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Abstract. We construct and analyze a discontinuous Galerkin method to solve advection-
diffusion-reaction PDEs with anisotropic and semidefinite diffusion. The method is designed to
automatically detect the so-called elliptic/hyperbolic interface on fitted meshes. The key idea is to
use consistent weighted average and jump operators. Optimal estimates in the broken graph norm
are proven. These are consistent with well-known results when the problem is either hyperbolic or
uniformly elliptic. The theoretical results are supported by numerical evidence.
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1. Introduction. Discontinuous Galerkin (DG) methods were originally intro-
duced to solve transport equations in [23, 24, 25] and later extended to problems in-
volving second-order elliptic operators in [1, 4, 26]. For many years, the development
and analysis of DG methods have followed two somewhat parallel routes according to
the hyperbolic or elliptic nature of the problem at hand. A unifying viewpoint has
recently been proposed in a series of papers [10, 11, 13], where the authors rely on
the Friedrichs framework originally proposed in [17] to perform an abstract analysis
valid for a variety of (linear) PDE systems.

The goal of the present work is to merge even further the hyperbolic and elliptic
points of view by considering advection-diffusion-reaction problems with discontin-
uous, anisotropic, and semidefinite diffusivity (or, using the terminology from [22],
scalar-valued second-order PDEs with nonnegative characteristic form). One major
difficulty associated with this class of problems is that only the conservative flux is
continuous and, at variance with uniformly elliptic problems, the scalar field can be
discontinuous across hyperbolic/elliptic interfaces (see (2.4) for the definition of these
interfaces). The literature in numerical analysis dedicated to this topic is scarce. This
issue has been investigated in one space dimension by Gastaldi and Quarteroni in [18],
where interface conditions are derived using asymptotic analysis. In [22], Houston,
Schwab, and Süli propose and analyze a DG method for PDEs with nonnegative char-
acteristic form in higher space dimensions. They treat hyperbolic/elliptic interfaces in
a numerical example at the end of the paper (see [22, section 6.4]). Another example
can be found in [14]. Both proposed techniques are ad hoc in the sense that they
require removing a priori some penalty terms at the hyperbolic/elliptic interface. Our
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objective is to go beyond [14, 18, 22] by proposing a DG method that automatically
detects the so-called hyperbolic/elliptic interface under the mild assumption that the
mesh fits the discontinuities of the diffusion tensor.

The material is organized as follows. We introduce the model problem in section 2.
It is a multidimensional scalar-valued second-order PDE with nonnegative characteris-
tic from. We derive the multidimensional counterpart of the one-dimensional interface
condition introduced in [18]. We reformulate the problem as a symmetric Friedrichs
system (in the spirit of [10, 13, 17]) by identifying appropriate interface and boundary
operators. A well-posedness result is proven under some assumptions. In section 3 we
focus our attention on the discrete problem. We propose a DG approximation based
on the weak formulation of the continuous problem with boundary and interface con-
ditions enforced weakly. The discrete bilinear form is designed so that the correct
interface conditions are automatically enforced on fitted meshes without identifying
a priori the hyperbolic/elliptic interfaces. The basic requirements on the bilinear
form are that it be strongly consistent, continuous, and (in the spirit of Friedrichs)
L2-coercive. The convergence of the method is proven in section 4, and the main
results are stated in Theorems 4.5 and 4.7. The error estimates are optimal in the
broken graph norm and compatible with those presented in [10, 11] when the prob-
lem is either hyperbolic or uniformly elliptic. Implementation issues are addressed in
section 5, and variants of the method are discussed. Section 6 is devoted to numer-
ical experiments illustrating the performance of the proposed method. Concluding
remarks are contained in section 7.

2. The continuous problem. In this section we introduce the model problem,
and we recast it as a first-order PDE system endowed with a Friedrichs-like structure.
We then derive a weak formulation where boundary and interface conditions are en-
forced naturally. This formulation will be the starting point for the design of the DG
method constructed in section 3.

2.1. The PDE setting. Let Ω ⊂ R
d be a bounded, open, and connected Lips-

chitz domain with boundary ∂Ω and outward normal n. The problem investigated in
the present work consists of the following scalar-valued PDE:

(2.1) ∇·(−ν∇u + βu) + μu = f,

with data f ∈ L2(Ω). Boundary conditions are specified later in this section. The
following assumptions are made on the coefficients:

(i) ν ∈ [L∞(Ω)]d,d is a symmetric positive semidefinite tensor field, meaning that
for all r ∈ R

d and for a.e. (almost every) x ∈ Ω, rtν(x)r ≥ 0;

(ii) β ∈ [C1(Ω)]d and μ ∈ L∞(Ω);

(iii) there is some μ0 > 0 so that μ + 1
2∇·β ≥ μ0 for a.e. x ∈ Ω.

Throughout the rest of this work, the symbols � and � are used for inequalities that
hold up to a real positive multiplicative constant that is independent of ν (and dis-
cretization parameters like the meshsize) but may depend on β and μ (and regularity
parameters of the mesh family considered later on).

We finally assume that the field ν is discontinuous and that we know the location
of the discontinuities. More precisely, we assume that we are given a partition of Ω

into Lipschitz connected subdomains PΩ
def
= {Ωi}Ni=1 so that the following holds:

(iv) ν is piecewise constant on the partition PΩ, and the problem is normalized
so that ‖ν‖[L∞(Ω)]d,d ≤ 1.
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We introduce the symbol Γ to denote the union of the inner boundaries of the
subdomains Ωi, i.e.,

(2.2) Γ
def
= {x ∈ Ω; ∃i1, i2 ∈ {1, . . . , N}, i1 	= i2, x ∈ ∂Ωi1 ∩ ∂Ωi2}.

The unit outward normals to Ωi1 and Ωi2 are denoted by ni1 and ni2 . For a.e. x ∈ Γ,
the two indices i1, i2 are chosen such that (ntνn)(x)|Ωi1

≥ (ntνn)(x)|Ωi2
. We also

denote by n the two-valued field on Γ such that, for x ∈ ∂Ωi1∩∂Ωi2 , n(x) = {ni1 , ni2}.
For every two-valued function ϕ on Γ, we denote by ϕ1 the value of ϕ which is

defined on the side of Ωi1 and by ϕ2 the value of ϕ which is defined on the side of
Ωi2 . For example, when applying this convention to the normal vector n, we have
n1 = ni1 and n2 = ni2 . Mean values and jumps across Γ are defined as follows:

(2.3) {ϕ} def
= 1

2 (ϕ1 + ϕ2), [[ϕ]]
def
= ϕ1 − ϕ2.

2.2. The interface/transmission conditions. Since we are not requiring that
ν be uniformly positive definite, the mathematical nature of the PDE can change over
the domain. To account for this, we define the subset I ⊂ Γ that we subsequently
refer to as the elliptic/hyperbolic interface:

(2.4) I
def
= {x ∈ Γ; (ntνn)(x)|Ωi1

> 0 and (ntνn)(x)|Ωi2
= 0}.

For any x in I, we refer to Ωi1 as the elliptic side of I at x, and we refer to Ωi2 as
the hyperbolic side of I at x. Note that the terms elliptic and hyperbolic are not
volumic properties but interface properties. Ωi1 being the elliptic side of I at x does
not mean that the diffusivity is positive definite in Ωi1 . The diffusivity may not be
positive definite in Ωi1 , but still have a nonzero component in the normal direction
at x and vice versa for the hyperbolic side. We now define

(2.5) Ω† def
= Ω \ I, I+ def

= {x ∈ I; β·n1 > 0}, I−
def
= {x ∈ I; β·n1 < 0}.

I+ (resp., I−) is the subset of I where the advection field flows from the elliptic side to
the hyperbolic side (resp., hyperbolic side to the elliptic side). The reader is referred
to Figures 2(a)–2(b) for examples illustrating these definitions.

Let κ
def
= ν1/2. The assumptions on ν imply that κ is bounded and positive semi-

definite. We now rewrite (2.1) in mixed form by introducing the auxiliary unknown
σ so that

(2.6)

{
σ + κ∇u = 0 in Ω†,

∇·(κσ + βu) + μu = f in Ω,

and we require the following continuity property to hold:

(int1) [[u]] = 0 on I+.

Observe that σ is defined in Ω† only. Indeed, u may be discontinuous across I,
in which case κ∇u cannot be defined in the distributional sense, since the product
of a discontinuous function and a distribution is not legitimate within the standard
distribution theory. Note also that (int1) demands that u be continuous only on the
portion of I where the advection field flows from the elliptic to the hyperbolic side.
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The above formulation implies the following formal property:

(int2) {(κσ + βu)·n} = 0 on Γ,

since the second equation in (2.6) is expected to hold in the whole domain Ω. Similarly,
the first equation in (2.6) formally implies that

(2.7) [[u]] = 0 across Γ \ I.

Finally by combining (int1)–(int2) on I+ and using Lemma 2.1 together with the
continuity of β, we observe that (int1) amounts to enforcing

(2.8) nt
1κ1∇u1 = 0 on I+.

Lemma 2.1. Let ν be a d×d positive semidefinite matrix; then

∀r ∈ R
d, (νr = 0) ⇔ (rtνr = 0).

This simple lemma will be frequently invoked in the paper.

