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This paper is concerned with the approximation of the compressible Euler equations 
supplemented with an arbitrary or tabulated equation of state. The proposed approximation 
technique is robust, formally second-order accurate in space, invariant-domain preserving, 
and works for every equation of state, tabulated or analytic, provided the pressure 
is nonnegative. An entropy surrogate functional that grows across shocks is proposed. 
The numerical method is verified with novel analytical solutions and then validated 
with several computational benchmarks seen in the literature including problems with 
composite waves.
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1. Introduction

The objective of this paper is to continue the work started in Clayton et al. [9] where we introduced an explicit and 
invariant-domain preserving method to approximate the Euler equations equipped with an equation of state that is either 
tabulated or is given by an expression that is so involved that elementary Riemann problems cannot be solved exactly 
or efficiently. The method proposed in [9] is invariant-domain preserving in the sense that it guarantees that the density 
and the internal energy of the approximation are positive. A key ingredient of the method is a local approximation of the 
equation of state using a covolume ansatz (a.k.a. Noble-Abel equation of state) from which upper bounds on the maximum 
wave speed are derived for every elementary Riemann problem. The downside is that the method is first-order accurate 
in space. In the present paper we propose a technique that increases the accuracy in space to second-order and preserves 
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the invariant-domain properties. We also introduce a functional that can be used as an entropy surrogate. The functional in 
question is shown to be increasing across shocks in the Riemann problem involved in the construction of the local maximum 
wave speed. We show how to use this functional to limit the internal energy from below. This feature is useful for equations 
of state that are tabulated or interpolated from experimental data since in this case no natural notion of entropy is available.

It is sometimes possible, though possibly expensive, to solve Riemann problems when the equation of state is analytic. 
For instance this is done in Colella and Glaz [10, §1], Ivings et al. [28], Quartapelle et al. [40]. This cannot be done with 
tabulated equations of state because the information on the pressure is incomplete. Several attempts to develop methods 
working with an arbitrary or tabulated equation of state have been reported in the literature. One way to do so con-
sists of using approximate Riemann solvers like those found in Dukowicz [11], [10, §2], Roe and Pike [43], Pike [39], and 
Lee et al. [31]. One can also simplify the Riemann problem by using flux splitting techniques as those reported in Toro 
et al. [51]. We also refer to Saurel et al. [44], Banks [2], Dumbser and Casulli [12], Dumbser et al. [13] where approximation 
techniques are developed using approximate Riemann solvers for various equations of state. Some of these techniques guar-
antee positivity of the density, but little else is guaranteed in general. The method introduced in Clayton et al. [9] is based 
on a graph viscosity technique using upper bounds on the maximum wave speed in the Riemann problem. Instead of using 
the two-shock approximation of the Riemann solution, as done in most methods based on approximate solvers, the method 
proposed in [9] approximates the pressure in the Riemann fan by the covolume equation of state and subsequently esti-
mates guaranteed upper bounds on the maximum wave speed. This in turn ensures that the internal energy in the proposed 
algorithm is positive in addition to the density being positive. If it happens that the equation of state is of covolume type, 
then the method also preserves the minimum principle on the specific entropy. A technique based on similar principles is 
reported in Wang and Li [52] where the authors use a stiffened gas equation of state to approximate the pressure in the 
Riemann fan. To the best of our knowledge, the method proposed in the present paper is among the very first ones that are 
provably invariant-domain preserving for complex or tabulated equations of state and high-order accurate in space.

The paper is organized as follows. In Section 2, we introduce the mathematical model of interest and the corresponding 
notation. We also briefly discuss the assumptions we make on the equation of state and recall results from [9] that are 
needed for this work (i.e., we recall the first-order approximation of the Euler equations in §2.3). In Section 3, we construct 
a provisional update that is higher-order accurate in space. This update is based on a high-order graph viscosity using an 
entropy commutator and an activation function. Then, in Section 4, we apply a novel convex limiting technique that corrects 
the invariant-domain violations of the provisional higher-order method. The final result is an approximation technique that 
is robust, formally second-order accurate in space, provably invariant-domain preserving, and works for every equation of 
state (tabulated or analytic) that satisfies the mild assumptions stated in §2.2. Finally in Section 5, the method is verified 
with analytical solutions and published benchmarks and is validated with experiments. A short conclusion is given in §6.

2. Preliminaries

We formulate the problem and introduce notation in this section. We also recall essential results from [9] for complete-
ness.

2.1. The Euler equations

Let D be a bounded polyhedron in Rd . Given some initial data u0(x) := (ρ0, m0, E0)(x) over D at the initial time t0, we 
look for u(x, t) := (ρ, m, E)(x, t) solving the compressible Euler equations in the weak sense:

∂tρ + ∇·(vρ) = 0 a.e. t > t0, x ∈ D, (2.1a)

∂tm + ∇·(v ⊗ m + p(u)Id
)= 0 a.e. t > t0, x ∈ D, (2.1b)

∂t E + ∇·(v(E + p(u))
)= 0 a.e. t > t0, x ∈ D. (2.1c)

The components of the dependent variable u := (ρ, m, E)T ∈ Rd+2 (considered to be a column vector) are the density, ρ , 
the momentum, m, and the total mechanical energy, E . We also introduce the velocity v(u) := ρ−1m and the specific 
internal energy, e(u) := ρ−1 E − 1

2 ‖v(u)‖2
�2 . To simplify the notation later on we introduce the flux f(u) := (m, v(u) ⊗ m +

p(u)Id, v(u)(E + p))T ∈R(d+2)×d , where Id is the d×d identity matrix.

2.2. Equation of state

In (2.1) the function p(u) denotes the pressure which we assume to be given by an oracle. This means we assume to have 
no a priori knowledge of the function p(u) itself apart from some mild structural assumptions stated below. We only assume 
that for a given state u we are able to retrieve a pressure p(u) in a suitable way, for example by evaluating an arbitrary 
analytic expression, or by deriving a value from tabulated experimental data. For instance, in the numerical illustrations 
reported in §5, we consider oracles given by analytic functions (e.g., the ideal gas, van der Waals, Jones–Wilkins–Lee and 
Mie-Gruneisen equations of state) and we also use the SESAME database developed at Los Alamos National Laboratory [33]
to test the method with experimental tabulated data.
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Throughout the paper we assume that the domain of definition of the oracle p(u) is the set B(b) ⊂Rd+2 given by

B(b) := {u := (ρ,m, E) ∈Rd+2 | 0 < ρ, 0 < 1 − bρ, 0 < e(u)
}
. (2.2)

We henceforth refer to B(b) as the admissible set. One of the objectives of the paper is to guarantee that the approximation 
is high-order accurate and leaves B(b) invariant. The inequality ρ < 1

b found in the definition of B(b) is the so called 
maximum compressibility condition. The constant b can be set to zero if the user has no a priori knowledge about the 
maximum compressibility of the fluid under consideration. We recall, however, that a large class of analytic equations of 
state, such as the Noble-Abel, the Mie-Gruneisen (with the Hugoniot locus as the reference curve), and the Noble-Abel-
Stiffened-Gas equations of state all involve a maximum compressibility constant. Finally, we assume that the oracle p(u)

returns a non-negative pressure,

p : B(b) → R≥0. (2.3)

The assumption can be weakened, but for the sake of simplicity, we refrain from doing so in this paper. We leave this 
extension for future works.

2.3. First-order time and space approximation

The time and space discretization proposed in Clayton et al. [9] is based on [20]. This method is in some sense a 
discretization-agnostic generalization of an algorithm introduced by Lax [30, p. 163]. We denote by tn the current time, 
n ∈ N , and we denote by τ the current time step size; that is tn+1 := tn + τ . Without going into the details of the space 
approximation, we assume that the current approximation of u(·, tn) is a collection of states {Un

i }i∈V , where the index set 
V is used to enumerate all the degrees of freedom of the approximation, and Un

i is in Rd+2 for all i ∈ V. The update at tn+1

is obtained as follows:
mi

τ
(UL,n+1

i − Un
i ) +

∑
j∈I(i)

f(Un
j ) c i j −

∑
j∈I(i)\{i}

dL,n
i j (Un

j − Un
i ) = 0. (2.4)

The quantity mi is called the lumped mass and we assume that mi > 0 for all i ∈ V. The vector ci j ∈Rd encodes the space 
discretization. The index set I(i) is called the local stencil. This set collects only the degrees of freedom in V that interact 
with i (i.e., j /∈ I(i) ⇒ c i j = 0). We assume that the Rd-valued coefficients c i j are such that 

∑
j∈I(i) f(U

n
j )c i j approximates 

∇·(f(u(·, tn))) at some grid point ai , and the consistency error in space scales optimally with respect to the mesh size for 
the considered approximation setting. We require that the method be conservative; more precisely, we assume that

c i j = −c ji and
∑

j∈I(i)

c i j = 0. (2.5)

Concrete expressions for ci j and mi are given in [23, §4] for continuous and discontinuous finite elements as well as for finite 
volumes. Many approximation techniques found in the literature can be put in the above generic form. The computations 
reported at the end of this paper are done with piecewise linear continuous finite elements. But to stay general, we continue 
with the abstract discretization-agnostic notation introduced above.

