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Abstract. The goal of this paper is to present a stabi-
lized Galerkin technique for approximating non-coercive
PDE’s. This technique is based on a two-level hierar-
chical decomposition of the approximation space. This
space is broken up into resolved scales and subgrid scales.
We show that in general the Galerkin formulation pro-
vides an a priori control on the resolved scales of the
approximate solution, whereas it cannot control the sub-
grid scales. The missing stability is obtained by slightly
modifying the Galerkin formulation by introducing an
artificial diffusion on the subgrid scales. Numerical tests
show that the method applies also to nonlinear problems.
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1 Model problems

In this section we recall an abstract existence result and
we show that the Galerkin formulation is not optimal for
approximating PDE’s dominated by first order differen-
tial operators.

1.1 An abstract existence and stability result

Let V ⊂ L be two real Hilbert spaces with dense and
continuous embedding. For any Hilbert space H we de-
note by (·., ·)H and ‖·‖H the scalar product and the norm
in H respectively. For any Banach space, we denote by
B′ = L(B; R) the dual of B. Hereafter we make the usual
identifications V ⊂ L ≡ L′ ⊂ V ′. Let a ∈ L(V × L; R)
and consider the following problem.

{

For all f ∈ L, find u ∈ V s.t.

a(u, v) = (f, v)L, ∀v ∈ L.
(1.1)

Sufficient and necessary conditions for this problem to
be well-posed are stated in the following theorem due to
Nečas [Neč62]:

Theorem 1.1 (Nečas). Problem 1.1 is well-posed if
and only if

∃α > 0, inf
u∈V

sup
v∈L

a(u, v)

‖u‖V ‖v‖L
≥ α, (1.2)

∀v ∈ L, (v 6= 0) ⇒ (sup
u∈V

a(u, v)

‖u‖V
6= 0). (1.3)

To interpret this theorem, let us define the operator
A : D(A) = V ⊂ L −→ L such that (Au, v)L = a(u, v)
for all (u, v) ∈ V ×L. Condition (1.2) is equivalent to as-
suming that A is injective and its range is closed, whereas
(1.3) states that At is injective. As a result, these two
conditions are equivalent to assuming that A is bijective
[Bre91].

Now let us look at the approximation of (1.1). Let
Vh ⊂ V and Lh ⊂ L be two finite-dimensional vector
spaces and consider the following discrete problem.

{

Find uh ∈ Vh s.t.

a(uh, vh) = (f, vh)L, ∀vh ∈ Lh.
(1.4)

Proposition 1.1. Assume that dim Vh = dim Lh and
there is αh > 0 such that for all wh ∈ Vh

sup
vh∈Lh

a(wh, vh)

‖vh‖L
≥ αh‖wh‖V . (1.5)

Then, problem (1.4) has a unique solution and ‖uh‖V ≤
1

αh

‖f‖L.

Lemma 1.1 (Céa). Under the hypotheses of theorem
1.1 and proposition 1.1 we have

||u− uh||V ≤ (1 + ‖a‖
αh

) inf
wh∈Wh

||u− wh||V . (1.6)

1.2 Example 1 : advection/reaction

Let us consider an advection/reaction problem. Let β
be a smooth vector field in R

d, say β ∈ L∞(Ω)d and
∇·β ∈ L∞(Ω), and set

Γ− = {x ∈ Γ | β(x) · n(x) < 0},
Γ+ = {x ∈ Γ | β(x) · n(x) > 0}.
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Γ− is the inflow boundary and Γ+ is the outflow bound-
ary. It may happen that these two subsets of Γ are empty
if β is such that β · n(x) = 0 for all x ∈ Γ . Let µ be a
function in L∞(Ω). We introduce the following differen-
tial operator

A(u) = µu+ β · ∇u.
To give a precise meaning to A, we introduce its domain

V = D(A) = {w ∈ L2(Ω); β · ∇w ∈ L2(Ω)} ⊂ L2(Ω).

When equipped with the norm ‖w‖V = (‖w‖2
0,Ω + ‖β ·

∇w‖2
0,Ω)1/2, it is clear that V is a Hilbert space and

A ∈ L(V ;L). In general A is not an isomorphism if we do
not assume any other hypotheses on µ and β. Hereafter
we assume that there is µ0 > 0 so that

µ(x) − 1

2
∇·β(x) ≥ µ0 > 0 a.e. x in Ω. (1.7)

We define V0 = {w ∈ V ; w|Γ− = 0}. We introduce the

bilinear form a ∈ L(V0 × L2(Ω); R) associated with the
restriction of A to V0 :

∀u ∈ V0, ∀v ∈ L2(Ω),

a(u, v) = (µu + β · ∇u, v)0,Ω.
(1.8)

Lemma 1.2. The bilinear form defined in (1.8) satisfies
the two conditions of the Nečas theorem.

The consequence of this lemma is that for all f ∈ L2(Ω),
the following problem

{

Find u in V0 s.t.

a(u, v) = (f, v)0,Ω , ∀v ∈ L2(Ω),
(1.9)

has a unique solution. Equivalently, it means that A :
V0 −→ L2(Ω) is an isomorphism.

Remark 1.1. If µ = 0 and ∇·β = 0, the hypothesis (1.7)
is not satisfied. Nevertheless, the conclusions of lemma
1.2 still hold if β is a filling field: i.e., if for almost every
x in Ω, there is a characteristics of β that starts from
x and reaches Γ− in finite time. The reader is referred
to Azerad and Pousin [AP96] for other details on this
problem.

1.3 Example 2 : The Darcy equation

let Ω be a porous medium characterized by the perme-
ability tensor K(x). This tensor is assumed to be sym-
metric positive definite and its smallest and largest eigen
values are assumed to be bounded from below and from
above uniformly in Ω. Let Γ = Γ1 ∪ Γ2 be a partition of
Γ . We consider the following problem:











K−1 · u+ ∇p = f

∇·u = g

u · n|Γ1
= 0, p|Γ2

= 0.

(1.10)

This problem is known as the Darcy problem. In non-
linear form, it plays an important role in underground

storage problems, hydro-geology, and in the petroleum
industry. It is very often coupled to a transport equa-
tion for the concentration of a chemical specie or a phase
fraction.

To formulate (1.10) in weak form, we introduce some
definitions.

X = {v ∈ L2(Ω)d; ∇·v ∈ L2(Ω), v · n|Γ1
= 0},

‖v‖X = (‖v‖2
0,Ω + ‖∇·v‖2

0,Ω)1/2,

Y = {q ∈ L2(Ω); ∇q ∈ L2(Ω), q|Γ2
= 0},

‖q‖Y = ‖q‖1,Ω.

X and Y are Hilbert spaces. We set V = X × Y and
L = L2(Ω)d × L2(Ω) that we equip with the norms
‖(v, q)‖V = (‖v‖2

X + ‖q‖2
Y )1/2 and ‖(v, q)‖L = (‖v‖2

0,Ω +

‖q‖2
0,Ω)1/2 respectively. We now define the operator

A : V −→ L

(v, q) 7−→ (K−1v + ∇q,∇·v).
A is clearly continuous. Finally, we introduce the bilin-
ear form a ∈ L(V × L; R) such that a((u, p), (v, q)) =
(A(u, p), (v, q))L.

