest root. Upon defining

b2 (x 27d + 203 (x 3
65) Q)= Ry = 2D op@) = (~QU)ERG)
the water height is given by the trigonometric form of Cardano’s formula:
(5.6) h(z) =2/ —Q(x) cos(@) — %ﬂj)
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Two types of computations are done with the scheme (4.3)—(4.5) using either
the second-order viscosity ¥(a) = a2 or the first-order viscosity ¥(a) = 1. We use
CFL = 1.25. In order to speedup the convergence to steady state we additionally
impose the exact water height at x = 0. This artifact is used only to observe the
theoretical convergence rate in space at t = 80. We show in Table 1 the error on the
water height measured in the L!'-norm and in the L?-norm. All the errors are relative
to the corresponding norm of the exact solution. We observe that the convergence
rates exceeds 2 both in the L'-norm and in the L2-norm for the viscosity ¥ (a) = o?.
This is a super-convergence effect that we do not really understand at the moment.
Let us recall that the meshes that are used here are non-nested, unstructured and the
initial condition is rest. As expected the asymptotic convergence rate of the solution
obtained with the first-order viscosity () = 1 is 1 irrespective of the norm.

Table 1: Subcritical flow over a bump with A given by (5.6). Computation done at
t = 80s with initial data at rest; CFL=1.25. L'-norm (rows 2-6), L*-norm (rows 7—
11). Viscosities are: 1(a) = o (columns 3-4); first-order viscosity (columns 5-6).

Norm I P(a) = a? Pla) =1

248 1.46E-03 Rate 4.99E-03 Rate
885 2.57E-04 2.73 3.39E-03 0.61
! 3069 3.44E-05 3.08 1.95E-03 0.84
12189 1.21E-06 3.09 1.03E-03 0.98
48053 | 7.47E-07 2.66 5.19E-04 1.00

248 2.91E-3 Rate | 9.57E-03 Rate
885 6.48E-04 2.35 6.36E-03 0.64
L? 3069 1.25E-04 2.52 3.62E-03 0.86
12189 2.31E-05 2.59 1.90E-03 0.99
48053 | 4.04E-06 2.55 9.57E-04 1.00

5.3.2. Transcritical flow. We run again the above test in the transcritical
regime. Given ¢y, we set the Bernoulli constant Cpe, so that the Bernoulli rela-
tion (5.4) has two identical positive roots at the top of the bump, meaning that the
discriminant of the equation (5.4), @3 + R2, is zero, where @ and R are defined in

(5.5). This fixes the Bernoulli constant Cpey to be equal to zp + %(%)%, where
zy is the height of the bump. The flow is fluvial (subsonic) upstream and becomes
torrential (supersonic) at the top of the bump. The exact water height is the largest
root of (5.4) when < z); and is the other positive root of (5.4) in the other case:

(5.7) ha) = | 2VQ@eos(55h) — 5L, it <aw
2,/—Q(x) cos(4ﬂ+30(x)) - @, otherwise,

where 6(z) is defined in (5.5) and zj; is such that z(zs) is the maximum of z(z).

We take g, = 1.53m? s~ 1. With the bottom topography defined in (5.2), we have
2p = 10m and zps = 0.2m. The flow rate is enforced at {z = 0} and the exact water
height (given by (5.7)) is enforced at the outflow {z = L}. We start with the initial
condition g(z) = O0m?s~! and h(z) + 2(z) = 0.66m. The errors are measured at
t = 80s. All the errors are relative to the corresponding norm of the exact solution.
The computational domain is again D = [0, 25] %[0, 1]. Two types of computations are
done with the scheme (4.3)—(4.5) using either the second-order viscosity ¥(a) = a?
or the first-order viscosity 1(a) = 1. We use CFL = 0.95. We show in Table 2 the
error on the water height measured in the L'-norm and in the L?-norm.
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Table 2: Transcritical flow over a bump with h given by (5.7). Computation done at
t = 80s with initial data at rest; CFL=0.95. L'-norm (rows 2-6), L*-norm (rows 7—
11). Viscosities are: 1(a) = o (columns 3-4); first-order viscosity (columns 5-6).

