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Abstract. We consider high-order discretizations of a Cauchy problem where the evolution
operator comprises a hyperbolic part and a parabolic part with diffusion and stiff relaxation terms.
We propose a technique that makes every implicit-explicit (IMEX) time stepping scheme invariant-
domain preserving and mass conservative. Following the ideas introduced in Part I on explicit Runge--
Kutta schemes, the IMEX scheme is written in incremental form. At each stage, we first combine a
low-order and a high-order hyperbolic update using a limiting operator, then we combine a low-order
and a high-order parabolic update using another limiting operator. The proposed technique, which
is agnostic to the space discretization, allows one to optimize the time step restrictions induced by
the hyperbolic substep. To illustrate the proposed methodology, we derive four novel IMEX methods
with optimal efficiency. All the implicit schemes are singly diagonal. One of them is A-stable and
the other three are L-stable. The novel IMEX schemes are evaluated numerically on systems of stiff
ordinary differential equations and nonlinear conservation equations.
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1. Introduction. This work is the second part of a project started in [13] whose
objective is to develop Runge--Kutta time stepping schemes that are invariant-domain
preserving and conservative. The scope of the present work lies in the approximation
of the following Cauchy problem posed on the space domain D \subset \BbbR d and the time
interval J := (0, T ) with T > 0:

(1.1) \partial t\bfitu + \bfitf (\bfitu ) + \bfitg (\bfitu ,\nabla \bfitu ) = 0 in D\times J, \bfitu (0) =\bfitu 0 in D,

supplemented with appropriate boundary conditions. The dependent variable \bfitu takes
values in \BbbR m with m \geq 1. The operator \bfitf : \scrA \rightarrow \BbbR m represents the hyperbolic part
of the problem, and the operator \bfitg :\scrA \times \BbbR m\times d \rightarrow \BbbR m represents the parabolic part,
typically associated with diffusion and (stiff) relaxation processes. Here, \scrA is the
domain of \bfitf and \scrA \times \BbbR m\times d is the domain of \bfitg . In the applications we have in mind,
these operators have the following structure:

(1.2) \bfitf (\bfitu ) =\nabla \cdot f(\bfitu ), \bfitg (\bfitu ,\nabla \bfitu ) =\nabla \cdot d(\bfitu ,\nabla \bfitu ) + \bfitr (\bfitu ),
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A2512 ERN ALEXANDRE AND JEAN-LUC GUERMOND

with the hyperbolic flux f :\scrA \rightarrow \BbbR m\times d, the diffusive flux d :\scrA \times \BbbR m\times d \rightarrow \BbbR m\times d, and
the relaxation operator \bfitr :\scrA \rightarrow \BbbR m.

As it is out of the scope of the paper to discuss the existence and uniqueness of
solutions to (1.1), we assume that this problem admits a reasonable class of solutions.
We also assume that the set \scrA \subset \BbbR m is an invariant domain for this solution class.
This means that if \bfitu 0(\bfitx )\in \scrA for a.e. \bfitx in D (and up to perturbations resulting from
boundary conditions which go beyond the scope of the paper), then any admissible
solution to (1.1) takes values in \scrA at a.e. \bfitx in D at a.e. time t \in [0, T ]. The set \scrA 
may depend on \bfitu 0. A simple example is the scalar convection-diffusion equation (i.e.,
m= 1), in which case the interval \scrA := [ess inf\bfitx \in Du0(\bfitx ), ess sup\bfitx \in Du0(\bfitx )]\subset \BbbR is an
invariant domain. Two more elaborate examples are the compressible Euler equations
and the compressible Navier--Stokes equations. For these equations, the conserved
variable \bfitu takes values in \BbbR d+2, and its components are the density, the momentum,
and the total mechanical energy (i.e., m= d+ 2). An invariant domain for the com-
pressible Euler equations is the set \scrA composed of those states with positive density,
positive internal energy, and specific entropy s(\bfitu ) larger than ess inf\bfitx \in Ds(\bfitu 0(\bfitx )). An
invariant domain for the compressible Navier--Stokes equations is the set \scrA composed
of those states with positive density and positive internal energy. Another important
property of (1.1) is conservation. We assume that there is a matrix \bfitC \in \BbbR m\prime \times m for
some m\prime \in \{ 1 :m\} , so that \bfitC \bfitr (\bfitu ) = 0. This means that the relaxation process does
not affect the variables \bfitC \bfitu . A simple example is when the rows of \bfitC are composed of
m\prime line vectors from the Cartesian basis of \BbbR m. Then, again in the absence of pertur-
bations due to the boundary conditions, the following conservation property holds:

(1.3)

\int 
D

\bfitC \bfitu (t, \cdot )dx=

\int 
D

\bfitC \bfitu 0 dx \forall t\in J.

The objective of this work is to construct high-order discretizations in space and
time that are conservative and leave the set \scrA invariant. Such methods are called
invariant-domain preserving for \scrA , or IDP for short. To stay general, our starting
point is a system of ordinary differential equations (ODEs) obtained after discretiza-
tion in space of the conservation equation (1.1). In this paper, we mainly focus on the
time discretization. The time discretization methods we are going to present can be
combined with various space discretization techniques (e.g., discontinuous and con-
tinuous finite elements, finite volumes, and finite differences). We assume that the
ODE system takes the following generic form:

(1.4) \BbbM \partial t\bfsansU = \bfsansF (\bfsansU ) +\bfsansG (\bfsansU ) \forall t\in J, \bfsansU (0) =\bfsansU 0.

The mass matrix \BbbM is induced by the space discretization (it is the Gram matrix as-
sociated with the global shape functions of the space approximation). The dependent
variable \bfsansU (t) takes values in (\BbbR m)I where I \geq 1 is the number of degrees of freedom
(dofs) employed in the space discretization. We set \scrV := \{ 1 : I\} := \{ 1, . . . , I\} and
write \bfsansU (t) := (\bfsansU i(t))i\in \scrV . For all i \in \scrV , the local state vector \bfsansU i(t) = (\bfsansU p,i(t))p\in \{ 1:m\} 
is viewed as an approximation of the exact solution \bfitu (t, \cdot ) at some point in D, say \bfitx i.
The nonlinear mappings \bfsansF \in C0(\scrA I ; (\BbbR m)I) and \bfsansG \in C0(\scrA I ; (\BbbR m)I) result from the
space discretization of the operators  - \bfitf and  - \bfitg in (1.1), respectively, and \bfsansU 0 \in \scrA I

is an appropriate approximation in space of the initial datum \bfitu 0. We loosely refer
to the mappings \bfsansF and \bfsansG as the hyperbolic flux and the parabolic flux, respectively.
Assuming that \bfsansU i(0) \in \scrA for all i \in \scrV , saying that the space approximation is IDP
means that
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INVARIANT-DOMAIN PRESERVING IMEX METHODS A2513

(1.5) \bfsansU (t)\in \scrA I \forall t\in J.

Saying that the method is conservative means that (the mass, mi, associated with the
dof i\in \scrV is defined in (2.6))

(1.6)
\sum 
i\in \scrV 

mi\bfitC \bfsansU i(t) =
\sum 
i\in \scrV 

mi\bfitC \bfsansU i(0) \forall t\in J.

Using an implicit scheme to discretize in time the ODE system (1.4) is often too
expensive owing to the nonlinearities involved in the fluxes \bfsansF and \bfsansG , whereas using
an explicit scheme results in a severe restriction on the time step owing to stiffness
induced by the parabolic flux \bfsansG . A well-known remedy to this conundrum is to resort
to implicit-explicit (IMEX) schemes, where the numerical flux \bfsansF is treated explic-
itly, and the numerical flux \bfsansG is treated implicitly. The origin of IMEX schemes
can be traced back to [10, 36]. We also refer the reader to [1, 2, 6, 21, 30, 31, 40]
for other developments. Despite these advances, a crucial question that still remains
open is how to reconcile the use of an IMEX time stepping scheme with the above
invariant-domain property, while at the same time ensuring conservation. Building
on [13], we propose in the paper an answer to this question. More precisely, we intro-
duce a technique that makes every IMEX Runge--Kutta (RK) time stepping method
IDP and conservative. The resulting schemes are called ``IDP-IMEX"" schemes. Re-
call that the technique introduced in [13] makes every explicit RK scheme IDP. The
two key ideas of the method consist of externalizing the limiting operation at each
stage of the RK scheme and rewriting the RK scheme in incremental form so as to
maximize its efficiency. The idea of externalizing the limiter is also considered in
[25] for explicit RK schemes and in [32] for diagonally implicit RK schemes, but the
central idea of writing the scheme in incremental form and maximizing efficiency is
only developed in [13] for explicit RK schemes and in the present work for IMEX
schemes.

This work is organized as follows. In section 2, we outline the discrete setting
in space and time, we identify the key assumptions, and we exemplify these notions
for the simplest IMEX scheme composed of one forward Euler step followed by one
backward Euler step. In section 3, we extend these ideas and build higher-order IDP-
IMEX schemes. We introduce a generic IDP-IMEX algorithm composed of the steps
(3.9) to (3.21), whose properties are stated in Theorem 3.3. In section 4, we review
some examples of higher-order IMEX schemes, and we derive four novel examples
with optimal efficiency. Finally, in section 5, we present numerical illustrations on
systems of stiff ODEs and nonlinear conservation equations.

2. Preliminaries. The goal of this section is threefold: (i) introduce the discrete
setting in space and time; (ii) identify the key ideas and assumptions; and (iii) exem-
plify these notions for the Euler IMEX scheme. All this material is used in section 3,
where we introduce the novel higher-order IDP-IMEX schemes.

2.1. Time discretization and quasi-linearization. Let tn \in [0, T ] be the
current time with n \in \{ 0 :N\} , t0 := 0, and tN := T . Let \tau n be the current time step,
and let tn+1 := tn + \tau n. To simplify the notation, we henceforth write \tau instead of
\tau n. Let \bfsansU n be the approximation of the solution to (1.4) at the discrete time tn. The
key invariant-domain property we want to achieve is the following:

(2.1) (\bfsansU n \in \scrA I) =\Rightarrow (\bfsansU n+1 \in \scrA I) \forall n\geq 0.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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A2514 ERN ALEXANDRE AND JEAN-LUC GUERMOND

And we want to achieve (2.1) while maintaining conservation. The notion of con-
servation will be made more precise below, but for the time being, conservation is
expressed at the global level by requiring that (the mass mi is defined in (2.6))

(2.2)
\sum 
i\in \scrV 

mi\bfitC \bfsansU n+1
i =

\sum 
i\in \scrV 

mi\bfitC \bfsansU n
i .

To avoid solving a nonlinear problem at each time step when the parabolic fluxes
are made implicit, we introduce a quasi-linearization process (the way this is done is
made more precise in sections 2.2 and 2.3). We consider a quasi-linearized parabolic
flux \bfsansG lin \in C0(\scrA I \times (\BbbR m)I ; (\BbbR m)I) that is consistent with \bfsansG , i.e.,

(2.3) \bfsansG lin(\bfsansW ;\bfsansW ) =\bfsansG (\bfsansW ) \forall \bfsansW \in \scrA I .

We assume that this flux is such that for all \bfsansW \in \scrA I and all \bfsansV \in (\BbbR m)I , the problem
consisting of seeking \bfsansU \in (\BbbR m)I so that

(2.4) \BbbM \bfsansU  - \tau \bfsansG lin(\bfsansW ;\bfsansU ) =\BbbM \bfsansV 

is well-posed and easy to solve. For instance, this problem could only involve linear
solves. Notice that this does not mean that the mapping \bfsansU \mapsto \rightarrow \bfsansG (\bfsansW ;\bfsansU ) is linear; see
section 5 for examples. Owing to the above quasi-linearization process, we reformulate
(1.4) over the time interval Jn := [tn, tn+1] as follows: Find \bfsansU \in C1(Jn; (\BbbR m)I) so
that \bfsansU (tn) =\bfsansU n and for all t\in Jn,

(2.5) \BbbM \partial t\bfsansU = \bfsansF (\bfsansU ) +\bfsansG (\bfsansU ) - \bfsansG lin(\bfsansU n;\bfsansU )\underbrace{}  \underbrace{}  
explicit

+\bfsansG lin(\bfsansU n;\bfsansU )\underbrace{}  \underbrace{}  
implicit

.

2.2. Space discretization and conservation structure. Let us now give
details on the space discretization. We consider two space discretizations. The first
one is low-order accurate and referred to with the superscript L. The second one is
high-order accurate and referred to with the superscript H. The low-order scheme is
based on a low-order invertible mass matrix \BbbM L \in \BbbR I\times I and low-order fluxes \bfsansF L,\bfsansG L :
\scrA I \rightarrow (\BbbR m)I . The high-order scheme is based on a high-order invertible mass matrix
\BbbM H \in \BbbR I\times I and high-order fluxes \bfsansF H,\bfsansG H :\scrA I \rightarrow (\BbbR m)I .

