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The present work focuses on the approximation of the stationary Stokes equations by means of finite-
element-like Galerkin methods. It is shown that, provided the velocity space and the pressure space are
compatible in some sense, a Ladyzhenskaya—8abtBrezzi condition holds in the fractional Sobolev
spaceHS(Q), s € [0, 1]. This result is illustrated in two applications.
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1. Introduction

The present work focuses on the approximation of the stationary Stokes equations by means of finite-
element-like Galerkin methods. It is shown that, provided the velocity space and the pressure space
are compatible in some sense (s8ef)), an inf-sup condition holds in the fractional Sobolev spaces
HS(Q), s € [0, 1]. This is a generalization of the Ladyzhenskaya—B&buBrezzi (LBB) condition.

As an application of this fact, we construct an approximation theory of the stationary Stokes problem in
HS(RQ),s € [0, 1]. In some sense, this work can be viewed asHiecounterpart of the far more sophis-
ticatedL *°-approximation technique duranet al. (1988 andGirault et al. (2004). As an additional
application, we deduce an estimate of the pressure itthg((0, T); H1~5(Q))-norm for the nonsta-
tionary Stokes equations. This bound is the Hilbertian counterpart &f°4(0, T); L{(Q)) estimate

proved inSohr & von Wahl(1986. This type of estimate is important for constructing weak solutions

of the Navier—Stokes equations that are suitable in the serdeheffer(1977).

This paper is organized as follows. The rest of this section is devoted to introducing notation and
recalling basic facts oiiS-spaces. In Sectiof it is proved that the gradient operatér HS(Q) —
HS~1(©) has a closed rangs, € [0, 1]. This is done by constructing a left inverse of the gradient
on the scale{HS—l(Q)}se[ojl]. The discrete finite-element-like setting alluded to above is introduced
in Section3. The main result of this section is Theoreh?® that states thedS-version of the LBB
condition referred to above. Two applications are presented in Settidnit is shown how the tech-
niques apply to the approximation theory of the stationary Stokes equatidd$(i@), s € [0, 1];

(i) Theorem3.2 is applied to deduce aa priori bound on the approximate pressure of the time-
dependent Stokes equations, and applications to the three-dimensional Navier—Stokes equations are
discussed. Item (ii) is actually the main thrust that led the author to developing the present theory.
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2. Preliminaries
2.1 Notation and conventions

Let Q be a connected, open, bounded domaiRin(d € {2, 3} is the space dimension). The boundary
of Q is denoted by". Unless specified otherwisg, is assumed to be Lipschitz.

Spaces ofR%-valued functions acting o2 are denoted in bold fonts. No notational distinction is
made betweeR-valued andR?-valued functions. Hencefortls,is a generic constant whose value may
vary at each occurrence. Whene¥eis a normed spacd,- ||g denotes a norm iit.

For 0 < s < 1, the spaceH3(Q) := [L2(Q), H1(Q)]s is defined by the real method of inter-
polation betweerH1(Q) and L2(Q), i.e. the so-called K-method dfions & Peetre(1964) (see also
Lions & Magenes 1968 or Bramble & Zhang 200Q Appendix A). We interpolate betwedd1(Q)

and H?(Q) if 1 < s < 2. We denote byH}(Q) the closure of6,*(2) in H1(Q) and we seét
HS(Q) = [L2(Q), H}(Q)]s. Let us recall thaH$(L2) and HS(Q) coincide fors € [0, 1) and their
norms are equivalent (see elgons & Magenes1968 Theorem 11.1 ofGrisvard 1985 Corollary
1.4.4.5). Recall also thaf,(Q) is dense inH(2) for s € [0, 1]. The spaceH ~5(Q) is defined by

duality with H3(2) for0 < s < 1, i.e.

(v, w)
lollp-s = sup .
ozweHs(@) lwlins
Itis a standard result that =S(Q) = [L2(Q), H~1(Q)]s, i.e. [L2(Q), H71(Q)]s = [LA(Q), H}(2)]5.
We defineszo(Q) (respectiverH/.szo(Q)) to be the space that is composed of those functions in

L2(Q) (respectivelyHS(2), s € [0, 1]) that are of zero mean. Since we are going to interpolate between
Lf2=o(!2) and Hflzo(Q), we face the question of identifying the structure[bf-zo(!)), Hfio(Q)]s. Upon
settingHZ,(2) = {v € H(Q); [, 0 = 0}, the answer to this question is given by the following
lemma.