Given i ∈ V and j ∈ I(i), we set ni j := c i j‖c i j‖−1
�2 . Then, the low-order graph viscosity coefficient dL,n

i j is defined as 
follows:

dL,n
i j := max(̂λ(ni j,Un

i ,Un
j )‖c i j‖�2 , λ̂(n ji,Un

j ,Un
i )‖c ji‖�2), (2.6)

where the quantity ̂λ(ni j, Un
i , U

n
j ) is a positive number larger than or equal to the maximum wave speed λ(ni j, Un

i , U
n
j ) in a 

local Riemann problem. Notice that by computing both “directions” (i, j) and ( j, i) in the definition (2.6) implies that the 
graph viscosity dL,n

i j is symmetric which is needed for conservation. For completeness, we now recall how the maximum 
wave speed λ(ni j, Un

i , U
n
j ) is defined in [9]. For Z ∈ {i, j}, we set UZ := (�Z , MZ , EZ )T , pZ := p(Un

Z ), eZ := e(Un
Z ), �Z :=

�Z + pZ (1−b�Z )

eZ
, and EZ := EZ − ‖MZ −(MZ ·ni j)ni j‖2

�2

2�Z
. The non-negativity assumption on the pressure (2.3) and the assumptions 

on the density (0 < �Z < 1
b ) implies that

γZ := �Z

�Z
≥ 1. (2.7)

Then we consider the following Riemann problem:

∂t

⎛⎜⎜⎝
ρ
m
E

�

⎞⎟⎟⎠+ ∂x

⎛⎜⎜⎝
m

1
ρ m2 + pcov
m
ρ (E + pcov)

m �

⎞⎟⎟⎠= 0, with pcov(ρ,m,E,�) :=
�
ρ − 1

1 − bρ

(
E − m2

2ρ

)
, (2.8)
ρ

3
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with left data (ρi, mi ·ni j, Ei, �i)
T and right data (ρ j, m j ·ni j, E j, � j)

T . It is essential to notice here that pcov(ρZ , mZ , EZ , �Z ) =
p Z ; that is, the function pcov(ρ, m, E, �) interpolates the left and right pressures. The problem (2.8) is well-posed because 
γZ ≥ 1. Its complete solution is given in Clayton et al. [9, §4]. The maximum wave speed in this problem is denoted 
λ(ni j, Ui, U j).

Let A be a nonempty convex subset of B(b). We say that A is an invariant set for (2.8) if for every pair of Riemann 
data in A the solution of (2.8) takes values in A . We then have:

Theorem 2.1 ([9, Thm. 4.6]). Let i ∈ V. Let A ⊂ B(b) be a convex invariant set for (2.8). Assume that Un
j ∈ A for all j ∈ I(i). For all 

j ∈ I(i), let ̂λ(ni j, Un
i , U

n
j ) be any positive number larger than or equal to λ(ni j, Un

i , U
n
j ). Let

dL,n
i j := max(̂λ(ni j,Un

i ,Un
j )‖c i j‖�2 , λ̂(n ji,Un

j ,Un
i )‖c ji‖�2).

Assume that τ
∑

j∈I(i)\{i}
2dL,n

i j
mi

≤ 1. Let UL,n+1
i be defined by (2.4). Then UL,n+1

i ∈ A ⊂ B(b).

Remark 2.2 (Invariant domains). Theorem 2.1 asserts that every convex invariant set in B(b) is invariant by the update 
procedure (2.4) with the graph viscosity dL,n

i j defined in (2.6). This means that if Un
i ∈ A for all i ∈ V, then UL,n+1

i ∈ A for 
all i ∈ V. We say that the method is invariant-domain preserving for A . Notice in particular that the method is invariant-
domain preserving for the admissible set B(b). The admissible set B(b) may not be the smallest invariant domain. For 
instance, if the oracle admits a mathematical entropy s, then the approximation defined above is also invariant-domain 
preserving for the set A(u0) := {v ∈ B(b) | s(v) ≥ ess infx∈D s(u0(x))}; see e.g., [20, Cor. 4.2]. By slight abuse of terminology 
and provided the context is unambiguous we will simply call a method invariant-domain preserving without quantifying 
the precise convex set.

A source code to compute ̂λ(ni j, Un
i , U

n
j ) is available online [8]. This code has been used in all the numerical simulations 

reported at the end of the paper. A notable drawback of the graph viscosity (2.6) is that it reduces the space accuracy of 
the method to first-order. The remainder of the paper is concerned with constructing a higher-order approximation and a 
respective novel convex limiting technique that is invariant-domain preserving.

Remark 2.3 (Pressure approximation). Notice that the oracle is only invoked to compute the left and right values of the 
pressure in (2.8). The pressure in the Riemann fan is approximated by two covolume equations of state. There is one 
covolume equation of state for each side of the contact discontinuity since γ = γL on the left of the contact wave and 
γ = γR on the right.

3. Provisional higher-order method

In this section, we introduce a provisional higher-order method that extends the update (2.4) to second-order when 
using linear finite elements for the discretization. A convex limiting technique for this provisional update is introduced in 
§4. The provisional method is based on the work reported in [22,34].

3.1. The method

Higher-order accuracy in space requires using the consistent mass matrix instead of the lumped mass matrix for the 
discretization of the time derivative. By reducing dispersive errors, the consistent mass matrix is known to yield super-
convergence at the grid points; see e.g., Christon et al. [7], [18], [34, Sec. 3.4], Thompson [50]. Let M be the mass matrix 
with entries {mij}i, j∈V , then M−1 can be approximated by I + B where bij = δi j − mij

m j
, δi j is the Kronecker symbol, and 

mi :=∑ j∈I(i) mij . This approximation has been shown in [7,18] to be superconvergent for piecewise linear continuous finite 
elements. Let R ∈RI with I := card(V), then using this approximation we have (M−1R)i ≈ Ri +∑ j∈I(i)

(
bijR j − b jiRi

)
. No-

tice that 
∑

j∈I(i) b jiRi = 0, because 
∑

j∈I(i) b ji = 0. The skew-symmetry of the summand in 
∑

j∈I(i)

(
bijR j − b jiRi

)
is used 

in §4 for limiting purposes.
Let UH,n+1 denote the high-order update (here the superindex H reminds us that the update is higher-order accurate). 

Then, for every i ∈ V, the provisional high-order update is given by:
mi

τ

(
UH,n+1

i − Un
i

)
= Rn

i +
∑

j∈I(i)

(
bij Rn

j − b ji Rn
i

)
, (3.1a)

with Rn
i :=

∑
j∈I(i)

(
−f(Un

j )·c i j + dH,n
i j (Un

j − Un
i )
)

. (3.1b)

The high-order graph viscosity coefficient dH,n
i j , defined in Section 3.2, shares the same properties as its low-order counter-

part which are necessary for conservation:
4
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dH,n
i j = dH,n

ji , 0 ≤ dH,n
i j ≤ dL,n

i j , for every j ∈ I(i), i ∈ V. (3.2)

3.2. Entropy commutator

Using the entropy-viscosity methodology introduced in Guermond et al. [21], we now discuss the construction of the 
high-order graph viscosity coefficient dH,n

i j that is used in the high-order update (3.1b). A complicating factor in this con-
struction is that the pressure is given by an oracle. We thus do not have a priori knowledge on the equation of state and 
entropies of the system.

Recall that (η(u), F (u)) is an entropy pair for the Euler equations if

∇·F (u) = (∇uη(u))T∇·f(u), ∀u ∈ B(b), (3.3)

where f(u) is the flux of the system (2.1). Since one may not have access to entropies for tabulated equations of state, we 
are going to use at every i ∈ V and every time tn one entropy pair associated with the following flux

f i,n(u) :=
⎛⎝ m

v ⊗ m + p
i,n
cov(u)Id

v(E + p
i,n
cov(u))

⎞⎠ , pi,n
cov(u) := (γ min,n

i − 1)
ρe(u)

1 − bρ
. (3.4)

Here, γ min,n
i := min j∈I(i) γ

n
j with γ n

j := 1 + pn
j (1−b�n

j )

�n
j en

j
(see (2.7)). We use the following shifted Harten entropy pair in the 

numerical tests reported in §5:

ηi,n(u) :=
(

ρ2e(u)

(1 − bρ)1−γ min,n
i

) 1

γ
min,n
i +1 − ρ

�n
i

ηi,n
ref, F i,n(u) := m

ρ
ηi,n(u), (3.5)

where ηi,n
ref :=

(
(�n

i )2e(un
i )

(1−b�n
i )

1−γ
min,n
i

) 1

γ
min,n
i +1

is the entropy shift; see Remark 3.1. Then, we estimate “entropy production” by 

inserting the approximate solution un
h into a discrete counterpart of (3.3) which we write as follows:∫

D

(
∇·F i,n(u) − (∇uηi,n(u))T∇· f i,n(u)

)
ϕi dx = 0, (3.6)

where {ϕi}i∈V are the global shape functions associated with the underlying approximation. Notice that the above identity 
holds true for every smooth function u ∈ B(b) and for every i ∈ V. Substituting uh :=∑i∈V Un

i ϕi into (3.6), we estimate the 
local entropy residual as follows:

Nn
i :=

∑
j∈I(i)

(
F i,n(Un

j ) − (∇uηi,n(Un
i ))

Tf i,n(Un
j )
)
·c i j . (3.7)

The residual (3.7) can be thought of as a measure of how well the discrete solution un
h satisfies (3.6) in each local stencil 

I(i). We then define the normalized entropy residual as follows:

Rn
i :=

∣∣Nn
i

∣∣
Di + εDmax , Dmax = max

i∈V
Di, ε = 10−2, (3.8a)

Dn
i :=

∣∣∣ ∑
j∈I(i)

F i,n(Un
j )·c i j

∣∣∣+ ∣∣∣ ∑
j∈I(i)

(∇uηi,n(Un
i ))

Tf i,n(Un
j )·c i j

∣∣∣. (3.8b)

By definition, the normalized residual Rn
i has values in [0, 1] and, for piecewise linear finite elements, behaves like O(h)

where h is the typical meshsize. Finally we set

dH,n
i j := dL,n

i j max(ψ(Rn
i ),ψ(Rn

j )), (3.9)

where the activation function ψ is defined as follows:

ψ(x) := 4x3
0 − (x + x0)(x − 2x0)

{
(x − 2x0) − ReLU(x − 2x0)

}
4x3

0

, (3.10)

and ReLU(x) = (x + |x|)/2 is the rectified linear activation function. Notice that ψ(0) = 0, ψ(x0) = 1
2 and ψ(x) = 1 for all 

x ∈ [2x0, 1] for a chosen x0 ∈ [0, 0.5]. As a result, one recovers dH,n = dL,n if the entropy residual is larger than 2x0. We 
i j i j

5
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have ψ(x) ∼ 3
4

x2

x2
0

+ O(x3). The numerical tests reported in §5 are done with x0 = 0.4. An activation function with the 
same purpose is used in Persson and Peraire [37, Eq. (8)]. Up to a translation, the activation function therein behaves like 
1
2 + 1

2 sin(π x−x0
2x0

) in the interval [0, 2x0].