Norm I P(a) = a? P(a) =1

248 2.03E-02 | Rate | 1.63E-01 | Rate
885 3.49E-03 2.77 9.09E-02 0.92
Lt 3069 4.71E-04 3.08 4.67E-02 1.02
12189 9.86E-05 2.40 2.35E-02 1.05
48053 1.95E-05 2.38 1.17E-02 1.02

248 2.28E-02 Rate 1.57E-01 Rate
885 4.41E-03 2.58 8.73E-02 0.93
L? 3069 6.40E-04 2.96 4.49E-02 1.02
12189 1.30E-04 2.44 2.27E-02 1.05
48053 2.49E-05 2.42 1.13E-02 1.02

5.3.3. Transcritical flow over a bump with shock. We run again the above
test in the transcritical regime with a hydraulic jump (i.e., a shock). To get a shock the
flow must at some point become sonic and the water height at the outflow boundary
must be larger than the water height at the sonic point. At the sonic point the
discriminant of the Bernoulli relation (5.4) is zero. Just like in the test in §5.3.2 we
position the sonic point at the top of the bump, i.e., the Bernoulli constant Cpe,
(q.n

is equal to zp; + = )3, where z); is the height of the bump. The flow is fluvial

(subsonic) upstream and becomes torrential (supersonic) at the top of the bump and
stays supersonic up to the hydraulic jump. Now we fix the location of the shock
xg € (xpr,12). The water height before the hydraulic jump is the second largest root

of (5.4): h(zg) =24/—-Q(xyg) cos(4ﬂ+g(w§)) - b(gg). The water height after the jump
is determined by the Rankine-Hugoniot relation: h(z}) = 0.5(—h(zg) + VA), where

2
A = (h(zg))? + —2Zn_. In conclusion the exact solution for the water height is

gh(zy)
2/ — ) cos( (T —%, ifx <z
(5.8) h(z) = < 24/—Q(x) cos( ”3 (@) f%, ifzxy <z<zg
h(x S)+Z( s) — z(z), zs < T.

The bottom topography defined in (5.2) gives zp; = 10m, zp = 0.2m. In
our computations we take ¢, = 0.18m?s~! to be consistent with the literature,
Delestre et al. [11], Noelle et al. [26], but we could take any value for ¢i,. We use
zs = 11.7m and compute the water height at the outflow boundary hy, := h(z) +
2(zs) — 2(L) (using g = 9.81 ms~2, this gives hz, = 0.282052 798 138021 81 m). Note
that in [11, 26] the topography is different (2(z) = max(0,0.2 — 0.05(z — 10)?)),
the gravity constant is also different (¢ = 9.812ms~2), and the shock location is
also different (xg = 11.665 504 281554 291 m). We insist on using our smooth bottom
topography (5.2) instead of the parabolic profile, since it allows us to estimate properly
the convergence rate of the method. With the non-smooth topography used in the
literature (z(z) = max(0,0.2 — 0.05(z — 10)?)), the distance between the shock and
the kink in the bottom topography is 0.3 m, which represent 1.2% of the length of the
domain. To start observing a meaningful convergence rate with this topography using
a quasi-uniform mesh would require to have at least 10 grid points between the two
singularities, which would require to have at least 833 grid point in the x-direction and
33 points in the y-direction (since D = [0,25]%[0,1]). The asymptotic convergence
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range is reached with far less grid points with our smooth topography.

The flow rate is enforced at {x = 0} and the exact water height hy, is enforced
at the outflow {x = L}. The initial condition is g(z) = ¢, and h(z) + z(z) = hy.
The errors are measured at ¢t = 80s. Two types of computations are done with the
scheme (4.3)—(4.5) using either the second-order viscosity ¥(a)) = a? or the first-order
viscosity (o) = 1. We use CFL = 0.95. We show in Table 3 the relative error
on the water height measured in the L'-norm and in the L?-norm. Once again the
superiority of the second-order viscosity 1(a) = o? is evident.

Table 3: Transcritical flow with a shock, (5.8). Computation done at t = 80s with
initial data at rest; CFL=0.95. L!-norm (rows 2-6), L?-norm (rows 7-11) Viscosities
are: Y(a) = a2 (columns 3-4); first-order viscosity ¥(a) = 1 (columns 5-6).