LEMMA 2.1 For alls € (0, 1), the following two spaces coincide with equivalent norms:
['—.12':0(9)’ Hﬁo(g)]s = HZ,(Q). 2.1)

Proof. We use Lemma\1 whose proof is reported in the appendix. Using the notation of Lerfna
we setEy = L%(Q), E1 = HY(Q) andTo = v — ﬁ Jo v, where|Q| := [, 1dx. The operatofl
is a projection and is iZ(L2(Q); L2(2)) and Z(H1(2); H1(Q)). Moreover, since the condition

Jo v = 0is stable inL2(2) andH1(2), the range off is closed inL?(2) andH1(Q). O
To account for solenoidal vector fields, we set

VO={velL?Q); V-o=0;0-n|p =0}, (2.2)

Vi={v e HYQ); V-0 =0; v| =0}, (2.3)

V2 ={v eVl v e L?(Q)). (2.4)

We denote byP: L2(2) — VO theL 2-projection ontov? (i.e. the so-called Leray projection).

1
1This definition is slightly different from what is usually done whe&s%. What we hereafter denote by02 (2) is usually
1
denoted byH(2) elsewhere.
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We denote by—4: D(4) = H}(2) N H3(Q) — L2(Q) the unbounded vector-valued Laplace
operator supplemented with homogeneous Dirichlet boundary conditions. We also introduce the Stokes
operatorA: D(A) := V2 — VO by settingA = —P 4|yz.

2.2 The inf—sup condition

Throughout this paper we assume thatis smooth enough so that the range Vof Hin(Q) -

HS~1(Q), s € [0, 1], is closed. (We show at the end of this section that this condition hol@sig
star-shaped with respect to a ball, see Thea2ef) In other words, we assume that there is a constant
¢ > 0 uniform with respect tg so that

IVGllys-2 > cllalins ¥q € HE (). (2.5)

Using the characterization of the normh§—1(Q) = [Hé_s(.Q)]/, the above inequality can be equiva-
lently rewritten as follows:
(Vg, v)

up
O#£veH1™5(Q) lolla-s

>clallns V4 e HEG(Q). (2.6)

The main objective of the paper is to prove the discrete counterpa@sapf (

The property 2.5) (or equivalently 2.6)) is known to hold fors = 0 ands = 1 under the sole regu-
larity assumption tha®@ be Lipschitz. Fos = 1, this is the so-called Poin@&#Friedrichs inequality. For
s = 0, this is the well-known LBB condition, proofs of which can be foundig€as(1967) or Bramble
(2003 (see alsdsirault & Raviart 1986. At this point it is tempting to think that2(5) could be proved
by interpolation between the following two inequalitig$/q||, 2 > cl|qlly: and||Vallg-1 = cllq|l 2.
Unfortunately, such a theory does not exist to the best of the author’s knowledge. In other &dids, (
is a nontrivial inequality.

We conjecture that(5) holds if Q is Lipschitz. One seemingly feasible way to prove this could
be to revisit the proof iBBramble(2003 and make it work in the range € [0, 1]. This seems to be a
nontrivial undertaking and we leave the matter for future investigation. We propose in the rest of this
section an alternative approach to convince ourselves that the set of domains satisfying the hypothesis
(2.5) is not empty.

We start by constructing a left inverse of the gradient operator, and to do so we Dlidam &
Muschietti(2001). We assume tha® is star-shaped with respect to a bBllxg, p) C Q (i.e. for any
Z € B(Xo, p) and anyx € Q the segment joining andx is contained inQ). Letw: Q — R be a
smooth function irg,> (B(xo, p)) such thath w = 1 and define the kernel

1 X—y
G(x,y) = /o @(x - Yw (y+ T) ds. (2.7
Lety e Hé(Q), then (seduran & Muschiettj 2001 Theoren?.1) the following holds:
- /Q G(x, Y)V- p(y)dy € Hi(@). (2.8)

This allows us to define the operator H=1(Q) — Lf:O(Q) as follows: for anyf € H™1(Q), Lf e
L%ZO(Q) is the unique function that solves

(LEV- )2 =<f, —/Q G y)V- w(y)dy> vy e HY@), 2.9)
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where(-,-)_ 2 and (-, -) denote thel.2-scalar product and the ~1(2)-H3(Q) duality paring, respec-

tively. Note that the above problem has a unique solution owin¥ to Hé(Q) - L,?ZO(Q) being
surjective. ‘

LEMMA 2.2 If Q is star-shaped with respect to a ball, the restrictio.oH~1(Q) — szzo(!))
to L?(Q) is a bounded operatdr: L2(Q) — Hin(Q), and L is a simultaneous left inverse of
V: szo(g) — H™1(Q) andV: Hfio(!)) - L2(Q).

Proof.