Lemma 1.3. The bilinear form a satisfies the two con-
ditions of the Nečas theorem.

The direct consequence of this lemma is that for all f ∈
L2(Ω)d and q ∈ L2(Ω), the following problem

{

Find (u, p) ∈ V s.t. ∀(v, q) ∈ L

a((u, p), (v, q)) = ((f, g), (v, q))L,
(1.11)

has a unique solution.

1.4 A 1D model problem

Let us simplify the advection problem (1.9). Let Ω =
]0, 1[ and set β = 1, µ = 0. We define the Hilbert space
X = {v ∈ H1(Ω); v(0) = 0}, and we set

a(u, v) =

∫ 1

0

u′(x)v(x).

It is clear that a ∈ L(X × L2(Ω); R) and a satisfies the
hypotheses of theorem 1.1. In this section we shall con-
sider the following problem. For f ∈ L2(Ω)







Find u in X s.t.

a(u, v) =

∫ 1

0

fv, ∀v ∈ L2(Ω).
(1.12)

This problem has a unique solution in X . We shall now
build a Galerkin approximation of u by means of P1 fi-
nite elements, and we shall see that this approach is not
optimal.

Let us define a mesh on Ω = [0, 1]. For N ∈ N
⋆ set

h = 1/N and xi = ih for i ∈ {0, 1, . . . , N}. We define

Xh = {vh ∈ C0(Ω); vh|[xi,xi+1] ∈ P1,

0 ≤ i ≤ N − 1; vh(0) = 0}.
(1.13)
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It is clear that Xh ⊂ X . The discrete Galerkin formula-
tion of (1.12) is







Find uh in Xh s.t.

a(uh, vh) =

∫ 1

0

fvh, ∀vh ∈ Xh.
(1.14)

We can apply proposition 1.1 with Vh = Lh = Xh The
discrete problem is well posed iff there is αh > 0 such
that (1.5) holds. Furthermore, the error estimate is op-
timal only if αh is uniformly bounded from below as
h → 0. Unfortunately we can prove the following nega-
tive theorem.

Theorem 1.2. There are two constants c1 > 0 and c2 >
0, independent of h, s.t.

c1h ≤ inf
uh∈Xh

sup
vh∈Xh

a(uh, vh)

‖uh‖1,Ω‖vh‖0,Ω
≤ c2h.

Proof. let us assume that N is even; the other case can
be treated similarly. Let (φi)1≤i≤N be the base of Xh

such that φi(xj) = δij . To prove the bound from above
let us consider the following oscillating function uh:

uh =

N
∑

1

Uiφi with

{

U2i = 2ih, if 1 ≤ i ≤ N
2 ,

U2i+1 = 1, if 0 ≤ i ≤ N
2 − 1.

Let fh be the L2 projection of u′h onto Xh. After some
calculus we can show

sup
vh∈Xh

a(uh, vh)

‖uh‖1,Ω‖vh‖0,Ω
≤ 1

|uh|1,Ω
sup

vh∈Xh

∫ 1

0
fhvh

‖vh‖0,Ω

=
‖fh‖0,Ω

|uh|1,Ω
≤ 4

√
3h.

In other words, the quantity |uh|1,Ω diverges when h→ 0
whereas the L2 projection of u′h ontoXh is bounded. The
bound from below is evident.

Remark 1.2. The consequence of this negative theorem
is that the Galerkin technique is not optimal for approx-
imating first order PDE’s.

2 Stabilization by means of a subgrid viscosity
method

In this section, we propose a new technique that is opti-
mal for approximating first order PDE’s. This technique
is based on a hierarchical two-level decomposition of the
approximation space. Hereafter we assume that a is pos-
itive; i.e.

∀v ∈ V, a(v, v) ≥ 0.

2.1 Introduction

To build an approximate solution to problem (1.1), we
introduce a sequence of finite dimensional spaces

(XH)(H>0) ⊂ V,

and we assume that there is a dense subspace W ⊂
V together with a linear interpolation operator IH ∈
L(W ;XH) and two constants k > 0, c > 0 such that for
all H > 0 and all v in W

‖v − IHv‖L +H‖v − IHv‖V ≤ cHk+1‖v‖W . (2.1)

Theorem 1.2 clearly states that (1.1) cannot be ap-
proximated by means of the Galerkin technique when
A is a first order differential operator. A simple cure to
this problem consists of enlarging the space of the test
functions. Indeed, it is clear that

inf
uH∈XH

sup
v∈L

a(uH , v)

‖uH‖V ‖v‖L
≥ α.

Hence, it is likely that, still approximating u inXH , there
exists a discrete space wedged between XH and L such
that the inf-sup inequality (1.5) is satisfied uniformly.
For the time being, let us denote by Xh this space, and
let us assume that there is a finite-dimensional space
XH

h ⊂ V ⊂ L with XH
h ∩ XH = ∅, such that Xh =

XH ⊕XH
h and the bilinear form a satisfies uniformly the

discrete inf-sup inequality, i.e., there is ca > 0, s.t. for
all H > 0, h > 0

inf
vH∈XH

sup
φh∈Xh

a(vH , φh)

‖vH‖V ‖φh‖L
≥ ca. (2.2)

We are now in measure of building a Petrov–Galerkin
approximation:

{

Find uH ∈ XH , s.t.

a(uH , vh) = (f, vh)L, vh ∈ Xh.

Clearly, if this problem has a solution, (2.2) states that
this solution is stable uniformly with respect to H and h.
Unfortunately, the dimension ofXh is larger than that of
XH ; as a result, proposition 1.1 does not hold. To avoid
this dimension problem, we could try to approximate u
in Xh and test the equation with Xh. By doing so we
would be led back to the Galerkin formulation, which
we know is not optimal in general. Let us summarize:

1. The hypothesis (2.2) allows for a control on uH .
2. To have as many unknown as equations, we want to

work with one discrete space only, but the Galerkin
formulation cannot control correctly uh. That is to
say, we have no a priori control on the quantity uh −
uH .

3. One simple way to control uh − uH is to add to our
problem a coercive bilinear form acting only on uh −
uH and small enough such that it does not spoil the
consistency.

Let us now state precisely the hypotheses that we
need to carry out our program.

1. We assume the decomposition Xh = XH ⊕ XH
h to

be direct. We define PH : Xh −→ XH as being the
projection of Xh onto XH that is parallel to XH

h . We
assume that PH is stable in the norm of L uniformly
with respect to H and h. For all vh in Xh we denote

vH = PHvh and vH
h = (1 − PH)vh. (2.3)
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2. Xh being finite dimensional, we assume that there is
ci > 0, independent of h and H , s.t.