We assume that \BbbM H is symmetric positive-definite with entries (mij)i,j\in \scrV and \BbbM L

is diagonal with positive entries (\delta ijmi)i,j\in \scrV . For all i \in \scrV , we introduce the subset
\scrI (i)\subsetneq \scrV such that mij \not = 0 for all j \in \scrI (i). We call \scrI (i) the stencil at i. The notion of
stencil is symmetric, i.e., j \in \scrI (i) iff i \in \scrI (j) because mij =mji. Finally, we assume
that

(2.6) mi :=
\sum 
j\in \scrV 

mij =
\sum 
j\in \scrV 

mji \forall i\in \scrV ,

and we set \delta mij := mij  - mi\delta ij . In the finite element terminology, this means that
the low-order mass matrix \BbbM L is the lumped version of the high-order mass matrix
\BbbM H. For every matrix \BbbM \in \BbbR I\times I and every vector \bfsansV \in (\BbbR m)I with components \bfsansV p,i,
with p \in \{ 1 :m\} and i \in \scrV , the components of the vector \BbbM \bfsansV \in (\BbbR m)I are defined to
be (\BbbM \bfsansV )p,i :=

\sum 
j\in \scrV mij\bfsansV p,j for all p\in \{ 1 :m\} and all i\in \scrV .

The components of the low-order and high-order hyperbolic fluxes are denoted
\bfsansF L
i (\bfsansV ) \in \BbbR m and \bfsansF H

i (\bfsansV ) \in \BbbR m for all i \in \scrV and all \bfsansV \in \scrA I . To account for the

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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INVARIANT-DOMAIN PRESERVING IMEX METHODS A2515

conservation principle associated with the hyperbolic fluxes, we assume that these
fluxes admit the stencil-based decomposition

(2.7) \bfsansF L
i (\bfsansV ) =

\sum 
j\in \scrI (i)

\bfsansF L
ij(\bfsansV ), \bfsansF H

i (\bfsansV ) =
\sum 

j\in \scrI (i)

\bfsansF H
ij(\bfsansV ) \forall \bfsansV \in \scrA I ,

where \bfsansF L
ij ,\bfsansF 

H
ij \in C0(\scrA I ;\BbbR m), and we assume the following skew-symmetry property:

(2.8) \bfsansF L
ij(\bfsansV ) = - \bfsansF L

ji(\bfsansV ), \bfsansF H
ij(\bfsansV ) = - \bfsansF H

ji(\bfsansV ) \forall i\in \scrV , \forall j \in \scrI (i).

The same structure is assumed for the parabolic fluxes, namely (for brevity, we
only write the statements for the high-order fluxes),

(2.9) \bfsansG H
i (\bfsansV ) =

\sum 
j\in \scrI (i)

\bfsansD H
ij(\bfsansV ) +\bfsansR H

i (\bfsansV ), \bfsansD H
ij(\bfsansV ) = - \bfsansD H

ji(\bfsansV ) \forall i\in \scrV , \forall j \in \scrI (i).

For instance, using continuous finite elements with shape functions \{ \varphi j\} j\in \scrV , and
assuming for simplicity the parabolic operator to be the Laplacian, we have \bfsansD H

ij(\bfsansV ) =\int 
D
\nabla \varphi j \cdot \nabla \varphi idx(\bfsansV j - \bfsansV i) = - \bfsansD H

ji(\bfsansV ). Consistently with our assumption that \bfitC \bfitr (\bfitu ) =

0, we assume that \bfitC \bfsansR H
i (\bfsansV ) = 0 for all i\in \scrV .

The quasi-linearization process mentioned in (2.5) is performed for both the low-
order and high-order parabolic fluxes. This leads to quasi-linearized parabolic fluxes
\bfsansG L,lin,\bfsansG H,lin \in C0(\scrA I \times (\BbbR m)I ; (\BbbR m)I), which we assume satisfy the following decom-
positions and properties:

\bfsansG L,lin
i (\bfsansW ;\bfsansV ) =

\sum 
j\in \scrI (i)

\bfsansD L,lin
ij (\bfsansW ;\bfsansV ) +\bfsansR L,lin

i (\bfsansW ;\bfsansV ),(2.10)

\bfsansG H,lin
i (\bfsansW ;\bfsansV ) =

\sum 
j\in \scrI (i)

\bfsansD H,lin
ij (\bfsansW ;\bfsansV ) +\bfsansR H,lin

i (\bfsansW ;\bfsansV ),(2.11)

\bfsansD L,lin
ij (\bfsansW ;\bfsansV ) = - \bfsansD L,lin

ji (\bfsansW ;\bfsansV ), \bfsansD H,lin
ij (\bfsansW ;\bfsansV ) = - \bfsansD H,lin

ji (\bfsansW ;\bfsansV ),(2.12)

\bfitC \bfsansR L,lin
i =\bfitC \bfsansR H,lin

i = 0 \forall i\in \scrV .(2.13)

In conclusion, we consider two versions of the ODE system (2.5) over the time interval
Jn = [tn, tn+1]. The first one corresponds to the low-order space discretization:

(2.14) \BbbM L\partial t\bfsansU 
L = \bfsansF L(\bfsansU L)\underbrace{}  \underbrace{}  

explicit

+\bfsansG L,lin(\bfsansU n;\bfsansU L)\underbrace{}  \underbrace{}  
implicit

.

The second one corresponds to the high-order space discretization:

(2.15) \BbbM H\partial t\bfsansU 
H = \bfsansF H(\bfsansU H) +\bfsansG H(\bfsansU H) - \bfsansG H,lin(\bfsansU n;\bfsansU H)\underbrace{}  \underbrace{}  

explicit

+\bfsansG H,lin(\bfsansU n;\bfsansU H)\underbrace{}  \underbrace{}  
implicit

.

Consistently with our assumption on (2.4), we assume that for all \bfsansW \in \scrA I and all
\bfsansV \in (\BbbR m)I , the following problems are well-posed and easy to solve: Find \bfsansU L,\bfsansU H \in 
(\BbbR m)I so that

(2.16) \BbbM L\bfsansU L  - \tau \bfsansG L,lin(\bfsansW ;\bfsansU L) =\BbbM L\bfsansV , \BbbM H\bfsansU H  - \tau \bfsansG H,lin(\bfsansW ;\bfsansU H) =\BbbM H\bfsansV .

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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A2516 ERN ALEXANDRE AND JEAN-LUC GUERMOND

2.3. Structural IDP assumptions. To gently introduce our ideas, let us con-
sider the well-known IMEX method consisting of combining the forward and the
backward Euler schemes. We call this method Euler IMEX. Let us apply it to the
low-order ODE system (2.14). Let \bfsansU n \in \scrA I . The first step is explicit and consists of
computing the hyperbolic prediction

(2.17) \bfsansW L,n :=
\bigl( 
\BbbI + \tau (\BbbM L) - 1\bfsansF L

\bigr) 
(\bfsansU n).

The second step is implicit and consists of computing the final state \bfsansU L,n+1 by solving
the quasi-linear problem

(2.18)
\bigl( 
\BbbI  - \tau (\BbbM L) - 1\bfsansG L,lin(\bfsansW L,n; \cdot )

\bigr) 
(\bfsansU L,n+1) =\bfsansW L,n.

Altogether, we have

\BbbM L\bfsansU L,n+1 =\BbbM L\bfsansU n + \tau \bfsansF L(\bfsansU n) + \tau \bfsansG L,lin(\bfsansW L,n;\bfsansU L,n+1).(2.19)

This leads us to formulate the following two key structural assumptions.

Assumption 2.1 (low-order fluxes). There exists \tau \ast > 0 s.t. for all \tau \in (0, \tau \ast ],\bigl\{ 
\bfsansV \in \scrA I

\bigr\} 
=\Rightarrow 

\bigl\{ \bigl( 
\BbbI + \tau (\BbbM L) - 1\bfsansF L

\bigr) 
(\bfsansV )\in \scrA I

\bigr\} 
,(2.20) \bigl\{ 

\bfsansV \in \scrA I
\bigr\} 
=\Rightarrow 

\bigl\{ \bigl( 
\BbbI  - \tau (\BbbM L) - 1\bfsansG L,lin(\bfsansV ; \cdot )

\bigr)  - 1
(\bfsansV )\in \scrA I

\bigr\} 
.(2.21)

The following result prefigures what we are aiming at. We omit the proof since
it is somewhat standard.

Lemma 2.2 (low-order Euler IDP-IMEX scheme). Assume that \bfsansU n \in \scrA I and
\tau \in (0, \tau \ast ]. Then the low-order Euler IMEX scheme (2.19) is well-defined, IDP, and
conservative, i.e., \bfsansU L,n+1 \in \scrA I and

\sum 
i\in \scrV mi\bfitC \bfsansU L,n+1

i =
\sum 

i\in \scrV mi\bfitC \bfsansU n
i .

Remark 2.3 (time step restriction). In many situations, the time step restriction
\tau \in (0, \tau \ast ] is only required for the invariant-domain property of the hyperbolic step
(2.20) to hold. The invariant-domain property of the parabolic step (2.21) can often
be shown to hold for every time step \tau > 0.

Of course, the above result is of little interest since what we actually want is to
use a high-order approximation in space. The Euler IMEX scheme applied to the
high-order ODE system (2.15) consists of seeking \bfsansU H,n+1 \in (\BbbR m)I so that

\BbbM H\bfsansU H,n+1 =\BbbM H\bfsansU n + \tau \bfsansF H(\bfsansU n) + \tau \bfsansG H,lin(\bfsansU n;\bfsansU H,n+1).(2.22)

Similarly to (2.19), the method (2.22) is composed of two steps. The first one consists
of computing the forward Euler prediction \bfsansW H,n :=

\bigl( 
\BbbI + \tau (\BbbM H) - 1\bfsansF H)(\bfsansU n). The

second one consists of computing the parabolic update \bfsansU H,n+1 by solving the quasi-
linear problem

\bigl( 
\BbbI  - \tau (\BbbM H) - 1\bfsansG H,lin(\bfsansU n; \cdot )

\bigr) 
(\bfsansU H,n+1) =\bfsansW H,n. Unfortunately, there is no

guarantee that \bfsansU H,n+1 belongs to \scrA I , i.e., the high-order counterpart of Lemma 2.2
does not hold true in general.

This problem is solved in the literature by using nonlinear limiting operators; see
[4, 37, 29, 19]. Limiting is realized in the discontinuous Galerkin and finite volume
settings by squeezing the high-order approximation towards the piecewise constant
approximation over each mesh cell (see [33, Thm. 2.1], [8, Thm. 4.3], [26, Thm. 1],
and [38, Thm. 2.5]). A well-known limiting method for scalar conservation equations
is the so-called flux-corrected transport (FCT) technique of [4] and [37]. The reader is
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INVARIANT-DOMAIN PRESERVING IMEX METHODS A2517

also referred to [23, 24] for extensions. For hyperbolic systems, so-called synchronized
algorithms, which still compute limiters based on sequentially determined bounds for
each scalar component, are considered in [34] (see also [27] and the references therein
for extensions). Nonlinear limiting algorithms enforcing bounds coupling together
several components in a nonaffine manner are derived in, e.g., [33, Lem. 3.3], [8,
Thm. 4.3], [26, Thm. 2], [39, Lem. 2.4], and [15, 16]. The key idea common to all the
above techniques is the decomposition of the flux over the stencils in skew-symmetric
components as in (2.7), (2.8), and (2.9).

In the present work, we are going to consider two limiters: one to compute the hy-
perbolic prediction and another to compute the parabolic update. We now introduce
the corresponding notation. Let \frakL be the collection of the sparse symmetric matrices
in \BbbR I\times I with the sparsity pattern induced by the stencils (\scrI (i))i\in \scrV and coefficients
in [0,1]. We also let \frakM be the collection of the skew-symmetric matrices in (\BbbR m)I\times I

with the block-sparsity pattern induced by the stencils (\scrI (i))i\in \scrV . Finally, we define
\scrB := ker(\bfitC )\subset \BbbR m.

Definition 2.4 (conservative hyperbolic limiter). Let
\bigl( 
\bfsansV i +

\tau 
mi

\sum 
j\in \scrI (i)\bfsansA ij

\bigr) 
i\in \scrV 

be a hyperbolic prediction, with \bfsansV := (\bfsansV i)i\in \scrV \in \scrA I and \bfsansA := (\bfsansA ij)i\in \scrV ,j\in \scrI (i) \in \frakM .
We call conservative hyperbolic limiter any operator \ell hyp : \scrA I \times \frakM \ni (\bfsansV ,\bfsansA ) \mapsto \rightarrow 
(\ell ij)i\in \scrV ,j\in \scrI (i) \in \frakL s.t. the following holds:

(2.23) \bfsansV i +
\tau 

mi

\sum 
j\in \scrI (i)

\ell ij\bfsansA ij \in \scrA \forall i\in \scrV .