(i) We first prove that_ is the left inverse ofV: szo(!)) — H™1(Q). (Actually, the operatot.
constructed above is the adjoint of the right inversé&/eof Hé(!)) - Lf2=0(9) constructed in
Duran & Muschiettj 2001) Letq be a member of 2 (). Then, for ally e H3(9Q),

(LVG, V- )2 = <Vq, —/Q G(,y)V- W(Y)dy>

- (q,v./ G, y)V- w(y)dy)
Q L2

=(9,V-y) 2 (seeDuran & Muschiettj 2001, Theoreni2.1).

This implies that. Vq = g, which is the desired result. Note that this immediately implies that
L is also a left inverse of: HL,(2) — L2(Q).

(i) Proving that the range df: L?(Q) — szzo(Q) is a subset oH1,(2) is slightly technical and
consists of invoking dual arguments froBuran & Muschietti(2001). Let f be a member of
L2(@) and letp := Lf e LZ,(2). Then, for ally € H{(2), we have

=P, V-y)2 = /Q f(x) - (/Q G, y)V- l//(Y)OW) dx

=/ V-w(y) (/ G(x,Y) - f(x)dx) dy = (V~ 1//,/ G(x, ) - f(x)dx) ,
Q Q Q L2

where we have applied the Fubini-Tonelli theorem owing to the fact@taty) is in L1(Q2)
uniformly w.r.t. y (respectivelyG(x, -) is in L1(£) uniformly w.r.t. x) (seeDuran & Muschiettj
2001, Lemma 2.1) and e L2(Q) c L1(®). This means that

p= —/Q G(x, ) - f(x)dx.

Now, by proceeding as iBuran & Muschietti(2001J), it can be shown that

d
—ay, P(Y) = D_((Qij F)(y) + wij () fj (),

j=1
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where, denoting by 4 the characteristic function a®,

@i =tm [ 10603650 y) 000k

IX=yl>&

i (y) =/ 2wy + 2z

The conclusion follows by showing th&Q;; is a Caldedbn—Zygmund operator by proceeding
similarly to Duran & Muschietti(2001). The details are omitted for brevity. a

The following lemma relates the existence of a left inverse of an injective operator to the fact that
the range of the operator in question is closed (seeBdsoitaet al,, 2001, Lemma2.3).

LEMMA 2.3 LetE; c EgandF; c Fg be four Banach spaces witfy andF; continuously embedded
and dense irEg and Fo, respectively. LeT: E; — Fj be a bounded operator,= 0, 1. Assume that
T has a simultaneous left inverse & and Ep, i.e. there exists a bounded operatarFj — Ej,

j € {0,1}, suchthal. T = I in E;1. Then the range of : Ey — Fy is closed, uniformly ir9, in any
interpolation painEy, Fg), E1 C Eg C Eo, F1 C Fy C Fo.

Proof. By definition, (Eg, Fy) being an interpolation pair implies that Ey — Fy andL: Fy —» Ey
are bounded uniformly with respect o Moreover,LTo = v forall v € E; C Ey. SinceE; is dense
in Ey, this implies thalL T = | on Ey. This, together with the boundednesslgfimplies that, for all
v € By,

lollg, = ILTollg, < cliTollg,
wherec := sup [IL|l.#,,g,) < co. Thatis,T is injective and its range is closed. O
We are now able to conclude.

THEOREM 2.4 If Q is star-shaped with respect to a ball, then the oper@tdﬂso(g) — HS1(Q),
s € [0, 1], is bounded and injective, and its range is closed uniformly s.(ite. (2 5 holds).
Proof. Using the notation of Lemmaa.2 and2.3, setE; = Hfzo(Q), Eo = szo(.Q), F1 = L2(Q),

Fo = H"1(Q), T = V andL as defined inZ.9). Then conclude by applying Lemmas2 and2.3and
using the identification.1). O

3. The discrete setting

We introduce a discrete approximation setting in this section. Our goal is to prove a counter@ai}t of (
within this setting. The main result is Theor&2.

3.1 Preliminaries

We assume that we have at hand two families of finite-dimensional sgX¢g8,.0, { Mn}n=0, such that
Xh € H} o(2) andMy C L2 —,(2). To avoid irrelevant technicalities, we assume thigtC Hl ().

To characterlze the apprOX|mat|on properties of the sp¢gls.- 0, we assume that there is a linear
mappingsh : L2(2) — Xn and a constart > 0 uniform inh such that, for alk € [0, 1],
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I6hollns < cllollns Vo € H(Q), 3.1

lo —GhollLz < ch®llollus Vo € HY(Q). (3.2

One can think of¢}, as the Scott—Zhand 990 operator in the case of finite elements (it could also be
the CEment interpolation operator if the space dimension is @Wement 1975.