2.3. Asymptotic justification. In one space dimension, (int1)–(int2) are the
interface conditions derived by Gastaldi and Quarteroni in [18], and these are the
transmission conditions used in [8, 14]. These conditions are deduced by considering
the following regularized problem supplemented with suitable boundary conditions:

(−νu′
ε + βuε)

′ + μuε − εu′′
ε = f.

Under the hypothesis that β is a nonzero constant, it can be proved that, as ε → 0, uε

converges in L2(Ω) to the so-called viscosity solution of (2.6) which satisfies (int1)–
(int2).

As an example, consider Ω = (0, 1) partitioned into Ω1
def
= (0, 1

3 ), Ω2
def
= ( 1

3 ,
2
3 ),

Ω3
def
= ( 2

3 , 1). Take f = 0, μ = 0, β = 1, and set ν|Ω1∪Ω3 = 1 and ν|Ω2 = 0.
The viscosity solution of (2.6) corresponding to the Dirichlet boundary conditions
u(0) = 1, u(1) = 0 is

(2.9) u|Ω1 = 1, u|Ω2 = 1, u|Ω3 = 1 − e(x−1).

It can be verified that this solution satisfies (int1)–(int2), so that u is continuous at
x = 1

3 and discontinuous at x = 2
3 .

Let us mention at this point that there is a theoretical difficulty in the above
regularization process if the advection field is zero and μ = 0. In this case, the limit
solution can be shown to be

(2.10) u|Ω1
= 1, u|Ω2

= 2 − 3x, u|Ω3
= 0.

Comparing (2.10) with (2.9), we conclude that the limit process limε→0, β→0 is not
uniform.

We hereafter assume that in higher space dimensions (int1)–(int2) can be ob-
tained by means of a regularization process and that there is no ambiguity on the
limit, provided μ + 1

2∇·β ≥ μ0 > 0. The goal of the present paper is not to justify
(int1)–(int2) but to show that these conditions yield a well-posed problem which we
propose to approximate using a DG method.
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2.4. The functional setting. We now reformulate the above problem in an
appropriate functional setting. To this end, we set

Lu
def
= L2(Ω), Lσ

def
= [L2(Ω†)]d, L

def
= Lσ × Lu,

so that L = {(zσ, zu); zσ ∈ Lσ, z
u ∈ Lu}. L is a Hilbert space when equipped with

the product norm. We define the so-called graph space:

W
def
= {z ∈ L; κ∇zu ∈ Lσ, ∇·(κzσ + βzu) ∈ Lu},

where all the derivatives are understood in the weak sense. Then we consider the
following operators:

K : L � z �→ (zσ, μzu) ∈ L,

A : W � z �→ (κ∇zu,∇·Φ(z)) ∈ L,

Ã : W � z �→ (−κ∇zu, (∇·β)zu −∇·Φ(z)) ∈ L,

where, for all y ∈ W , Φ(y)
def
= κyσ + βyu. A and Ã ∈ L(W ;L) are formal adjoints of

each other. W is clearly a Hilbert space when equipped with the following norm:

‖y‖2
W

def
= ‖y‖2

L + ‖Ay‖2
L.

Moreover, K and A are bounded operators; i.e., K ∈ L(L;L) and A ∈ L(W ;L). We
refer to W as the graph space of A, and the norm of W is called the graph norm.
Note that functions in W satisfy (int2) but not necessarily (int1).

2.5. Boundary operators. Following [10, 13], we consider the operator D :
W −→ W ′ defined by

(2.11) 〈Dz, y〉W ′,W
def
= (Az, y)L − (z, Ãy)L.

Clearly D ∈ L(W ;W ′), and D is a boundary operator in the following sense.
Lemma 2.2. The following holds:

(2.12) 〈Dz, y〉W ′,W =

∫
∂Ω

[Φ(z)·nyu + Φ(y)·nzu − (β·n)zuyu] −
∫
I

(β·n1)[[z
u]][[yu]]

for all (z, y) ∈ W ×W smooth enough for the integrals to make sense.
Proof. Integrating by parts over Ω† in (2.11) yields

〈Dz, y〉W ′,W =

∫
I

2
{
zuntκyσ + yuntκzσ + (β·n)zuyu

}
+

∫
∂Ω

[
zuntκyσ + yuntκzσ + (β·n)zuyu

]
.

We conclude using the fact that on I, nt
1κ1z

σ
1 = −β·n1[[z

u]] and nt
2κ2 = 0, so that

2 {zuntκyσ + yuntκzσ + β·nzuyu} = −(β·n1)[[y
u]]zu1 − (β·n1)[[z

u]]yu1 + (β·n1)y
u
1 z

u
1 +

(β·n2)y
u
2 z

u
2 = −(β·n1)[[z

u]][[yu]].
In other words, if z and y are smooth enough, D admits the following integral

representation:

(2.13) 〈Dz, y〉W ′,W =

∫
∂Ω

ytDz −
∫
I

(β·n1)[[z
u]][[yu]], where D def

=

[
0 κn

(κn)t β·n

]
.
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When the traces of z and y are not in L2(∂Ω ∪ I), the above integrals have to be
understood in some duality sense that we do not try to identify here.

Let α ∈ {−1,+1}. Still following [10, 13], we assume that there is a second
boundary operator M ∈ L(W ;W ′) such that we have the following:

(i) M is monotone, meaning that 〈My, y〉W ′,W ≥ 0 for all y ∈ W .

(ii) Letting

(2.14) V
def
= Ker(M −D), V ∗ def

= Ker(M∗ + D),

where M∗ is the adjoint of M , the following holds:

(2.15) D(V )⊥ = V ∗, D(V ∗)⊥ = V,

where, for all E ⊂ W ′, E⊥ denotes the polar set of E; i.e., E⊥ is composed of those
linear forms on W that vanish on E.

(iii) If (z, y) ∈ W × W are smooth enough for the integrals to make sense, M
admits the following integral representation:
(2.16)

〈Mz, y〉W ′,W =

∫
∂Ω

ytMz +

∫
I

|β·n|[[zu]][[yu]], where M def
=

[
0 −ακn

α(κn)t |β·n|

]
.

The above hypotheses essentially assert the existence of surjective trace operators
on I and ∂Ω. The purpose of the operator M is to impose boundary conditions and to
enforce (int1). The choice α = +1 (resp., α = −1) is used to enforce Dirichlet (resp.,
Neumann) boundary conditions. Indeed, one can verify that if z ∈ W is smooth
enough, then

(i) if α = +1,

{z ∈ V } ⇐⇒ {[[zu]]|I+ = 0 and zu|{x∈∂Ω; κn
=0 or β·n<0} = 0},(2.17)

{z ∈ V ∗} ⇐⇒ {[[zu]]|I− = 0 and zu|{x∈∂Ω; κn
=0 or β·n>0} = 0};(2.18)

(ii) if α = −1,

{z ∈ V } ⇐⇒ {[[zu]]|I+ = 0 and Φ(z)·n = 1
2 (β·n + |β·n|)zu},(2.19)

{z ∈ V ∗} ⇐⇒ {[[zu]]|I− = 0 and Φ(z)·n = 1
2 (β·n− |β·n|)zu}.(2.20)

For instance, taking α = +1, if z ∈ V is smooth enough, then for all y ∈ W ,
〈(M −D)z, y〉W ′,W = 0, so that if y is smooth enough,

(2.21) −
∫
∂Ω

[(ntκyσ)zu + (β·n)−yuzu] +

∫
I+

(β·n1)[[y
u]][[zu]] = 0,

whence (2.17) is inferred.

2.6. Well-posedness. Let a0 ∈ L(W × L; R), a∗0 ∈ L(W × L; R) be defined by

a0(z, y)
def
= (Kz, y)L + (Az, y)L ∀(z, y) ∈ W × L,(2.22)

a∗0(z, y)
def
= (Kz, y)L + (Ãz, y)L ∀(z, y) ∈ W × L.(2.23)
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Lemma 2.3 (L-coercivity). a0 and a∗0 are L-coercive on V and V ∗, respectively,
in the following sense:

∀y ∈ V, a0(y, y) ≥ ‖yσ‖2
Lσ

+ μ0‖yu‖2
Lu

+ 1
2‖[[y

u]]‖2
L2(|β·n|;I) + 1

2‖y
u‖2

L2(|β·n|;∂Ω),

(2.24)

∀y ∈ V ∗, a∗0(y, y) ≥ ‖yσ‖2
Lσ

+ μ0‖yu‖2
Lu

+ 1
2‖[[y

u]]‖2
L2(|β·n|;I) + 1

2‖y
u‖2

L2(|β·n|;∂Ω).

(2.25)

Proof. Using the definition of D and V , we infer, for all y ∈ V ,

((K + A)y, y)L = ((K + 1
2 (A + Ã))y, y)L + ( 1

2 (A− Ã)y, y)L

= ‖yσ‖2
Lσ

+ ((μ + 1
2∇·β)yu, yu)Lu

+ 1
2 〈My, y〉W ′,W .

The desired result then follows from the construction of M . Proceed similarly to
prove (2.25).

Consider the following problem: For f ∈ Lu,

(2.26)

{
find z ∈ V such that, ∀y ∈ L,

a0(z, y) = (f, yu)Lu .

Proposition 2.4. Assume that there is an M ∈ L(W ;W ′) satisfying (2.15).
Then, problem (2.26) is well-posed.