For brevity, the state (\bfsansV i +
\tau 
mi

\sum 
j\in \scrI (i) \ell ij\bfsansA ij)i\in \scrV \in \scrA I is denoted by \ell hyp(\bfsansV ,\bfsansA ).

Definition 2.5 (conservative parabolic limiter). Let
\bigl( 
\bfsansV i +

\tau 
mi

\sum 
j\in \scrI (i)\bfsansA ij +

\tau 
mi

\bfsansB i

\bigr) 
i\in \scrV be a parabolic update with \bfsansV := (\bfsansV i)i\in \scrV \in \scrA I , \bfsansA := (\bfsansA ij)i\in \scrV ,j\in \scrI (i) \in \frakM ,

and \bfsansB := (\bfsansB i)i\in \scrV \in \scrB I . We call conservative parabolic limiter any operator \ell par :
\scrA I \times \frakM \times \scrB I\ni (\bfsansV ,\bfsansA ,\bfsansB ) \mapsto \rightarrow 

\bigl( 
(\ell aij)i\in \scrV ,j\in \scrI (i), (\ell 

b
i )i\in \scrV 

\bigr) 
\in \frakL \times [0,1]I s.t. the following

holds:

(2.24) \bfsansV i +
\tau 

mi

\sum 
j\in \scrI (i)

\ell aij\bfsansA ij +
\tau 

mi
\ell bi\bfsansB i \in \scrA \forall i\in \scrV .

For brevity, the state \bfsansV i +
\tau 
mi

\sum 
j\in \scrI (i) \ell 

a
ij\bfsansA ij +

\tau 
mi

\ell bi\bfsansB i is denoted by \ell par(\bfsansV ,\bfsansA ,\bfsansB ).

The existence of limiters is guaranteed since the trivial limiters \ell hyp(\bfsansV ,\bfsansA ) = \bfsansV 
(i.e., \ell ij = 0 for all i \in \scrV and all j \in \scrI (i)) and \ell par(\bfsansV ,\bfsansA ,\bfsansB ) = \bfsansV (i.e., \ell aij = \ell bi = 0 for
all i\in \scrV and all j \in \scrI (i)) are always admissible because \bfsansV \in \scrA I . Of course, the trivial
limiters are inefficient. The goal of limiters is to construct the limiting coefficients \ell ij ,
\ell aij , and \ell bi as close to 1 as possible. Regardless of the values taken by the limiters, an
important property of the limiters is conservativity.

Lemma 2.6 (conservation). For all (\bfsansV ,\bfsansA ,\bfsansB )\in \scrA I \times \frakM \times \scrB I , we have

(2.25)
\sum 
i\in \scrV 

mi\bfitC \ell hyp(\bfsansV ,\bfsansA )i =
\sum 
i\in \scrV 

mi\bfitC \bfsansV i,
\sum 
i\in \scrV 

mi\bfitC \ell par(\bfsansV ,\bfsansA ,\bfsansB )i =
\sum 
i\in \scrV 

mi\bfitC \bfsansV i.

Proof. For the parabolic limiter, we have\sum 
i\in \scrV 

mi\bfitC \ell par(\bfsansV ,\bfsansA ,\bfsansB )i =
\sum 
i\in \scrV 

mi\bfitC \bfsansV i + \tau \bfitC 
\sum 
i\in \scrV 

\sum 
j\in \scrI (i)

\ell aij\bfsansA ij ,
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A2518 ERN ALEXANDRE AND JEAN-LUC GUERMOND

because \bfsansB \in \scrB I and \scrB = ker(\bfitC ). But the symmetry property \ell aij = \ell aji and the
skew-symmetry property \bfsansA ij = - \bfsansA ji imply that

\sum 
i\in \scrV 

\sum 
j\in \scrI (i) \ell 

a
ij\bfsansA ij = 0, whence the

assertion. The proof for the hyperbolic limiter is similar.

2.4. Euler IDP-IMEX scheme. All the ingredients are now in place to make
the Euler IMEX scheme invariant-domain preserving with high-order space discretiza-
tion. Given \bfsansU n \in \scrA I , the scheme is decomposed into the following four steps:

(2.26) \bfsansU n (1) - \rightarrow (\bfsansW L,n+1,\bfsansW H,n+1)
(2) - \rightarrow \underbrace{}  \underbrace{}  

hyperbolic step

\bfsansW n+1 (3) - \rightarrow (\bfsansU L,n+1,\bfsansU H,n+1)
(4) - \rightarrow \underbrace{}  \underbrace{}  

parabolic step

\bfsansU n+1.

Let us now give the details of the four steps. We essentially follow Zalesak's limiting
strategy [37, eqn. (4)] for both the hyperbolic and the parabolic steps.

Hyperbolic steps (1) and (2). Step (1) consists of computing the low-order
and high-order hyperbolic updates

\BbbM L\bfsansW L,n+1 :=\BbbM L\bfsansU n + \tau \bfsansF L(\bfsansU n),(2.27)

\BbbM H\bfsansW H,n+1 :=\BbbM H\bfsansU n + \tau \bfsansF H(\bfsansU n).(2.28)

In step (2), we apply the hyperbolic limiting operator. Subtracting (2.27) from (2.28)
and using (2.7) and (2.8), elementary manipulations show that for all i\in \scrV ,

\bfsansW H,n+1
i =\bfsansW L,n+1

i +
\tau 

mi

\sum 
j\in \scrI (i)

\bfsansA n
ij ,(2.29)

with \bfsansA n
ij := \bfsansF H

ij(\bfsansU 
n) - \bfsansF L

ij(\bfsansU 
n) - \delta mij

\tau 
(\bfsansW H,n+1

j  - \bfsansU n
j  - \bfsansW H,n+1

i +\bfsansU n
i ).(2.30)

Notice that \bfsansA n \in \frakM is in compliance with Definition 2.4. The conservative IDP
hyperbolic high-order update is then obtained by setting

(2.31) \bfsansW n+1 := \ell hyp(\bfsansW L,n+1,\bfsansA n).

Parabolic steps (3) and (4). Step (3) consists of computing the low-order and
high-order parabolic updates by solving

\BbbM L\bfsansU L,n+1  - \tau \bfsansG L,lin(\bfsansW n+1;\bfsansU L,n+1) :=\BbbM L\bfsansW n+1,(2.32)

\BbbM H\bfsansU H,n+1  - \tau \bfsansG H,lin(\bfsansU n;\bfsansU H,n+1) :=\BbbM H\bfsansW n+1.(2.33)

The quasi-linearization in (2.32) is based on \bfsansW n+1 to be able to invoke assumption
(2.21). The quasi-linearization in (2.33) is based on \bfsansU n to be consistent with the
higher-order case to be explained in the next section (see also Remark 3.1). In step
(4), we apply the parabolic limiting operator. Subtracting (2.32) from (2.33) and
using (2.10), (2.11), and (2.12), elementary manipulations show that for all i\in \scrV ,

\bfsansU H,n+1
i =\bfsansU L,n+1

i +
\tau 

mi

\sum 
j\in \scrI (i)

\bfsansA n
ij +

\tau 

mi
\bfsansB n

i ,(2.34)

with \bfsansA n
ij :=\bfsansD H,lin

ij (\bfsansU n;\bfsansU H,n+1) - \bfsansD L,lin
ij (\bfsansW n+1;\bfsansU L,n+1)(2.35)

 - \delta mij

\tau 
(\bfsansU H,n+1

j  - \bfsansW n+1
j  - \bfsansU H,n+1

i +\bfsansW n+1
i ),

and \bfsansB n
i :=\bfsansR H,lin

i (\bfsansU n;\bfsansU H,n+1) - \bfsansR L,lin
i (\bfsansW n+1;\bfsansU L,n+1).(2.36)

Notice that \bfsansA n \in \frakM and \bfsansB n \in \scrB I in compliance with Definition 2.5. The conservative
IDP parabolic high-order update is then obtained by setting

(2.37) \bfsansU n+1 := \ell par(\bfsansU L,n+1,\bfsansA n,\bfsansB n).
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INVARIANT-DOMAIN PRESERVING IMEX METHODS A2519

Conclusion. The main result for the above construction is the following.

Lemma 2.7 (high-order Euler IDP-IMEX scheme). Let Assumption 2.1 hold and
assume \tau \in (0, \tau \ast ]. Assume that the limiters \ell hyp and \ell par match Definitions 2.4 and
2.5. Let \bfsansU n \in \scrA I . Then the above Euler IMEX scheme (2.27)--(2.37) is well-defined,
IDP (i.e., it satisfies (2.1)), and conservative (i.e., it satisfies (2.2)).

Proof. (1) Let us first prove the method is well-defined and IDP. Since \bfsansU n \in \scrA I ,
invoking (2.20) gives \bfsansW L,n+1 \in \scrA I . The definition of the hyperbolic limiter then
implies that \bfsansW n+1 \in \scrA I . Invoking (2.21) then shows that \bfsansU L,n+1 is well-defined and
\bfsansU L,n+1 \in \scrA I . Finally, the definition of the parabolic limiter implies that \bfsansU n+1 \in \scrA I .

(2) Conservativity follows from the following identities:\sum 
i\in \scrV 

mi\bfitC \bfsansU n+1
i =

\sum 
i\in \scrV 

mi\bfitC \bfsansU L,n+1
i =

\sum 
i\in \scrV 

mi\bfitC \bfsansW n+1
i =

\sum 
i\in \scrV 

mi\bfitC \bfsansW L,n+1
i =

\sum 
i\in \scrV 

mi\bfitC \bfsansU n
i ,

where the first and third equalities follow from Lemma 2.6, whereas the second
and fourth equalities follow from the skew-symmetry assumption on the low-order
fluxes.

3. High-order IDP-IMEX schemes. In this section, we extend the construc-
tion described in section 2.4 to every IMEX scheme combining an explicit Runge--
Kutta (ERK) scheme with a diagonally implicit RK scheme whose first stage is fully
explicit (EDIRK). We assume that both schemes consist of s stages, s\geq 2. The main
original ideas of the paper are in this section.

3.1. Butcher tableaux. The ERK and EDIRK schemes are described by their
respective Butcher tableau, which we assume to have the following form:

(3.1)

0 0
c2 ae2,1 0
c3 ae3,1 ae3,2 0
...

...
. . .

. . .
. . .

cs aes,1 aes,2 · · · aes,s−1 0

be1 be2 · · · bes−1 bes

0 0
c2 ai2,1 ai2,2
c3 ai3,1 ai3,2 ai3,3
...

...
. . .

. . .
. . .

cs ais,1 ais,2 · · · ais,s−1 ais,s
bi1 bi2 · · · bis−1 bis

Notice that a\sanse l,k := 0 for all k \geq l, a\sansi l,k := 0 for all k > l. Here, the superscript \sanse refers

to the ERK scheme and the superscript \sansi refers to the EDIRK scheme. Recall that
the coefficients cj define the intermediate time steps tn,j := tn + cj\tau . Notice that
both schemes share the same set of coefficients (cj)j\in \{ 1:s\} . For convenience, we set
cs+1 := 1. We assume that c1 = 0 and cj \geq 0 for all j \in \{ 2 : s\} . To simplify some
expressions, we set a\sanse s+1,j := b\sanse j and a\sansi s+1,j := b\sansi j for all j \in \{ 1 : s\} . Whenever a\sansi i,1 = 0
for all i \in \{ 1 : s + 1\} , the EDIRK scheme is called zero-padded. If all the diagonal
entries a\sansi i,i are equal (except the first one, which is zero), we speak of singly diagonal
EDIRK scheme (ESDIRK). Finally, we use the convention that a\sansi s+1,s+1 := 0.

We are going to assume that

(3.2)
\sum 

l\in \{ 1:j\} 

a\sanse j,l =
\sum 

l\in \{ 1:j\} 

a\sansi j,l = cj \forall j \in \{ 1 : s\} .

This is one of Butcher's simplifying assumptions for each RK scheme. This assumption
implies that a\sanse 1,1 = a\sansi 1,1 = 0. Moreover, since consistency requires that

\sum 
j\in \{ 1:s\} b

\sanse 
j =\sum 

j\in \{ 1:s\} b
\sansi 
j = 1, the identity (3.2) also holds true for j = s+ 1.
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A2520 ERN ALEXANDRE AND JEAN-LUC GUERMOND

3.2. High-order IMEX scheme in incremental form. Following the ideas
developed in [13] for ERK schemes, we write the IMEX scheme in incremental form.
For all l \in \{ 2 : s+1\} , we define the stage index l\prime (l) to be the largest index in \{ 1 : l - 1\} 
so that cl - cl\prime (l) is the minimal value of cl - ck such that cl - ck \geq 0 for all k \in \{ 1 : l - 1\} :

(3.3) cl  - cl\prime (l) = min
\{ k\in \{ 1:l - 1\} | cl - ck\geq 0\} 

(cl  - ck) \forall l \in \{ 2 : s+ 1\} .