We moreover assume that the following inverse inequality holds: there im#orm in h such that,
forall s € [0, 1],

lonllns < ch™[lonllLz Yon € Xp. (3.3)

The above hypotheses are usually satisfied whgand My, are constructed by using finite elements
based on quasi-uniform mesh famili€iault & Raviart 1986).

3.2 Compatibility betweeiXy and M,

Let zh: L2(Q2) — Xn be theL2-projection ontaXp. One key hypothesis on which the present work is
based is the followingX, and My, are compatible in the sense that there s:a 0 independent ofi
such that

IzhVahll 2 = cllVanll 2 VO € Mp. (3.4)

Owing to the Poinc@—Friedrichs inequality, the above inequality can also be equivalently rewritten as
follows:

(Vah, vn)

> Cllgnhllyr VOh € Mh. (3.5)
O#onexn llonllL2

The hypothesis3.4) has been shown iGuermond(2006 Lemma 2.2) to hold for various pairs of
finite-element spaces, e.g. the MINI finite element and the Hood—Taylor finite element.

It is shown byGuermond2006 Lemma 2.1) that3.4) implies that the paifXn, My) satisfies the
so-called LBB condition; that is to say, there is a constantiependent ofi such that

Zcllanll,z Vah € Mh. (3.6)
0#oneXn  Ilonllp1

Note that 8.5 and @.6) are the discrete counterparts @) for s = 0 ands = 1. One of the
goals of the present paper is to prove tfgadimplies that similar inequalities hold for the entire range
s e [0, 1].

3.3 The LBB condition in B
We start with a perturbation lemnaala Verfirth (1984).

LEMMA 3.1 Under the (smoothness) assumptidrb)(on Q and assuming thaB(1) and 3.2 hold,
there is a uniform inh such that, for alk € [0, 1],

(Vah, vn)

2 CllOnllHs — C’h1—3||th|||_2 Vah € Mp. (3.7)
0£vheXh lonlly1-s
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Proof. Let gy # 0 be a nonzero member bdfy. Then, using successivel$.Q), (2.5 and @.2), we infer
that

\Y \Y \Y
(Vah, vn) > S (Vh, hw) Sc s (Vah, %hw)
0#£vneXn ”Uh”Hl_s OaéwGHéfS(.Q) ”(ghu)”Hl—s OyéwEHéfS(.Q) ”u}”Hl_s
Vah, Vaoh, ¢hw —
Sc sup (Vah, w) _ sup (Vah, Ghw — w)
O#weHiS(Q) llwllpa-s O£weHE () lwlla-s
lw — Ghwll 2
> clonllns — CliVanl2  sup  ————5
O£weHL™5(2) lwllH1-s
> cllanllns — ¢h* 2| Vanll 2.
This completes the proof. O

We are now in a position to state the discrete counterpai?.6f,(which is the main result of this
section.

THEOREM3.2 Under the (smoothness) assumpti@®)(on 2 and assuming tha8(1)—(3.4) hold, there
is ac uniform in h such that, for alk € [0, 1],

(Vah, vh
V- 2) 5 Clgulive Vo < M. (3.8)
0+£vheXh llonllqi-s

Proof. Let gy be a nonzero member ty,. Then, using the compatibility hypothes&4) together with
the inverse inequality3(3), we infer that

2
(Vahn, vn) _ (Vh, 7nVah) I7h Vol
ozonexXp onllpi-s = ZnVanllgi-s = lznVanllgi-s

2
Izh Vanll; .

———L° > ch"S|znVanl, 2
= — = L
hs=1|znVanl|, 2

> ch'™|| Vol 2.
Then use Lemma.1to conclude. O

REMARK 3.3 LP-versions of Theorer.2 can be found ifErn & Guermond2004 Sectiord.2).

4. Applications

In this section we present two applications of the above analysid: thetability for the Stokes prob-
lem and ara priori estimate of the pressure for the nonstationary Stokes equations. The first application
is quite straightforward, whereas the second is slightly more sophisticated and has far-reaching conse-
guences for the analysis of the three-dimensional Navier—Stokes equations.

We assume tha® is smooth enough so that there is a 0 such that

Vo eVZ olyz + (L= P)doll 2 < cllAv]l, 2. (4.1)
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Q being convex o2 being of clas¥’ 11 are known to be sufficient conditions fat.{) to hold in two
and three space dimensiomk= 2, 3) (cf. e.gGrisvard 1985 Dauge 1989 Theorem 6.3).