∀vh ∈ Xh, ‖vh‖V ≤ ciH
−1‖vh‖L. (2.4)

3. We introduce a norm ‖ · ‖b s.t.

∃ce1 > 0, ∃ce2 > 0, ∀vH
h ∈ XH

h ,

ce1‖vH
h ‖V ≤ ‖vH

h ‖b ≤ ce2H
−1‖vH

h ‖L.
(2.5)

4. We define a bilinear form bh ∈ L(XH
h ×XH

h ; R) such
that for all (vH

h , w
H
h ) in XH

h ×XH
h

cbH‖vH
h ‖2

b ≤ bh(vH
h , v

H
h ) and

bh(vH
h , w

H
h ) ≤ cb2H‖vH

h ‖b‖wH
h ‖b.

(2.6)

Remark 2.1. We shall hereafter refer to XH and XH
h as

the resolved scales space and the subgrid scales space
respectively. The operator PH can be thought of as a
filter which when acting on a function of Xh gets rid of
its fluctuating subgrid scales.

Remark 2.2. The property (2.4) is an inverse inequality.
Note that for finite elements, if A is a first order differ-
ential operator and h, H denote the mesh size on which
Xh and XH are built respectively, then (2.4) holds true
if H and h are of the same order; i.e., c1h ≤ H ≤ c2h.
In practice we shall always use H = 2h.

Remark 2.3. Let us give some examples. Assume that
(·, ·)V is the scalar product of V . The simplest choice
for bh consists in bh(vH

h , w
H
h ) = H(vH

h , w
H
h )V . For the

advection problem of section 1.2, one can choose

bh(vH
h , w

H
h ) = H(µvH

h + β · ∇vH
h , µw

H
h + β · ∇wH

h )0,Ω.

Within this framework we have ‖ · ‖b = ‖ · ‖V . There is a
second possibility if one can exhibit a subspace X ⊂ V
with dense and continuous embedding such that the fol-
lowing inverse inequality holds: ‖vh‖X ≤ ce2H

−1‖vh‖L

for all vH
h in XH

h . In practice, this hypothesis means
that V and X are domains of differential operators of
the same order. Assume that Xh ⊂ X , and denote by
(·, ·)X the scalar product inX . One can set bh(vH

h , w
H
h ) =

H(vH
h , w

H
h )X . For the advection problem of section 1.2,

we have X = H1
0 (Ω) ⊂ V , and assuming XH

h ⊂ H1
0 (Ω)

we can set

bh(vH
h , w

H
h ) = H(vH

h , w
H
h )0,Ω +H(∇vH

h ,∇wH
h )0,Ω.

In this case we have ‖·‖b = ‖·‖1,Ω. In practice, this bilin-
ear form is simple to program and problem independent.

Remark 2.4. To some extent, the idea of scale separation
and subgrid viscosity is rooted in the spectral viscosity
theory developed by Tadmor [Tad89] for approximating
nonlinear conservation laws by means of spectral meth-
ods.

2.2 The discrete problem

The discrete problem we consider now reads:

{

Find uh ∈ Xh s.t. ∀vh ∈ Xh

a(uh, vh) + bh(uH
h , v

H
h ) = (f, vh)L.

(2.7)

Remark 2.5. Note that the only difference between the
Galerkin formulation and (2.7) consists of the presence
of the bilinear form bh; i.e., for the Galerkin formulation
bh = 0.

Let us define as(u, v) = 1
2 (a(u, v)+a(v, u)). It is clear

that as ∈ L(V ×V ; R) and as is symmetric positive. The
major result of this section is the following.

Theorem 2.1. Under the hypotheses (2.1) to (2.6), prob-
lem (2.7) has a unique solution uh, and if, u, the solution
to (1.1) is in W we have the following error estimates.

{

as(u − uh, u− uh)1/2 ≤ cHk+1/2‖u‖W ,

‖u− uh‖V + ‖uH
h ‖b ≤ cHk‖u‖W .

(2.8)

Proof. See Guermond [Gue99b,Gue99a].

Remark 2.6. The estimate (2.8) is optimal in V . If as

is L-coercive, (2.8) is not optimal in L; a factor H1/2

is missing. Optimality can recovered for finite elements
if the mesh satisfies special geometric properties (see
[Zho97] for details).

Remark 2.7. The estimate (2.8) is identical to that ob-
tained with the Galerkin Least Square method [JNP84].

2.3 Refinement of the hypotheses

It happens frequently that the operator A can be de-
composed into A = A0 +A1 where A0 is a zeroth order
operator and A1 is a first order differential operator. For
instance, for the advection operator considered in section
1.2, we have A0u = µu and A1u = β · ∇u.

Let us consider the decomposition a = a0 + a1 where
a0(u, v) = (A0u, v)L and a1(u, v) = (A1u, v)L. We now
make the following hypotheses:

1. There is a semi-norm in V , which we denote by | · |V ,
such that the decomposition a = a0 + a1 satisfies:

∀(u, v) ∈ V × L











‖u‖V ≤ c(as(u, u)
1/2 + |u|V ),

a0(u, v) ≤ c0as(u, u)
1/2‖v‖L,

a1(u, v) ≤ c1|u|V ‖v‖L.

(2.9)

2. We weaken hypothesis (2.2) by replacing it by: there
are two constants ca1 > 0, cδ ≥ 0, independent of
(H,h), s.t. for all uh in Xh

sup
vh∈Xh

a1(uH , vh)

‖vh‖L
≥ ca1|uH |V − cδas(uh, uh)1/2. (2.10)
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3. We weaken the definition of bh. We assume that there
is a semi-norm | · |b such that bh satisfies the following
properties: for all (vH

h , w
H
h ) ∈ XH

h ×XH
h ,











ce1|vH
h |V ≤ |vH

h |b ≤ ce2H
−1‖vH

h ‖L,

bh(vH
h , v

H
h ) ≥ cb1H |vH

h |2b ,
bh(vH

h , w
H
h ) ≤ cb2H |vH

h |b|wH
h |b.

(2.11)

Remark 2.8. The reason for weakening (2.2) is that (2.10)
is usually simpler to prove.

Remark 2.9. For the advection equation µu + β ·∇u =
f , assuming µ − 1

2∇·β ≥ µ0 > 0, the bilinear form

a is L2(Ω)-coercive. Hence, one can use the following
definition

∀(vH
h , w

H
h ) ∈ XH

h ×XH
h

bh(vH
h , w

H
h ) = H(∇vH

h ,∇wH
h )0,Ω.

(2.12)

Proposition 2.1. Under the hypotheses (2.9), (2.1), (2.3),
(2.4), (2.10) and (2.11), if the solution to (1.1) is in W ,
the solution to (2.7) satisfies the estimates (2.8).

Remark 2.10. The theory developed above generalizes
easily to non-uniform regular meshes provided the defi-
nition of the bilinear form bh is localized, see [Gue99a]
and [Gue01b].