Proof. See the appendix.
Remark 2.1. Note that the boundary and interface conditions in problem (2.26)

are strongly enforced by requiring the solution to be a member of V .
Having in mind that boundary conditions are weakly enforced in DG methods,

we introduce the following bilinear form:

(2.27) a(z, y)
def
= a0(z, y) + 1

2 〈(M −D)z, y〉W ′,W ∀(z, y) ∈ W ×W.

Clearly, all the terms above are well defined and a ∈ L(W ×W ; R).
Lemma 2.5 (L-coercivity). a is L-coercive on W .
Proof. Clearly for all y ∈ W ,

a(y, y) = ((K + A)y, y)L + 1
2 〈(M −D)y, y〉W ′,W

= ((K + 1
2 (A + Ã))y, y)L + 1

2 ((A− Ã)y, y)L + 1
2 〈(M −D)y, y〉W ′,W

≥ ‖yσ‖2
Lσ

+ μ0‖yu‖2
Lu

+ 1
2‖[[y

u]]‖2
L2(|β·n|;I) + 1

2‖y
u‖2

L2(|β·n|;∂Ω);

that is to say, a is L-coercive.
We henceforth consider the following reformulation of problem (2.26): For f ∈ Lu,

(2.28)

{
find z ∈ W such that, ∀y ∈ W,

a(z, y) = (f, yu)Lu .

Proposition 2.6 (well-posedness). Assume that there is an M ∈ L(W ;W ′)
satisfying (2.15). Then, problem (2.28) is well-posed, and the solutions to (2.26) and
(2.28) coincide.

Proof. The unique solution to (2.26) solves (2.28). Moreover, coercivity (see
Lemma 2.5) immediately implies that the solution to (2.28) is unique.
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3. The discrete problem. The goal of this section is to construct a DG approx-
imation of the model problem (2.28). After introducing the DG setting in section 3.1,
we explain in detail in section 3.2 how the DG bilinear form ah (see (3.17)) is con-
structed.

3.1. The discrete setting. Let {Th}h>0 be a family of affine meshes of Ω
compatible with the partition PΩ, which, for simplicity, is supposed to be composed
of polyhedra. The elements are not necessarily simplices, and the interfaces are not
required to match. We denote by F i

h the set of element interfaces, i.e., F ∈ F i
h if F is

a (d− 1)-manifold and there are T1, T2 ∈ Th such that F = ∂T1 ∩ ∂T2. The set of the
faces that separate the mesh from the exterior of Ω is denoted by F∂

h ; i.e., F ∈ F∂
h if

F is a (d− 1)-manifold and there is a T ∈ Th such that F = ∂T ∩ ∂Ω. The set of all

the faces is denoted by Fh; i.e., Fh
def
= F i

h ∪ F∂
h . Moreover, for every face F ∈ Fh we

introduce the set Th(F )
def
= {T ∈ Th; F ⊂ ∂T}. The diameters of T ∈ Th and F ∈ Fh

are denoted by hT and hF , respectively. Without loss of generality, we assume that
h ≤ 1.

For every nonnegative integer p, we define

(3.1) Ph,p
def
= {vh ∈ L2(Ω); ∀T ∈ Th, vh|T ∈ Pp(T )},

where Pp(T ) denotes the set of d-variate polynomials of total degree at most p on T .
The mesh family {Th}h>0 is assumed regular in the sense that

hT � hF , F ⊂ ∂T,(3.2)

‖∇vh‖[L2(T )]d � h−1
T ‖vh‖L2(T ) ∀T ∈ Th, ∀vh ∈ Ph,p,(3.3)

‖vh‖L2(F ) � h
−1/2
F ‖vh‖L2(Th(F )) ∀F ∈ Fh, ∀vh ∈ Ph,p.(3.4)

Let pu and pσ be two nonnegative integers such that pu−1 ≤ pσ ≤ pu, and define
the following spaces:

Σh = [Ph,pσ ]d, Uh = Ph,pu , Wh = Σh × Uh.

Observe that the inverse and trace inequalities (3.3) and (3.4) are local and that they

can be applied componentwise to the functions in Σh. Let Hs(Th)
def
= {v ∈ L2(Ω);

v ∈ Hs(T ) ∀T ∈ Th} be equipped with the usual broken Sobolev norm denoted by
‖ · ‖Hs(Th), and define

W (h)
def
= W ∩ [H1(Th)]d+1 + Wh.

According to the assumptions listed in section 2.1 and since {Th}h>0 is compatible
with the partition PΩ, we have that

(3.5) ν ∈ [Ph,0]
d,d and κ ∈ [Ph,0]

d,d.

Remark 3.1. (i) The hypotheses on ν could be slightly weakened by assuming
that ν is Lipschitz in each subdomain, but to avoid unnecessary technicalities we
restrict ourselves to piecewise constant diffusivity. (ii) The mesh being compatible
with the partition PΩ means that the meshes fit the discontinuities of the diffusivity.



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

DG METHODS FOR ANISOTROPIC SEMIDEFINITE DIFFUSION 813

3.2. Design of the DG bilinear form. We now construct a discrete DG coun-
terpart of the bilinear form a defined in (2.27) under the following constraints: (i) The
discrete bilinear form should satisfy a discrete version of Lemma 2.5 (L-coercivity)
and be strongly consistent. (ii) It should not require that the elliptic-hyperbolic in-
terface I be identified a priori. (Since computers work in finite precision arithmetic, it
may happen in practice that ntνn takes small values instead of being exactly zero, so
that I is possibly difficult to identify.) (iii) It should include stabilizing terms suitable
to weakly enforcing boundary and interface conditions.

3.2.1. Step 0: Discrete analogue of a. We start by localizing the volume
and boundary/interface integrals in (2.27) and by deriving a discrete counterpart of
the operator M defined by (2.16).

The localization of a0 and D does not pose any problem and is done by splitting
the volume and boundary/interface integrals over the mesh elements and faces. Now
let us now focus our attention on the discretization of M .

We first construct a discrete counterpart of the boundary integral over ∂Ω in
(2.16). To this end, we take inspiration from [11, 12] and we proceed as follows. For
every F ∈ F∂

h we define the operator MF ∈ L([L2(F )]d+1; [L2(F )]d+1) such that, for
all (z, y) ∈ W (h) ×W (h),

(MF (z), y)L,F
def
= −α(zu, κyσ·n)Lu,F + α(κzσ·n, yu)Lu,F + (Muu

F (zu), yu)Lu,F ,

where the boundary operator Muu
F ∈ L(L2(F );L2(F )) is defined by

(3.6) Muu
F (yu)

def
=

(
|β·n| + 1

2 (α + 1)λ2h−1
F

)
yu,

and we have set λ
def
=

√
ntνn. Observe that MF satisfies the following consistency

conditions:

(3.7) Ker(M−D) ⊂ Ker(MF −D), Ker(M + D) ⊂ Ker(MF + D).

Since Muu
F is nonnegative, we define

|yu|2M,F
def
= (Muu

F (yu), yu)Lu,F , |yu|2M
def
=

∑
F∈F∂

h
|yu|2M,F .

The | · |M -seminorm will be used to measure the error due to the weak enforcement
of boundary conditions.

Second, we construct a discrete counterpart of the boundary integral over the
interface I in (2.16). To this end we extend the definition of λ to interior faces. For
every F ∈ F i

h, the two-valued field λ|F = {λ1, λ2} is defined by

(3.8) λi
def
=

√
nt
iνni, i ∈ {1, 2}.

Recall that the indexing is defined such that λ1 ≥ λ2. A discrete counterpart of the
manifold I is defined by

Ih
def
= {F ∈ F i

h; λ1 > 0 and λ2 = 0}.

To avoid unnecessary extra technicalities we suppose for the time being that the sign
of β·n is constant on every interface F in F i

h. Then we identify two subsets of Ih, say
I±
h , representing the discrete versions of I±. The boundary integral over the interface
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I in (2.16) is then discretized by splitting it over Ih. The sets Ih, I±
h and the above

assumption on the sign of β·n are introduced solely to explicate the design of the DG
bilinear form. These sets are not required in the final definition (3.17).

Combining all the steps above, we obtain the discrete bilinear form a
(0)
h such that,

for all (z, y) ∈ W (h) ×W (h),

a
(0)
h (z, y)

def
=

∑
T∈Th

[(Kz, y)L,T + (Az, y)L,T ] + 1
2

∑
F∈F∂

h

((MF −D)z, y)L,F

+
∑

F∈I+
h

((β·n1)[[z
u]], [[yu]])Lu,F .

(3.9)

3.2.2. Step 1: L-coercivity and consistency. The bilinear form a
(0)
h is not

appropriate since it does not satisfy the design criteria (i) (L-coercivity) and (ii) (the
interface I+

h is explicitly identified), as stated in the introduction of section 3.2.

To remedy the above two problems, we introduce weighted averages. Let Γh
def
=⋃

F∈Fi
h
F , and let ω be a two-valued weight function such that [L2(Γh)]2 � ω =

(ω1, ω2) with ω1 + ω2 = 1 for a.e. x ∈ Γh. For all y ∈ W (h) and every F ∈ F i
h, we

define the weighted average and weighted jump of yu across F as follows:

(3.10) {yu}ω
def
= ω1y

u
1 + ω2y

u
2 , [[yu]]ω

def
= 2(ω2y

u
1 − ω1y

u
2 ),

where, for a.e. x ∈ F , yui (x) = limy→x y
u(y)|Ti

, i ∈ {1, 2}. We adopt similar defini-

tions for {Φ(y)·n}ω and [[Φ(y)·n]]ω. To alleviate notation we set {·} def
= {·}( 1

2 ,
1
2 ) and

[[·]] def
= [[·]]( 1

2 ,
1
2 ). The following algebraic formula will be used repeatedly in the rest of

the paper:

(3.11) {ab} = {a} {b}ω + 1
4 [[a]]ω[[b]].