4.1 HS-approximation for the Stokes problem

We define the discrete Laplace operaty: X, — Xp as follows:
(4n%n, Yn) = =(VXn, V¥n)  VXn, Yh € Xp.
We set
Vh = {von € Xp; (vh, Vah) =0 Vah € Mn}. (4.2)
Vh is composed of the fields ofy, that are discretely divergence free. This allows us to define the
discrete Stokes operatév,: Vi — Vy, as follows: for allup € Vi, Anup is the element oY/, such that
(AnUn, vn) = (Vup, Vor) Vop € Vi (4.3)

Then we have the following discrete counterpartéofl).

LEMMA 4.1 Under the smoothness assumptiri)(on Q and assuming thaB(1)—(3.4) hold, there is
ac > 0 uniform inh so that uniformly

| Anvnll 2 < CllAnonllL2 Von € Vh. (4.4)

Proof. The proof is standard and can be found in, for exantpégwood & Rannachg1982 Corollary

4.4) orGuermond & Pasciak007, Lemmad4.1). We nevertheless reproduce it here for completeness.
Let v be a member of/y,. Let (v, p) € H%(Q) X szzo(Q) be the solution of the Stokes problem with
the dataAnop, i.€.

(Vo, V1) = (p, V-1) = (Anon,1) VI e H3(Q),
(V-0,0) =0 VgelZ,(Q).
Let (wh, rn) € Xp x My, be the solution to
(Vwn, VIh) = (rh, V - 1n) = (Anon, In)  Vln € Xp,
(V-wh,0n) =0 V0o € Mh.

Clearly, wn € Vy and actuallywn, = op. This means thaty, is the Galerkin approximation to. The
theory of mixed problems together with the smoothness assumptidhs(d @.6) implies that

lo —onllgr < ch(lollyz + [Pll2) < chil Anonll 2.
We then have, foky, € Xp,

[(Von, VXn)l < 1(V(oh — ), VXn)| + [(4o, X))l

< c(hliXnllys + IXnllL2) I Anon iz < CliXnll 2l Anonll 2.
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Thus
(Von, VXn)
| dhvnllLz = sup ————— < CllAnvnll 2,
0#£XheXh ||Xh||L2
which completes the proof of the lemma. O

Finally, we assume that the family of approximation spacg9n-o is such thatry is uniformly
Hl-stable, i.e. there is @independent o such that

zhollpe < Clloflpa, (4.5)

forallo in H%(Q). When the space®h)n-o are finite element based, this assumption is known to hold
under quite weak regularity requirements on the underlying mesh faBringbleet al,, 2002.
Let us define the mapping& H=1(Q) — H}(Q) andS: H1(Q) — szzo(Q) such that

— AR(f) + VS(f) = f,
{ (4.6)

V.R(f)=0, R(f)|; =0.

We now define the approximate mappir@s H=1(Q2) — X andS,: H~1(Q) — My such that, for
all f e H71(Q), Ra(f) and S (f) solve

[ (VRh(f), Von) = (&(f), V-on) = (f,on) Von € Xp,
(@n, V- Ra(f)) =0 V0Oh € Mp.

It is well known that this yields a stable and convergent approximation method (se@imglt &
Raviart 1986 Brezzi & Fortin, 1991). In particular, the following stability estimate holds:

IR ()l + 1S (D)2 < cll Flly-2. (4.8)

A more general result is stated in the following theorem that together with Cordllaig the main
result of this section.

4.7)

THEOREM4.2 Under the hypotheses of Lemid, there is ac uniform inh so that, for alls € [0, 1]
and for all f € H=S(Q), the following holds:

[ AhRa(F)lIH-s + 1S (F)lIg2-s < cfl Fllg-s. (4.9)
Proof.
(i) Bound on|| 4nRn ()l 2. Assume thaf f ||, 2 is bounded. Using4(4), we infer that

A f),
1 4nRa(F)lLz < clAnRa(Dllz < ¢ sup EnRalh):on)
Oz£0neVh lonll 2

(VRh(f),Vvh)<C Sup (f,on)

X

<C sup
0#vheVh ”Dh”L2

0#vheVh ||Uh||L2

<cffila.
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(i) Bound on|| 4nRn(f)||y-1. Using theH!-stability of z, we obtain

A f), VRh(f),V
I AnRa(D)llgor = SUP (4nRn(f),0) _ sup (VRa(f), V(zno))
oroeHi@)  IPlHe 0£veH} (@) ol

— Sup <f: ﬂhl))-i—(a](f),v(ﬂ:hl)))
O;IEDEHé(Q) ”U"H1
< C(l fllg- + IS (FllL2).
Then, using the stability estimat4.8), we deduce that
I AhRa(F)llp-2 < cll Flly-1.
(i) Interpolation. We now apply the real method of interpolatidinfs & Peetre 1964 Lions &
Magenes1968 to the mappingl: H=1(2) > f — ApRn(f) € H1(Q) andT: L2(Q) >
f > AnhRn(f) € L2(Q). This gives
[ 4nRa(F)lln-s < cll fllg-s.