2.4 A singular perturbation problem

The technique developed above is tailored for problems
where A is a first order differential operator. In practice
we frequently have to deal with operators of the form
B = A+ ǫD, where A is a positive first order differential
operator and D is second order and coercive. Given the
positiveness of A, the operatorB is coercive with ǫ as the
coercivity constant. If ǫ is of order 1, the problemBu = f
is elliptic and can easily be approximated by means of the
Galerkin technique. On the other hand, if ǫ is small the
coercivity is not strong enough to guarantee the Galerkin
technique to work properly, for in first approximation
B ≈ A. We shall show in the following that the subgrid
viscosity technique developed above generalizes to this
situation and yield optimal convergence estimates.

Let us retain the same hypotheses on a, V , and L as
before. Moreover, we introduce a new Hilbert space X ,
and we assume that X ⊂ V with dense and continuous
embedding. We define d ∈ L(X ×X ; R) and we assume
that the bilinear form a + d is X-coercive, i.e., ‖v‖2

X ≤
a(v, v)+d(v, v). For 0 ≤ ǫ ≤ 1, we consider the following
problem. For f ∈ L,

{

Find u ∈ X s.t.

a(u, v) + ǫd(u, v) = (f, v), ∀v ∈ X.
(2.13)

Remark 2.11. For an advection/diffusion/reaction prob-
lem we have a(u, v) = (µu + β · ∇u, v)0,Ω and d(u, v) =
(∇u,∇v)Ω with X = H1

0 (Ω), V = {v ∈ L2(Ω); β ·∇v ∈
L2(Ω); w|Γ− = 0}, and L = L2(Ω).

Let us now approximate the solution to problem (2.13).
Let Xh ⊂ XH ⊂ X satisfying hypotheses (2.1), (2.3),
(2.4), (2.9), (2.10), and (2.11). Assume furthermore that
there is c > 0 independent of (H,h) such that

∀vh ∈ Xh, ‖vh‖X ≤ cH−1‖vh‖L. (2.14)

This hypothesis means that X and V are domains of dif-
ferential operators of the same order. The discrete prob-
lem with consider now reads:

{

Find uh ∈ Xh s.t. ∀vh ∈ Xh

a(uh, vh) + ǫd(uh, vh) + bh(uH
h , v

H
h ) = (f, vh).

(2.15)

Theorem 2.2. Under the hypotheses (2.1), (2.3), (2.4),
(2.9), (2.10), (2.11) and (2.14), and provided that u ∈
W , the solution to (2.15) satisfies















as(u− uh, u− uh)1/2 + ǫ1/2‖u− uh‖X

≤ c(Hk+1/2 +Hkǫ1/2)‖u‖W ,

‖u− uh‖V ≤ cHk‖u‖W .

(2.16)

Proof. Voir [Gue01b].

Remark 2.12. Note that the error estimate in the V -
norm is uniform with respect to ǫ. The uniformity is an
improvement with respect to the Galerkin Least Square
method.

2.5 Two-level P1 and P2 interpolation

In this section we describe two finite element settings
that satisfy the hypotheses of the subgrid viscosity tech-
nique presented above. For the sake of simplicity we as-
sume that Ω is a polyhedron in R

d and TH is a regular
triangulation of Ω composed of affine simplices (KH).

The reference simplex is denoted by K̂ and TKH
: K̂ −→

KH is the affine mapping that maps K̂ onto KH .

2.5.1 Definitions and preliminaries

To consider at once every linear first order differential
operator, we introduce a family of d functions (Ak)k=1,d

with values in the space of real matrices of order m×m
where m > 0.; i.e., Ak : Ω −→ Mm(R). We define the
matrix field β = (A1, . . . , Ad), and for a smooth function
u : Ω −→ R

m we denote by β ·∇u the function β ·∇u :
Ω −→ R

m s.t.

1 ≤ i ≤ m, (β ·∇u)i =

d
∑

k=1

m
∑

j=1

Ak
ij

∂uj

∂xk
. (2.17)

For a smooth function v : Ω −→ R
m, we set ‖v‖0,Ω =

(
∑m

i=1 ‖vi‖2
0,Ω)1/2, and we define v ·(β·∇u) =

∑m
i=1 vi(β·

∇u)i. We introduce also the semi-norm

|u|1,β,Ω =

[
∫

Ω

(β ·∇u) · (β ·∇u)
]1/2

.
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2.5.2 Two-level P1 interpolation

We restrict ourselves to 2D, but all that is said can be
generalized to 3D. Let us define first XH by

XH = {vH ∈ H1(Ω)m; vH|KH
∈ P1(KH)m,

∀KH ∈ TH}.
(2.18)

From each triangle KH ∈ TH , we create 4 new triangles
by connecting the middles of the 3 edges of KH . Let
us set h = H/2 and denote by Th the resulting new
triangulation. For each macro-triangle KH , we define P

as being the space of the functions that are continuous on
KH , vanish at the three vertices ofKH , and are piecewise
P1 on each sub-triangle of KH . We define

XH
h = {vH

h ∈ H1(Ω)m | vH
h|KH

∈ P
m,

∀KH ∈ TH}.
(2.19)

By setting Xh = XH ⊕XH
h , it is clear that we can char-

acterize Xh by

Xh = {vh ∈ H1(Ω)m | vh|Kh
∈ P1(Kh)m,

∀Kh ∈ Th}.
(2.20)

The couple (XH , Xh) is referred to as the two-level P1

setting.

φ1

φ3

φ2

φ5 φ4

φ6
φ1

φ3

φ2

φ1+φ3
     2

PH

φ1+φ2
     2

φ2+φ3
     2

Fig. 1. Definition of PH for the two-level P1 setting.

On figure 1 we show a schematic representation of the
action of the filter PH : Xh −→ XH on a macro-element
KH of TH .

2.5.3 Two-level P2 interpolation

Let us build now a two-level P2 setting. Once more, we
set h = H/2 and we denote by Th the triangulation ob-
tained by dividing each macro-triangle of TH into 4 sub-
triangles. For each triangle Kh, we denote by ψ1, ψ2, ψ3

the three nodal P2 functions associated with the middle
of the three edges of Kh. We set

XH = {vH ∈ H1(Ω)m; vH|KH
∈ P2(KH)m,

∀KH ∈ TH}.
(2.21)

and we define the space of the subgrid scales as follows

XH
h = {vH

h ∈ H1(Ω)m;

vH
h|Kh

∈ vect(ψ1, ψ2, ψ3)
m, ∀Kh ∈ Th}.

(2.22)

The space Xh = XH ⊕XH
h is characterized by

Xh = {vh ∈ H1(Ω)m; vh|Kh
∈ P2(Kh)m,

∀Kh ∈ Th}.
(2.23)

The couple (XH , Xh) is called the two-level P2 setting.
The two interpolation settings described above are

shown in figure 2.

Fig. 2. Two examples of hierarchical finite elements. Re-
solved scales spaces are on the left and subgrid scales spaces
on the right. From top to bottom: two-level P1; two-level P2.

2.5.4 The inf-sup condition

For the interpolation settings considered above, the de-
composition Xh = XH ⊕XH

h is L2-stable. Furthermore,
we have the following result.