Remark 3.1 (Entropy shift). The entropy shift considered in (3.5) is motivated by the observation that the numerator Nn
i is 

unchanged by the change of variable η(u) �→ η(u) − λρ for all λ ∈R and for every entropy η associated with the flux (3.4). 
The constant λ is chosen in (3.5) so that ηi,n(un

i ) = 0. This entropy shift was first is introduced in [22, §3.4] to minimize 
the effects of the mass conservation approximation errors on the entropy commutator.

4. Convex limiting

The high-order update (3.1) is not guaranteed to be invariant-domain preserving; in particular, it is not guaranteed 
to stay in the admissible set B(b). In order to correct this defect we now discuss a new convex limiting technique that 
re-establishes invariant-domain preservation for the final high-order update, i.e., Un+1

i ∈ B(b).

4.1. Key observation

A classical key observation is that one can rewrite (2.4) as follows:

UL,n+1
i =

(
1 −

∑
j∈I(i)\{i}

2τdL,n
i j

mi

)
Un

i +
∑

j∈I(i)\{i}

2τdL,n
i j

mi
U

n
i j, (4.1a)

with U
n
i j := 1

2
(Un

i + Un
j ) − 1

2dL,n
i j

(
f(Un

j ) − f(Un
i )
)

c i j. (4.1b)

That is, the low-order update UL,n+1
i is a convex combination (under the appropriate CFL condition) of the local state Un

i

and the auxiliary states {Un
i j} j∈V , i.e.,

UL,n+1
i ∈ Conv{Un

i j | j ∈ I(i)}. (4.2)

The main result established in [9, Thm. 4.6] (and summarized in Theorem 2.1) is that under the CFL condition stated in 
Theorem 2.1 and the definition (2.6) for dL,n

i j , the states {Un
i j} j∈I(i) are in B(b) provided this is already the case of the states 

{Un
j } j∈I(i) . This is done by proving that the states Un

i j are space averages of the solution to a Riemann problem. We refer the 
reader to [20, Sec. 3.3], [22, Sec. 3.2] and [23, Sec. 3.2] where this is discussed in detail. We are going to use the states Un

i j

to define local bounds in space and time to perform the limiting of the high-order states {UH,n+1
i }i∈V .

Remark 4.1 (Literature). The importance of the auxiliary states U
n
i j in the construction of the low-order approximation has 

been recognized in Nessyahu and Tadmor [36, Eq. (2.6)]. That these states are averages of Riemann solution provided dL,n
i j

is large enough is well documented in Harten et al. [27, §3.A] (see also Thm. 3.1 in [27], p. 375, line 12 in Tadmor [47] and 
Perthame and Shu [38, §5].)

4.2. Entropy surrogate

Our goal is to use the methodology introduced in [21] to perform the convex limiting of the update UH,n+1
i . In this 

context the use of an oracle with little a priori knowledge on the equation of state poses a significant challenge as it makes 
it impossible to properly define an entropy. We resolve the impasse by introducing an artificial surrogate entropy that has 
the right mathematical properties for the convex limiting methodology to be applied; see Theorem 4.3.

For any admissible state u ∈ B(b) and γ ≥ 1, we define

S(u, γ ) := (ρ e)(u)

ργ
(1 − bρ)γ −1, (4.3)

where ρ(u) and e(u) are the density and specific internal energy of the state u. We note in passing that for each γ , the 
quantity defined in (4.3) is convex. Furthermore, for every index i ∈ V, we set

γ n
i := 1 + pn

i (1 − b�n
i )

�n
i en

i

, �n
i := �n

i γ n
i , (4.4)

where �n
i := ρ(Un

i ), pn
i := p(Un

i ) and en
i := e(Un

i ) = 1
�n

i

(
En

i − ‖Mn
i ‖2

�2

2�n
i

)
. The following result is the key motivation for the 

definition of an entropy surrogate.
6
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Lemma 4.2. For all i ∈ V, assume that Un
i ∈ B(b). For all i ∈ V, all j ∈ I(i), all γi j ∈ [1, min(γ n

i , γ n
j )], all left data (�n

i , M
n
i ·ni j, En

i , �n
i )

T

and right data (�n
j , M

n
j ·ni j, En

j , �
n
j )

T in the extended Riemann problem (2.8), and all u ∈ B(b), we set

�i j(u) := ρe(u) − Smin
i j ργi j (1 − bρ)1−γi j , where Smin

i j := min
(

S(Un
i , γi j), S(Un

j , γi j)
)
. (4.5)

Then, �i j(u) increases across shocks in the solution of the extended Riemann problem (2.8) (if a shock wave exists).

Proof. We omit the superscript n in the proof to simplify the notation. The solution to the extended Riemann problem 
(2.8), (ρ, m, E, �)T(x, t), is given in Clayton et al. [9]. In particular, we have that γ (x, t) = γi if x/t < v∗ and γ (x, t) = γ j if 
x/t > v∗ . Here, γ (x, t) = �(x, t)/ρ(x, t), and v∗ is the speed of the contact wave. Let Z ∈ {i, j}, with the convention that the 
index i is for the left state and j is for the right state. Assume that the Z -wave is a shock wave. Let u Z ∈ B(b) be the state 
before the shock and let u ∈ B(b) be an arbitrary state connected to u Z through a shock curve. With the notation τ := 1

ρ for 
the specific volume (not to be confused with the time step), and since γ = γZ along the wave curve, the Rankine-Hugoniot 
condition implies that (see Godlewski and Raviart [16, Eq. (4.8), p. 144]), e(u) −eZ + 1

2

(
pcov(τ , e(u)) +pcov(τZ , eZ )

)
(τ −τZ ) =

0, where by slight abuse of notation we renamed the pressure in (2.8) by setting pcov(τ , e) := γZ −1
τ−b e. We then infer that 

e(u) only depends on ρ along the shock curve; more precisely, we have

e(u) = eZ

1 − (γZ −1)(τ−τZ )

2(τZ −b)

1 + (γZ −1)(τ−τZ )

2(τ−b)

=: r(τ ).

Notice that this function is well defined only on the interval (τ∞
Z , ∞) with

τ∞
Z := (γZ −1)τZ +2b

γZ +1 , (4.6)

and it is nonnegative on the interval (τ∞
Z , τ 0

Z ) with τ 0
Z := (γZ +1)τZ −2b

γZ −1 . Notice that b < τ∞
Z < τZ < τ 0

Z since we assumed that 
UZ ∈ B(b). We now show that the function B(b) � u �→ ρe(u) − cργ (1 −bρ)1−γ is nonnegative and increasing on the shock 
curve for all γ ∈ (1, γZ ] and c ∈ (0, eZ (τZ − b)γ −1]. This will then prove the assertion for the choices γ := γi j and c := Smin

i j , 
because γi j ∈ (1, γZ ] and

0 < Smin
i j ≤ �

1−γi j
Z eZ (1 − b�Z )γi j−1 = eZ (τZ − b)γ −1,

i.e., Smin
i j ∈ (0, eZ (τZ − b)γ −1]. Setting q(τ ) := γZ −1

τ−b r(τ ), we have q′(τ ) = −4eZ γZ (γZ −1)

(τ+τZ −2b+γZ (τ−τZ ))2 < 0; hence, the pressure, q, 
is a monotone increasing function of ρ along shock curves. As the pressure increases on shock curves when starting from 
the state UZ , we conclude that ρ also increases along shock curves, i.e., ρ ∈ [�Z , 1b ) or τ ∈ (b, τZ ]. Actually, the pressure is 
finite only in the range τ ∈ (τ∞

Z , τZ ]; hence, showing that B(b) � u �→ ρe(u) − cργ (1 − bρ)1−γ is nonnegative increasing 
on shock curves, is equivalent to showing that

(τ∞
Z , τZ ] � τ �→ g(τ ) := τ−1r(τ ) − cτ−1(τ − b)1−γ

is nonnegative decreasing on shock curves. Recall that the specific entropy for the covolume equation of state is given by 
s(τ , e) = log(e

1
γZ −1 (τ − b)). A fundamental property of the specific entropy is that it is an increasing function along shocks. 