(iv) Estimate of the pressure. The estimate of the pressure is obtained by using TBedrem

V().
”ST(f)”Hl—sgc sup M
0#vneXn llonllus

(VRn(f), Von) — (f, 0n)

=C sup
0£oneXn llonllns
| f), — (f,
—¢ sup (—4nRn(f), vn) — (f, vn)
Os£oneXn llonllns

< el 4nRa(F)llp-s + 1 Flln-s) < cll fllp-s.

This completes the proof. O

Let f be a given function itd —5(£2). We now make some change of notation by setting: R(f),
p:= S(f), un := Ry(f) andpn := S (f). The following corollary gives an estimate of the way the
pair (Uun, pn) approximatesu, p).

COROLLARY 4.3 There is & uniform in h so that, for alls € [0, 1],

[ 4u = Anunlly-s 4+ |P = Pnllp1-s

<c( inf || 4u — dpon|lg-s + inf ||p—qh||H1_s). (4.10)
Vh gheMn

DhE
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Proof. Letvn € Vi, andgn € My, be two arbitrary discrete functions and let usget — Anop + VQh.
Itis clear thatR,(g) = vn and $,(g) = gn. Then Theorend.2implies that

[4hRa(f — Pll-s + 1S (f — Pllpi-s <l f —glln-s
< C(l — 4u+ Vp+ dhon — Vohlln-s)
< (|l = 4u+ dnonllg-s + 1P — Ohlly1-s)-
Then, using the triangle inequality and the above estimate, we infer that
| 4hun — Aully-s + [ Ph — Pllgi-s = [[4nRa(f) — Aully-s + S (f) — pliy1-s

< I4nRa(f = Qll-s + IS (f = Dlly1-s
+ | 4nhon — Aully-s + [1Gh — PliH1-s

< C(ll = 4u+ dnonllp-s + 1P — Anllgi-s);

then conclude by taking the infimum oR andqp,. O

REMARK 4.4 Note in passing tha#(9) gives an estimate for the velocifg,(f) in H2~S(Q) when
Se (% 1]. It is shown inGuermond & Pasciak?007, Lemmaz2.2) that, under the assumptions on the

discrete setting stated above, there is a positive nonincreasing fuoctiod a positive nondecreasing

functioncy, both uniform inh, such that, for als e (- 3, 3),

1
a(shlionling < ((=4n)%on, vn)2 < cu(IsDllvnllng  Yon € Xn,
whereH$(Q) := [H, H2]s N H}(Q) for s e [1, 3) andH;®(2) is the dual oH$(2). Applying these
two bounds tadn Ry () with s € (3, 1], we obtain
1
I AnRA(F) -5 = C((= 4n)* >R (), Ra())2 = ¢/||Rn()lly2-s.

and the conclusion follows readily.

4.2 Application to the nonstationary Stokes equations

As an application of Theorer.2 we show in this section how to derive anpriori estimate of the
pressure for the Galerkin approximation of the nonstationary Stokes equations.

Let (0, T) be a time interval (possibly arbitrarily large). Leg € V°, p € (1, +00), q € (1, +00)
andf e LP(0, T; L9(Q)), and consider the time-dependent Stokes equations

atu—Au+Vp=f in Q7,
V.-u=0 in Qt, (4.11)
ulr =0, Ult=0 = Uo,

whereQ1 = Qx(0, T) (note thatp is the pressure and is an exponent). It is well known that this
problem has a unique weak solution in appropriate functional spaces. In particulgrif0, p = q
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andQ is of class# 2, it is proved inSolonnikov(1976 that the following bound holds:

IVpllLecor) + lldcullLecor) + Il dullLeor) < Cll fliLrr)- (4.12)

Still assuming thak2 is of class? 2, this estimate has been significantly generalizeGahr & von
Wahl (1986 to account for different exponentsandq:

IVpllLro,T;La) + lldcullLeo,T;La) + [l AullLeo,T;La9) < Cll fllLro,T;LY), (4.13)

Pl e, 1:Le) < CllfllLeo,T;:L9), (4.14)

where% = é - %. These estimates are important for constructing weak solutions of the Navier—Stokes

equations that are suitable in the sens&dieffer(1977).

The present work is part of a research programme aiming at characterizing suitable weak solutions
of the Navier-Stokes equations in three space dimensions. To understand the importance of suitable
weak solutions, recall that at present the best partial regularity result for the Navier—Stokes equations
asserts that the one-dimensional Hausdorff measure of the set of singularities of a suitable weak solution
is zero (this is the so-called Caffarelli-Kohn—Nirenberg theor€atffarelliet al, 1982 Lin, 1998. This
result is not known to hold for weak solutions (i.e. suitable weak solutiona gréori smoother than
weak solutions). It is not known if suitable weak solutions are unique (a positive answer would close the
Navier—Stokes debate). It is not known if there are weak solutions that are not suitable.