Lemma 2.1. If β is piecewise constant on each simplex
KH of TH , there is a constant cβ > 0, independent of
(H,h), s.t. fo rall uH ∈ XH ,

sup
vh∈Xh

∫

Ω vh · (β ·∇uH)

‖vh‖0,Ω
≥ cβ |uH |1,β,Ω. (2.24)

Corollary 2.1. If β is in C1(Ω;Mm(R)d), there are
two constants cβ > 0 and cδ ≥ 0, both independent of
(H,h), s.t. for all uH ∈ XH,

sup
vh∈Xh

∫

Ω(β ·∇uH)vh

‖vh‖0,Ω
≥ cβ|uH |1,β,Ω − cδ‖uH‖0,Ω. (2.25)

Proof. The reader is referred to [Gue99a] and [Gue99b]
for the technical details.

Remark 2.13. The stabilizing properties of bubble func-
tions for advection/diffusion problems have been put in
evidence in [BBF+92]. Theoretical justifications can be
found in [BBF93] and [BFHR97]. The importance of the
inf-sup inequality (2.2) for problems like (1.1) does not
seem to be well known by numericists.
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2.6 Some examples

We show now that for the two problems considered in
sections 1.2 and 1.3, the hypotheses (2.9), (2.10), and
(2.11) are satisfied.

2.6.1 The advection/reaction problem

The advection/reaction problem of section 1.2 can be
reformulated within our abstract framework by setting
m = 1 and

Ak
11 = βk.

Let us define a0(u, v) = (µu, v)0,Ω , a1(u, v) = (β·∇u, v)0,Ω

and |u|V = |u|1,β,Ω. The hypothesis (2.9) is a simple con-
sequence of the relation as(u, u) ≥ µ0‖u‖2

0,Ω together

with the definition of the semi-norm | · |V . The hypothe-
sis (2.10) is a consequence of corollary 2.1 together with
the L2(Ω)-coercivity of as. By setting

b(vH
h , w

H
h ) = cbH(∇vH

h ,∇wH
h )0,Ω and

|vH
h |b = |vH

h |1,Ω,

the hypothesis (2.11) is obviously satisfied.

2.6.2 Le Darcy problem

Let us reformulate the Darcy problem considered in sec-
tion 1.3 within our abstract framework. Let us set m =
d+ 1 and

Ak
ij = 0, if 1 ≤ i ≤ m− 1, 1 ≤ j ≤ m− 1,

Ak
ij = δi,k, if 1 ≤ i ≤ m− 1, j = m,

Ak
ij = δj,k, if i = m, 1 ≤ j ≤ m− 1,

Ak
ij = 0, if i = m, j = m,

where δi,k is the Kronecker symbol. Define

a0((u, p), (v, q)) = (K−1 · u, v)0,Ω

a1((u, p), (v, q)) = (β · ∇(u, p), (v, q))0,Ω.

It is clear that given definition (2.17), we have

a1((u, p), (v, q)) = (q,∇·u)0,Ω + (∇p, v)0,Ω .

Let us define |(u, p)|V = |(u, p)|1,β,Ω. A simple calcula-

tion shows that |(u, p)|V = (‖∇·u‖2
0,Ω + ‖∇p‖2

0,Ω)1/2.

The hypothesis (2.9) is a simple consequence of the re-
lation as((u, p), (u, p)) = a0((u, p), (u, p)) ≥ α′‖u‖2

0,Ω to-

gether with the definition of the semi-norm | · |V and the
Poincaré inequality. Since the matrix field β is constant
on Ω, the hypothesis (2.10) is a consequence of lemma
2.1. By setting

b((vH
h , q

H
h ), (wH

h , r
H
h )) = cbH((∇vH

h ,∇wH
h )0,Ω

+ (∇qH
h ,∇rH

h )0,Ω)

and |(vH
h , q

H
h )|b = (|vH

h |21,Ω + |qH
h |21,Ω)1/2, the hypothesis

(2.11) is obviously satisfied.

2.7 Numerical illustrations

2.7.1 Example 1: an advection problem

Let us consider the following problem.

{

∂yu = 1
2ǫ (1 − (tanh(y−0.5

ǫ ))2) in Ω =]0, 1[2,

u|y=0 = 0,
(2.26)

where u = 1
2 (tanh(y−0.5

ǫ ) + 1) is the exact solution. We
make numerical tests with ǫ = 0.04. We use two-level P1

and P2 finite elements on a mesh Th composed of 952
triangles and 517 vertices; i.e. h ≈ 1/20. The bilinear
form bh is defined by

bh(vH
h , w

H
h ) = cb

∑

Kh∈Th

mes(Kh)1/2

∫

Kh

∇vH
h · ∇wH

h . (2.27)

We use cb = 1. The results are shown in figure 3. The

0

1

0 1

0

1

0 1

0

1

0 1

0

1

0 1

0

1

0 1

−0.07919

0

1

0 1

Fig. 3. Problem (2.26). Projection in plane x = 0 of solution.
Top; P1 solution. Bottom; P2 solution. From left to right;
Lagrange interpolate of exact solution, stabilized solution,
Galerkin solution.

projections in the plane x = 0 of the graphs of the P1

and P2 interpolates of the exact solution are shown on
the left of the figure. The two-level P1 and P2 solutions
are in the center; the Galerkin P1 and P2 solutions are on
the right. The stabilizing effects of the subgrid viscosity
method are clearly illustrated by this example.

2.7.2 Example 2 : boundary layer problem

We illustrate now the method on an advection/diffusion
problem.

{

∂yu− ν∇2u = 0 in Ω =]0, 1[2,

u|y=0 = u|y=1 = 0, ∂xu|x=0 = ∂xu|x=1 = 0,
(2.28)

where u = (exp(y/ν) − 1)/(exp(1/ν) − 1) is the exact
solution. We take ν = 0.002 in the numerical tests. We
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0 1
0

1

0

1

−1

0

1

0

1

Y−Axis
0

1
−1

0

1

0 1

0

1

0 1

0

0.9995

0 1

0

1

0 1

Fig. 4. Problem (2.28). Top left, mesh Th; top center, graph
of P1 Galerkin solution; top right, projection in plane x = 0
of graph of Galerkin solution; bottom left, stabilized solution;
bottom center, stabilized solution with shock capturing term;
bottom right, P1 interpolate of exact solution.

use the same mesh as in the previous example and we
approximate the solution by means of two-level P1 finite
elements. The bilinear form bh is the same as in (2.27).
In figure 4 we show: the mesh (top left); the graph of
the P1 Galerkin solution (top center); the projection in
plane x = 0 of the Galerkin solution (top right), note
the spurious oscillations spreading throughout the com-
putation domain; the projection of the graph of the P1

interpolate of the solution (bottom right).