That is, s(τ , r(τ )) is a decreasing function over the interval τ ∈ (τ∞
Z , τZ ]. This also means that (τ∞

Z , τZ ] � τ �→ ς(τ ) :=
exp

(
(γZ − 1)s(τ , r(τ ))

)= r(τ )(τ − b)γZ −1 is a decreasing function. We now have

g(τ ) = τ−1r(τ ) − cτ−1(τ − b)1−γ = ς(τ )τ−1(τ − b)1−γZ − cτ−1(τ − b)1−γ .

Let ς̃ be the defined by ς̃ (τ ) := ς(τ )(τ − b)γ −γZ . Then we have

g(τ ) = (τ − b)1−γ

τ
(ς̃ (τ ) − c).

Computing the derivative of g , we see,

g′(τ ) = (τ − b)1−γ

τ
ς̃ ′(τ ) − (γ − 1)τ + (τ − b)

τ 2(τ − b)γ
(ς̃ (τ ) − c).

Note that

ς̃ ′(τ ) = (τ − b)γ −γZ ς ′(τ ) + (γ − γZ )(τ − b)γ −γZ −1ς(τ ).

Then ς̃ ′(τ ) ≤ 0 as ς ′(τ ) ≤ 0 for τ ∈ (τ∞
Z , τZ ], γ ≤ γZ , and 0 ≤ ς(τ ), and infτ∈(b,τZ ] ς̃ (τ ) = ς̃ (τZ ) = eZ (τZ − b)γ −1 ≥ c as 

ς̃ is a decreasing function. Thus, by the choice of the constants c and γ , we have that g(τ ) ≥ 0 and g′(τ ) ≤ 0. Hence, 
[�Z , 1∞ ) � ρ �→ ρe(u) − cργ (1 − bρ)1−γ is nonnegative increasing on shock curves. This completes the proof. �
τZ

7
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We now define the surrogate entropy. For all i ∈ V, we set

γ min,n
i := min

j∈I(i)
γ n

j , Smin,n
i := min( min

j∈I(i)
S(Un

j ;γ min,n
i ), min

j∈I(i)
S(U

n
i j;γ min,n

i )), (4.7a)

�s
i (u) := ρe(u) − Smin,n

i ργ min,n
i (1 − bρ)1−γ min,n

i . (4.7b)

The following result summarizes the content of this section.

Theorem 4.3 (Surrogate entropy). The following holds true with the same assumptions and definitions as in Lemma 4.2:

(i) The function �s
i : B(b) →R is concave.

(ii) Let UL,n+1
i be the update defined in (2.4). We have �s

i (U
L,n+1
i ) ≥ 0 under the CFL condition τ

∑
j∈I(i)\{i}

2dL,n
i j

mi
≤ 1.

(iii) Let j ∈ I(i). Consider the extended Riemann problem (2.8) with left data (�n
i , M

n
i ·ni j, En

i , �n
i )

T and right data (�n
j , M

n
j ·ni j, En

j ,

�n
j )

T . If the solution to (2.8) has shock waves, then the function �s
i (u) increases across the shocks.

Proof. (i) Recall that u �→ ρe(u) is concave. Moreover, the function φ(x) = x( 1
x − b)γ

min,n
i is convex because γ min,n

i ≥ 1. As 

a result, −Smin,n
i ργ min,n

i (1 − bρ)1−γ min,n
i = −Smin,n

i φ(ρ) is concave because Smin,n
i ≥ 0. This proves that �s

i : B(b) → R is 
concave.

(ii) Recalling from Theorem 2.1 that under the CFL condition τ
∑

j∈I(i)\{i}
2dL,n

i j
mi

≤ 1, the state UL,n+1
i is in the convex hull of 

the states {Un
i j} j∈I(i) , the concavity of the functional �s

i implies that �s
i (U

L,n+1
i ) ≥ min j∈I(i) �

s
i (U

n
i j). But for all j ∈ I(i) we 

have

�s
i (U

n
i j) = (ρe)(U

n
i j) − Smin,n

i (�n
i j)

γ min,n
i (1 − b�n

i j)
1−γ min,n

i

= (S(U
n
i j, γ

min,n
i ) − Smin,n

i )(�n
i j)

γ min,n
i (1 − b�n

i j)
1−γ min,n

i .

And we conclude that �s
i (U

n
i j) ≥ 0 by definition of Smin,n

i . The assertion readily follows.
(iii) The assertion is a consequence of Lemma 4.2. �
4.3. Limiting on the density

Limiting on the density is performed exactly as done in [22, §4.4]. First, we define the local bounds

�min,n
i := min

j∈I(i)
�n

i j and �max,n
i := max

j∈I(i)
�n

i j, (4.8)

where �n
i j is the density of the auxiliary state Un

i j .
Second, we relax these bounds to ensure that second-order accuracy is maintained in the maximum norm. The relaxation 

is done as in [22, §4.7] with a modification of �max,n
i to accommodate the covolume constraint 1 −bρ > 0. This modification 

is justified in the following lemma.

Lemma 4.4 (Maximum density bound). The following holds true.

(i) The density in the Riemann problem (2.8) satisfies the following upper bound

ρ ≤ max
Z∈{i, j}

1

τ∞
Z

= max
Z∈{i, j}

(γZ + 1)ρZ

(γZ − 1) + 2bρZ
. (4.9)

(ii) Under the CFL condition stated in Theorem 2.1, the low-order update satisfies the following:

�L,n+1
i ≤ (γ min,n

i + 1)�max,n
i

(γ min,n
i − 1) + 2b�max,n

. (4.10)

Proof. (i) Let Z ∈ {i, j}, with the convention that the index i is for the left state and j is for the right state. Recall that 
the pressure in the Riemann problem (2.8) is defined by the function pcov(U) (with a slight abuse of notation) and we also 
have pZ = pcov(UZ ). If the elementary Z -wave is an expansion then ρ decreases along the expansion wave and we have 
ρ ≤ �Z . If instead the elementary Z -wave is a shock, we have established in the proof of Lemma 4.2 that τ ∈ (τ∞

Z , τZ ], i.e., 
ρ ∈ [ρZ , 1

τ∞
Z

); see (4.6). Whence the assertion.

(ii) Using (4.1a), we observe that
8
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�L,n+1
i ≤ max

j∈I(i)
�n

i j ≤ max
j∈I(i)

γ j + 1

(γ j − 1)τ j + 2b
= max

j∈I(i)

(γ j + 1)� j

(γ j − 1) + 2b� j
.

As the function (γ +1)ρ
(γ −1)+2bρ is monotone increasing with respect to ρ and monotone decreasing with respect to γ , the 

inequality (4.10) follows readily. �
Proceeding as in [22, §4.7], we estimate the local curvature of the density by

�2�n
i :=

∑
j∈I(i)\{i} βi j(�

n
i − �n

j )∑
j∈I(i)\{i} βi j

, �2�n
i := 1

2(card(I(i)) − 1)

∑
j∈I(i)\{i}

( 1
2 �2�n

i + 1
2 �2�n

j ), (4.11)

where βi j = ∫D ∇ϕ j ·∇ϕi dx are the stiffness coefficients of the Laplace operator and we recall that {ϕi}i∈V are the global 
shape functions. We note in passing that 

∑
j∈I(i)\{i} βi j = −βii = − 

∫
D(∇ϕi)

2 dx �= 0. The relaxed local density bounds are 
then defined as follows:

�min,n
i := max(�min,n

i − �2�n
i , (1 − rh)�

min,n
i ), (4.12)

�max,n
i := min(�max,n

i + �2�n
i , (1 + rh)�

max,n
i ,

(1+γ min,n
i )�max,n

i

γ min,n
i −1+2b�max,n

i

), (4.13)

where rh := (
mi|D| )

1.5
d . The argumentation for the presence of the terms involving 1 − rh and 1 + rh is given in Remark 4.15 in 

[22, §4.7].

The actual limiting on the density guaranteeing that �min,n
i ≤ �n+1

i ≤ �max,n
i is done as explained in [22, §4.4].

4.4. Limiting on the surrogate entropy

After limiting the density, we limit the surrogate entropy. Recall that we established in Theorem 4.3 that �s
i (U

L,n+1
i ) ≥ 0. 

We want the limiting operation to guarantee that �s
i (U

n+1
i ) ≥ 0 as well. This limiting in turn implies a positive lower bound 

on the internal energy. In this section we use the notation v := (ρ(v), m(v), E(v)) for all v ∈Rd+2; that is, ρ(v) is the first 
component of v , m(v) ∈Rd is composed of the components 2 to d + 1, and E(v) is the last component of v .

The limiting on �s
i is done with the convex limiting explained in [22, Sec. 4.2]. Given some state Pi j ∈Rd+2, j ∈ I(i)\{i}, 

and �0 ∈ [0, 1] so that 0 < ρ(UL,n+1
i + �0Pi j) < b, one has to find the largest � in [0, �0] so that �s

i (U
L,n+1
i + �Pi j) ≥ 0. 

Setting A(b) := {v ∈Rd+2 | 0 < ρ(v) < b−1} and observing that A(b) is convex, we notice that UL,n+1
i + �Pi j ∈ A(b) for all 

� ∈ [0, �0]. This implies that �s
i (U

L,n+1
i + �Pi j) is well-defined for all � ∈ [0, �0]. One sets � = �0 if �s

i (U
L,n+1
i + �0Pi j) ≥ 0; 

otherwise, one solves the equation g(�) = 0 where g(�) := �s
i (U

L,n+1
i +�Pi j). This equation has at least one solution because 

�s
i is continuous. The solution set is connected because �s

i is concave, and the solution set is a singleton if �s
i is strictly 

concave.