Lemma 3.1. The following integration by parts formula holds:
(3.12)∑
T∈Th

[(Az, y)L,T − (z, Ãy)L,T ] =
∑

F∈F∂
h

(Dz, y)L,F +
∑

F∈Fi
h

2 [χF,ω(z, y) + χF,ω(y, z)] ,

where

(3.13) χF,ω(z, y)
def
= ({Φ(z)·n} , {yu}ω)Lu,F +

(
[[zu]],

1

4
[[Φ(y)·n]]ω − β·n1

2
{yu}

)
Lu,F

.

Proof. Indeed, let LHS be the left-hand side of (3.12), and observe that

LHS =
∑

F∈F∂
h

(Dz, y)L,F + 2
∑

F∈Fi
h

∫
F

[{Φ(z)·nyu} + {Φ(y)·nzu} − {(β·n)zuyu}] .

Apply (3.11) to the averages involving Φ(z) and Φ(y), and observe that {(β·n)zuyu} =
β·n1

2 [[zu]] {yu} + β·n1

2 [[yu]] {zu}.
Applying (3.12) in (3.9), we infer that

a
(0)
h (y, y) =

∑
T∈Th

(K + 1
2 (A + Ã)y, y)L,T + 1

2

∑
F∈F∂

h

(MF (y), y)L,F

+
∑

F∈I+
h

(|β·n|[[yu]], [[yu]])Lu,F + 2
∑

F∈Fi
h

χF,ω(y, y).
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This expression suggests that the following bilinear form can be considered in order
to restore L-coercivity:

(3.14) â
(1)
h (z, y)

def
= a

(0)
h (z, y) − 2

∑
F∈Fi

h

χF,ω(z, y).

Let us now examine the consistency of the new bilinear form â
(1)
h . Let z ∈

V ∩ W (h) and let yh ∈ Wh. Since a
(0)
h is consistent, we just have to verify the

consistency of the sum involving χF,ω(z, y). For all F ∈ F i
h \ Ih, it is clear that

χF,ω(z, yh) = 0 owing to (int1)–(int2). Let us now consider a face F in Ih. From
this point on, we design ω so that

(3.15) ∀F ∈ Ih, ∀x ∈ F, ω(x) = (1, 0).

This implies that {yuh}ω = yuh |T1 and, since z ∈ V and F ∈ Ih,

1

4
[[Φ(yh)·n]]ω − β·n1

2
{yuh} =

β·n1

2
yuh |T2(F ) −

β·n1

2
{yuh} = −β·n1

4
[[yuh ]].

Thus, the following simplification occurs:

−2χF,ω(z, yh) = −2({Φ(z)·n} , yuh |T1(F ))Lu,F +

(
β·n1

2
[[zu]], [[yuh ]]

)
Lu,F

=

(
β·n1

2
[[zu]], [[yuh ]]

)
Lu,F

.

In this form it is now clear that χF,ω(z, yh) 	= 0 over Ih (actually over I−
h only); i.e.,

â
(1)
h is not consistent. To make the bilinear form consistent, we remove the trouble-

making term by defining the new bilinear form

a
(1)
h (z, y)

def
= â

(1)
h (z, y) −

∑
F∈Ih

(
β·n1

2
[[zu]], [[yu]]

)
Lu,F

=
∑
T∈Th

[(Kz, y)L,T + (Az, y)L,T ] +
1

2

∑
F∈F∂

h

((MF −D)z, y)L,F

− 2
∑

F∈Fi
h

χF,ω(z, y) +
∑
F∈Ih

(
|β·n|

2
[[zu]], [[yu]]

)
Lu,F

.

(3.16)

Then, the above arguments imply that a
(1)
h is strongly consistent and satisfies the

following coercivity property: For all y ∈ W (h),

a
(1)
h (y, y) ≥ ‖yσ‖2

Lσ
+ μ0‖yu‖2

Lu
+ 1

2 |y
u|2M + 1

2‖[[y
u]]‖2

L2(|β·n|;Ih).

3.2.3. Step 2: Elimination of Ih and stability. Note that a
(1)
h is not yet

satisfactory since it still requires Ih be explicitly identified by the user, thus violating
our design constraint (ii).

The key idea to eliminate any reference to Ih in (3.16) is to observe that the
bilinear form (|β·n|[[zu]], [[yu]])Lu,F is positive and consistent on every face which is
not in Ih. In other words, L-coercivity and consistency are preserved by extending

the sum over Ih to F i
h. We thus replace a

(1)
h by
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ah(z, y)
def
=

∑
T∈Th

[(Kz, y)L,T + (Az, y)L,T ] +
1

2

∑
F∈F∂

h

(MF (z) −Dz, y)L,F

− 2
∑

F∈Fi
h

[
({Φ(z)·n} , {yu}ω)Lu,F +

(
[[zu]],

1

4
[[Φ(y)·n]]ω − β·n1

2
{yu}

)
Lu,F

]

+
∑

F∈Fi
h

(SF ([[zu]]), [[yu]])L,F ,

(3.17)

where the interface operator SF ∈ L(L2(F );L2(F )) is defined for all F ∈ F i
h by

(3.18) SF (v)
def
=

(
|β·n|

2
+

λ2
2

hF

)
v.

Observe that λ2 is by definition the minimum of λ1 and λ2. Hence, automatically

(3.19) SF (v) =
|β·n|

2
v ∀F ∈ Ih.

Finally, to avoid any reference to Ih in the definition of the weighting function ω
while satisfying condition (3.15), we define ω as follows:

(3.20) ω
def
=

{
( λ1

2{λ} ,
λ2

2{λ} ) if λ1 > 0,

( 1
2 ,

1
2 ) otherwise.

Although other expressions for ω are possible, this one is simple and yields robust
error estimates. A similar choice is made in [6, 15].

The discrete problem is now formulated as follows:

(3.21)

{
Seek zh ∈ Wh such that

ah(zh, yh) = (f, yuh)Lu ∀yh ∈ Wh.

Observe that the σ-component of the unknown can be eliminated locally since the
jumps of this quantity across element interfaces are not penalized; see, e.g., [11,
section 4.4].

Remark 3.2. The use of weights in DG methods has been highlighted in several
articles (see, e.g., [16, 20, 19, 21]). Although some of the above references point
out that using weights may yield higher accuracy, they do not connect the weights
with the coefficients of the problem. The weight/diffusivity dependence has recently
been investigated in [6, 15], where the authors show that the use of a particular
weighted average improves the stability of the numerical scheme in problems with
high diffusivity contrasts, the diffusivity being still positive definite. In the present
case, resorting to weighted average and jump operators is required for the method to
select the proper interface conditions automatically, i.e., the design constraint (ii).

4. Convergence analysis. In this section we carry out the convergence analysis
of the discrete problem (3.21). The main results are Theorems 4.5 and 4.7.

4.1. Basic convergence estimates. For all y ∈ W (h) we introduce the follow-
ing seminorm:

(4.1) |yu|2J,F
def
= (SF ([[yu]]), [[yu]])Lu,F , |yu|2J

def
=

∑
F∈Fi

h

|yu|2J,F .
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The space W (h) is equipped with the following discrete norm:

(4.2) ‖y‖2
h,κ

def
= ‖y‖2

L + |yu|2J + |yu|2M +
∑
T∈Th

‖κ∇yu‖2
Lσ,T .

The following two lemmata follow from the design procedure outlined in section 3.2.
Lemma 4.1 (consistency). Let z solve (2.6) and zh solve (3.21). Assume, more-

over, that z ∈ [H1(Th)]d+1. Then,

∀yh ∈ Wh, ah(z − zh, yh) = 0.

Lemma 4.2 (L-coercivity). For all h and for all y in W (h),

ah(y, y) � ‖y‖2
L + |yu|2J + |yu|2M .

In order to estimate the L2-norm of the diffusive derivative κ∇zu we need the
following result.

Lemma 4.3 (stability). The following bound holds:

∀zh ∈ Wh, ‖zh‖h,κ � sup
yh∈Wh\{0}

ah(zh, yh)

‖yh‖h,κ
.

Proof. Let zh ∈ Wh and set S
def
= supyh∈Wh\{0}

ah(zh,yh)
‖yh‖h,κ

.

(1) Owing to Lemma 4.2,

(4.3) ‖zh‖2
L + |zuh |2J + |zuh |2M � ah(zh, zh) � S‖zh‖h,κ.

(2) Control of B
def
=

∑
T∈Th

‖κ∇zuh‖2
Lσ,T

. Let πσ
h ∈ Σh be the field such that, for

all T ∈ Th, πσ
h |T

def
= κ∇zuh |T . From the definition of ah it follows that

B = ah(zh, (π
σ
h , 0)) − (zσh , π

σ
h)Lσ

+
∑

F∈F∂
h

1 + α

2
(κnzuh , π

σ
h)Lσ,F

+
1

2

∑
F∈Fi

h

([[zuh ]], [[ntκπσ
h ]]ω)Lu,F .