Owing to the assumption cl \geq 0 = c1 for all l \in \{ 2 : s+ 1\} , we infer that 1 \in \{ k \in \{ 1 :
l - 1\} | cl  - ck \geq 0\} , which means that this set is nonempty and the above definition
makes sense. The definition of l\prime (l) remains meaningful for so-called confluent RK
methods for which several cl's take the same value. If the sequence (cl)l\in \{ 1:s\} is
nondecreasing, then l\prime (l) = l - 1 for all l \in \{ 2 : s+ 1\} . The reason for looking for the
smallest difference cl  - cl\prime (l) is to optimize the CFL restriction on the time step. For
further reference, we define

(3.4) \Delta cmax := max
l\in \{ 2:s+1\} 

\bigl( 
cl  - cl\prime (l)

\bigr) 
.

Notice that \Delta cmax \geq 1
s and \Delta cmax = 1

s whenever all the stages are equidistributed,
i.e., cl =

l - 1
s , l \in \{ 1 : s+1\} . In the rest of the paper, we simply write l\prime instead of l\prime (l)

to simplify the notation, and we set \delta cl := cl - cl\prime , \delta a
\sanse 
l,k := a\sanse l,k - a\sanse l\prime ,k, \delta a

\sansi 
l,k := a\sansi l,k - a\sansi l\prime ,k

for all l \in \{ 2 : s+ 1\} and all k \in \{ 1 : l - 1\} .
We can now approximate in time the high-order ODE system (2.15) by using the

IMEX method defined by the two Butcher tableaux in (3.1). We first set \bfsansU n,1 :=\bfsansU n.
Then, for all l \in \{ 2 : s + 1\} , the lth stage of the method consists of computing the
following high-order update by using the incremental form of the IMEX scheme:

(3.5) \BbbM H\bfsansU n,l :=\BbbM H\bfsansU n,l\prime + \tau 
\sum 

k\in \{ 1:l - 1\} 

\Bigl\{ 
\delta a\sanse l,k\bfsansF 

H(\bfsansU n,k) + \delta a\sanse l,k\bfsansG 
H(\bfsansU n,k)

+ (\delta a\sansi l,k  - \delta a\sanse l,k)\bfsansG 
H,lin(\bfsansU n;\bfsansU n,k)

\Bigr\} 
+ \tau a\sansi l,l\bfsansG 

H,lin(\bfsansU n;\bfsansU n,l).

This incremental form is obtained by subtracting the l\prime th stage of the IMEX update
from the lth stage. We decompose the above problem into one hyperbolic prediction
followed by one parabolic update as follows:

\BbbM H\bfsansW n,l :=\BbbM H\bfsansU n,l\prime + \tau 
\sum 

k\in \{ 1:l - 1\} 

\delta a\sanse l,k\bfsansF 
H(\bfsansU n,k),(3.6)

\BbbM H\bfsansU n,l  - \tau a\sansi l,l\bfsansG 
H,lin(\bfsansU n;\bfsansU n,l) :=\BbbM H\bfsansW n,l(3.7)

+ \tau 
\sum 

k\in \{ 1:l - 1\} 

\Bigl\{ 
\delta a\sanse l,k\bfsansG 

H(\bfsansU n,k) + (\delta a\sansi l,k  - \delta a\sanse l,k)\bfsansG 
H,lin(\bfsansU n;\bfsansU n,k)

\Bigr\} 
.

Notice that, consistently with (2.5), the quasi-linearization is done with respect to the
initial state \bfsansU n at all stages.

3.3. IDP-IMEX scheme. We now make the scheme (3.6)--(3.7) IDP by pro-
ceeding as in section 2.4. Given \bfsansU n \in \scrA I , we set \bfsansU n,1 := \bfsansU n and decompose each
stage l \in \{ 2 : s+ 1\} into the following four steps:

(3.8) \bfsansU n,l\prime (1) - \rightarrow (\bfsansW L,l,\bfsansW H,l)
(2) - \rightarrow \underbrace{}  \underbrace{}  

hyperbolic step (3.6)

\bfsansW n,l (3) - \rightarrow (\bfsansU L,l,\bfsansU H,l)
(4) - \rightarrow \underbrace{}  \underbrace{}  

parabolic step (3.7)

\bfsansU n,l.
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INVARIANT-DOMAIN PRESERVING IMEX METHODS A2521

Hyperbolic steps (1) and (2). We proceed as in [13] to make the hyper-
bolic update (3.6) IDP. We first compute the low-order and high-order hyperbolic
updates:

\BbbM L\bfsansW L,l :=\BbbM L\bfsansU n,l\prime + \tau \bfsansF L,\sanse with \bfsansF L,\sanse := \delta cl\bfsansF 
L(\bfsansU n,l\prime ),(3.9)

\BbbM H\bfsansW H,l :=\BbbM H\bfsansU n,l\prime + \tau \bfsansF H,\sanse with \bfsansF H,\sanse :=
\sum 

k\in \{ 1:l - 1\} 

\delta a\sanse l,k\bfsansF 
H(\bfsansU n,k).(3.10)

By proceeding as in (2.29)--(2.30), we write

\bfsansW H,l
i =\bfsansW L,l

i +
\tau 

mi

\sum 
j\in \scrI (i)

\bfsansA n,l
ij \forall i\in \scrV ,(3.11)

with \bfsansA n,l
ij := \bfsansF H,\sanse 

ij  - \bfsansF L,\sanse 
ij  - \delta mij

\tau 
(\bfsansW H,l

j  - \bfsansU n,l\prime 

j  - \bfsansW H,l
i +\bfsansU n,l\prime 

i ).(3.12)

Notice that \bfsansA n,l \in \frakM in compliance with Definition 2.4. Second, using the hyperbolic
limiter, we set

(3.13) \bfsansW n,l := \ell hyp(\bfsansW L,l,\bfsansA n,l).

Parabolic steps (3) and (4). We now compute the low-order and high-order
parabolic updates defined by solving the following two problems:

\BbbM L\bfsansU L,l  - \tau \delta cl\bfsansG 
L,lin(\bfsansW n,l;\bfsansU L,l) :=\BbbM L\bfsansW n,l,(3.14)

\BbbM H\bfsansU H,l  - \tau a\sansi l,l\bfsansG 
H,lin(\bfsansU n;\bfsansU H,l) :=\BbbM H\bfsansW n,l + \tau (\bfsansD H,\sansi +\bfsansR H,\sansi )(3.15)

with \bfsansD H,\sansi :=
\sum 

k\in \{ 1:l - 1\} 

\Bigl\{ 
\delta a\sanse l,k\bfsansD 

H(\bfsansU n,k) + (\delta a\sansi l,k  - \delta a\sanse l,k)\bfsansD 
H,lin(\bfsansU n;\bfsansU n,k)

\Bigr\} 
,(3.16)

and \bfsansR H,\sansi :=
\sum 

k\in \{ 1:l - 1\} 

\Bigl\{ 
\delta a\sanse l,k\bfsansR 

H(\bfsansU n,k) + (\delta a\sansi l,k  - \delta a\sanse l,k)\bfsansR 
H,lin(\bfsansU n;\bfsansU n,k)

\Bigr\} 
.(3.17)

The update \bfsansU n,l is obtained by employing the conservative parabolic limiter and by
proceeding as for the Euler IMEX scheme. Subtracting (3.14) from (3.15) yields

\bfsansU H,l
i =\bfsansU L,l

i +
\tau 

mi

\sum 
j\in \scrI (i)

\bfsansA n,l
ij +

\tau 

mi
\bfsansB n,l

i \forall i\in \scrV ,(3.18)

with \bfsansA n,l
ij := a\sansi l,l\bfsansD 

H,lin
ij (\bfsansU n;\bfsansU H,l) - \delta cl\bfsansD 

L,lin
ij (\bfsansW n,l;\bfsansU L,l) +\bfsansD H,\sansi 

ij(3.19)

 - \delta mij

\tau 

\bigl( 
\bfsansU H,l

j  - \bfsansW n,l
j  - \bfsansU H,l

i +\bfsansW n,l
i

\bigr) 
,

and \bfsansB n,l
i := a\sansi l,l\bfsansR 

H,lin
i (\bfsansU n;\bfsansU H,l) - \delta cl\bfsansR 

L,lin
i (\bfsansW n,l;\bfsansU L,l) +\bfsansR H,\sansi 

i .(3.20)

Notice that \bfsansA n,l \in \frakM and \bfsansB n,l \in \scrB I in compliance with Definition 2.5. Using the
parabolic limiter, we finally set

(3.21) \bfsansU n,l := \ell par(\bfsansU L,l,\bfsansA n,l,\bfsansB n,l).

At the end of the loop, the final update is obtained by setting \bfsansU n+1 :=\bfsansU n,s+1.

Remark 3.1 (quasi-linearization). We observe that the high-order parabolic update
(3.15) involves a quasi-linearization based on \bfsansU n. It is essential that the quasi-
linearization for the high-order update be the same for all the stages of the IMEX
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A2522 ERN ALEXANDRE AND JEAN-LUC GUERMOND

scheme to preserve the high-order accuracy in time of the method. But the quasi-
linearization for the low-order update at each stage l \in \{ 1 : s+ 1\} is based on \bfsansW n,l;
this allows us to invoke the invariant-domain property stated in assumption (2.21).

Remark 3.2 (complexity). The low-order update (3.14) requires solving a quasi-
linear system for all l \in \{ 2 : s+ 1\} . The high-order update (3.15) requires solving a
quasi-linear system for all l \in \{ 2 : s\} and amounts to an explicit update for l = s+ 1
because a\sansi s+1,s+1 = 0. Thus, the above method requires solving (2s - 1) quasi-linear
systems over each time interval. The low-order parabolic update has to be computed
only if limiting is required. Our experience is that parabolic limiting is infrequently
needed if one only enforces global bounds at the end of the parabolic substeps (like
positivity of some quantity). Parabolic limiting is nevertheless theoretically required
to assert the invariant-domain property as counterexamples can be constructed.

Conclusion. The main motivation for the construction introduced above is the
following result. Recall that \Delta cmax is defined in (3.4).

Theorem 3.3 (s-stage IDP-IMEX). Let \bfsansU n \in \scrA I . Let Assumption 2.1 hold and

(3.22) \tau \in 
\Bigl( 
0,

\tau \ast 

\Delta cmax

\Bigr] 
.

Assume that the limiters \ell hyp and \ell par match Definitions 2.4 and 2.5. Consider the
s-stage IMEX scheme composed of the steps (3.9)--(3.21) for all l \in \{ 2 : s+ 1\} . This
scheme is well-defined, IDP (i.e., it satisfies (2.1)), and conservative (i.e., it satisfies
(2.2).)

Proof. Assume (3.22) and \bfsansU n \in \scrA I . We are going to show by induction that
all the intermediate updates (\bfsansU n,l)l\in \{ 1:s+1\} are well-defined and are in \scrA I . The

definition \bfsansU n,1 := \bfsansU n implies that the assumption holds true for l = 1. Now let
l \in \{ 2 : s+1\} . We make the following observations: The low-order hyperbolic update
(3.9) has the same structure as (2.27); the high-order hyperbolic update (3.11)--(3.12)
has the same structure as (2.29)--(2.30); the low-order parabolic update (3.14) has
the same structure as (2.32); the high-order parabolic update (3.18)--(3.21) has the
same structure as (2.34)--(2.37). Hence, we can apply Lemma 2.7 to the scheme (3.9)--
(3.21), provided the effective time step (cl - cl\prime )\tau used in the low-order hyperbolic and
parabolic stages (3.9) and (3.14) lies in the interval (0, \tau \ast ]. However, this is the case
owing to the assumption (3.22). Then Lemma 2.7 implies that \bfsansU n,l is well-defined
and is in \scrA I . This proves the assertion. Moreover, Lemma 2.7 also asserts that\sum 

i\in \scrV 
mi\bfitC \bfsansU n,l

i =
\sum 
i\in \scrV 

mi\bfitC \bfsansU n,l\prime 

i .

An induction argument gives
\sum 

i\in \scrV mi\bfitC \bfsansU n,l
i =

\sum 
i\in \scrV mi\bfitC \bfsansU n

i for all l \in \{ 1 : s + 1\} ,
and the conservation property (2.2) follows from \bfsansU n+1 :=\bfsansU n,s+1.