Norm I (o) = a? P(a) =1

248 2.79E-02 Rate 7.40E-02 Rate
885 7,97E-03 1.97 4.43E-02 0.81
Lt 3069 4.03E-03 1.05 2.71E-02 0.75
12189 2.69E-03 0.62 1.74E-02 0.68
48053 1.564E-03 0.82 1.15E-02 0.61

248 6.70E-02 Rate 1.12E-01 Rate
885 4.81E-02 0.52 8.60E-02 0.42
L2 3069 3.75E-02 0.38 7.71E-02 0.17
12189 3.37E-02 0.17 7.19E-02 0.11
48053 2.55E-02 0.41 6.54E-02 0.14

5.4. Unsteady flows. In the preceding sections, we went through steady-state
solutions of increasing difficulties. These solutions are useful to check well-balancing
and accuracy in space, but they do not give information about the transient behavior.
Thus, in this section, we test transient solutions with wet/dry transitions.

5.4.1. Dam break on a dry bottom. We start with an ideal dam break called
Ritter’s solution, see [29]. This is a Riemann problem with the initial condition:

(5.9)

ki 0< 2z <2
h(z){ 0 if zg<z<lL,

where h; > 0 and v(z) = 0 m/s. The analytical solution is

h; if 0<z<uxa(t)
(5.10) h(z,t) = % (Vghi — mng)Q if za(t) <z <zpt)
0 if zp(t) <x <L,
0 if 0<z<x4(t)
(5.11) vz, t) = 2 (2 4 ghy) if wa(t) <z <wzp(h)
0 if zp(t) <z <L,

where x4 (t) = 29 — t/ghi, zp(t) = xo + 2t\/gh;. This test is used to check if the
scheme preserves positivity of the water height and is able to locate and treat correctly
the wet/dry transition. As in SWASHES [11], we consider h; = 0.005m, 29 = 5m,
L =10m and t = 6s. The computational domain in D = [0, L] x[0, 1].

We show in Table 4 convergence results on the water height for the solution to the
above problem at t = 6's with two different initializations. The results in columns 3-6
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Table 4: Problem (5.9) at ¢ = 6 with data (5.10)-(5.11) at ¢ = 1 (columns 3-6)
and t = 0 (columns 7-10); CFL=0.5. L'-norm (rows 2-6), L?-norm (rows 7-11).
Viscosities: 1(a) = a? (columns 3-4; 7-8); first-order viscosity (columns 5-6; 9-10).

Initialization time t = 1 Initialization time ¢t = 0

Norm I P(a) = a? P(a) =1 P(a) = a? Pla) =1
248 1.52E-02 Rate 3.64E-02 Rate 3.33E-02 Rate | 4.82E-02 Rate
816 7.41E-03 1.20 2.17E-02 0.81 1.82E-02 1.01 3.38E-02 0.56
Lt 3069 3.03E-03 1.35 1.22E-02 0.88 1.08E-02 0.79 2.39E-02 0.53
12189 1.21E-03 1.34 6.70E-03 0.92 4.81E-03 1.16 1.52E-02 0.69
48053 | 4.73E-04 1.37 3.54E-03 0.93 2.65E-03 0.87 9.61E-03 0.67

248 2.00E-01 — 4.65E-02 — 4.31E-01 — 6.14E-02 —

816 1.10E-02 1.01 2.97E-02 0.70 2.45E-02 0.95 4.36E-02 0.54
L? 3069 5.42E-03 1.06 1.82E-02 0.76 1.40E-02 0.84 3.11E-02 0.52
12189 2.65E-03 1.04 1.11E-02 0.76 7.13E-03 0.98 2.06E-02 0.63
48053 1.28E-03 1.06 6.64E-03 0.75 3.83E-03 0.91 1.34E-02 0.63

have been obtained with the initial data given by (5.10)-(5.11) with the initial time
t = 1s. This test is meant to estimate the accuracy on the method with a solution
whose partial derivatives are in BV(D). We observe the rates % in the L'-norm and
1 in the L2-norm with the viscosity 1(a) = a?. The rates are 1 and % for the first-
order viscosity, ¥(a) = 1. The results on the discharge (not shown) give exactly the
same convergence rates. The results in columns 7-10 have been obtained by using
the Riemann data (5.9) at ¢ = 0s. There is a loss of accuracy since the initial data
is now only in BV(D). We observe the convergence rate 1 in the L'-norm and the
L2-norm for the viscosity (o) = a? and % in the L'-norm and the L2-norm with
the viscosity first-order viscosity 1 (a) = 1. The results on the discharge (not shown)
give exactly the same convergence rates. Note that with both initializations the
() = a? viscosity performs better than the first-order viscosity ¥(a) = 1. We have
also performed the above tests with the first-oder scheme (3.3)—(3.5) and the results
(not shown) are are almost undistinguishable from those given by the scheme (4.3)—
(4.5) with the first-order viscosity ¥ (a) = 1.