The stabilized solution is shown at the bottom left
of figure 4. Note that all the spurious oscillations have
disappeared except in the vicinity of the boundary layer
where the slope of the solution is large. These residual
oscillations are due to the Gibbs phenomenon. This phe-
nomenon is well-known to numericists who work on non-
linear conservation laws developing discontinuities. It is
the manifestation of a far-reaching theorem in analysis
that states that truncated Fourier series of a given func-
tion does not converge uniformly to the function in ques-
tion unless the function is very smooth (continuity is not
enough), see Rudin [Rud87, p. 97–98] for more details. A
simple trick to eliminate this unwelcome oscillations con-
sists of adding strong dissipation in the region of space
where the solution is rough. Of course, one does not know
a priori where the solution is rough, but one may expect
that in this region the quantity ∇uH

h = ∇(uh−PHuh) is
of the same order as ∇uh. Indeed, it is easy to show that,
if u is a smooth function, denoting by Ihu the Lagrange
interpolate of u, the quantity ‖Ihu − PHIhu‖0,Ω is of
order hk+1 and |Ihu− PHIhu|1,Ω is of order hk. Hence,
we are led to introduce the following nonlinear form:

ch(uH
h , vh, wh) = (2.29)

csc

∑

KH∈TH

meas(KH)1/2 ‖∇uH
h ‖0,KH

‖∇uh‖0,KH

∫

KH

(∇vh ·∇wh).

This form is called the shock capturing form. The mod-
ified problem we consider is the following.

{

Find uh ∈ Xh s.t. ∀vh ∈ Xh

a(uh, vh) + bh(uH
h , v

H
h ) + ch(uH

h , uh, vh) = (f, vh).

Since the nonlinearity is small, this problem can be solved
by means of a very crude fixed point algorithm. The so-
lution is shown in figure 4 at the bottom center location.
The efficiency of the shock capturing form is evident.
The boundary layer is captured within one element with
csc = 0.1.

3 Evolution problem with non coercivity

In this section we show how the subgrid viscosity tech-
nique can be extended to treat time-dependent problems
with no coercivity.

3.1 The model problem

The goal of this section is to introduce a general frame-
work for non-coercive time-dependent problems. Let L
be a separable Hilbert space and A : D(A) ⊂ L −→ L
be a linear operator.

Definition 3.1. We say that A is monotone iff

∀v ∈ D(A), (Av, v)L ≥ 0, (3.1)

and A is maximal iff

∀f ∈ L, ∃v ∈ D(A), v +Av = f. (3.2)

Lemma 3.1. If A : D(A) ⊂ L −→ L is maximal and
monotone, then
(i) D(A) is dense in L.
(ii) The graph of A is closed.
(iii) For all λ > 0, I + λA : D(A) ⊂ L −→ L is bijective
and (I + λA)−1‖L(L,L) ≤ 1.

Proof. See Brezis [Bre91, p. 101], Showalter [Sho96, p. 22]
or Yosida [Yos80, p. 246].

The major result of this section is the following.

Theorem 3.1 (Hille–Yosida). For all f ∈ C1([0,+∞[;L)
and all u0 ∈ D(A), the problem







Find u ∈ C1([0,+∞[;L) ∩ C0([0,+∞[;D(A)) s.t.

u|t=0 = u0,

dtu+Au = f,

(3.3)

has a unique solution and











‖u‖C0([0,T ];L) ≤ c (‖u0‖L + T ‖f‖C0([0,T ];L)),

‖u‖C1([0,T ];L) + ‖u‖C0([0,T ];V )

≤ c (‖u0‖V + T ‖f‖C1([0,T ];L)).

(3.4)

Proof. See [Bre91, p. 110] or Yosida [Yos80, p. 248].



9

To reformulate problem (3.3), we introduce the bilin-
ear form a such that a(u, v) = (Au, v)L for all u ∈ D(A)
and v ∈ L. We set V = D(A) and we equip V with
the graph norm: ‖v‖V = (‖v‖2

L + ‖Av‖2
L)1/2. Since the

graph of A is closed, lemma 3.1 implies that V is a Ba-
nach space. Hence, the bilinear form a : V × L −→ R is
continuous. Furthermore, when equipped with the scalar
product (u, v)L + (Au,Av)L, V is a Hilbert space. Since
D(A) = V is dense in L (lemma 3.1), we are in the
classical situation V ⊂ L ≡ L′ ⊂ V ′.

We reformulate problem (3.3) as follows. For f ∈
C1([0,+∞[;L) and u0 ∈ V ,







Find u in C1([0,+∞[;L) ∩ C0([0,+∞[;V ) s.t.

(u(0), v) = (u0, v), ∀v ∈ L,

(dtu, v)L + a(u, v) = (f, v)L, ∀v ∈ L, ∀t ≥ 0.

(3.5)

Remark 3.1. This problem is strictly equivalent to the
original problem (3.3). The Hille-Yosida theorem guar-
antees that it is well-posed.

Remark 3.2. The reader can very that the advection re-
action operator and the Darcy operator introduced in
sections 1.2 and 1.3 are maximal and monotone.

Let us introduce the semi-norm |v|V = ‖Av‖L.

Proposition 3.1. Let A ∈ L(V ;L) be a monotone op-
erator. The following two properties are equivalent.
(i) A is maximal.
(ii) There are two constants c1 > 0, c2 ≥ 0 such that

∀u ∈ V, sup
v∈L

a(u, v)

‖v‖L
= c1|u|V − c2‖u‖L. (3.6)

Remark 3.3. In general, if the bilinear form a is not co-
ercive, when using the Galerkin technique to build an ap-
proximate solution to problem (3.5), the inequality (3.6)
is not satisfied uniformly with respect to the mesh size.

To build an optimal approximate solution to prob-
lem (3.5), one possible approach consists in generalizing
the Galerkin Least Square technique. This choice implies
that no difference is made between space and time, the
consequence being that a discontinuous Galerkin approx-
imation of time must be done. The reader interested in
this approach is referred to [CKS00], [LR74], [Joh87] or
[JNP84].

The other approach that we shall develop herein con-
sists in using the subgrid viscosity technique.

3.2 The subgrid viscosity technique

Let us recall the discrete setting introduced in section
2.1. Let XH ⊂ Xh ⊂ V be two sequences of finite di-
mensional spaces satifying (2.1).

We assume that a discrete version of (3.6) is satisfied.
More precisely, there are ca > 0 and cδ ≥ 0, independent
of (H,h) such that for all vh ∈ Xh,

sup
φh∈Xh

a(vH , φh)

‖φh‖L
≥ ca|vH |V − cδ‖vh‖L. (3.7)

Furthermore, we assume that the hypotheses (2.3),
(2.4), and (2.11) hold true. We refer to sections 2.1 and
2.5 for a discussion on these hypotheses and examples of
admissible finite element couples (Xh, XH).

Let us assume that u0 ∈ W such that u0 can be ap-
proximated by IHu0. The discrete problem we consider
reads:










Find uh ∈ C1([0,+∞[;Xh) s.t. ∀vh ∈ Xh

(dtuh, vh)L + a(uh, vh) + bh(uH
h , v

H
h ) = (f, vh),

uh|t=0 = IHu0.

(3.8)

This problem has a unique solution, for it is a system of
linear ordinary differential equations.

The major convergence result of this section is the
following.