Following [35] (see also [13, Def. 2.2]), the quantity

(3.23) ceff :=
1

s\Delta cmax

is called the efficiency ratio of the s-stage IMEX scheme. By construction, we have
ceff \leq 1. Theorem 3.3 shows that the IMEX scheme is IDP for all \tau \in (0, ceffs\tau 

\ast ].
Hence, computational efficiency increases with the efficiency ratio. In particular, the
largest time step allowed is s\times \tau \ast when ceff = 1. The optimal value ceff = 1 is attained
when the coefficients cj are equidistributed, i.e., cj :=

j - 1
s for all j \in \{ 1 : s\} .
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INVARIANT-DOMAIN PRESERVING IMEX METHODS A2523

4. Examples of IMEX schemes. In this section, we review some examples of
IMEX schemes and introduce four novel schemes. We only consider schemes with p-
order accuracy where p\in \{ 2,3,4\} . Recall that the IMEX schemes under consideration
combine an ERK scheme and an EDIRK scheme. Both schemes consist of s\geq p stages
and are described by the Butcher tableaux introduced in (3.1). In what follows,
we use the terminology IMEX(s, p; ceff) for IMEX schemes with s stages, order p,
and efficiency ratio ceff. Four new schemes with optimal efficiency and the following
characteristics are introduced in this section:

(1) IMEX(3,3; 1), singly diagonal, A-stable implicit part; see (4.18).
(2) IMEX(4,3; 1), singly diagonal, L-stable implicit part; see (4.19).
(3) IMEX(5,4; 1), singly diagonal, L-stable implicit part; see (4.20).
(4) IMEX(6,4; 1), singly diagonal, L-stable implicit part; see (4.21).

4.1. Main properties of IMEX schemes. Three important notions for IMEX
schemes are the consistency order, the stability of the implicit scheme, and the effi-
ciency ratio. We now briefly discuss these three properties.

For simplicity, we focus on IMEX schemes for which we have b\sanse i = b\sansi i =: bi for
all i \in \{ 1 : s\} . We denote by B the row vector in \BbbR s having components (bi)i\in \{ 1:s\} .
We denote by C the column vector in \BbbR s having components (cj)j\in \{ 1:s\} . We also use
the notation Cp, p \geq 0, for the column vector in \BbbR s having components (cpj )j\in \{ 1:s\} .

To be coherent with the literature, we set U := C0 = (1, . . . ,1)\sansT and use the symbol
C instead of C1. We denote by B\odot C the row vector in \BbbR s having components
(bjcj)j\in \{ 1:s\} . We denote by A\sanse (resp., A\sansi ) the square matrix of order s with entries
(a\sanse i,j)i,j\in \{ 1:s\} (resp., (a

\sansi 
i,j)i,j\in \{ 1:s\} ). Notice that A\sanse is strictly lower triangular, whereas

A\sansi is lower triangular. The identity matrix of order s is denoted by Is.

Consistency order. Recall that necessary consistency conditions for the explicit
and the implicit methods to be each separately of order p are

(4.1) BAr - 1Cq - 1 =
(q - 1)!

(q - 1 + r)!
\forall r \in \{ 1 : p\} , \forall q \in \{ 1 : p - r+ 1\} ,

where A stands either for A\sanse or for A\sansi . These conditions are sufficient for p \leq 2.
They are also sufficient for all p\geq 2 if the ODE systems are autonomous and linear.
Additional nonlinear conditions must be enforced for nonlinear autonomous systems
when p \geq 2. Moreover, using b\sanse i = b\sansi i =: bi and c\sanse i = c\sansi i =: ci for all i \in \{ 1 : s\} ensures
that the IMEX coupling conditions for second- and third-order schemes are satisfied;
see [31, eqns. (8) and (10)]. More coupling conditions must be added for IMEX
schemes to be of order p\geq 4; see [22, Tab. 4].

The consistency properties of IMEX methods are reviewed in [31, sect. 2.1] and
[22, sect. 2.2]. The analysis therein is based on the following simplifying assumption
(see (3.2)), which we systematically enforce:

(4.2) A\sanse U =C, A\sansi U =C.

In addition to (4.2), the (linear order) conditions needed to achieve second order
are

(4.3) BU = 1, BC = 1
2 .

The other conditions, BA\sanse U =BA\sansi U = 1
2 , are satisfied owing to (4.2) and (4.3).
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A2524 ERN ALEXANDRE AND JEAN-LUC GUERMOND

In addition to (4.2)--(4.3), the conditions needed to achieve third-order accuracy
are

(4.4) BC2 = 1
3 , BA\sanse C =BA\sansi C = 1

6 .

The other conditions, B(A\sanse )2U =B(A\sansi )2U = 1
6 , are satisfied owing to (4.2) and (4.4).

In addition to (4.2), (4.3), (4.4), the conditions needed to achieve fourth-order
accuracy are the linear order conditions

(4.5) BC3 = 1
4 , BA\sanse C2 =BA\sansi C2 = 1

12 , B(A\sanse )2C =B(A\sansi )2C = 1
24

plus the nonlinear order condition

(4.6) (B\odot C)A\sanse C = (B\odot C)A\sansi C = 1
8

and the coupling condition

(4.7) BA\sanse A\sansi C =BA\sansi A\sanse C = 1
24 .

The other conditions, B(A\sanse )3U =B(A\sansi )3U = 1
24 , follow from (4.2) and (4.5).

Finally, in addition to (4.2)--(4.7), we are also going to make use of the fifth-order
linear order conditions for a six-stage, fourth-order method,

(4.8)
BC4 = 1

5 , BA\sanse C3 =BA\sansi C3 = 1
20 ,

B(A\sanse )2C2 =B(A\sansi )2C2 = 1
60 , B(A\sanse )3C =B(A\sansi )3C = 1

120 .

The other linear order conditions, B(A\sanse )4U = B(A\sansi )4U = 1
120 , follow from (4.2) and

(4.8).

Stability. The amplification function associated with a DIRK scheme is

(4.9) R(z) := 1+ zB(Is  - zA\sansi ) - 1U, z \in \BbbC .

Recall that an RK scheme is said to be A-stable if | R(z)| \leq 1 for all z \in \BbbC s.t. \Re (z)\leq 0
(see [18, Def. IV.3.3]). A scheme is said to be L-stable if it is A-stable and R(t)\rightarrow 0
as t \rightarrow  - \infty (see [18, Def. IV.3.7]). For DIRK schemes, A\sansi is invertible if all the
diagonal entries of A\sansi are nonzero. In this case, L-stability amounts to B(A\sansi ) - 1U = 1.
However, for EDIRK schemes, the first diagonal entry of A\sansi is zero. In this case, one
considers the block decompositions

(4.10) A\sansi =

\biggl( 
0 0

\alpha \~A

\biggr) 
, B = (\beta , \~B),

with \alpha \in \BbbR s - 1 (column vector), \~A \in \BbbR s - 1,s - 1, \beta \in \BbbR , and \~B \in \BbbR s - 1 (row vector).
Then the amplification function defined in (4.9) can be rewritten as

(4.11) R(z) = 1+ z\beta + z \~B(Is - 1  - z \~A) - 1( \~U + z\alpha ),

where \~U \in \BbbR s - 1 is the column vector having all entries equal to one. Assuming that
\~A is invertible, one readily verifies that the EDIRK scheme is L-stable if it is A-stable
and if the following holds:

(4.12) \beta = \~B \~A - 1\alpha , \~B \~A - 1 \~U + \~B \~A - 2\alpha = 1.

Notice that the first condition in (4.12) implies that limt\rightarrow  - \infty R(t) = 1 - \~B \~A - 1 \~U  - 
\~B \~A - 2\alpha , and the second condition then implies that limt\rightarrow  - \infty R(t) = 0.
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INVARIANT-DOMAIN PRESERVING IMEX METHODS A2525

4.2. Second-order IMEX schemes. A first possibility to obtain a two-stage,
second-order IMEX method consists of combining Heun's second-order scheme with
the Crank--Nicolson (A-stable) scheme. The corresponding Butcher tableaux are

(4.13)

0 0
1 1 0

1 1
2

1
2

0 0
1 1

2
1
2

1 1
2

1
2

We have l\prime (l) = l - 1 for all l \in \{ 2 : 3\} , and ceff = 1
2 . We call this method IMEX(2,2; 12 ).

A second possibility consists of combining the explicit and implicit (A-stable)
midpoint rules. The corresponding Butcher tableaux are

(4.14)

0 0
1
2

1
2 0

1 0 1

0 0
1
2 0 1

2

1 0 1

We have l\prime (l) = l - 1 for all l \in \{ 2 : 3\} , and in this case the efficiency ratio reaches the
optimal value ceff = 1. We call this method IMEX(2,2; 1). The amplification function
is R(z) = 2+z

2 - z for the Crank--Nicolson scheme and the midpoint rule. It is remarkable
that the amplification function is the same for both schemes. However, the efficiency
of the Crank--Nicolson scheme is only 1

2 , whereas that of the midpoint rule is 1.
A third possibility (see [2, sect. 2.5]) is to consider a three-stage, second-order

scheme in which the implicit scheme is an L-stable, zero-padded, two-stage ESDIRK
scheme. The Butcher tableaux are

(4.15)

0 0
γ γ 0
1 δ 1− δ 0

1 0 1− γ γ

0 0
γ 0 γ
1 0 1− γ γ

1 0 1− γ γ

with \gamma := 1  - 1\surd 
2
\approx 0.29289, and \delta is an adjustable parameter for which the value

\delta = - 2
3

\surd 
2 is recommended. We have l\prime (l) = l - 1 for all l \in \{ 2 : 4\} , but the efficiency

ratio is only ceff = 1
3 (1 - \gamma )\approx 0.24. We call this method IMEX(3,2; 0.24).

Remark 4.1 (Strang's splitting). Strang's splitting can be rewritten as an IMEX
scheme. Consider, for instance, that the explicit (resp., implicit) midpoint rule is used
for the explicit (resp., implicit) steps. One can verify that the whole process can be
rewritten as a five-stage IMEX scheme with the following Butcher tableaux:

0 0
1
4

1
4 0

1
2 0 1

2 0
1
2 0 1

2 0 0
3
4 0 1

2 0 1
4 0

1 0 1
2 0 0 1

2

0 0
1
4 0 0
1
2 0 0 1

2
1
2 0 0 1 0
3
4 0 0 1 0 0

1 0 0 1 0 0

As expected, there is only one implicit substep (the third one). We have l\prime (l) = l - 1
for all l \in \{ 2 : 6\} and \Delta cmax = 1

4 . Notice that the fourth substep does not involve
extra flux computations with respect to the third substep. Hence, the efficiency ratio
is ceff = 4\~s - 1 with \~s = 4 (rather than ceff = 4s - 1 with s = 5), i.e., the method
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A2526 ERN ALEXANDRE AND JEAN-LUC GUERMOND

has optimal efficiency. A variant of this method is implemented in [17] to solve
the compressible Navier--Stokes equations (the method SSPRK(3,3) is used therein
instead of the midpoint rule though).

4.3. Third-order IMEX schemes. In this section, we consider third-order
IMEX schemes composed of three or four stages. Three-stage schemes in which the
implicit scheme is A-stable are available in the literature, but none of these methods
has optimal efficiency. We derive here a three-stage IMEX scheme achieving optimal-
ity and whose implicit tableau is A-stable. We also construct a four-stage scheme
with optimal efficiency whose implicit tableau is L-stable.

4.3.1. Three-stage schemes. A first possibility to obtain a three-stage, third-
order IMEXmethod consists of using the two-stage, third-order, zero-padded ESDIRK
scheme [28, 9] for the implicit scheme and combining it with the three-stage, third-
order ERK scheme sharing the same coefficients cj and bj . The corresponding Butcher
tableaux are (see [2, sect. 2.4])

(4.16)

0 0
γ γ 0

1− γ γ − 1 2− 2γ 0

1 0 1
2

1
2

0 0
γ 0 γ

1− γ 0 1− 2γ γ

1 0 1
2

1
2

with \gamma := 1
2 + 1

2
\surd 
3
\approx 0.78867 (i.e., \gamma 2 = \gamma  - 1

6 ). The amplification function is

(4.17) R(z) =
1+ (1 - 2\gamma )z + ( 13  - \gamma )z2

(1 - \gamma z)2
.

The zero-padded ESDIRK scheme is A-stable, but not L-stable because we only have
limt\rightarrow  - \infty R(t) = 1 - 

\surd 
3\approx  - 0.73205. The values for l\prime are (1,1,2), and the efficiency

ratio is only ceff = 1
3\gamma \approx 0.26. We call this method IMEX(3,3; 0.26).