Let Ri, i ∈ {1, 2, 3} denote the last three terms in the right-hand side. The first term
is bounded from above as follows:

|R1| ≤ ‖zσh‖Lσ‖πσ
h‖Lσ � ‖zσh‖2

Lσ
+ γB,

where γ can be chosen as small as needed.
The second term vanishes if α = −1. If α = +1, use trace inequality (3.4) together

with (3.6) to get

|R2| �
∑

F∈F∂
h

h
− 1

2

F |(ntνnzuh , z
u
h)Lu,F |

1
2 ‖πσ

h‖Lσ,Th(F ) �
∑

F∈F∂
h

|zuh |M,F ‖πσ
h‖Lσ,Th(F ).

Consequently, |R2| � |zuh |2M + γB. According to (3.20), for all F i
h � F = ∂T1 ∩ ∂T2,

‖[[ntκπσ
h ]]ω‖Lu,F =

λ1λ2

{λ} ‖[[(ntκ/λ)πσ
h ]]‖Lu,F � h

− 1
2

F

λ1λ2

{λ} ‖πσ
h‖Lσ,Th(F ).
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Using the above relation together with (3.18) yields

|R3| �
∑

F∈Fi
h

λ1

{λ}

(
λ2

2

hF
‖[[zuh ]]‖2

Lu,F

) 1
2

‖πσ
h‖Lσ,Th(F ) � |zuh |2J + γB.

The above bounds with γ = 1
6 together with Lemma 4.2 give

(4.4) 1
2

∑
T∈Th

‖κ∇zσh‖2
Lσ,T � ah(zh, (π

σ
h , 0)) + ah(zh, zh) � S‖zh‖h,κ,

where we used the fact that, by definition, ‖(πσ
h , 0)‖h,κ = ‖πσ

h‖Lσ ≤ ‖zh‖h,κ. Observe
that, owing to the choice of the weight function ω, the above estimate is robust with
respect to the possible discontinuity and anisotropy of ν.

(3) Equations (4.3)–(4.4) yield ‖zh‖2
h,κ � S‖zh‖h,κ, i.e., the desired result.

Let us now introduce

(4.5) W⊥
h

def
= {y ∈ W (h); ∀wh ∈ Wh, (y, wh)L = 0}.

Moreover, we define the following norm on W (h):

(4.6) |]y[|2 def
= ‖y‖2

h,κ +
∑
T∈Th

[
hT

h2
T

‖yu‖2
Lu,T + hT ‖yσ‖2

Lσ,∂T +
∑

F⊂∂T

hF

hF
‖yu‖2

Lu,F

]
,

where, for all T ∈ Th and for all F ∈ Fh, we have defined

(4.7) hT
def
= max(‖ν‖[L∞(T )]d,d , hT ), hF

def
=

{
max(λ2

1, hF ) if F ∈ F i
h,

max(λ2, hF ) if F ∈ F∂
h .

The last property needed to prove convergence is stated in the following.
Lemma 4.4 (continuity). The following holds:

∀(z, yh) ∈ W⊥
h ×Wh, ah(z, yh) � |]z[|‖yh‖h,κ.

Proof. Let (z, yh) ∈ W⊥
h ×Wh. Using the integration by parts formula (3.12), we

obtain

(4.8) ah(z, yh) =
∑
T∈Th

(z, (K + Ã)yh)L,T + 2
∑

F∈Fi
h

χF,ω(yh, z)

+ 1
2

∑
F∈F∂

h

(MF (z) + Dz, yh)L,F +
∑

F∈Fi
h

(SF ([[zu]]), [[yuh ]])Lu,F .

We now derive bounds for the four terms in the right-hand side, say R1, . . . , R4. For
the first one we have

(z, (K + Ã)yh)L,T

= (zσ, yσh − κ∇yuh)Lσ,T + (zu, μyuh −∇·(κyσh) − β·∇yuh − (β − β)·∇yuh)Lu,T ,

where, for all T ∈ Th, β|T is the mean value of the field β over T . Observe that, since
κ∇yuh ∈ Σh, β·∇yuh ∈ Uh, and z ∈ W⊥

h , (zσ, κ∇yuh)Lσ = 0 and (zu, β·∇yuh)Lu = 0. As
a result,
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|R1| � ‖z‖L‖yh‖L +
∑
T∈Th

[
‖zu‖Lu,Th

−1
T ‖κyσh‖Lσ,T + (zu, (β − β)·∇yuh)Lu,T

]

� ‖z‖L‖yh‖L +
∑
T∈Th

[
h

1
2

T

hT
‖zu‖Lu,T ‖yσh‖Lσ,T + ‖β‖[C1(Ω)]d‖yuh‖Lu,T ‖zu‖Lu,T

]
,

and, therefore, |R1| � |]z[|‖yh‖L. The second term R2 can be simplified as follows:

R2 = 2
∑

F∈Fi
h

[
({zu}ω,

{
ntκyσh

}
)Lu,F+

1

4
([[ntκzσ]]ω, [[y

u
h ]])Lu,F+

(
β·n1

2
{zu} , [[yuh ]]

)
Lu,F

]
.

Let R2,i, i = 1, 2, 3, be the addends of R2. Using the definition of the weight function
ω, (3.20), together with the inverse trace inequality (3.4) and definition (4.7), we infer

|R2,1| �
∑

F∈Fi
h

h
1
2

Fh
− 1

2

F (‖zu1 ‖Lu,F + ‖zu2 ‖Lu,F ) ‖yσh‖Lσ,Th(F ),

|R2,2| �
∑

F∈Fi
h

λ1

{λ}h
1
2

F (‖zσ1 ‖Lσ,F + ‖zσ2 ‖Lσ,F )λ2h
− 1

2

F ‖[[yuh ]]‖Lu,F

�
∑

F∈Fi
h

h
1
2

F (‖zσ1 ‖Lσ,F + ‖zσ2 ‖Lσ,F ) |yuh |J,F ,

|R2,3| � (‖zu1 ‖Lu,F + ‖zu2 ‖Lu,F ) |yuh |J,F � h
1
2

Fh
− 1

2

F (‖zu1 ‖Lu,F + ‖zu2 ‖Lu,F ) |yuh |J,F .

Therefore, |R2| � |]z[|‖yh‖L. The third term is expanded as follows:

|R3| =
∑

F∈F∂
h

[
1 − α

2
(zu, ntκyσh)Lu,F+

1 + α

2
(ntκzσ, yuh)Lu,F+

1

2
((Muu

F +β·n)zu, yuh)Lu,F

]
.

Let R3,i, i = 1, . . . , 3, be the addends of R3. If α = −1, then R3,2 = 0, and using
(4.7) and (3.4), we infer that

|R3,1| �
∑

F∈F∂
h

λh
− 1

2

F ‖zu‖Lu,F ‖yσh‖Lσ,Th(F ) �
∑

F∈F∂
h

h
1
2

Fh
− 1

2

F ‖zu‖Lu,F ‖yσh‖Lσ,Th(F ),

whereas, if α = +1, then R3,1 = 0, and (3.18) implies that

|R3,2| �
∑

F∈F∂
h

h
1
2

F ‖zσ‖Lσ,Fλh
− 1

2

F ‖yuh‖Lu,F �
∑

F∈F∂
h

h
1
2

F ‖zσ‖Lσ,F |yuh |M,F .

Finally, (3.18) yields |R3,3| � |zu|M |yuh |M . Therefore, |R3| � |]z[|‖yh‖L. For the
fourth term we immediately have |R4| ≤ |zu|J |yuh |J . The desired result is obtained by
collecting the above bounds.

Let πh be the L2-projection onto Wh. Upon collecting the above results (consis-
tency, stability, and continuity) and observing that z−πhz ∈ W⊥

h , the second Strang
lemma immediately yields the following convergence result.

Theorem 4.5 (convergence). Let z solve (2.28) and zh solve (3.21). Assume
that z ∈ [H1(Th)]d+1. Then,

‖z − zh‖h,κ � |]z − πhz[|.
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Owing to the regularity of the mesh family {Th}h>0, the following interpolation
property holds: For all z ∈ [Hrσ (Th)]d ×Hru(Th),

|]z − πhz[| �
( ∑

T∈Th

h2sσ
T ‖zσ‖2

[Hsσ (T )]d + hTh
2su−2
T ‖zu‖2

Hsu (T )

) 1
2

+

( ∑
F∈Fh

hFh
2su−2
F ‖zu‖2

Hsu (Th(F ))

) 1
2

,

(4.9)

where sσ
def
= min(rσ, pσ+1) and su

def
= min(ru, pu+1). Since pu−1 ≤ pσ and provided

(rσ, ru) ≥ (pσ + 1, pu + 1), the above interpolation error is of order hpu , i.e.,

(4.10) |]z − πhz[| � hpu‖z‖[Hpσ+1(Th)]d×Hpu+1(Th).

Remark 4.1. The above estimate is optimal for the ‖·‖h,κ-norm but yields sub-
optimal convergence in the L2-norm. If pσ = pu − 1, the error estimate is optimal in
the L2-norm for zσh but is still suboptimal for the L2-norm of zuh . From a theoretical
viewpoint, it is optimal to set Σh = [Ph,pu−1]

d, i.e., to work with different approx-
imation orders for the σ- and u-components. However, working with equal-order
approximation may be more convenient for implementation purposes.