Lemma 4.5 (Internal energy). Let Un+1 be the final stage obtained after limiting on the density and the surrogate entropy. Then the 
specific internal energy of this state satisfies the following lower bound for all i ∈ V:

en+1
i ≥ Smin,n

i

( 1
�n

i
− b
)1−γ min,n

i ≥ 0. (4.14)

Remark 4.6 (Entropy for the Covolume EOS). If the oracle coincides with the covolume equation of state, then limiting the 
entropy surrogate is equivalent to limiting the physical entropy.

We now propose two ways to find �∗ so that g(�∗) = 0 assuming that this root is unique. Both methods are iterative 
and are guaranteed to return an answer �̃ that is such that �̃ ↑ �∗ (hence g(�̃) ≥ 0 for every termination criteria). The 
first method consists of proceeding as described in full details in Section 7.5.4 in [23] (see also the end of Section 4.6 in 
[22]). The algorithm is based on the Newton-Secant method. One uses the secant method on the left of �∗ and the Newton 
method on the right. The convergence rate is between 1 and 2. The second method is based on the quadratic Newton 
method and its convergence rate is cubic. Instead of solving �s

i (U
L,n+1
i + �Pi j) = 0 one defines �s

i (v) := ρ(v)�s
i (v) and 

solves �s
i (U

L,n+1
i + �Pi j) = 0. The solution sets of the two equations �s

i (U
L,n+1
i + �Pi j) = 0 and �s

i (v) := ρ(v)�s
i (v) are 

identical since we assumed that 0 < ρ(UL,n+1
i + �Pi j) for all � ∈ [0, �0]. A key to the method is the following result.

Lemma 4.7. Let u ∈ A(b) := {v ∈ Rd+2 | 0 < ρ(v) < b−1} and p ∈ Rd+2 . Assume that u + �0 p ∈ A(b). Let f : [0, �0] � � �→
f (�) := �s(u + �p). The sign of f ′′′(l) is constant over [0, �0].
i

9
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Proof. By definition we have �s
i (v) = ρ(v)E(v) − 1

2 ‖m(v)‖2
� − cρ(v)γ +1(1 − bρ(v))1−γ , with c := Smin,n

i and γ := γ min,n
i . 

Notice that u + �p ∈ A(b) for all � ∈ [0, �0] since A(b) is convex; as a result, f (�) is well-defined for all � ∈ [0, �0]. A direct 
computation shows that

f ′′′(�) = (ρ(p))3∂3
ρ�s

i (u + �p).

But

∂3
ρ�s

i (v) = −cγ (γ 2 − 1)ρ(v)γ −2(1 − bρ(v))−γ −2.

Hence f ′′′(�) has the same sign as −ρ(p) for all � ∈ [0, �0]. �
We now show how the quadratic Newton algorithm can be implemented to estimate �∗ from below. We initialize the 

iterative process by setting �L = 0 and �R = �0. Then, let �L and �R be the current left and right estimates of �∗ with 0 ≤
�L < �∗ < �R ≤ �0. We now construct a quadratic polynomial P L(�) such that P L(�L) = f (�L), P L(�R) = f (�R) and P ′

L(�L) =
f ′(�L). We similarly define the quadratic polynomial P R (�) such that P R(�L) = f (�L), P R(�R) = f (�R) and P ′

R(�R) = f ′(�R). 
Using the divided difference notation we have:

P L(�) := f (�L) + f ′(�L)(� − �L) + f [�L, �L, �R ](� − �L)
2, (4.15a)

P R(�) := f (�R) + f ′(�R)(� − �R) + f [�L, �R , �R ](� − �R)2. (4.15b)

Lemma 4.8. The following holds true:

(i) The polynomials P L(�) and P R(�) bound the function f (�) in the following sense:

min
(

P L(�), P R(�)
)
< f (�) < max

(
P L(�), P R(�)

)
, ∀� ∈ (�L, �R). (4.16)

(ii) P L(�) and P R(�) have each a unique zero over the interval (�L, �R) respectively given by

�L(�L, �R) := �L − 2 f (�L)

f ′(�L) +√ f ′(�L)2 − 4 f (�L) f [�L, �L, �R ] , (4.17a)

�R(�L, �R) := �R − 2 f (�R)

f ′(�R) +√ f ′(�R)2 − 4 f (�R) f [�L, �R , �R ] . (4.17b)

(iii) Properties (i) and (ii) imply that

min
(
�L(�L, �R), �R(�L, �R)

)
< �∗ < max

(
�L(�L, �R), �R(�L, �R)

)
. (4.18)

Proof. (i) The argumentation is largely the same as in the proof Lemma 4.5 in [19] and relies on the sign of f ′′′(�) being 
constant over (�L, �R), as established in Lemma 4.7, which implies that one of the quadratic polynomials (P L(�) or P R(�)) 
is above f (�) and the other one is below f (�) for � ∈ (�L, �R). (ii) Moreover, both polynomials have exactly one zero in the 
interval (�L, �R) given by (4.17) even in the degenerated case when one or both of them are linear functions. �

Lemma 4.8 implies that min
(
�L(�L, �R), �R(�L, �R)

)
is always a lower bound on the root �∗ . The quadratic Newton algo-

rithm consists of replacing �L by min
(
�L(�L, �R), �R(�L, �R)

)
and �R by max

(
�L(�L, �R), �R(�L, �R)

)
and looping until some 

threshold criterion is reached. The convergence rate of this algorithm is cubic.

Remark 4.9 (Relaxation on the surrogate entropy bound). To ensure that second-order accuracy is obtained in the maximum 
norm for smooth solutions, one must relax the surrogate entropy minimum bound Smin,n

i defined in (4.7) (see: Khobalatte 
and Perthame [29, Sec. 3.3]). The relaxation process we use is described in [22, Sec. 4.7.2].

Remark 4.10 (Higher-order accuracy). We have observed empirically that at each time step the convex limiting procedure is 
only active in a small set of degrees of freedom when the solution is smooth. After limiting, the solution retains the order of 
accuracy in space of the provisional high-order update (3.1) (in the Lq-norm q ∈ [1, ∞]). It is essential to relax the density 
and the surrogate entropy bounds as described above to maintain optimality on the convergence rates.

5. Numerical illustrations

In this section we illustrate the proposed method with several benchmarks and experiments.
10
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5.1. Preliminaries

Two independent codes have been written to ascertain reproducibility. The first one, henceforth referred to as the TAMU
code, is serial, does not use any particular software and is written in Fortran 95/2003. It is based on Lagrange elements 
on simplices and is dimension-independent. The second code is based on continuous Q1 finite elements on quadrangular 
meshes and use the Ryujin [34,24] software, a high-performance finite-element solver based on the deal.II library. 
The time-stepping in both codes is done with the three stage, third-order strong stability preserving Runge-Kutta method, 
SSPRK(3,3). The time step is defined by the expression τ = 1

2 CFL× mini∈I
mi∑

j∈I(i)\{i} dL,n
i j

with dL,n
i j defined in (2.6) and CFL ∈

(0, 1) is fixed by the user. We refer the reader to [25, Sec. 4] for a discussion on the implementation of boundary conditions 
for the Euler Equations. In this work, we have modified the non-reflecting boundary conditions described in [25, Sec. 4.3.2]
to account for an arbitrary of state; for brevity, we skip the discussion of the details of said boundary conditions. All the 
computations involving dimensional quantities are done in the SI unit system unless otherwise specified. We have verified 
on all the benchmark tests reported below that the two codes give the same results. For brevity, in each test case, we only 
show the results from one code. The outputs for the one-dimensional tests come from the TAMU code. The outputs for the 
two-dimensional tests come from Ryujin. The tests accessing the SESAME database [33] are only done with the TAMU 
code.

The numerical Schlieren representations of the density field shown in the numerical illustrations are computed with the 
discrete version of [3, Eq. (35)] with β = 15; see the Supplemental Material of Guermond et al. [23] for more details.

5.2. Equations of state

In this section we list the equations of state that we use in the numerical illustrations below. In all the tests reported, 
the equations of state are used as an oracle. We make no assumptions on the physical validity of the equations of state and 
only require that they provide a positive pressure.

Noble-Abel equation of state The caloric Noble-Abel (or covolume) equation of state reads

p(ρ, e) := (γ − 1)
ρe

1 − bρ
. (5.1)

Van der Waals equation of state The caloric Van der Waals equation of state is given by

p(ρ, e) := (γ − 1)
ρe + aρ2

1 − bρ
− aρ2. (5.2)

Mie-Gruneisen with linear Hugoniot locus The Mie-Gruneisen equation of state with a linear Hugoniot locus as the reference 
curve is defined by

p(ρ, e) := pref(ρ) + ρ�(ρ)
(
e − eref(ρ)

)
, (5.3a)

with pref(ρ) := P0 + ρ0c2
0

1 − ρ0
ρ(

1 − s(1 − ρ0
ρ )
)2

, eref(ρ) := e0 + P0 + pref(ρ)

2ρ0
(1 − ρ0

ρ
), (5.3b)

where s > 1. We refer the reader to Menikoff [35, Sec. 4.4] for a discussion of this particular equation of state and respective 
parameters. For simplicity, we take �(ρ) := �0 and P0 = 0, e0 = 0.