5.5. Planar surface in a paraboloid. We now consider a two-dimensional
solution with moving shoreline developed by Thacker, see [31]. It is periodic in time
with moving wet/dry transitions. It provides a perfect test for shallow water codes as
it deals with bed slope and wetting/drying with two-dimensional effects. Moreover, as
the gradient of the solution has BV regularity, it is appropriate to verify the accuracy
of a numerical method up to second-order in L*(D). The topography is a paraboloid

of revolution defined by
2
a1 ()

with r(z) = \/(z — L/2)2 + (y — L/2)? for each = := (z,y) € [0, L] x[0, L]. When the
water is at rest, hg is the water height at the central point of the domain and a is
the radius of the circular free surface. An analytical solution with a moving shoreline
and a free surface that remains planar in time is given by

h(x,t) = max(”c% (2(3: - %) cos(wt) + 2(y — %) sin(wt)) — 2(x,y),0),
(5.12) v (@, 1) = —nw sin(wt),

vy (2, t) = nw cos(wt),
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where the frequency is defined by w = v/2ghg/a and 7 is a free parameter. To visualize
this case, one can think of a glass with some liquid in rotation inside.

Table 5: Planar free surface in a paraboloid vessel with exact solution (5.12). Com-
putations done at ¢t = 3 x 27/w with initial data (5.12) at t = 0; CFL=0.3. L-
norm (rows 2-6); Second-order method with 1) (a)) = @? (columns 3-4); Second-order
method with ¢ (a) = 1 (columns 5-6); First-order method (columns 7-8).

Norm I Mthd. 2, ¥(a) = o Mthd. 2, Y(a) =1 Mthd. 1
508 2.71E-01 Rate 6.25E-01 Rate 7.85E-01 Rate
1926 6.51E-02 2.13 4.27E-01 0.57 7.44E-01 0.08
Lt 7553 1.58E-02 2.08 2.54E-01 0.76 5.46E-01 0.45
29870 4.46E-03 1.83 1.49E-01 0.88 3.33E-01 0.72
118851 1.50E-03 1.58 7.26E-02 0.94 1.82R-01 0.87

The initial condition is the analytic solution at ¢ = 0. Boundary conditions are
natural, i.e., nothing is enforced. Typical values of parameters are the same as in
SWASH [11] a =1 m, hg = 0.1 m, L = 4 m, n = 0.5. The solution is computed up to
time ¢t = 3 x 27/w. The computational domain is D = [0, L] x [0, L].

5.6. Tidal wave over an island. We finish with a simulation of an experiment
reported in Liu et al. [25], which consists of a water tank D = [0,30]x]0,25] with a
conical island. The topography is

(5.13) z(x) := min(hiop, (heone — 7(®)/Scone) 1), 7(x) := \/(x — 15)2 + (y — 13)2,

where hyop = 0.625m, Acone = 0.9m, Scone = 4m. All the dimensions are in meters.
We do not use the experimental set up for the initial conditions since there is no real
consensus in the literature on the setup of the initial data. Instead, we set the initial
condition to be a (solitary) wave big enough to overtop the island to demonstrate that
the method is robust with respect to the presence of dry states. Moreover, we impose
transparent boundary conditions to show that they are easy to enforce in the finite
element setting. Essentially, imposing transparent boundary conditions consists of
not doing anything (these are the so-called natural boundary conditions). The initial
condition is given by h(x,0) = hinit(x), g(2,0) = (Uinit () hinit (x), 0) where

A
(5.14) hinit(x) = (h + — Z(%)) s
’ cosh? ( 34 (x — xs)) "

an3

._ A 9
(>19) tnie () = cosh? (\/%(z — :Cs)) \/;0’

with hg = 0.32m, A = hg and zg = 2.04m. The computations are done on an
unstructured Delaunay mesh composed of 174432 triangles and 87767 grid points. The
average meshsize is 0.1 m. We report in Figure 2 the water elevation at 6 different
times 4.08s, 4.92s, 5.88s, 6.96s, 9.72s, 14.52s showing the various stages of the
overtopping of the island. To visualize properly the dry areas, the water height is
set to zero in the images (not in the computations) when h < 10~3hg. For rendering
purposes, the elevation map and the water height in the images are scaled by 3.
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