We now propose a three-stage, third-order IMEX method with optimal efficiency.
We call this method IMEX(3,3; 1). We use the third-order Heun method for the ERK
part, and we design the corresponding three-stage, third-order EDIRK scheme. We
first request that the EDIRK scheme have the same set of coefficients cj and bj as
Heun's method, so that there remains to determine the matrix A\sansi . Since this matrix is
lower triangular, of order three, and a\sansi 1,1 = 0, this leaves five entries to be determined.
Four equations can be enforced: two from Butcher's simplifying assumption (4.2)
involving A\sansi (there are two equations corresponding to the rows i \in \{ 2,3\} since the
row corresponding to i = 1 is trivial), one is the (linear order) condition BA\sansi C = 1

6
stated in (4.4) (the remaining linear order conditions are already satisfied), and one is
the first stability condition in (4.12). One can show that it is not possible to enforce
the second equality in (4.12) (there would be no solution). The fifth condition we
use to close the system consists of minimizing limt\rightarrow  - \infty R(t). Solving this problem
leads to an A-stable method with limt\rightarrow  - \infty R(t) = 1 - 

\surd 
3. Incidentally, the implicit

scheme turns out to be singly diagonal, although this property has not been explicitly
enforced. The Butcher arrays of the ERK and ESDIRK schemes are

(4.18)

0 0
1
3

1
3 0

2
3 0 2

3 0

1 1
4 0 3

4

0 0
1
3

1
3 − γ γ

2
3 γ 2

3 − 2γ γ

1 1
4 0 3

4
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INVARIANT-DOMAIN PRESERVING IMEX METHODS A2527

with (again) \gamma := 1
2 + 1

2
\surd 
3
\approx 0.78867. We have l\prime (l) = l  - 1 for all l \in \{ 2 : 4\} ,

and the efficiency ratio reaches the optimal value ceff = 1. Quite remarkably, the
amplification function for the above ESDIRK scheme is still given by (4.17). Hence,
the amplification functions of the methods described by the implicit Butcher tableaux
in (4.16) and (4.18) are identical, but the efficiency of (4.16) is only ceff = 1

3\gamma \approx 0.26,
whereas that of the new method (4.18) is ceff = 1.

4.3.2. Four-stage schemes. It is possible to devise a four-stage, third-order
IMEX method with optimal efficiency in which the implicit part is an ESDIRK L-
stable scheme. We call this method IMEX(4,3; 1). We set cl :=

l - 1
4 for all l \in \{ 1 : 4\} 

to achieve optimal efficiency. There are 13 coefficients to be determined: nine entries
in the matrix A\sansi and the four components of the vector b. We enforce Butcher's
simplifying assumption (4.2) (three equations), the (linear) order conditions (4.3) and
(4.4) (four equations), and the two conditions in (4.12) to achieve L-stability. This
gives nine equations. We additionally require that the scheme be singly diagonal,
giving the two additional equations a\sansi 2,2 = a\sansi 3,3 = a\sansi 4,4, and that BC3 = 1

4 (this is the
first of the fourth-order (linear) conditions in (4.5)). The resulting underdetermined
set of nonlinear equations (12 equations, 13 unknowns) is solved using julia with
10 - 15 tolerance. The following L-stable ESDIRK scheme is found:
(4.19a)

0 0
1
4

−0.1858665215084591 0.4358665215084591
1
2

−0.4367256409878701 0.5008591194794110 0.4358665215084591
3
4

−0.0423391342724147 0.7701152303135821 −0.4136426175496265 0.4358665215084591

1 0 2
3

− 1
3

2
3

The companion ERK method that shares the same set of coefficients cj and bj has
already been proposed in [13]. The six coefficients of the matrix A\sanse are obtained by
enforcing the fourth-order linear consistency conditions (three equations from (4.2),
one from (4.4), and two from (4.5)). This is the only four-stage, third-order ERK
method with optimally distributed coefficients that is also fourth-order accurate on
linear problems. Its Butcher tableau is as follows:

(4.19b)

0 0
1
4

1
4

0
1
2

0 1
2

0
3
4

0 1
4

1
2

0

1 0 2
3

− 1
3

2
3

Near the origin along the imaginary axis, we have | R\sanse (i\epsilon )| = 1+\rho \sanse 6\epsilon 
6+\scrO (\epsilon 8) with

\rho \sanse 6 = - 2B(A\sanse )4C + 2B(A\sanse )3C  - B(A\sanse )2C + 1
36 = - 1

72 .

Remark 4.2 (other four- and five-stage methods). A third-order IMEX method
combining a four-stage ERK method with a four-stage L-stable DIRK method is
described in [2, sect. 2.7] (the DIRK method has actually three stages since the third
and fourth stages are identical). The efficiency ratio is close to ceff = 0.46. A variant
of the implicit four-stage scheme is studied in [7]. A method combining a five-stage
ERK method with a five-stage L-stable DIRK method is described in [2, sect. 2.8] (the
DIRK method actually has four stages since the fourth and fifth stages are identical).
The efficiency ratio is only ceff = 1

8 .

4.4. Fourth-order IMEX schemes. Some fourth-order IMEX methods com-
posed of five and six stages are discussed in [22, sects. 3.2 and 3.3], but the efficiency
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A2528 ERN ALEXANDRE AND JEAN-LUC GUERMOND

ratio of these methods is not optimal. Here, we devise five- and six-stage, fourth-order
IMEX schemes with optimal efficiency; the implicit scheme is L-stable in both cases.
We call these methods IMEX(5,4; 1) and IMEX(6,4; 1).

4.4.1. Five-stage scheme. We set cl :=
l - 1
5 for all l \in \{ 1 : 5\} to achieve optimal

efficiency. There are 19 coefficients to be determined: 14 entries in the matrix A\sansi and
the five components of the vector b. We enforce Butcher's simplifying assumption (4.2)
(four equations), the (linear) order conditions (4.3), (4.4), and (4.5) (seven equations),
the (nonlinear) order condition (4.6) (one equation), and the two conditions in (4.12)
to achieve L-stability. This gives 14 equations. We additionally require that the
scheme be singly diagonal, giving the three additional equations a\sansi 2,2 = a\sansi 3,3 = a\sansi 4,4 =
a\sansi 5,5, and that a\sansi 5,1 = 0, giving one additional equation. The resulting underdetermined
set of nonlinear equations (18 equations, 19 unknowns) is solved using julia with
2\times 10 - 16 tolerance. The following solution is found:
(4.20a)

0 0
1
5 −0.37281606248213511 0.57281606248213512
2
5 −0.66007935107985416 0.48726328859771911 0.57281606248213512
3
5 −0.69934543274239502 1.82596107935553742 −1.09943170909527743 0.57281606248213512
4
5 0 −0.05144383172900784 1.17898889035791732 −0.90036112111104449 . . .

1 −0.10511678454691901 0.87880047152100838 −0.58903404061484477 0.46213380485434047 . . .

4
5 . . . 0.57281606248213512

1 . . . 0.35321654878641495

This ESDIRK scheme is L-stable. Along the imaginary axis near the origin, we have
| R\sansi (\sansi \epsilon )| = 1+\rho \sansi 6\epsilon 

6+\scrO (\epsilon 8) with \rho \sansi 6 \approx  - 0.0846, where \rho \sansi 6 = - 2B(A\sansi )4C+2B(A\sansi )3C - 1
72 .

We now devise the companion ERK scheme that shares the same set of coefficients
cj and bj . There are 10 unknowns (the entries of the strictly lower triangular matrix
A\sanse ). We enforce Butcher's simplifying assumption (4.2) (four equations) and the
(linear) order conditions (4.4) and (4.5) involving the matrix A\sanse (three equations,
since the remaining order conditions have already been accounted for in the design
of the ESDIRK scheme above), the (nonlinear) order condition (4.6) (one equation),
and the two coupling conditions (4.7). This gives 10 equations. The resulting set of
nonlinear equations (10 equations, 10 unknowns) is solved using julia with 2\times 10 - 16

tolerance. The following solution is found:

(4.20b)
0 0
1
5 0.2 0
2
5 0.26075582269554909 0.13924417730445096 0
3
5 −0.25856517872570289 0.91136274166280729 −0.05279756293710430 0
4
5 0.21623276431503774 0.51534223099602405 −0.81662794199265554 0.88505294668159373 . . .

1 −0.10511678454691901 0.87880047152100838 −0.58903404061484477 0.46213380485434047 . . .

4
5 . . . 0

1 . . . 0.35321654878641495

We have | R\sanse (\sansi \epsilon )| = 1+ \rho \sanse 6\epsilon 
6 +\scrO (\epsilon 8) with \rho \sanse 6 \approx  - 0.0148 along the imaginary axis near

the origin, where \rho \sanse 6 = 2B(A\sanse )3C  - 1
72 (notice that 2B(A\sanse )4C = 0).

4.4.2. Six-stage schemes. A six-stage, fourth-order method with L-stable (ac-
tually, stiffly accurate) implicit scheme is designed in [7] using an L-stable, six-stage
(actually five distinct stages) fourth-order SDIRK method from [18]. The explicit
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INVARIANT-DOMAIN PRESERVING IMEX METHODS A2529

tableau is given by equation (14) in [7], and the implicit tableau is given by equation
(IV.6.16) in [18] (see also Table IV.6.5). The efficiency ratio of this method is only
ceff = 1

12 \approx 0.08. We call this method IMEX(6,4; 0.08).
We now propose a six-stage, fourth-order IMEX method with optimal efficiency.

We set cl :=
l - 1
6 and l\prime (l) = l - 1 for all l \in \{ 1 : 6\} to achieve optimal efficiency. There

are 26 coefficients to be determined for the EDIRK scheme: 20 entries in the matrix A\sansi 

and the six components of the vector b. We enforce Butcher's simplifying assumption
(4.2) (five equations), the (linear) order conditions (4.3), (4.4), (4.5) (seven equations),
the (nonlinear) order condition (4.6) (one equation), and the two conditions in (4.12)
to achieve L-stability. We also enforce the fifth-order linear order conditions (4.8)
(four equations). This gives 19 equations. We additionally require that the scheme be
singly diagonal, giving the four equations a\sansi 2,2 = a\sansi 3,3 = a\sansi 4,4 = a\sansi 5,5 = a\sansi 6,6. We also set
b4 = 0.47 (see below), giving five additional equations. The resulting set of nonlinear
equations (24 equations, 26 unknowns) is solved using julia with 4\times 10 - 16 tolerance.
The following solution is found:

(4.21a)
0 0
1
6 −0.1113871744697862 0.2780538411364528
2
6 −0.7193507615705692 0.7746302537674498 0.2780538411364528
3
6 0.5518029866688972 0.1104050865166429 −0.4402619143219927 0.2780538411364528
4
6 0.2044212940947437 0.7369116313032833 −0.6137248254193539 0.0610047255515406 . . .
5
6 0.0660767687645300 0.0489052670268613 0.2501367454670004 0.5829521002593755 . . .

1 0.083 0.135 0.13 0.47 . . .

4
6 . . . 0.2780538411364528
5
6 . . . −0.3927913893208868 0.2780538411364528

1 . . . −0.285 0.467

We have | R\sansi (\sansi \epsilon )| = 1 + \rho \sansi 6\epsilon 
6 + \scrO (\epsilon 8) along the imaginary axis near the origin, with

\rho \sansi 6 \approx  - 1.06\times 10 - 3 (recall that \rho \sansi 6 := - 2B(A\sansi )4C+2B(A\sansi )3C - 1
72 = - 2B(A\sansi )4C+ 1

360 ).
We now proceed to find a companion ERK scheme sharing the same set of coef-

ficients cj and bj . There are 15 unknowns (the entries of the strictly lower triangular
matrix A\sanse ). We enforce Butcher's simplifying assumption (4.2) (five equations), the
(linear) order conditions (4.4), (4.5) involving the matrix A\sanse (three equations), the
(nonlinear) order condition (4.6) (one equation), and the two coupling conditions
(4.7). This gives 11 equations. We also enforce the fifth-order linear order conditions
(4.8) (three equations). In total, we have 14 equations. The resulting underdeter-
mined set of nonlinear equations (14 equations, 15 unknowns) is solved using julia.
The following solution is found with 4\times 10 - 16 tolerance:

(4.21b)
0 0
1
4

−0.1858665215084591 0.4358665215084591
1
2

−0.4367256409878701 0.5008591194794110 0.4358665215084591
3
4

−0.0423391342724147 0.7701152303135821 −0.4136426175496265 0.4358665215084591

1 0 2
3

− 1
3

2
3

We have | R\sanse (\sansi \epsilon )| = 1+\rho \sanse 6\epsilon 
6+\scrO (\epsilon 8) along the imaginary axis near the origin, with

\rho \sanse 6 \approx  - 9.67\times 10 - 5, where \rho \sanse 6 :=  - 2B(A\sanse )4C + 2B(A\sanse )3C  - 1
72 =  - 2B(A\sanse )4C + 1

360 .
The reason for having set b4 = 0.47 is to make \rho \sanse 6 negative.

5. Numerical illustrations. We illustrate the IMEX methods proposed in the
paper on systems of stiff ODEs and nonlinear conservation equations. We start with
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A2530 ERN ALEXANDRE AND JEAN-LUC GUERMOND

convergence tests on an ODE system. Then we solve a scalar nonlinear conserva-
tion equation with hyperbolic and parabolic fluxes. We finish with one- and two-
dimensional simulations of the compressible Navier--Stokes equations.