One goal of the research programme mentioned above is to prove that finite-element-based Faedo—
Galerkin approximations to the three-dimensional Navier—Stokes equations converge (up to subse-
guences) to suitable weak solutions. This property has been proved to hold in the three-dimensional
torus, i.e. with periodic boundary conditionSermong2006. (At present this result is not known to
hold for Fourier-based Faedo—Galerkin approximations.) To eventually prove that the result is also true
with Dirichlet boundary conditions, it is important to reproduce discrete counterparts of the estimates
(4.13 and @.14) using the discrete (finite-element-like) setting introduced above.

For this purpose and to avoid using the non-Hilbertiaf(L 9)-framework, we define fractional
Sobolev spaces in time. Lét be a Hilbert space with nori||y. Considers with 1 < 6 < oo, and
defineL’(R; H) = {y: R 3t w(t) € H; [Ty (@), dt < oo}. Forally e LY(R; H), denote
by v (k) = :’;o w(t)e 27Kt gt for all k e R. This notion of Fourier transform is then extended to
the space of tempered distributions Brwith values inH, say. '(R; H). Then, followingLions &
Mageneq1968 p. 21), we define

+o0
H” (R; H) = [v e . (R; H); / @+ KD 1512 dk < +oo] . (4.15)

We then define the spa¢¢’ ((0, T); H) to be composed of those tempered distributions/if((0, T);
H) that can be extended 1# '(R; H) and whose extensionis i (R; H). The norminH” ((0, T); H)
is the quotient norm, i.e.

lollH7 (0,T);H) = [QE 191117 ®;H)- (4.16)
a.e.o_n(O,T)

We henceforth assume the following:

ge(1,2) and pe(l,2). (4.17)
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Then, upon setting = s(q) := d(% — 3) andr := Tl) — 1, standard embedding inequalities imply

f e LPO, T;L9(Q)) c H'((0, T); H™S(Q)) Vr >T. (4.18)

Our goal is to reformulated(13 and @.14) using the fractional Sobolev spadds™ ((0, T); H™S(Q)).
To avoid unimportant technicalities, we assumge= 0. The approximate counterpart @f.11) is as
follows:

OtUn — AnUn + Bnpp = znf, fora.et e (0, T),
Bl un =0, (4.19)

Unhlt=0 =0,

whereBy, := znV|m,. This discrete problem has a unique solution (this is a system of linear ordinary
differential equations). The following stability estimates are prove@uermond & Pasciak007).

PROPOSITION4.5 There is @ independent oh so that, for alf > T := —rl) -1,
| AhUnllH-r (©0,T);H-s) < C. (4.20)
Moreover, ifq is such thas(q) < % then
lGeUnllH-r (0,T);H-s) < C. (4.21)
As an immediate consequence 4f40 and @.21), we deduce that
1 BrPhllH-r (0,T):H-s) < C (4.22)

wheneves(q) < 3.

REMARK 4.6 Observe that4(20—(4.22 are the discrete counterparts df13 in the Hilbert space
H™"((0, T); H™5(Q)), where the members of the paiis q) and(, p) are in correspondence through
the continuous embedding$5(2) c L9(Q) and H'(0,T) c LP(O,T), where% =1 - % and
1_1

6 = i —TI.

Now we have to derive a discrete counterpart fad ). It is clear that 4.14) is just an application
of Sobolev's embedding, and one could imagine using a similar argument to deduce an estimate for the
discrete pressure. Unfortunately, the embedding argument cannot be appde2dridr two reasons:
H~S(Q) does not embed in any Lebesgue spaceBi$ a discrete operator. Actually, Theorénis
the key argument that will do the job (and the primary motivation for the present paper).

COROLLARY 4.7 Ifqis such thas(q) < 3 then, forallr > 7 := % -1

IPRllH-r ((0,T);H1-s) < C. (4.23)

Proof. Clearly, we haver,Vp,, = zn f — dtun + 4nun. Then applying Theorer®.2we infer that

(7n f — 6tun 4+ 4nun, vn)
IPhllgi-s < sup
OsoneXn llonllns

Conclude using Propositioh5. O
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The application of this estimate to the aforementioned research programme for the construction
of suitable weak solutions to the three-dimensional Navier—Stokes equations is repdseerimond
(2007).