Remark 4.2 (positive definite diffusivity). If the diffusivity is such that ν ≥ ν0Id
with ν0 = O(1), the estimate (4.10) can be improved using a duality argument. More
precisely, consider the mapping Lu � yu �−→ ψ ∈ V ∗ defined by

(K + Ã)ψ = (0, yu),

and assume that the following bound holds:

(4.11) ‖ψu‖H2(Th) + ‖ψσ‖[H1(Th)]d � ‖yu‖Lu .

Adapting the reasoning in [11, section 5.3], if ru ≥ pu+1 and pu ≥ 1, it can be proved
that

‖z − zh‖Lu � hpu+1‖z‖[Hpσ+1(Th)]d×Hpu+1(Th).

4.2. Improved convergence estimates. Owing to the definition of the ‖·‖h,κ-
norm, the convergence result of Theorem 4.5 does not contain an estimate involving
the advective derivative. Such an estimate can be obtained, assuming that

(4.12) κ is scalar-valued,

and we still admit that κ may vanish over a portion of the domain. Define the following
new discrete norm on W (h):

(4.13) ‖y‖2
h,κ,β

def
= ‖y‖2

h,κ + ‖yu‖2
h,β with ‖yu‖2

h,β
def
=

∑
T∈Th

hT ‖β·∇yu‖2
Lu,T .

Lemma 4.6. Assume that κ satisfies (4.12). Then the following bound holds:

∀zh ∈ Wh, ‖zh‖h,κ,β � sup
yh∈Wh\{0}

ah(zh, yh)

‖yh‖h,κ,β
.
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Proof. Let zh ∈ Wh and set S
def
= supyh∈Wh\{0}

ah(zh,yh)
‖yh‖h,κ,β

.

(1) Proceeding as in Lemma 4.3 and observing that ‖(πσ
h , 0)‖h,κ,β = ‖(πσ

h , 0)‖h,κ,
we conclude that

(4.14) ‖zh‖2
h,κ � S‖zh‖h,κ,β .

(2) We define the field Wh � πh
def
= (0, πu

h) in such a way that, for all T ∈ Th,
πu
h |T = hTβ·∇zuh , where β is the mean of β over T . Using (3.3) together with the

regularity of β and the fact that hT ≤ 1, for all T ∈ Th, we have

h
− 1

2

T ‖πu
h‖Lu,T ≤ h

1
2

T ‖(β − β)·∇zuh‖Lu,T + h
1
2

T ‖β·∇zuh‖Lu,T

≤ h
1
2

T ‖β‖[C1(Ω)]d‖zuh‖Lu,T + h
1
2

T ‖β·∇zuh‖Lu,T .
(4.15)

(i) We first show that ‖πh‖h,κ,β � ‖zh‖h,κ,β . According to the above bound, it is
clear that ‖πu

h‖Lu � ‖zh‖h,κ,β . Commuting the operators κ∇ and β·∇ and applying
the inverse inequality (3.3), we infer that

∑
T∈Th

‖κ∇πu
h‖2

Lu,T =
∑
T∈Th

h2
T ‖β·∇(κ∇zuh)‖2

Lu,T �
∑
T∈Th

‖κ∇zuh‖2
Lσ,T .

Moreover, the regularity of β and again (3.3) yield

‖πu
h‖2

h,β �
∑
T∈Th

h3
T

[
‖∂β(β·∇zuh)‖Lu,T + ‖∂ββ‖[L∞(T )]dh

−1
T ‖zuh‖Lu,T

]2

�
∑
T∈Th

hT [‖β·∇zuh‖Lu,T + ‖zuh‖Lu,T ]
2
.

The term |πu
h |J is treated as follows:

|πu
h |2J �

∑
F∈Fi

h

‖|β·n| 12 [[πu
h ]]‖2

Lu,F +
∑

F∈Fi
h

‖λ2h
− 1

2

F [[πu
h ]]‖2

Lu,F
def
= R1 + R2.

Using (3.4) together with (4.15), we immediately conclude that

|R1| �
∑

F∈Fi
h

h−1
F ‖πu

h‖2
Lu,Th(F ) � ‖zh‖2

h,κ,β .

The second term is zero if λ2 = 0. On the other hand, by definition, if λ2 > 0,
then λ1 > 0; i.e., κ is nonzero on both sides of the considered element interface.
We proceed using the trace inequality (3.4) together with assumption (4.12) (i.e.,
κ1 = λ1I, κ2 = λ2I, and λ1 ≥ λ2), to get

|R2| �
∑

F∈Fi
h

λ2
2

hF
hF ‖β·∇zuh‖2

Lu,Th(F ) �
∑

F∈Fi
h

λ2
2‖∇zuh‖2

Lσ,Th(F ) ≤
∑

F∈Fi
h

‖κ∇zuh‖2
Lσ,Th(F ),

whence |πu
h |J � ‖zh‖h,κ,β . In a similar way we can prove that |πu

h |M � ‖zh‖h,κ,β .
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(ii) Estimate for ‖zuh‖h,β . Integrating by parts only the diffusive terms and setting

μ̃
def
= μ + ∇·β, we obtain

‖zuh‖2
h,β = ah(zh, πh)

+
∑
T∈Th

[
hT (β·∇zuh , (β − β)·∇zuh)Lu,T + (zσh , κ∇πu

h)Lσ,T − (μ̃zuh , π
u
h)Lu,T

]

+ 2
∑

F∈Fi
h

[
−1

4
([[ntκzσh ]]ω, [[π

u
h ]])Lu,F +

(
β·n1

2
[[zuh ]], {πu

h}
)

Lu,F

]

− 1

2

∑
F∈F∂

h

[
(1 + α)(ntκzσh , π

u
h)Lu,F + ((Muu

F − β·n)zuh , π
u
h)Lu,F

]

−
∑

F∈Fi
h

(SF ([[zuh ]]), [[πu
h ]])Lu,F .

Let Ri, i = 1, . . . , 9, be the nine terms in the right-hand side, and observe that

|R1| � S‖πh‖h,κ,β � S‖zh‖h,κ,β .

Furthermore,

|R2| �
∑
T∈Th

hT ‖β·∇zuh‖Lu,T ‖β − β‖[L∞(T )]dh
−1
T ‖zuh‖Lu,T � γ‖zuh‖2

h,β + ‖zh‖2
h,κ.

Moreover,

|R3| + |R4| + |R5| + |R7| + |R9| � ‖zh‖h,κ‖πh‖h,κ,β � S
1
2 ‖zh‖

3
2

h,κ,β ,

|R6| � ‖zh‖h,κ‖zh‖h,κ,β � S
1
2 ‖zh‖

3
2

h,κ,β ,

and |R8| � ‖zh‖h,κ(‖πh‖h,κ,β + ‖zh‖h,κ,β) � S
1
2 ‖zh‖

3
2

h,κ,β . Hence,

‖zuh‖2
h,β � S‖zh‖h,κ,β + S

1
2 ‖zh‖

3
2

h,κ,β ,

whence it follows, using (4.14), that ‖zuh‖2
h,β � S

2.
By using Lemma 4.6 and proceeding as usual, we infer the next result.
Theorem 4.7 (convergence). Let z solve (2.28) and zh solve (3.21). Assume

that z ∈ [H1(Th)]d+1 and that κ satisfies (4.12). Then,

‖z − zh‖h,κ,β � |]z − πhz[|.

Remark 4.3 (purely hyperbolic case). A special situation is obtained when the
diffusivity is identically zero over the entire domain, since, for all T ∈ Th and for all
F ∈ Fh, hT = hT and hF = hF . In such a case it is readily seen that

(4.16) ‖zu − zuh‖Lu + ‖zu − zuh‖h,β � hpu+ 1
2 ‖zu‖Hpu+1(Th),

which is exactly the estimate for the problem investigated in [10, section 3.1].

5. Implementation issues. In this section we discuss important implementa-
tion aspects of the method. We show how it can be interpreted in terms of so-called
numerical fluxes so as to compare it with other known approximation techniques that
are defined in these terms in the literature. We also present two variants of the method
that yield substantial computational savings.
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5.1. Flux formulation. The notion of (numerical) fluxes is widely used by
engineers. This concept originally introduced in the context of finite volume methods,
naturally extends to DG methods. The link between DG methods and the concept
of flux has been explored in [3] for the Laplace equation and in [11] for more general
cases. A number of methods have originally been presented in terms of fluxes, and it
is therefore interesting to recast our formulation in this framework so as to facilitate
comparisons. To this purpose, let us define

φu
∂T (zσ, zu)|F

def
=

{
1+α

2 ntκzσ + 1
2 (β·n)zu + 1

2M
uu
F zu if F ∈ F∂

h ,

nt
T {κzσ}ω + (β·nT ) {zu} + (nT ·nF )SF ([[zu]]) if F ∈ F i

h,
(5.1)

φσ
∂T (zu)|F

def
=

{
1−α

2 (κn)tzu if F ∈ F∂
h ,

(κn)t|T {zu}ω if F ∈ F i
h,

(5.2)

where ω
def
= (1, 1) − ω and nT is the outward normal to the element T . It is possible

to prove (see [11, section 4.3] for the details) that the discrete problem (3.21) can be
equivalently reformulated in terms of the following local problems:{

Seek zh ∈ Wh such that, ∀T ∈ Th and ∀q ∈ [Ppσ
(T )]d × Ppu

(T ),

(zh, (K + Ã)q)L,T + (φ∂T (zh), q)L,∂T = (f, qu)Lu,T .