5.1. Convergence tests. We test the convergence properties of the new IMEX
methods proposed in the paper. Following [22, sect. 5.1], we consider the 2\times 2 ODE
system

(5.1) \partial ty1(t) = - 2y1 + \epsilon  - 1(y22  - y1), \partial ty2(t) = y1  - y2  - y22 ,

with \epsilon > 0 and initial condition y1(0) = y2(0) = 1. The solution is y1(t) = y22(t),
y1(t) = e - t. As \epsilon \rightarrow 0, the above problem degenerates into the index-1 differential
algebraic equation \partial ty2(t) = y1  - y2  - y22 with y1 = y22 . We denote by \bfsansU := (\sansu 1,\sansu 2)

\sansT 

the approximate solution produced by the IMEX methods. Referring the reader to
(2.5) for the notation, we set \BbbM := \BbbI 2, where \BbbI 2 is the 2\times 2 identity matrix, and

\bfsansF (\bfsansU ) := ( - 2\sansu 1,\sansu 1  - \sansu 2  - \sansu 22)
\sansT , \bfsansG (\bfsansU ) := (\epsilon  - 1(\sansu 22  - \sansu 1),0)

\sansT , \bfsansG lin(\bfsansW ,\bfsansU ) :=\bfsansG (\bfsansU ).

(5.2)

Notice that \bfsansG lin is not linear, but solving the problem (2.4) is simple:

(5.3) (\BbbI  - \tau \bfsansG lin(\bfsansW , \cdot )) - 1(\bfsansW ) = ( 1
\epsilon +\tau (\epsilon \sansw 1 + \tau \sansw 2

2),\sansw 2)
\sansT .

We test the methods by solving the above problem over the time interval [0, T ]
with T = 4, the initial data (\sansu 1(0),\sansu 2(0)) = (1,1), and for \epsilon \in \{ 1,10 - 6\} . For
each method, we compute the errors | \sansu 1(T )  - y1(T )| /| y1(T ) + y2(T )| and | \sansu 2(T )  - 
y2(T )| /| y1(T ) + y2(T )| .

The second-order method IMEX(2,2; 1) delivers second-order accuracy uniformly
with respect to \epsilon for both y1 and y2 (not shown here for brevity). The errors versus the
time step \tau are reported in Figure 5.1 for the methods IMEX(3,3; 1), IMEX(4,3; 1),
IMEX(5; 4; 1), and IMEX(6,4; 1). The symbols ``y1,e0"", ``y1,e-6"", ``y2,e0"", and ``y2,e-
6"" in the legend refer to the error on the variable y1 with \epsilon = 100, the error on the
variable y1 with \epsilon = 10 - 6, the error on the variable y2 with \epsilon = 1, and the error on
the variable y2 with \epsilon = 10 - 6, respectively. We observe the optimal order for the
four methods on both variables when \epsilon = 1. But, as expected, the convergence on y1
reduces to second order when \epsilon = 10 - 6. This order reduction in the preasymptotic
range (i.e., \epsilon < \tau ) is well documented in the literature, and we refer the reader to,
e.g., [5] for an analysis.

5.2. Nonlinear scalar conservation equation. In this section, we illustrate
the method on the scalar nonlinear conservation equation

(5.4) \partial tu+\nabla \cdot \bfitf (u) - \epsilon \Delta u= 0, \bfitx \in D\infty , t > 0,

posed in the two-dimensional domain D\infty :=\BbbR \times (0,1). The flux is defined by \bfitf (u) :=
(u(1 - u),0)\sansT . With the notation \bfitx := (x, y), the initial data is

(5.5) u0(\bfitx ) := \mu + \delta tanh
\bigl( 
\delta 
\epsilon (x - x0)

\bigr) 
, \mu := 1

2 (uL + uR), \delta := 1
2 (uR  - uL).

Assuming homogeneous Neumann boundary conditions on the top and bottom parts of
the domain, the solution to this Cauchy problem is a wave moving at speed s := 1 - 2\mu :

(5.6) v(\bfitx , t) = u0(\bfitx  - \bfits t) with \bfits := (s,0).
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Fig. 5.1. Convergence test on problem (5.1). Left to right: third-order methods IMEX(3,3; 1)
and IMEX(4,3; 1) (with the Butcher tableaux (4.18) and (4.19)); fourth-order methods IMEX(5; 4; 1)
and IMEX(6,4; 1) (with the Butcher tableaux (4.20) and (4.21)).

The method described in the paper is implemented using continuous finite ele-
ments. The tests are done with continuous \BbbP 1 and \BbbP 3 finite elements. The low-order
solution method for the hyperbolic subproblem is fully described in [14]. The high-
order method and the limiting are described in [15, 16]. We use FCT to perform the
limiting as the problem is scalar-valued. Local bounds are used at every grid point.
Relaxation of the bounds guaranteeing high-order convergence is done as explained
in [15, sect. 4.7.1] and [16, sect. 7.6].

We set uL :=  - 1 and uR := 1, so that the solution to (5.4) is a wave moving
at speed s = 1. The numerical simulations are done in the truncated computa-
tional domain D := (xL, xR) \times (yB , yT ) with xL = yB := 0, xR := 1, yT := 1

4 . Let

\partial Dhyp
D = \partial Dpar

D := \{ xL, xR\} \times (yB , yT ) and \partial Dpar
N := (xL, xR)\times \{ yB , yT \} (it happens

here that \partial Dhyp
D = \partial Dpar

D because 1  - 2uL > 0 and 1  - 2uR < 0). At each stage

of the IMEX method, Dirichlet boundary conditions are enforced at \partial Dhyp
D for the

hyperbolic subproblems and at \partial Dpar
D for the parabolic subproblems. Homogeneous

Neumann conditions are weakly enforced on \partial Dpar
N for the parabolic subproblems.

The enforcement of the Dirichlet boundary condition for the hyperbolic subproblems
is done at the end of each stage of the IMEX step.

In all the tests, the time step is computed by using the expression

(5.7) \tau := CFL\times s\times \tau \ast ,

where CFL> 0 is a fixed parameter, s is the number of stages of the IMEX method,
and \tau \ast is the maximum time step for which the low-order hyperbolic update is IDP;
see assumption (2.20). This definition guarantees that for a given simulation time T ,
the total number of flux evaluations (which is a measure of the algorithmic cost) is
approximately s\times T

\tau = s\times T
CFL\times s\times \tau \ast = T

CFL\times \tau \ast . Hence, for a given mesh, a given final
time T , and a given CFL number, the algorithmic cost of two IMEX methods with
different number of stages is approximately identical. The simulations are done up to
T = 1

2 for \epsilon = 2\times 10 - n, n\in \{ 2,3,4\} . We use unstructured Delaunay meshes. We test
the following five methods: IMEX(2,2; 1); IMEX(3,3; 1); IMEX(4,3; 1); IMEX(5,4; 1);
and IMEX(6,4; 1). All the errors are evaluated at T and are relative.
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A2532 ERN ALEXANDRE AND JEAN-LUC GUERMOND

Table 5.1
Problem (5.4) for \epsilon = 2\times 10 - n, n\in \{ 2,3,4\} . \BbbP 1 finite elements. Relative error in the L1-norm.

First row: IMEX(2,2; 1). Second row: IMEX(3,3; 1) and IMEX(4,3; 1). Third row: IMEX(5,4; 1)
and IMEX(6,4; 1).

= 10−2

I IMEX(2,2;1) rate
106 1.98E-02 –
360 4.13E-03 2.56
1309 8.12E-04 2.52
4825 2.03E-04 2.13
18846 4.99E-05 2.06
74510 1.25E-05 2.01

= 10−3

(2,2;1) rate
3.36E-02 –
1.61E-02 1.20
7.60E-03 1.16
2.88E-03 1.49
7.01E-04 2.07
1.29E-04 2.46

= 10−4

(2,2;1) rate
3.60E-02 –
1.52E-02 1.41
7.64E-03 1.07
4.02E-03 0.98
1.99E-03 1.03
9.83E-04 1.03

= 10−2

I IMEX(3,3;1) rate IMEX(4,3;1) rate
106 1.97E-02 – 1.97E-02 –
360 4.13E-03 2.56 4.13E-03 2.56
1309 8.26E-04 2.49 8.27E-04 2.49
4825 2.04E-04 2.15 2.04E-04 2.15
18846 5.00E-05 2.06 5.00E-05 2.06
74510 1.25E-05 2.02 1.25E-05 2.02

= 10−3

(3,3;1) rate (4,3;1) rate
3.36E-02 – 3.36E-02 –
1.62E-02 1.20 1.61E-02 1.20
7.62E-03 1.17 7.60E-03 1.17
2.88E-03 1.49 2.88E-03 1.49
7.03E-04 2.07 7.04E-04 2.07
1.32E-04 2.44 1.32E-04 2.44

= 10−4

(3,3;1) rate (4,3;1) rate
3.60E-02 – 3.60E-02 –
1.52E-02 1.41 1.52E-02 1.41
7.66E-03 1.06 7.63E-03 1.06
4.03E-03 0.98 4.01E-03 0.98
2.00E-03 1.03 1.99E-03 1.03
9.84E-04 1.03 9.82E-04 1.03

= 10−2

I IMEX(5,4;1) rate IMEX(6,4;1) rate
106 1.98E-02 – 1.97E-02 –
360 4.13E-03 2.56 4.10E-03 2.57
1309 8.26E-04 2.49 8.11E-04 2.51
4825 2.03E-04 2.15 2.03E-04 2.13
18846 4.99E-05 2.06 4.99E-05 2.06
74510 1.25E-05 2.02 1.25E-05 2.02

= 10−3

(5,4;1) rate (6,4;1) rate
3.36E-02 – 3.35E-02 –
1.62E-02 1.20 1.59E-02 1.22
7.65E-03 1.16 7.42E-03 1.18
2.93E-03 1.47 2.81E-03 1.49
7.22E-04 2.06 6.95E-04 2.05
1.33E-04 2.47 1.28E-04 2.46

= 10−4

(5,4;1) rate (6,4;1) rate
3.60E-02 – 3.59E-02 –
1.52E-02 1.41 1.50E-02 1.42
7.65E-03 1.07 7.56E-03 1.06
4.01E-03 0.99 3.98E-03 0.99
1.99E-03 1.03 1.96E-03 1.04
9.86E-04 1.02 9.63E-04 1.04

We show the errors and the convergence rates for continuous \BbbP 1 elements in
Table 5.1. We observe that the methods deliver second-order accuracy when the
mesh size is small enough to capture the viscous layer of size \epsilon . The accuracy is
limited to second order due to our using \BbbP 1 elements. We also notice that all the
methods deliver first-order accuracy when the mesh size cannot capture the viscous
layer. First-order accuracy is optimal in this case.

We show the errors and the convergence rates for continuous \BbbP 3 elements in
Table 5.2. The methods deliver optimal accuracy when the mesh size is small enough
to capture the viscous layer, that is, second-order for IMEX(2,2; 1) and fourth-order
for the other methods. There seems to be some superconvergence effect for the third-
order methods IMEX(3,3; 1) and IMEX(4; 4; 1). Here again, all the methods deliver
first-order accuracy when the mesh size cannot capture the viscous layer.

5.3. Compressible Navier--Stokes equations. We consider the compressible
Navier--Stokes equations in the domain D\subset \BbbR d, where d is the space dimension. The
Cartesian basis of \BbbR d is denoted by \{ \bfite k\} k\in \{ 1:d\} . The system is equipped with the
\gamma -law. Let \mu be the shear viscosity, \lambda the bulk viscosity, \kappa the thermal conductivity,
cV = 1

\gamma  - 1 the heat capacity at constant volume, cP = \gamma cV the heat capacity at constant
pressure, and Pr := \mu cP

\kappa the Prandtl number. Denoting by \bfitv the velocity and e(\bfitv )
the strain tensor, the Newtonian viscous stress tensor is s(\bfitv ) := 2\mu e(\bfitv ) - \lambda (\nabla \cdot \bfitv )\BbbI d\times d.
Denoting by e the specific internal energy and using Fourier's law, the heat flux is
\bfitq (e) := - \kappa 

cV
\nabla e.

The approximation in space of the explicit part of the problem, i.e., the Euler
equations, is done exactly as in [17]. The limiting operators and the bounds used
for the limiting are defined in [15, sects. 4.4 and 4.6]. The relaxation of the bounds
guaranteeing high-order convergence is done as explained in [15, sect. 4.7.1] and
[16, sect. 7.6]. The fundamental difference with [15] is that the hyperbolic limiting
is now done as explained in (3.9)--(3.13). We use Lagrange finite elements for the
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INVARIANT-DOMAIN PRESERVING IMEX METHODS A2533

Table 5.2
Problem (5.4) for \epsilon = 2\times 10 - n, n\in \{ 2,3,4\} . \BbbP 3 finite elements. Relative error in the L1-norm.

First row: IMEX(2,2; 1). Second row: IMEX(3,3; 1) and IMEX(4,3; 1). Third row: IMEX(5,4; 1)
and IMEX(6,4; 1).