Jones-Wilkins-Lee equation of state The pressure given by the Jones-Wilkins-Lee (JWL) equation of state is defined as follows:

p(ρ, e) := A
(

1 − ω

R1

ρ

ρ0

)
exp

(
− R1

ρ0

ρ

)
+ B

(
1 − ω

R2

ρ

ρ0

)
exp

(
− R2

ρ0

ρ

)
+ ωρe. (5.4)

The JWL equation of state was first introduced in Lee et al. [32, Eq. (I.3)]. We refer the reader to Segletes [46] for a discussion 
of the various forms of this equation of state seen in the literature. We note that (5.4) can be recast in “Mie-Gruneisen” 
form as follows:

p(ρ, e) := pref(ρ) + ωρ
(
e − eref(ρ)

)
,

with pref(ρ) := Ae−R1
ρ0
ρ + Be−R2

ρ0
ρ , eref(ρ) := A 1

e−R1
ρ0
ρ + B 1

e−R2
ρ0
ρ .
R1 ρ0 R2 ρ0

11
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Table 1
δ∞(T ) error (5.5) and corresponding convergence rates for the one-dimensional smooth traveling 
wave problem with exact solution (5.6) under uniform refinement of the interval D = (0, 1).

Ideal VdW JWL MG

|V| δ∞(T ) δ∞(T ) δ∞(T ) δ∞(T )

101 1.94e-02 – 1.24e-01 – 7.93e-02 – 1.24e-05 –
201 4.03e-03 2.27 6.24e-03 4.30 2.53e-02 1.65 2.56e-06 2.28
401 7.91e-04 2.35 9.92e-04 2.65 3.61e-03 2.81 5.03e-07 2.35
801 1.44e-04 2.46 1.75e-04 2.51 1.31e-04 4.78 9.17e-08 2.46
1601 2.75e-05 2.39 3.29e-05 2.41 2.51e-05 2.38 1.75e-08 2.39
3201 5.18e-06 2.41 6.17e-06 2.41 4.73e-06 2.41 3.29e-09 2.41
6401 9.69e-07 2.42 1.16e-06 2.42 8.87e-07 2.42 6.22e-10 2.41

5.3. Convergence tests

We now verify the accuracy of the proposed method. We define a consolidated error indicator at time t by accumulating 
the relative error in the Lq-norm (q ∈ [1, ∞]):

δq(t) := ‖ρh(t) − ρ(t)‖q

‖ρ(t)‖q
+ ‖mh(t) − m(t)‖q

‖m(t)‖q
+ ‖Eh(t) − E(t)‖q

‖E(t)‖q
, (5.5)

where ρ(t), m(t), E(t) are the exact states at time t , and ρh(t), mh(t), Eh(t) are the finite element approximations at time 
t for the respective conserved variables.

5.3.1. 1D – Smooth traveling wave
We consider a one-dimensional test proposed in [22, Sec. 5.2] consisting of a smooth traveling wave. The goal of this test 

is to show that we achieve (at least) second-order accuracy in space with any equation of state used for the pressure oracle. 
The smooth traveling wave is an exact solution to the Euler equations where the primitive variables are set as follows:

ρ(x, t) =
{
ρ0 + 26(x1 − x0)

−6(x − v0t − x0)
3(x1 − x + v0t)3 if x0 ≤ x − v0t ≤ x1,

ρ0 otherwise,
(5.6a)

v(x, t) = v0, p(x, t) = p0, (5.6b)

where x0 and x1 are arbitrary constants such that x0 < x1. This solution is compactly supported in space, has two continuous 
derivatives and its third derivative is uniformly bounded and has bounded variations. Just as in [22], we set the constants 
to x0 = 0.1 and x1 = 0.3. Notice that by fixing the pressure to be constant, the solution is independent of the equation of 
state. The internal energy is initiated by using the respective equations of state defined in §5.2. The constants p0, ρ0, v0
are chosen to accommodate for the material in question.

We consider the following four configurations (here, T is the final time of the simulation):

– Ideal EOS: (5.1) with b = 0, γ = 1.4, ρ0 = p0 = v0 = 1, T = 0.6;
– Van der Waals EOS: (5.2) with a = 1, b = 0.075, γ = 1.4, ρ0 = p0 = v0 = 1, T = 0.6;
– Jones-Wilkins-Lee EOS: (5.4) with A = 1, B = −1, R1 = 2, R2 = ω = ρ0 = p0 = v0 = 1, T = 0.6;
– Mie-Gruneisen EOS: (5.3) with ρ̃0 = 2790, c0 = 5330, s = 1.34, �0 = 2.00, ρ0 = 3500, p0 = 1 × 1011, v0 = 1 × 104, 

T = 6 × 10−5.

The tests are performed on uniform meshes with the domain D = (0, 1) using the TAMU code. The first mesh is com-
posed of 100 cells. The other meshes are obtained by uniform refinement via bisection. We use CFL = 0.1 and set Dirichlet 
boundary conditions for all tests. We report in Table 1 the quantity δ∞(T ) and the respective convergence rates for the 
equations of state used. We observe that the convergence rate is greater than 2 with each EOS (this is a well known super 
convergence effect observed on uniform meshes [7,18,50]).

5.3.2. 2D – Isentropic vortex with Van der Waals EOS
To demonstrate higher-order convergence in R2, we consider a novel exact solution of the Euler equations (2.1a)–(2.1c)

using the Van der Waals equation of state (5.2) with b := 0. The exact solution is a modified version of the isentropic vortex 
problem with an ideal gas equation of state (see Yee et al. [53]). For completeness, a derivation of the solution is presented 
in Appendix A.

Recalling that a and γ are the parameters of the Van der Waals equation of state (5.2), the isentropic vortex solution is 
given by

ρ(x, t) =
[3C

8a
− 1

2

√
9C2

16a2
+ 2

a

(
F + 1

2r2
ψ(x)2

)]2
, (5.7a)
0

12
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Table 2
Error quantity (5.5) and convergence rates for the isentropic vortex problem with the 
Van der Waals equation of state. The exact solution is given by (5.7).

|V| δ1(T ) δ2(T ) δ∞(T )

289 1.17e-01 – 2.01e-01 – 6.82e-01 –
1089 1.18e-02 3.46 2.65e-02 3.06 1.05e-01 2.82
4225 7.92e-04 3.98 1.96e-03 3.84 7.87e-03 3.82
16641 5.57e-05 3.87 1.32e-04 3.93 5.50e-04 3.88
66049 5.07e-06 3.48 1.20e-05 3.48 7.79e-05 2.83
263169 7.55e-07 2.76 2.25e-06 2.42 2.03e-05 1.95
1050625 1.64e-07 2.20 5.51e-07 2.04 5.52e-06 1.88
4198401 4.08e-08 2.01 1.38e-07 2.00 1.51e-06 1.87

Table 3
JWL parameters for Woodward-Colella interacting blast wave benchmark.

A B R1 R2 ω ρ0 Final time T

Case 1 6.321 × 103 −4.472 11.3 1.13 0.8938 1 0.038
Case 2 7.7828 × 1011 7.071428×109 4.2 1.00 0.3000 1891 8.2 × 10−4

v(x, t) = v∞ + ψ(x)
(− x̄2, x̄1

)
, (5.7b)

p(x, t) = C(γ − 1)ρ(x, t)γ − aρ(x, t)2, (5.7c)

where x := x − x0 − v∞t = (x1, x2), C := (p∞ + aρ2∞)/ρ
3/2∞ , F := −aρ∞ − 3p∞/ρ∞ . Here ρ∞ and p∞ are the density and 

pressure in the far field, and ψ(x) := β
2π exp

(
1
2 (1 − 1

r2
0
‖x‖2

�2)
)

. We set the far field conditions to ρ∞ = 0.1, p∞ = 1 and 

v∞ = (1, 1). We also set γ = 3
2 and a = 1. This gives C = 101√

10
and F = − 301

10 . The rest of the constants are set as follows: 
x0 = (−1, −1), r0 = 1, β = 20. We perform the convergence tests using the Ryujin code. The computational domain is set 
to D = (−5, 5)×(−5, 5). We run the simulations until the final time T = 2 with CFL = 0.1 and Dirichlet boundary conditions. 
In Table 2, we report the δq(T ) errors and the respective convergence rates for q ∈ {1, 2, ∞}. The tests are done over eight 
quadrilateral grids and seven levels of uniform refinements. We observe second-order convergence in all the norms.

5.4. Benchmark configurations

In this section, we consider common benchmarks seen in the literature and modify them appropriately using different 
equations of state. Our goal is to compare the present method with the state of the art in the literature.

5.4.1. 1D – Woodward-Colella blast wave
We demonstrate the robustness of the proposed method by reproducing the Woodward-Colella interacting blast wave 

benchmark using the Jones-Wilkins-Lee equation of state (5.4). For this benchmark, we consider two different cases. The 
first is that seen in Toro et al. [51, Sec. 5.1] and the second consists of parameters found in Lee et al. [32, Tab. 2(“HMX”)]. 
The parameters for both cases are given in Table 3.

The initial state for the blast wave problem is given as follows:

(ρ0(x), v0(x), p0(x)) =

⎧⎪⎨⎪⎩
(1,0,103) if x ∈ [0,0.1],
(1,0,10−2) if x ∈ (0.1,0.9),

(1,0,102) if x ∈ [0.9,1].
(5.8)

The simulations are performed on the domain D = (0, 1) with the TAMU code. All the tests use CFL = 0.9 and slip boundary 
conditions. We show in Fig. 1 the density profiles for both cases at their respective final times using three different meshes 
composed of 1600, 6400, and 25600 elements. The results compare well with what is available in the literature; see e.g., 
Toro et al. [51, Fig. 2] for Case 1.