Theorem 3.2. Under hypotheses (2.1), (3.7), (2.3), (2.4),
and (2.11), if u is in C2([0, T ];W ), then uh satisfies the
following error estimates.

‖u− uh‖C0([0,T ];L)

+

[
∫ T

0

a(u− uh, u− uh)

]1/2

≤ c1H
k+1/2,

(3.9)

[

1

T

∫ T

0

‖u− uh‖2
V

]1/2

≤ c2H
k, (3.10)

where constants c1 and c2 are bound from above as fol-
lows.

c1 ≤ c [H + T (1 + T )]
1/2 ‖u‖C2([0,T ];W ),

c2 ≤ c [1 + T ] ‖u‖C2([0,T ];W ).

Remark 3.4. Note that the norm used in the error esti-
mates are the same as those of the stability estimates
(3.4). The estimate (3.10) is optimal in the graph norm.
The estimate (3.9) is the same as that obtained by the
Discontinuous Galerkin technique [JNP84].

Remark 3.5. Note when T is large c1 = O(T ) and c2 =
O(T ); that is, in the most unfavorable case the error
increase linearly with T .

3.3 A singular perturbation problem

The technique developed above is tailored for first order
differential operators. In practice, we have to deal with
situations where B = A + ǫD, A is a first order differ-
ential operator and D is a coercive second order differ-
ential operator. From the mathematical point of view,
the coercivity of D implies that the evolution equation
is parabolic. If ǫ is O(1), the problem falls within the
framework of parabolic equations whose approximation
by the Galerkin technique is optimal. On the other hand,
if ǫ is small, the coercivity is not strong enough to guar-
antee that the Galerkin approximation is satisfactory,
for in first approximation B ≈ A. We show now that
the subgrid viscosity technique can easily be extended
to treat this situation.
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Let us retain the notation introduced above. In ad-
dition to the two Hilbert spaces already introduced, L
and D(A) = V , we introduce a new Hilbert space X
with dense and continuous embedding in V . We intro-
duce also a bilinear form d ∈ L(X × X ; R), and we
assume that there is a semi-norm | · |X in X so that
d(u, v) ≤ cd|u|X |v|X for all u, v in X . In practice D can
be a degenerate elliptic operator. We assume that a+ d
is coercive with respect to the semi-norm | · |X , i.e.

∀v ∈ X, |v|2X ≤ a(v, v) + d(v, v). (3.11)

Let us introduce the following space

W (X) = {v ∈ L2(0,+∞;X); dtv ∈ L2(0,+∞;X ′)}
We consider now the following problem: for u0 ∈ X and
f ∈ C1([0,+∞[;L),







Find u in W (X) s.t. ∀v ∈ X, ∀t ≥ 0

(dtu, v)L + a(u, v) + ǫd(u, v) = (f, v)L,

(u(0), v) = (u0, v), ∀v ∈ L,

(3.12)

where ǫ is a positive real number which may possibly
be zero. We assume that the problem is normalized so
that ǫ ≤ 1. Furthermore, we assume that there is c > 0
so that ‖v‖X ≤ c(‖v‖L + |v|X). The consequence of this
hypothesis is that problem (3.12) is parabolic in Lions’
sense [LM68, p. 253] and has a unique solution.

Now we use the discrete setting of §3.2 to build an
approximate solution to problem (3.12). Let us intro-
duce two sequences of finite dimensional spaces XH ⊂
Xh ⊂ X satisfying hypotheses (2.1), (3.7), (2.3), (2.4),
and (2.11). Furthermore, we assume that the following
inverse inequality holds

|vh|X ≤ cH−1‖vh‖L. (3.13)

We assume that u0 ∈ W so that IHu0 is a good
approximation to u0. The discrete problem that we con-
sider reads






















Find uh in C1([0,+∞[;Xh) s.t. ∀vh ∈ Xh

(dtuh, vh)L + a(uh, vh) + ǫd(uh, vh)

+ bh(uH
h , v

H
h ) = (f, vh),

uh|t=0 = IHu0.

(3.14)

Problem (3.14) is well-posed since it is a linear system
of ordinary differential equations.

Theorem 3.3. If u is in C2([0, T ];W ), then uh, solution
to (3.14), satisfies

‖u− uh‖C0([0,T ];L) +

[

∫ T

0

as(u− uh, u− uh)

]1/2

+ ǫ1/2‖u− uh‖L2([0,T ];X)

≤ c1(T, u)
[

Hk+1/2 + ǫ1/2Hk
]

,

(3.15)

[

1

T

∫ T

0

‖u− uh‖2
V

]1/2

≤ c2(T, u)H
k, (3.16)

where constants c1 and c2 are bounded from above as
follows

c1 ≤ c [H + T (1 + T )]1/2 ‖u‖C2([0,T ];W ),

c2 ≤ c

[

1 + T

]

‖u‖C2([0,T ];W ).

Proof. See [Gue01a].

3.4 Some numerical examples

We evaluate the performance of the method by testing
it on problems of increasing difficulties.

3.4.1 Example 1 : Advection in 1D

Let us first make convergence tests in space on the fol-
lowing 1D linear advection problem.







u|t=0 = sin(2πxα),

∂tu+ ∂xu = 0, in Ω =]0, 1[,

Periodic boundary condition.

(3.17)

The exact solution is u = sin(2π(x − t)α). The problem
falls within the framework developed above when setting

L = L2(Ω),

V = {v ∈ L2(Ω) | ∂xv ∈ L2(Ω), v|x=0 = v|x=1},
A = ∂x.
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Fig. 5. Convergence tests; L2 and H1 norms with respect
to h. Solid line : stabilized P1 solution; discontinuous line:
Galerkin P1 solution. Left: u0 = sin(2πx0.6); right: u0 =
sin(2πx0.8)).

We approximate the solution by means of the two-
level P1 finite elements defined in §2.5. By setting β =
(1, 0), lemma 2.1 guarantees that the discrete inf-sup
condition (3.7) is satisfied. We define bh as in (2.27).
In our tests cb = 0.1. The family of meshes considered is
regular, but to avoid super-convergence phenomena each
mesh is obtained by a random mapping of the uniform
grid with the same number of nodes.

To approximate the time derivative, we use the sec-
ond order BDF2 scheme. The time step δt is chosen small



11

enough to guarantee that the time error is much smaller
than the space error, i.e., δt = 10−3. The total integra-
tion time is T = 1; i.e., the solution has crossed the
domain once.

Convergence tests with α = 0.6 and α = 0.8 are
reported in figure 5. In both cases the solution is in
C0([0,+∞[;H1(Ω)). We plot the L2 and H1 norms of
the error as a function of h for the stabilized solution
and the Galerkin solution. It is clear that the conver-
gence properties of the stabilized solution are superior
to that of the Galerkin solution.
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Fig. 6. Convergence tests with u0 = sin(2πx0.6); top: stabi-
lized P1 solution; bottom: Galerkin P1 solution; from left to
right: h = 1/60, h = 1/100, h = 1/200.