= 10−2

I IMEX (2,2;1) rate
778 1.48E-03 –
2902 2.10E-05 6.46
11113 1.18E-06 4.29
42097 1.45E-07 3.14
166966 3.02E-08 2.28
665302 7.44E-09 2.03

= 10−3

(2,2;1) rate
1.80E-02 –
6.79E-03 1.48
2.07E-03 1.77
2.95E-04 2.92
6.82E-06 5.47
2.62E-07 4.72

= 10−4

(2,2;1) rate
1.94E-02 –
8.16E-03 1.31
4.04E-03 1.05
2.00E-03 1.06
9.09E-04 1.14
3.20E-04 1.51

= 10−2

I IMEX (3,3;1) rate IMEX (4,3;1) rate
778 1.48E-03 – 1.48E-03 –
2902 2.01E-05 6.53 2.00E-05 6.53
11113 9.46E-07 4.55 9.45E-07 4.55
42097 6.28E-08 4.07 6.25E-08 4.08
166966 3.79E-09 4.08 3.73E-09 4.09
665302 2.79E-10 3.77 2.67E-10 3.82

= 10−3

(3,3;1) rate (4,3;1) rate
1.80E-02 – 1.80E-02 –
6.79E-03 1.48 6.79E-03 1.48
2.06E-03 1.77 2.07E-03 1.77
2.94E-04 2.92 2.95E-04 2.92
6.67E-06 5.50 6.67E-06 5.50
2.29E-07 4.88 2.29E-07 4.88

= 10−4

(3,3;1) rate (4,3;1) rate
1.93E-02 – 1.93E-02 –
8.16E-03 1.31 8.16E-03 1.31
4.04E-03 1.05 4.04E-03 1.05
2.00E-03 1.06 2.00E-03 1.06
9.09E-04 1.14 9.09E-04 1.14
3.20E-04 1.51 3.20E-04 1.51

= 10−2

I IMEX(5,4;1) rate IMEX(6,4;1) rate
778 1.48E-03 – 1.47E-03 –
2902 2.00E-05 6.53 2.00E-05 6.53
11113 9.45E-07 4.55 9.46E-07 4.55
42097 6.26E-08 4.08 6.27E-08 4.08
166966 3.73E-09 4.09 3.73E-09 4.09
665302 2.65E-10 3.83 2.65E-10 3.83

= 10−3

(5,4;1) rate (6,4;1) rate
1.80E-02 – 1.80E-02 –
6.79E-03 1.48 6.79E-03 1.48
2.07E-03 1.77 2.06E-03 1.77
2.95E-04 2.92 2.94E-04 2.93
6.66E-06 5.50 6.65E-06 5.50
2.29E-07 4.88 2.29E-07 4.87

= 10−4

(5,4;1) rate (6,4;1) rate
1.93E-02 – 1.93E-02 –
8.16E-03 1.31 8.16E-03 1.31
4.04E-03 1.05 4.04E-03 1.05
2.00E-03 1.06 2.00E-03 1.06
9.09E-04 1.14 9.09E-04 1.14
3.20E-04 1.51 3.20E-04 1.51

approximation in space in the tests reported below (tests are done with \BbbP 1 and \BbbP 3

simplicial elements).
As there are some differences with [17, sect. 5] regarding the approximation of the

parabolic part of the problem, we now give some details on the implementation of the
parabolic substeps. Let \{ \varphi i\} i\in \scrV be the scalar Lagrange shape functions that are used
for the space approximation. Let \BbbM be the mass matrix with entries

\int 
D
\varphi i\varphi jdx. Let

us denote by \varrho i, \bfsansM i, \bfsansV i :=
1
\varrho i
\bfsansM i, \sansE i, and \sanse i :=

1
\varrho i
\sansE i - 1

2\| \bfsansV i\| 2\ell 2 the density, momentum,
velocity, total energy, and specific internal energy degrees of freedom at i \in \scrV . Let
l \in \{ 2 : s+1\} be the index of the RK stage. Let \varrho \sansW ,l

i , \bfsansM \sansW ,l
i , \bfsansV \sansW ,l

i , \sansE \sansW ,l
i , and \sanse \sansW ,l

i be the
density, momentum, velocity, total energy, and specific internal associated with the
explicit hyperbolic update \bfsansW n,l (see (3.13)) at the lth stage and at the dof i\in \scrV . Let
us now describe how the high-order parabolic update \bfsansU H,l (see (3.15)) is computed.
We use a superscript l to denote the density, momentum, velocity, total energy, and
specific energy associated with \bfsansU H,l. The update of the density is done by setting
\varrho li = \varrho \sansW ,l

i . The high-order update of the kth Cartesian component of the momentum
(k \in \{ 1 : d\} ) and of the total energy is done as follows:

(\BbbM \bfsansM l)k,i + \tau a\sansi lla(\bfitv 
l
h,\varphi i\bfite k) = (\BbbM \bfsansM \sansW ,l)k,i  - 

\sum 
r\in \{ 1:l - 1\} 

\tau a\sansi l,ra(\bfitv 
r
h,\varphi i\bfite k),(5.8a)

(\BbbM \sansE l)i + \tau a\sansi llb(e
l
h,\varphi i) = (\BbbM \sansE \sansW ,l)i(5.8b)

 - 
\sum 

r\in \{ 1:l - 1\} 

\tau a\sansi l,rb(e
r
h,\varphi i) - 

\sum 
r\in \{ 1:l\} 

\tau a\sansi l,rc(\bfitv 
r
h,\varphi i)dx,

where \bfitv r
h :=

\sum 
i\in \scrV \bfsansV r

i\varphi i, erh :=
\sum 

i\in \scrV \sanse ri\varphi i, a(\bfitv ,\bfitw ) :=
\int 
D
s(\bfitv ):\nabla \bfitw dx, b(e, q) :=\int 

D
\kappa 
cv
\nabla e\cdot \nabla qdx, and c(\bfitv , q) :=

\int 
D
s(\bfitv ):(\bfitv \otimes \nabla q)dx. Let \BbbM \varrho ,l be the matrix with entries

mij\varrho 
\sansW ,l
j , so that (\BbbM \bfsansM l)k,i = (\BbbM \varrho ,l\bfsansV l)k,i. This identity implies that (5.8a) is an update

for the velocity. Similarly we have (\BbbM \sansE l)i = \BbbM \varrho ,l(\sanse l + 1
2\| \bfsansV 

l\| 2\ell 2), which implies that
(5.8b) is an update for the internal energy. Notice that (5.8a)--(5.8b) is nonlinear,
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A2534 ERN ALEXANDRE AND JEAN-LUC GUERMOND

but solving this problem only requires linear solves: one first obtains the velocity
by solving (5.8a), then one updates the internal energy by solving (5.8b) where the
nonlinear terms depending on \bfitv l

h are already known. The momentum and the total
energy are updated by setting \bfsansM l

i = \varrho li\bfsansV 
l
i and \sansE l

i = \varrho li(\sanse 
l
i +

1
2\| \bfsansV 

l
i\| 2\ell 2).

If limiting is needed, the low-order parabolic update \bfsansU L,l (see (3.14)) is computed
as follows: Using again the superscript l to denote the density, momentum, velocity,
total energy, and specific energy associated with \bfsansU L,l, we set \varrho li = \varrho \sansW ,l

i and then

mi\varrho 
\sansW ,l
i \bfsansV l

k,i + \tau \delta cl a(\bfitv 
l
h,\varphi i\bfite k) =mi\bfsansM 

\sansW ,l
k,i ,(5.9a)

mi\varrho 
\sansW ,l
i \sanse li + \tau \delta clb(e

l
h,\varphi i) =mi(\varrho \sanse )

\sansW ,l
i +

mi\varrho 
\sansW ,l
i

2 \| \bfsansV l
i  - \bfsansV \sansW ,l

i \| 2\ell 2 + \tau \delta cld(\bfitv 
l
h,\varphi i),(5.9b)

with d(\bfitv , q) :=
\int 
D
s(\bfitv ) : e(\bfitv )qdx. One verifies as in [17, Thm. 5.5] that this update is

conservative and IDP under the acute angle condition on the mesh. If necessary, the
limiting on the internal energy is done as is [17, sect. 5.3].

5.3.1. One-dimensional simulations. We test the accuracy of the method
described above by reproducing the one-dimensional exact solution proposed in [3].
(A partial English translation of [3] and other exact solutions are found in [20].) This
test is fully described in [17, sect. 7.2]. We use \gamma = 1.4, \mu = 10 - 2, \lambda = 0, Pr :=

\mu cP
\kappa = 3

4
(this gives \kappa = 14

3 \times 10 - 2). The computational domain is D := [ - 0.5,1]. The final
time is T = 3. The distance traveled by the viscous shock is 0.6. For every CFL
number, the time step is computed by means of the definition (5.7). We compute
a consolidated error indicator at the final time by adding the relative error in the
L1-norm on the density, momentum, and total energy as follows:

\delta 1(T ) :=
\| (\rho h  - \rho )(T )\| L1

\| \rho (T )\| L1

+
\| (\bfitm h  - \bfitm )(T )\| \bfitL 1

\| \bfitm (T )\| \bfitL 1

+
\| (Eh  - E)(T )\| L1

\| E(T )\| L1

.(5.10)

We show in Figure 5.2 the consolidated error as a function of the CFL number
for the methods IMEX(2,2; 12 ) (blue, ), IMEX(2,2; 1) (blue, ), IMEX(3,3; 0.26)
(red, ), IMEX(3,3; 1) (red, ), IMEX(4,3; 1) (red, ), IMEX(5,4; 1)
(green, ), and IMEX(6,4; 1) (green, ). The results shown in the top, cen-
ter, and bottom panels have been obtained with meshes composed of 100, 400, and
1000 grid points, respectively. We observe that among the second-order methods,
IMEX(2,2; 1) always outperforms IMEX(2,2; 12 ). Among the third-order methods,
IMEX(4,3; 1) outperforms the other two. Notice also that the popular IMEX(3,3; 0.26)
method is the least robust and accurate. Among the two fourth-order methods,
IMEX(5,4; 1) seems to be more accurate, but IMEX(6,4; 1) seems to be more robust
with respect to the CFL number. Overall, this test demonstrates that IMEX(4,3; 1)
performs very well (it systematically outperforms all the other methods) and is very
robust with respect to the CFL number. The second method in performance level is
IMEX(6,4; 1).

5.3.2. Two-dimensional simulations. We now reproduce the test introduced
by [11, 12]. The full description of the test is documented in [17, sect. 7.4]. We
use \gamma = 1.4, \mu = 10 - 3, \lambda = 0, Pr := \mu cP

\kappa = 0.73 (this gives \kappa = 7
1.46 \times 10 - 2). The

computational domain is D= [0,1]\times [0, 12 ]. We use \BbbP 1 Lagrange elements. The meshes
are unstructured and Delaunay. They are also fitted along the segment \{ 1

2\} \times [0, 12 ]
to approximate the initial data as best as possible. The time stepping is done with
the method IMEX(4,3; 1) at CFL= 1.5. The time step is computed by means of the
definition (5.7) with s= 4.
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Fig. 5.2. Becker's solution at T = 3 with \mu = 10 - 2. L1-error (see (5.10)) as a function of the
CFL number. Top panel: 100 grid points. Middle panel: 400 grid points. Bottom panel: 1000 grid
points. (Color available online.)

Denoting g(\bfitx ) = \| \nabla \rho h(\bfitx )\| \ell 2 , gmin =min\bfitx \in D g(\bfitx ), gmax =max\bfitx \in D g(\bfitx ), we show

in Figure 5.3 the quantity e
 - 10

g - g\mathrm{m}\mathrm{i}\mathrm{n}
g\mathrm{m}\mathrm{a}\mathrm{x} - g\mathrm{m}\mathrm{i}\mathrm{n} . This representation (similar to Schlieren

photography) amplifies the contrast in the density field. We show in the top, center,
and bottom panels of the figure the density field at t = 1 for meshes composed of
328,253, 572,301 and 761,879 grid points, respectively. We observe that the results
are consistent with those reported in [17, sect. 7.4].

6. Conclusions. A new time stepping technique making every IMEX method
invariant-domain preserving has been introduced. New IMEX methods with optimal
efficiency have been constructed. The numerical experiments demonstrate that the
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A2536 ERN ALEXANDRE AND JEAN-LUC GUERMOND

Fig. 5.3. Two-dimensional shocktube test. Density at t= 1 with \mu = 10 - 3. Time stepping done
with IMEX(4,3; 1) and CFL= 1.5. From top to bottom, meshes with increasing refinement level:
328,253 grid points; 572,301 grid points; 761,879 grid points.

new IMEX methods proposed in the paper behave as predicted by the theory. All the
methods tested are invariant-domain preserving and deliver the expected accuracy.
A natural extension of this work is to show how the present methodology can be
used to solve the compressible Navier--Stokes equations with temperature-dependent
properties and nonideal thermodynamics.
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