The above form is known as the flux formulation of (3.21). Observe that the above
flux definitions lead to the use of harmonic averages of the normal component of the
diffusion tensor at mesh interfaces; see (3.20). Harmonic averaging of the diffusion
matrix has been considered for dual-mixed formulations, e.g., in [2].

5.2. Interior penalty (IP) variant. In this section we discuss a variant of
the method designed in section 3.2 which reduces the size of the local problems to
be solved to eliminate the σ-component of the unknown. The advantages of such a
variant are that it is easier to implement and that the associated matrix pattern is
sparser. To this purpose we introduce the lifting operator defined as follows: For all
F ∈ Fh and for all ϕ ∈ L2(F ), rF,κ(ϕ) ∈ Σh is defined by

(5.3) ∀τh ∈ Σh, (rF,κ(ϕ), τh)Lσ

def
=

{
α+1

2 (ϕn, κτh)Lσ,F if F ∈ F∂
h ,

(ϕn1, {κτh}ω)Lσ,F if F ∈ F i
h.

Moreover, we let Rκ(ϕ)
def
=

∑
F∈Fh

rF,κ(ϕ). Observe that, unlike in [3], the lifting
operator depends on the diffusivity. Moreover, for a given face F ∈ Fh, it is clear that
supp(rF,κ(ϕ)) = Th(F ). In what follows we shall extend the definition of the jump
operator to boundary faces by setting

[[yu]]
def
= yu ∀F ∈ F∂

h , ∀y ∈ W (h).

The following result holds.

Lemma 5.1. For all F ∈ Fh and for all vh ∈ Uh,

‖rF,κ([[vh]])‖Lσ �
{
λh

− 1
2

F ‖vh‖Lu,F if F ∈ F∂
h ,

λ2h
− 1

2

F ‖[[vh]]‖Lu,F if F ∈ F i
h.
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T

Fig. 1. Elimination of the σ-component on element T . Stencil for the IP variant of the method
(solid lines) and for the LDG variant (solid and dashed lines).

Proof. Let F ∈ F i
h. Then, using (5.3), (3.20), and (3.4), we have that

‖rF,κ([[vh]])‖2
Lσ

= ([[vh]]n1, {κrF,κ([[vh]])}ω)Lσ,F � ‖[[vh]]‖Lu,F
λ1λ2

2 {λ}h
− 1

2

F ‖rF,κ([[vh]])‖Lσ
,

from which the assertion follows readily. The proof is carried out similarly for F ∈
F∂

h .
Proceeding in a way similar to that in [3, section 3.2] and using the fact that,

owing to assumption (3.5), κτh is in Σh for all τh ∈ Σh, it is possible to prove that,
for all (σ, u) ∈ W (h) such that σ = κ∇u−Rκ([[u]]) and for all (0, v) ∈ W (h),

ah((σ, u), (0, v)) =
∑
T∈Th

[(κ∇u−Rκ([[u]]), κ∇v −Rκ([[v]]))Lσ,T + (μu, v)Lu,T ]

−
∑
T∈Th

(u, β·∇v)Lu,T +
∑

F∈F∂
h

1
2 (Muu

F (u) + (β·n)u, v)Lu,F

+
∑

F∈Fi
h

((β·n1) {u} , [[v]])Lu,F +
∑

F∈Fi
h

(SF ([[u]]), [[v]])Lu,F .

(5.4)

Notice that σ does not appear in the expression on the right-hand side; i.e., we have
found a decoupled problem for the sole primal unknown u. The expression (5.4)
will henceforth be referred to as the LDG (local discontinuous Galerkin) variant of
the discrete bilinear form because of the similarity with the method for convection-
diffusion systems proposed in [7].

One can verify that, when the basis functions are defined in such a way that their
support is restricted to one element of the triangulation, the stencil resulting from
(5.4) is composed of all the elements shown in Figure 1 (solid and dashed lines). But
by having a closer look at (5.4), one realizes that the only term involving the dashed
elements in Figure 1 is the following:

∑
T∈Th

(Rκ([[u]]), Rκ([[v]]))Lσ,T
def
= −ρh(u, v).

Hence, in order to reduce the stencil, it seems reasonable to consider the following
perturbation of ah:

(5.5) aIP
h (z, y)

def
= ah(z, y) + ρh(zu, yu).
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Let us define the following seminorm:

(5.6) |yu|2LDG
def
=

α + 1

2

∑
F∈F∂

h

‖λh− 1
2

F yu‖2
Lu,F +

∑
F∈Fi

h

‖λ2h
− 1

2

F [[yu]]‖2
Lu,F ∀y ∈ W (h).

The following lemma is crucial to accommodating the proofs of Lemmata 4.2–4.4 to
the new bilinear form aIP

h .
Lemma 5.2. The following properties, uniform in h, hold:
(i) For all (z, yh) ∈ (V ∩W (h)) ×Wh we have

∀yh ∈ Wh, ρh(zu, yuh) = 0.

(ii) For all y in W (h),

ρh(yu, yu) ≤ CNF |yu|2LDG,

NF being the maximum number of faces of one mesh element and C a positive
parameter depending only on the mesh geometry and on the polynomial order
of approximation.

(iii) For all (z, yh) ∈ W⊥
h ×Wh,

(5.7) ρh(z, yh) � |zu|LDG|yuh |LDG.

Proof. (i) We know that [[zu]] = 0, and consequently rF,κ([[zu]]) = 0, on all
F ∈ Fh \ I−

h . On the other hand, let I−
h � F = ∂T1 ∩ ∂T2 and τh ∈ Σh. Then, since

ntκ|T2 = 0 entails λ2 = 0,

nt
1{κτh}ω =

λ2

2 {λ}n
t
1·κτh|T1 +

λ1

2 {λ}n
t
1·κτh|T2 = 0,

i.e., rF,κ([[zu]]) = 0, which gives the desired result.
(ii) The second point can be proved as follows. Observe that

‖Rκ([[yu]])‖2
Lσ

≤
∑

F∈Fh

∑
F ′∈Fh

‖rF,κ([[yu]])‖Lσ‖rF ′,κ([[yu]])‖Lσ .

Let F i
h � F = ∂T1 ∩ ∂T2. Since supp(rF,κ([[yu]])) = T1 ∪ T2, only a few products

on the right-hand side are nonzero. In particular, the nonzero products are those for

which F ′ ∈ ΔF , where ΔF
def
= {F ′ ∈ Fh; F ′ ⊂ ∂T1 or F ′ ⊂ ∂T2}. Therefore, the only

terms involving F are∑
F ′∈ΔF

‖rF,κ([[yu]])‖Lσ‖rF ′,κ([[yu]])‖Lσ ≤ 1
2

∑
F ′∈ΔF

(
‖rF,κ([[yu]])‖2

Lσ
+ ‖rF ′,κ([[yu]])‖2

Lσ

)
.

We realize that ‖rF,κ([[yu]])‖2
Lσ

is added at most NF times. The desired result follows
by repeating this argument for the other faces and using Lemma 5.1.

(iii) Deriving (5.7) is a simple application of Lemma 5.1.
Modifying Lemmata 4.2–4.4 so as to hold for aIP

h instead of ah is now simple in
view of the above result. However, observe that, according to the second point of
Lemma 5.2, in order to preserve the L-coercivity, (3.6) and (3.18) should be modified
as follows:

(5.8) Muu
F (v)

def
=

(
|β·n|

2
+ NF η

α + 1

2

λ2

hF

)
v, SF (v)

def
=

(
|β·n|

2
+ NF η

λ2
2

hF

)
v,
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where the multiplicative factor η must be strictly greater than the constant C ap-
pearing in (5.7). The term ρh that has been added to simplify the elimination of
the σ-component is thus counterbalanced by adding “more stabilization.” The result-
ing method is termed the IP variant because of the similarity with the IP method
proposed in [1, 4]. The method recently proposed in [15] also belongs to this class,
although some modifications are introduced in the definition of the penalty parameter.

5.3. BRMPS variant. The parameter C in (5.7), and, consequently, η in (5.8),
is possibly difficult to estimate in practical applications. To avoid this difficulty, we
consider the following alternative expression for the boundary and interface operators:

(5.9) Muu
F (v)

def
=

|β·n|
2

v + NF ηrF,κ(v), SF (v)
def
=

|β·n|
2

v + NF η{rF,κ(v)}ω.

A closer look at the proof of the second point of Lemma 5.2 shows that it is sufficient
to take η > 1 to preserve L-coercivity. Owing to the similarities with the approach
first presented in [5], the resulting numerical method is termed the BRMPS variant
(after the initials of the authors of [5]).

6. Numerical results. In this section we evaluate the performance of the pro-
posed method on two test cases. The simulations are done using the BRMPS variant
discussed in section 5.3. In both test cases, we assume that the exact solution is
smooth enough elementwise.

6.1. Convergence. In order to assess the theoretical convergence estimates,
we consider the problem described in Figure 2(a). Here (r, θ) denote the standard
cylindrical coordinates with the angle θ measured in the anticlockwise sense starting
from the positive x-axis. The domain is taken to be (−1, 1)2 \ [−0.5, 0.5]2, while the
coefficients are set to

κ =

{
π if 0 < θ < π,

0 if π < θ < 2π,
β =

eθ
r
, μ = 10−3,

where eθ is the unit azimuthal vector. The exact solution for a suitable right-hand
side f is

u =

{
(θ − π)2 if 0 ≤ θ ≤ π,

3π(θ − π) if π < θ < 2π.