To illustrate the convergence problems of the Galerkin
approximation, we show in figure 6 the stabilized solu-
tion and the Galerkin solution on three different meshes:
h = 1/60, h = 100 and h = 1/200. Note that for the
three meshes considered, the Galerkin solution is pol-
luted by spurious numerical oscillations spreading all
over the domain, whereas the stabilized solution exhibits
some very localized oscillations close to point where the
first derivative is singular.

3.4.2 Example 2 : Advection in 2D

To illustrate further the performance of the subgrid sta-
bilization technique, we solve problem (3.17) in 2D, Ω =
]0, 1[2, with periodic boundary conditions and α = 0.6.
We use the P1 approximation on a mesh composed of
3728 triangles and 1945 nodes, i.e., h ≈ 1/40. The solu-
tion at T = 1 is shown in figure 7. As in 1 dimension,
the Galerkin solution oscillates throughout the domain,
whereas the stabilized solution is smooth almost every-
where, except in the vicinity of the line where ∂xu is
singular.

3.4.3 Example 3 : Advection with rough data

We now make a test with rough initial data on the 1D
advection equation

ut + ux = 0, in Ω =] − 1,+1[,

−1

0

1

Y−Axis

0

1 X−Axis

0

1

−1

0

1

Y−Axis

0

1 X−Axis

0

1

−1

0

1

Y−Axis

0

1 X−Axis

0

1

Fig. 7. Advection problem (3.17) with α = 0.6 in Ω =]0, 1[2.
left: P1 interpolate of the exact solution; center: stabilized
solution; right: Galerkin solution.

with periodic boundary conditions. The initial data pro-
posed in [SO89] is

u0(x) =



















e−300(x+0.7)2 if |x+ 0.7| ≤ 0.25,
1 if |x+ 0.1| ≤ 0.2,
(

1−
(

x−0.6
0.2

)2
)1/2

if |x− 0.6| ≤ 0.2,

0 else.

(3.18)

Like for time independent first order PDE’s, the fact
that the data u0 is not in D(A) triggers the Gibbs phe-
nomenon. See example 2 of section 2.7 for details on
this problem. To limit this phenomenon we introduce the
nonlinear form (2.29). The approximate problem reads:















Find uh in C1([0,+∞[;Xh) s.t. ∀vh ∈ Xh

(dtuh, vh)L + a(uh, vh) + ǫd(uh, vh)

+ bh(uH
h , v

H
h ) + ch(uH

h , uh, vh) = (f, vh),
uh|t=0 = IHu0,

(3.19)

We make tests with two-level P1 finite elements on
three different grids composed of 50, 100, and 200 nodes
respectively. We set cb = 0.05 and csc = 0.05. We use
BDF2 with δt = 10−3 to march in time.

The two-level solution at T = 4 on the three con-
sidered meshes is plotted at the top of figure 8. The
Galerkin solution is shown at the bottom of the figure.
The Galerkin solution is of no use to engineers. It is clear
that the stabilization is efficient and that the stabilized
P1 solution converges to the exact solution satisfactorily.

3.4.4 Example 4 : A nonlinear degenerate parabolic
problem

To test the capability of the proposed method to deal
with degenerate parabolic problems, we consider a new
class of convection-diffusion equations proposed in a se-
ries of papers by Kurganov and Rosenau [JGR99]. “The
novel feature of these equations is that large amplitude
solutions develop spontaneous discontinuities, while small
solutions remain smooth at all times.”

Let us consider the following problem in Ω =]− 3, 3[



























u|t=0 =

{

1.2 if − 3 ≤ x < 0,
−1.2 if 0 < x ≤ 3,

u(±3, t) = ∓1.2 for 0 ≤ t,

∂tu+ ∂xu
2 − ∂x

(

∂xu
√

1 + (∂xu)2

)

= 0.

(3.20)
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Fig. 8. 1D advection problem with rough initial data. Top:
stabilized P1 solution; bottom: Galerkin P1 solution; From
left to right: 50 nodes, 100 nodes, 200 nodes.
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Fig. 9. Degenerate parabolic problem on three grids: h =
6/100, h = 6/200, and h = 6/400; left: P1 Galerkin solution;
center: two-level P1 approximation with cb = csc = 0.2, right:
two-level P1 approximation with cb = 0.5, csc = 0.1.

The problem is solved, up to time T = 1.5, by using
formulation (3.19) with P1 finite elements on three grids:
h = 6/100, h = 6/200, and h = 6/400. The results are
shown in figure 9. Quite surprisingly, the Galerkin solu-
tion is not plagued by spurious oscillations but converges
to a non-entropic solution. To illustrate the insensitivity
of the method to variations on the stabilizing parame-
ters, we make two sets of computations. In the first set
we use cb = 0.2, csc = 0.2 and in the other set we use
cb = 0.5, csc = 0.1. The results shown in figure 9 demon-
strate that the stabilized solution converges and does not
depend too much on the choice of the stabilizing param-
eters.

3.4.5 Example 5 : The compressible Navier–Stokes
equations

To further illustrate the capability of the method we
solve a compressible Navier–Stokes problem by Tenaud–
Daru [VD00]. We consider a box Ω =]0, 1[2 filled with
a viscous ideal gas. A diaphragm situated at x = 1/2
separates the box into two parts. The fluid is initially at
rest and in two different thermodynamic states on each
sides of the diaphragm. On the left we have ρl = 120

and pl = ρl/γ, whereas on the right we have ρr = 1.2
and pr = ρr/γ. The constant γ is set to 1.4. At t = 0
the diaphragm is removed. The shock moves to the right
of the box, then reflects on the right side. When com-
ing back to the left, the shock strongly interacts with
the boundary layer that it created at the bottom of the
box. The interaction produces a λ shock and a massive
separation of the boundary layer.

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0

0.1

0.2

0.3

0.4

0.5

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0

0.1

0.2

0.3

0.4

0.5

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0

0.1

0.2

0.3

0.4

0.5

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0

0.1

0.2

0.3

0.4

0.5

Fig. 10. Shock box problem; P1 approximation; density
contour lines; Reynolds 200 (top); Reynolds 1000 (bottom);
t = 0.6 (left); t = 1 (right).

The solution is assumed to be symmetric with respect
to the axis y = 1/2; as a result, the computational do-
main is restricted to Ω =]0, 1[×]0, 1/2[. We use two-level
P1 finite elements. Two Reynolds numbers are consid-
ered: Re = 200 and Re = 1000. The Prandtl number
is set to 0.73. In figure 10 we show density contours for
these two Reynolds numbers at times T = 0.6 and T = 1.
The contour step is ∆ρ = 5, and the contour lines are
shown from ρ = 10 to ρ = 120. The solution shown here
compares quite well with that reported in [VD00].
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element methods for linear hyperbolic equations.
Comput. Methods Appl. Mech. Engrg., 45:285–312,
1984.

[Joh87] C. Johnson. Numerical solution of partial differen-
tial equations by the finite element method. Cam-
bridge University Press, Cambridge, 1987.

[LM68] J.-L. Lions and E. Magenes. Problèmes aux limites
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