REMARK 4.8 The careful reader may object at this point that when applied to the Navier—Stokes
equations in three space dimensions, the restricion < % in Proposition4.5 makes the bound
(4.21) somewhat useless. Indeed, the above analysis applies to the Navier—Stokes equatidns-with

g — up-Vup, whereg is a given smooth source ang-Vuy, is the nonlinear advection term. Since

a standard uniform estimate b*°((0, T); L2(2)) N L2((0, T); H3(2)) holds onup, we find that

f € LP(O, T; L9(Q)), wherep andq satisfy the equality% + g =4and1< p<2,1<9g< g The

restriction onq yields 3 < s = 3(% — 1) < 2, which is contradictory to the assumptien< 3. This
objection is overcome as follows. As shown@uermond & Pasciak?007), it is possible to exploit

o P P .
thea priori bound||uh|||_z((o,T);H1) < cto deduce the bounM:BtuhHH_%_&((O,T);Hf%ﬂ) <c (vahd for

all ¢ € [0, %]), which is slightly sharper tham(21). Then, takingp = 1 (i.e.q = 3 ands = 3), we

infer from (4.20 that|| Anun || b ((o,T);H‘%) is bounded, and repeating the argument in the proof of

Corollary 4.7, we deduce thaf ph||H 1, is bounded (se&uermond & Pascigk2007 and

1
“2(@TyiH2)
Guermond2007for the details). Note again that Theor@is the key argument.
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Appendix

The purpose of this appendix is to prove Lem#daand give an illustration of this lemma that is slightly
less trivial than proving Lemm2.1

LEMMA Al Let E; C Eg be two Banach spaces wiffy continuously embedded iBp. LetT: Ej —

E; be a bounded operator with closed range and assum@ tisa& projection,j e {0, 1}. Denote by
Ko and Ky the ranges ofl |g, and T |g,, respectively. Then the following two spaces coincide with
equivalent norms:

[Ko, Kils =[Eo, E1Js N Ko Vs e (0,1).

Proof. (1) Forallv € Kj, we sejo||k; = ||lvl|g;; this makes sense sinkg is closed inEj, € {0, 1}.
(2) Lets € (0, 1). We now prove thato, K1]s C [Eo, E1]s N Kg with continuous injection. Let be a
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member of Ko, K1]s € Ko+ K1 € Eg + E1. TheK-functional associated with the norm iK§, K1]s
satisfies the following:

. 1
K(t,u, Ko, K1) := inf (Jollk, + t?lu—vll%,)?
veKy

. 1
> inf (lolIg, +t?lu—vlIg,)2 == K(t, u, Eo, En).
1

As aresultu € [Eg, E1]s and the embedding{p, K1]s C [Eo, E1]s is continuous. Moreover, clearly
[Ko, K1]s C Ko, i.e. [Ko, K1]s C [Eo, E1]s N Ko.

(3) Let us prove the converse. Lebe a member offg, E1]s N Ko. Then, owing to the fact that is a
projection, i.eTu = u, andT is bounded orE; andEyp, the K-functional associated with the norm in
[Eo, E1]s satisfies the following:

. 1
K(t,u, Eo, E1) := inf (ol +t2lu—vlE,)?
1
> cinf (IToliZ, +t2Iu—Tol2)?
veEp 0 1

. 2 2 2 \%
>c inf (Jwllk, +tlIu—wli,)2.
wekKq

In other wordsu e [Kg, K1]s and the injectionEg, E1]s N Ko C [Ko, K1]s iS continuous. O
Let us now assume the following smoothness hypothesis on the d@madinere is e > 0 so that

lollyz < clldvll 2 Vo € D(4). (A1)

This property is known to hold in arbitrary space dimensiaf is convex or is of clasg’ 1. We finally
give the following illustration of Lemma1.

LeEMmA A2 Provided the elliptic regularityA.1) holds, the following two spaces coincide with equiv-
alent norms:

[H3(Q), H3(Q) N HE(Q)]s = HIS(@) N HE(Q) Vse (0,1).

This result seems to be part of the folklore in numerical analysis, but the only proof the author is
aware of is that oBacutaet al. (2001 that is somewhat involved and restricted to two space dimensions
(without the elliptic regularity assumptioA(1) though).

Proof. Let us define the mappinl: H2(2) — H?(Q)NH}(Q) suchthatdTv = 4o, i.e.Tv solves a
Poisson equation with homogeneous Dirichlet boundary condition. Noté& tisadbviously bounded in
H1(Q) and it is also bounded i 2 owing to the elliptic regularity4.1). T is clearly a projection. The
range ofT [,y1o) is H3(2) and is clearly closed i }(2). The range off [,y2(,) is H?(2) N H(Q)
and is clearly closed i 2(£2). Then LemmaA2 is a simple consequence of Lemriya. O
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