Observe that, although piecewise polynomial in θ, the above solution does not belong
to the discrete space Uh since we are solving the problem in Cartesian coordinates.
Moreover, according to the interface condition (int1), the solution is continuous across
I+, while only (int2) is verified on I−. We introduce the following norm:

‖u‖2
h,BRMPS

def
= ‖u‖2

Lu
+ |u|2J + |u|2M +

∑
T∈Th

‖κ∇u‖2
Lσ,T .

Let (σh, uh) solve the discrete problem associated with the BRMPS variant. Then,
observing that σh = κ∇uh + R([[uh]]), it can be proved that ‖u − uh‖h,BRMPS is
equivalent to ‖(σ, u)−(σh, uh)‖h,κ. Coherently with the desire to avoid the additional
cost coming from the computation of σh, ‖u − uh‖h,BRMPS was reported in Table 1.
The convergence results confirm the sharpness of the estimates derived in sections 4.1
and 4.2. The L2-norm is also reported for completeness, showing that convergence at
order pu + 1 can be expected.
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κ1 = π

κ2 = 0

x

y

θ
I+ I−

β = eθ
rβ = eθ

r

(a) Description of the test case of sec-
tion 6.1.

κ1 =

[
1 0
0 0.5

]
κ2 =

[
0 0
0 1

]

0
.5

0.5

0
.2

5

I+

I−

β = (−5, 0)

(b) Description of the test case of sec-
tion 6.2.

(c) Exact solution of the test case of sec-
tion 6.1.

Fig. 2. Problem setting for the numerical test cases. I+ and I− are plotted as dashed and
dotted lines, respectively.

6.2. Strongly anisotropic diffusivity. To demonstrate the behavior of the
method in the presence of strongly anisotropic diffusivity we consider the test of
Figure 2(b). The domain Ω = (0, 1)2 is partitioned into two subdomains where the
diffusivity takes different values; it is positive definite in one region and positive
semidefinite in the other region. The advection field is β = (−5, 0)t, and the reaction
coefficient is μ = 1. The solution is discontinuous across the interface I− = {x = 0.75;
0.375 ≤ y ≤ 0.625}. The solutions obtained for different polynomial degrees are
displayed in Figure 3, showing that the predicted behavior is captured accurately.

7. Conclusion. In this work we developed and analyzed a DG method to ap-
proximate advection-diffusion-reaction equations with discontinuous, anisotropic, and
semidefinite diffusivity. The proposed method is capable of treating in a robust fash-
ion the semidefinite diffusivity case owing to our design of the boundary and penalty
terms and provided the mesh fits the discontinuities of the diffusivity field. This is
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Table 1

Convergence results.

h
Ph,1 Ph,2 Ph,3 Ph,4

Err Ord Err Ord Err Ord Err Ord
‖u− uh‖h,BRMPS

1/2 3.15e+0 7.27e−1 1.74e−1 3.99e−2
1/4 1.63e+0 0.95 2.05e−1 1.83 2.69e−2 2.70 3.51e−3 3.51
1/8 8.19e−1 0.99 5.32e−2 1.94 3.59e−3 2.91 2.51e−4 3.81
1/16 4.08e−1 1.00 1.34e−2 1.99 4.54e−4 2.98 1.63e−5 3.95
1/32 2.04e−1 1.00 3.36e−3 2.00

‖u− uh‖h,β
1/2 1.97e−0 4.50e−1 1.13e−1 2.65e−2
1/4 7.46e−1 1.40 9.87e−2 2.18 1.40e−2 3.01 1.92e−3 3.79
1/8 2.73e−1 1.45 1.90e−2 2.38 1.44e−3 3.29 1.06e−4 4.18
1/16 9.82e−2 1.48 3.44e−3 2.46 1.34e−4 3.43 5.03e−6 4.40
1/32 3.50e−2 1.49 6.08e−4 2.50

‖u− uh‖Lu

1/2 2.92e−1 3.30e−2 5.79e−3 1.17e−3
1/4 7.49e−2 1.96 4.75e−3 2.80 4.62e−4 3.65 5.50e−5 4.41
1/8 1.91e−2 1.97 6.09e−4 2.96 3.26e−5 3.83 2.01e−6 4.77
1/16 4.86e−3 1.97 7.76e−5 2.97 2.10e−6 3.96 6.32e−8 4.99
1/32 1.23e−3 1.98 9.82e−6 2.98

achieved by resorting to weighted average and jump operators. The convergence anal-
ysis yields estimates that are uniform with respect to the diffusivity. The theoretical
results are supported by numerical evidence.

Appendix. Proof of Proposition 2.4.
Proof. According to the so-called Banach–Nečas–Babuška (BNB) theorem (see,

e.g., [9, section 2.1.3]), the statement amounts to proving that the following conditions
hold:

∀z ∈ V, sup
y∈L\{0}

a0(z, y)

‖y‖L
� ‖z‖V ,(bnb1)

∀z ∈ V, (∀y ∈ L, a0(z, y) = 0) =⇒ (y = 0).(bnb2)

(i) Let us prove (bnb1). Let z ∈ V , and set S
def
= supy∈L\{0}

a0(z,y)
‖y‖L

. Using the

definition of the L2-norm, we deduce

S � sup
y∈L\{0}

(Az, y)L
‖y‖L

− ‖z‖L � ‖Az‖L − ‖z‖L.

Then Lemma 2.3 gives

‖z‖L � a0(z, z)

‖z‖L
� S =⇒ ‖z‖L + ‖Az‖L � S,

i.e., ‖z‖V � S, which proves (bnb1).
(ii) Let us prove (bnb2). Let y ∈ L be such that

(A.1) a0(z, y) = 0 ∀z ∈ V.

Let us prove that y is necessarily zero.
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Fig. 3. Numerical results for the test case of section 6.2.

(1) Let Ωi ∈ PΩ, take z = (zσ, 0) with zσ ∈ [D(Ωi)]
d, and observe that z is a

member of V . Then using z to test (A.1), we obtain

a0((z
σ, 0), y) = 〈yσ − κ∇yu, zσ〉[D(Ωi)]d = 0 ∀zσ ∈ [D(Ωi)]

d,

meaning that yσ − κ∇yu = 0 in Ωi, i.e., κ∇yu|Ωi ∈ L2(Ωi). Now let us prove that
yu is continuous across Γ \ I. Let x be a point in Γ \ I. Let Ωi and Ωj be the two
subdomains that are on each side of the interface Γ \ I at x. We assume that x is
an interior point of Ωi ∩ Ωj ; i.e., all the points in a small neighborhood of x, say V,
belong to either Ωi or Ωj . Up to a Lipschitz map, we can assume that the restriction
of Γ to V is a hyperplane. We choose a local Cartesian coordinate system (x1, . . . , xd)
so that the two normals n1, n2 are aligned with the x1-axis. The neighborhood V can
be chosen small enough so that V ∩ I = ∅. κ being piecewise constant, this means
that κ·n1 is uniformly bounded away from zero in V; in other words, the component
κ11 is uniformly bounded away from zero in V.

Let ψ ∈ D(V) and define the d-vector field σ̃ by σ̃1 = 1
κ11

ψ, and σ̃l = 0 for l > 1.

Then κσ̃ = (1, κ21

κ11
, . . . , κd1

κ11
)ψ. Observe that σ̃ ∈ Lσ and ∇·(κσ̃) ∈ L2(Ω); in other
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words, the pair (σ̃, 0) is in V . By testing (A.1) with (σ̃, 0), we obtain

0 =

∫
V

[σ̃·yσ + ∇·(κσ̃)yu]

= −〈ψ, ∂x1
yu〉D(Ω) +

∫
V
ψ

1

κ11
(yσ1 − κ12∂x2y

u − · · · − κ1d∂xd
yu),

where we used that κ12∂x2
yu, . . . , κ1d∂xd

yu are in L2(V) from the first part of the
argument. A standard distribution argument implies

∂x1y
u =

1

κ11
(yσ1 − κ12∂x2y

u − · · · − κ1d∂xd
yu) ∈ L2(V).

Then we conclude that ∂x1y
u ∈ L2(V); i.e., yu is continuous across Γ in a neighborhood

of x. Using a standard argument together with x being an interior point of Ωi ∩ Ωj ,
we infer that κ∇yu is in Lσ.

(2) Use z = (0, zu) with zu ∈ D(Ω) as a test function in (2.22), and observe that
again z is a member of V . A distributional argument gives

〈(μ + ∇·β)yu −∇·(κyσ + βyu), zu〉D(Ω) = 0.

Owing to the regularity assumptions on μ and β listed in section 2.1, we conclude
that ∇·(κyσ + βyu) ∈ L2(Ω), i.e., y is a member of W and

(K + Ã)y = 0.

(3) We then deduce that, for all z ∈ V ,

〈Dz, y〉W ′,W = ((K + A)z, y)L − ((K + Ã)y, z)L = 0;

i.e., y is a member of D(V )⊥ = V ∗. In conclusion, a∗0(y, w) = 0 for all w ∈ L and
y ∈ V ∗. Finally, the L-coercivity of a∗0 (see Lemma 2.3) implies that y = 0.
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