5.4.2. 1D – Riemann problem with SESAME database
We now demonstrate the method’s ability to handle tabulated data as the pressure oracle. In particular, we consider a 

Riemann problem modeling the impact of a right-moving aluminum slab into a stationary aluminum slab at high velocities. 
To simulate the material aluminum, we use the Material ID 3720 in the SESAME database [33] (access to the database 
can be obtained by contacting sesame@lanl.gov). We let the density of the two aluminum slabs be ρ0 = 3000 kg m−3 . 
The pressure at this density and at room temperature (293 K) is p0 = 1.004 489 × 1010 Pa (this value is obtained from 
the SESAME database). For completeness, given these pressure and density values, the initial specific internal energy is 
e0 = 1.106 117 × 105 J kg−1 .
13
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Fig. 1. Density profile for the Woodward-Colella blast wave problem using the Jones-Wilkins-Lee equation of state. Left: Case 1 at T = 0.038. Right: Case 2 
at T = 8.2 × 10−4 .

Fig. 2. Density comparison for the aluminum impact problem with the TAMU and xRAGE codes using the SESAME database.

The computational domain is set to D = (0, 0.05 m) where the two aluminum slabs are separated at x = 0.025 m. We 
consider two cases: we assume in the first case that the left slab initially moves with velocity 800 m s−1 (Case 1), and in the 
second case we assume that the velocity is 2000 m s−1 (Case 2). The simulations are run until final time T = 2 × 10−6 s and 
performed with 250, 1000 and 4000 mesh elements to show convergence. We use CFL = 0.5 and set Dirichlet conditions on 
the left boundary and slip conditions on the right boundary. For verification, we run the same configuration with the xRAGE
code developed at Los Alamos National Laboratory (see: [15] and [17]). In Fig. 2, we show the density output comparison 
between the two codes. We see very good agreement between the codes. The small oscillations seen on the xRAGE results 
14
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Fig. 3. Shock wave interacting with triangular obstacle at t = {1 × 10−3,1.6 × 10−3,2.2 × 10−3}.

are also observed with the TAMU code when relaxation on the density and the surrogate entropy is active. The relaxation is 
disabled in the results shown here. This test clearly demonstrates the method’s ability to handle tabulated data.

5.5. 2D – Shock collision with triangular obstacle

We now reproduce a 2D problem proposed in Toro et al. [51, Sec. 5.4] which investigates traveling shock waves colliding 
with a triangular obstacle. This configuration is commonly known in the literature as Schardin’s problem [45]. We refer the 
reader to Chang and Chang [6] where the authors experimentally reproduced Schardin’s original experiments and give a 
detailed description of the experiments.

This test is performed with the Van der Waals equation of state (5.2) with γ = 864.7/577.8, a = 0.14, b = 3.258 × 10−5

and initialized as follows. The relative Mach speed is M S = 1.3 with the primitive state in front of the shock set to u R =
(1.225, 0, 0, 101325)T . Using the Rankine-Hugoniot conditions to derive the post shock state, the complete initial state is 
given as follows:

(
ρ0(x), v0(x), p0(x)

)= {(1.82039,148.597,0,185145), if x ≤ −0.55,

(1.225,0,0,101325), if x > −0.55.
(5.9)

The computations are performed with the Ryujin code. The computational domain is defined as D = (−0.65, 0.5) ×
(−0.5, 0.5)\K where K is the triangle formed by the vertices (−0.2, 0.0), (0.1, 1/6), and (0.1, −1/6). The simulations are 
run until T = 2.2 × 10−3 with a CFL of 0.6. The mesh is composed of 7,347,200 Q1-nodes. Dirichlet conditions are imposed 
on the left boundary, dynamic outflow conditions on the right boundary and slip conditions on the rest of the boundaries.

We show in Fig. 3 the Schlieren output of the shock wave interacting with the triangular obstacle at three time snapshots 
t = {1 × 10−3, 1.6 × 10−3, 2.2 × 10−3}. The results match up well with the experimental photos shown in [6]. In particular, 
we see vortices developing along the slip layer behind the back vertices of the triangle (see: [6, Fig. 8]); these so-called 
vortexlets are not apparent in [51, Fig. 6] likely due to a lack of mesh resolution.

5.6. 2D – Shock bubble interaction

In this section, we consider a single material shock-bubble interaction benchmark proposed in Wang and Li [52, Sec 5.2.2]
using the Jones-Wilkins-Lee equation of state. For more details on shock-bubble interaction problems, we refer to Haas and 
Sturtevant [26] for experimental results and to Quirk and Karni [41] for the description of the simulation setup. This test 
demonstrates the robustness of our method by being able to reproduce the complex interactions of the shock hitting the 
bubble.

Let B denote the bubble centered at (0.5, 0.5) with radius 0.25. The primitive states at the initial time for the ambient 
fluid and bubble are respectively defined as follows:

(ρR , v R , pR) = (1.0 × 103,0,5.0 × 1010), (5.10)

(ρB, vB, pB) = (2.0 × 103,0,5.0 × 1010). (5.11)

The pressure across the shock is prescribed to be pL = 4.369 × 1011, and the remaining state variables, ρL and v L , are 
computed using the Rankine-Hugoniot conditions. Thus, the initial primitive state for the problem is given by

(ρ0(x), v0(x), p0(x)) =

⎧⎪⎨⎪⎩
(3778.85,16867.6,0,4.369 × 1011), if x < 0.05,

(1000,0,0,5 × 1010), if x ≥ 0.05 and x /∈B,

(2000,0,0,5 × 1010), if x ∈B.

(5.12)
15
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Fig. 4. Schlieren plots for the shock-bubble interaction benchmark for t = 40 μs.

Fig. 5. Schlieren plots for the shock-bubble interaction benchmark for t = 70 μs.

Fig. 6. Schlieren plots for the shock-bubble interaction benchmark for t = 100 μs (bottom).

We perform the tests with the Ryujin code. The parameters for the JWL EOS (5.4) are set to

A = 8.545 × 1011, B = 2.05 × 1010, R1 = 4.6, R2 = 1.35, ω = 0.25, ρ0 = 1.84 × 103.

The computational domain is set to D = (0, 3)× (0, 1) and the mesh is composed of 50,348,033 Q1-nodes. The simulations 
are performed until the final time T = 100 μs with CFL= 0.5. Slip boundary conditions are applied on all boundaries. In 
Figs. 4 to 6, we show the Schlieren plots of the density at times t ∈ {40 μs, 70 μs, 100 μs}. The results compare well with 
Figs. 5.6 and 5.7 shown in Wang and Li [52].

5.7. Composite wave diffraction around a backward facing step

We now consider the phenomenon of a composite wave diffracting around a 90◦ angle. Experimental results for shock 
waves for a number of different fluids and geometries have been reported in Bazhenova et al. [4]. Shock wave diffraction 
(at least for the case of an ideal gas equation of state) is a frequently studied problem with results reported for a variety 
16
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Fig. 7. Comparison of numerical Schlieren plots for first-order accurate (top row) and second-order accurate (bottom row) solutions at time T = 0.02 s. The 
mesh resolution increases from left to right as follows: 1,116,289, 4,460,801, and 17,834,497 Q1-nodes.

of different Mach numbers; we refer the reader to Artebrant and Schroll [1], Ripley et al. [42] and to a collection of posters 
from the 18th International Symposium on Shock Waves (ISSW) published in Takayama and Inoue [48]. However, only a few 
results are available in the literature for non-ideal fluids. Brown and Argrow [5] have simulated the shock wave diffraction 
problem for Bethe-Zeldovich-Thompson fluids using the Van der Waals equation of state.

We recreate Problem TD3 reported in [5] with the notable difference that we retain the dimensional form of the Van 
der Waals equation of state instead of nondimensionalizing the equations. We also modify the initial data so that it satisfies 
the Rankine-Hugoniot conditions, which is not the case of the initial states reported in [5]. More precisely, we use the Van 
der Waals EOS (5.2) with a = 2.2 Pa m6/kg2, b = 7.25 × 10−4 m3/kg, and γ = 1.0125. Note that γ < 1.06 which ensures the 
existence of a thermodynamic region where the fundamental derivative is negative, see [49, §3.1] or [14, §6.3]. The right 
state is given by (ρR , v R , pR) = (128.76 kg/m3, 0 m/s, 89 910.6 Pa). We prescribe the left pressure to be pL = 156 568 Pa and 
compute the remaining states through the Rankine-Hugoniot conditions. The shock Mach number is MS = S/aR ≈ 1.22, 
where S ≈ 28.06 m/s is the shock speed and aR is the material speed of sound.

The computational domain is given by D = ([0, 0.125] × [0.5, 1]) ∪ ([0.125, 1.125] × [0, 1]). For the boundary conditions, 
we enforce Dirichlet on {x = 0}, dynamic outflow on {x = 1.125}, and slip on the remaining boundaries. The simulations 
are done with the Ryujin code using three meshes with 1,116,289, 4,460,801, and 17,834,497 Q1-nodes to observe 
convergence. We run until final time T = 0.02 s with CFL = 0.5. The numerical Schlieren plots at the final time are shown 
in Fig. 7. One important property of this test is that the structure created at the initial time is a composite wave composed 
of a shock followed by an expansion (see the vertical structure normal to the top of the channel). Another feature of 
this problem is that, immediately upon diffracting around the corner, a second composite wave is created; this wave is 
composed of an expansion followed by a shock. In Fig. 7 the wave in question is the oblique structure attached to the 
corner. The simulations have been done with the low-order method and the second-order method described in the paper to 
convince the reader and ourselves that the composite waves observed here are physical. We indeed observe that the same 
composite waves are present in both series of simulations.

6. Conclusion

We have developed an invariant-domain preserving second-order accurate method for the Euler equations with arbitrary 
or tabulated equation of states. The work presented is the continuation and extension of Guermond et al. [22] and Clayton 
et al. [9]. We proposed a surrogate entropy functional that increases across shocks in the associated 1D Riemann problem to 
work around the lack of a general mathematical entropy valid for arbitrary equations of state. A convex limiting procedure 
was performed on this surrogate entropy functional to enforce a local minimum principle. This in turn implies a positive 
local lower bound on the internal energy. Numerical evidence of higher-order accuracy was demonstrated with convergence 
tests and several computational benchmarks.
17
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Appendix A. Isentropic vortex with van der Waals equation of state

We present a derivation of the isentropic vortex solution with the van der Waals equation of state and give some 
necessary conditions for the existence of this solution.

Theorem A.1. Consider the van der Waals equation of state (5.2) with a > 0, b := 0, and γ := 3
2 or γ := 2. Let x0 ∈R2 , β > 0, r0 > 0. 

Let ρ∞ > 0, v∞ ∈R2 , p∞ > 0 and assume that

p∞ > 1
3 aρ2∞, aρ∞ + 3p∞

ρ∞
>

β2 exp(1)

8r2
0π

2
(A.1)

if γ = 3
2 . The following density, velocity, and pressure fields solve the compressible Euler equations (2.1a)–(2.1c) with the van der Waals 

equation of state:

ρ(x, t) :=

⎧⎪⎨⎪⎩
(

3C
4a − 1

2

√
9C2

4a2 + 2
a

(
F + 1

2r2
0
ψ(x)2

))2
, if γ = 3

2 ,

ρ∞ − ρ2∞
4p∞r2

0
ψ(x), if γ = 2,

(A.2a)

v(x, t) := v∞ + ψ(x)(−x̄2, x̄1)
T, (A.2b)

p(x, t) := Cρ(x, t)γ − aρ(x, t)2, (A.2c)

with ψ(x) := β
2π exp( 1

2 (1 − 1
r2

0
‖x‖2

�2 )), (x̄1, ̄x2) = x := x − x0 − v∞t, C = (p∞ + aρ2∞)/ρ
3/2∞ , and F = −aρ∞ − 3p∞/ρ∞ .

Proof. The derivation of the isentropic vortex begins with the additional assumption that the velocity field is divergence 
free. That is, ∇·v = 0. Under this assumption the Euler equations take the following simplified form:

∂tρ(x, t) + v(x, t)·∇ρ(x, t) = 0, x ∈R2, t > 0, (A.3)

∂t v(x, t) + (v(x, t)·∇)v(x, t) = − 1

ρ(x, t)
∇p(x, t), x ∈R2, t > 0 (A.4)

∂te(x, t) + v(x, t)·∇e(x, t) = 0, x ∈R2, t > 0, (A.5)

with x := (x1, x2), boundary conditions, (ρ∞, v∞:=(v1,∞, v2,∞)T, p∞) and yet to be determined initial conditions 
(ρ0(x), v0(x), p0(x)). To keep things general, we make no assumption on the equation of state for p = p(ρ, e).

We write the solution as a perturbation of the far-field state; i.e., we define v := v∞ + δv with

δv(x, t) :=
(

∂x2ψ(x − x0 − v∞t)
−∂x1ψ(x − x0 − v∞t)

)
, (A.6)

with the stream function ψ(x) := β
2π exp( 1

2 (1 − ‖x‖2
�2

r2
0

)). Here x0 := (x0
1, x

0
2) ∈ R2, β , and r0 are free parameters. To further 

simplify notation, define (x̄1, ̄x2) = x := x − x0 − v∞t and r2 := ‖x‖2
�2 . Note the following identities which will be used later 

on:

∂xi ψ(x) = − x̄i

r2
0

ψ(x), (A.7)

∂xi x j ψ(x) = 1

r2

(
− δi j + x̄i x̄ j

r2

)
ψ(x), (A.8)
0 0
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∂txi ψ(x) = 1

r2
0

(
vi,∞ − x̄i v∞ · x

r2
0

)
ψ(x), (A.9)

where δi j is the Kronecker symbol and i, j ∈ {1, 2}.
Using that v = v∞ + δv , the left hand side of (A.4) becomes,

∂t v + v · ∇v = ∂t(δv) + (v∞ · ∇)δv + (δv · ∇)δv. (A.10)

From the definition of δv and the identities (A.7), (A.8) and (A.9), we have,

(δv · ∇)δv =
[

(∂x2ψ)(∂2
x1x2

ψ) − (∂x1ψ)(∂2
x2

ψ)

−(∂x2ψ)(∂2
x1

ψ) + (∂x1ψ)(∂2
x1x2

ψ)

]
= − x

r4
0

ψ(x)2 (A.11)

(v∞ · ∇)δv = 1

r2
0

(
−
[

v2,∞
−v1,∞

]
+ v∞ · x

r2
0

[
x̄2

−x̄1

])
ψ(x) (A.12)

∂t(δv) = 1

r2
0

([ v2,∞
−v1,∞

]
− v∞ · x

r2
0

[
x̄2

−x̄1

])
ψ(x) (A.13)

Thus equation (A.4) becomes − x
r4

0
ψ(x)2 = − 1

ρ ∇p. This identity is furthermore written as,

− 1

2r2
0

∇(ψ(x)2) = 1

ρ(t, x)
∇p(ρ(t, x)). (A.14)

Up to this point, we have not made any assumption on the equation of state. We recover the well known isentropic 
vortex solution if we assume the pressure is given by the ideal gas law; i.e., p(ρ) = Cργ for the isentropic flow where 
C = p∞/ρ

γ
∞ . We now proceed with the van der Waals equation of state. For isentropic flows we have

p(ρ) = Cργ

(1 − bρ)γ
− aρ2, (A.15)

where C is some constant. (Note, we work with an arbitrary b to keep things general in the beginning.) Following the same 
process as in the ideal gas case, we compute the indefinite integral, 

∫ 1
ρ ∂xi p(ρ) dxi :

− 1

2r2
0

∫
∂xi ψ(x)2 dxi =

∫
1

ρ
∂xi p(ρ) dxi = p(ρ)

ρ
+
∫

p(ρ)

ρ2
∂xi ρ dxi

= p(ρ)

ρ
+
∫ ( Cργ −2

(1 − bρ)γ
− a
)
ρxi dxi = p(ρ)

ρ
+
∫

∂

∂xi

[ C

γ − 1

( ρ

1 − bρ

)γ −1 − aρ
]

dxi

= Cργ −1(γ − bρ)

(γ − 1)(1 − bρ)γ
− 2aρ + F .

Hence, ρ(x) can be found by solving the equation,

− 1

2r2
0

ψ(x)2 = Cργ −1(γ − bρ)

(γ − 1)(1 − bρ)γ
− 2aρ + F . (A.16)

We have two immediate cases for solutions that can be found explicitly.
Case 1: γ = 3/2 and b = 0: In this case, (A.16) becomes a quadratic equation for √ρ ,

ρ − 3C

2a

√
ρ − 1

2a

(
F + 1

2r2
0

ψ(x)2
)

= 0. (A.17)

The constants C and F are determined by applying the far field condition to (A.15) and (A.17):

C = p∞ + aρ2∞
ρ

3/2∞
and F = −aρ∞ − 3p∞

ρ∞
. (A.18)

However, care must be taken in the choice of p∞ and ρ∞ so that the sound speed remains real. Recall that the sound speed 
for the van der Waals EOS is c(ρ, p) =

√
γ p+aρ2

ρ(1−bρ)
− 2aρ . The hypothesis p∞ > 1

3 aρ2∞ guarantees that c(ρ∞, p∞)2 > 0.

The physical root for equation (A.17) is √ρ = 3C
4a − 1

2

√
9C2

4a2 + 2
a

(
F + 1

2r2
0
ψ(x)2

)
. Furthermore, for the root to be real we 

require that −F > 1
2 ψ(x)2 for all x ∈R2. In particular,
2r0
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aρ∞ + 3p∞
ρ∞

>
β2 exp(1)

8r2
0π

2
. (A.19)

Lastly, we must justify that the system remains hyperbolic; that is, the sound speed is real for all (x, t) ∈ R2×[0, ∞). 
Since the flow is isentropic, the sound speed for the van der Waals EOS (with γ = 3/2 and b = 0) is, f (ρ) := c(p(ρ), ρ)2 =
3
2 C

√
ρ − 2aρ . Note that limρ→0+ f (ρ) = 0, f ′(ρ) = 3C

4
√

ρ
− 2a, and limρ→0+ f ′(ρ) = ∞. Therefore, f (ρ) has a maximum 

at ρ = ( 3C
8a

)2
and hence f (ρ) > 0 for ρ ∈ (0, 

( 3C
8a

)2
). From the definition of ρ , (A.2a), we see that 0 < ρ <

( 3C
4a

)2
. Thus the 

sound speed is always real.
Case 2: γ = 2 and b = 0: For these choices of parameters, (A.16) becomes,

2(C − a)ρ + F + 1

2r2
0

ψ(x) = 0. (A.20)

Using the far field boundary conditions for (A.2c) and (A.20) we find that C = p∞
ρ2∞

+ a and F = −2p∞/ρ∞ , respectively. 
Solving for ρ in (A.20) we have,

ρ = ρ∞ − ρ2∞
4p∞r2

0

ψ(x). (A.21)

Note the sound speed is c(p(ρ), ρ)2 = 2(C − a)ρ = 2p∞
ρ∞ ρ > 0. �
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