
SOME IMPLEMENTATIONS OF PROJECTION METHODS FOR

NAVIER–STOKES EQUATIONS ∗

JEAN-LUC GUERMOND †

Abstract. This paper is concerned with the implementation of spatially discrete versions of
Chorin–Temam’s projection methods. The emphasis is put on the projection step, which enforces
incompressibility. Three types of variational approximations are reviewed. In the first one, the
projection step is solved as a div-grad problem with velocity test functions satisfying (at first glance)
a paradoxical Dirichlet condition. In the second method, the projection step is still solved as a div-grad
problem but the velocity test functions satisfy a boundary condition only for the normal component.
In the third approach the projection step is solved in the form of a Poisson equation supplemented
with a Neumann boundary condition. The first method is shown to be legitimate and economical for
finite element approximations, whereas the second is shown to be useful for spectral approximations.
The third one is probably the easiest to implement since it avoids the problem of the mass matrix
occurring in the two others. Though the second and third approaches do not directly involve a inf-sup
condition, this condition is pointed out to be necessary to establish convergence and rule out possible
spurious pressure. Finally some links between these algorithms and some preconditioning techniques
of the Uzawa operator are shown.

Résumé. Dans cet article on s’intéresse à quelques approximations spatiales des méthodes de
projections du type Chorin–Temam. On s’intéresse plus particulièrement à l’étape de projection, qui
sert à imposer l’incompressibilité. Trois types d’approximations variationnelles sont étudiées. Dans
la première on résout l’étape de projection sous la forme d’un problème de Darcy avec des vitesses
test satisfaisant une condition de Dirichlet (à première vue) paradoxale. Dans la seconde approche,
le problème est encore résolu sous sa forme div-grad (ie. Darcy) mais les vitesses test satisfont
cette fois-ci une condition à la frontière portant uniquement sur la composante normale. Dans la
troisième méthode, l’étape de projection est résolue sous la forme d’une équation de Poisson avec une
condition de Neumann. On montre que la première méthode est légitime pour des approximations
par éléments finis, alors que la seconde a de l’intérêt aussi pour des approximations spectrales. La
troisième méthode est probablement la plus aisée à mettre en œuvre puisque qu’elle permet d’éviter
l’inversion d’une matrice de masse qui est obligatoire pour les deux autres. Bien que les deux dernières
méthodes n’imposent pas directement de compatibilité entre les espaces de vitesse et de pression, on
montre qu’une telle condition est nécessaire pour assurer la convergence de la méthode. Finalement
on montre quelques liens entre ces algorithmes et certaines techniques de préconditionnement de
l’opérateur d’Uzawa.
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1. Introduction. In this paper we consider discrete approximations of a class of
fractional step techniques known as Chorin–Temam projection methods [8] [23]. These
techniques have been proposed for approximating in time the unsteady incompressible
Navier–Stokes equations. They are devised to turn around the coupling between the
pressure and the velocity that is implied by the incompressibility constraint: divu = 0.
The basic idea consists in devising time marching procedures that uncouple viscous and
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incompressibility effects. These techniques are very efficient and have probably “been
the first numerical schemes enabling a cost-effective solution of three-dimensional time-
dependent problems” ( cf. Quartapelle [19, p. 177]). Their simplicity and sometimes
surprising efficiency render them particularly attractive to the CFD community (see e.g.
[2], [9], [11], [12], [25]). Although these techniques have long been used for calculating
steady-state solutions to Navier–Stokes equations, they are now regaining their status
as true time marching procedures for calculating time-dependent incompressible viscous
flows. This renewed interest for time-dependent solutions to Navier–Stokes equations
is prompted by the increasing capacities of computers and the success of large eddy
theories which recognize that unsteadiness of large eddies should be well predicted
whereas smaller scales can (reasonably) be filtered.

Since its initial appearance, the projection method has been implemented with
various types of spatial approximations and the fractional step has been modified in
order to improve the overall accuracy of the scheme. Though the stability of this
method and its modified versions can generally be proven quite easily when space
variables are continuous, the stability and convergence of their discrete counterparts
are often overlooked in the literature.

For instance, the projection step may be put into two different forms. One possi-
bility consists in solving a so-called div-grad or Darcy problem as follows



































u+ δt∇φ = ũ

∇ · u = 0

u · n|∂Ω = 0.

(1.1)

The second possibility consists in obtaining from (1.1) a Poisson equation supplemented
with a homogeneous Neumann boundary condition on the pressure















∇2φ = ∇ · ũ
δt

∂φ
∂n |∂Ω = 0.

(1.2)

Although (1.1) and (1.2) are equivalent in some sense, their discrete counterparts
are not in general. On the one hand, discrete variational approximations of the Darcy
problem yield pressure equations of type BhI−1h Bt

hΦ = F , where Ih is a mass matrix and
Bh is a matrix associated with the divergence operator. In this case the homogeneous
Neumann boundary condition on the pressure is not enforced, though it is implicitly ac-
counted for by the velocity tests functions which have the normal component vanishing
at the boundary. On the other hand, discrete variational approximations of (1.2) yield
equations of type DhΦ = F , where Dh is an approximation of the Laplace operator and
the homogeneous Neumann boundary condition is explicitly, though weakly, enforced
by the variational formulation. At this point, one may ask oneself which procedure
is correct? If both are correct what are their respective range of application? It is
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shown in this paper that both approaches are correct, and each of them has its own
advantages within its respective functional framework.

The other point that is discussed in this paper concerns the appropriate boundary
condition that should be imposed on the end-of-step velocity. Thanks to theorem 2.1
(see below), it is clear on (1.1) that, as far as the spatially continuous problem is con-
cerned, only the normal component of the end-of-step velocity should be constrained.
However, when the problem is discretized in space, the answer is no longer clear: a
full Dirichlet condition on the end-of-step velocity is sometimes advocated by some
authors (cf. e.g. Gresho and Chan [12, part II]), whereas other authors impose a,
more natural, condition on the normal component of the velocity (cf. Donea et al. [9],
Azaiez et al. [1]). Which solution is correct? What are their respective advantages? It
is the purpose of this paper to show that both solutions are suitable if applied in the
correct functional frameworks. Actually, we show in this paper that the intermediate
velocity and the final velocity should be approximated in two different spaces.

This paper is organized as follows. In §2, we review non incremental and incremen-
tal projection schemes in the space continuum. In §3, we analyze a discrete projection
scheme in which the provisional velocity and the corrected one are approximated in
the same space; that is, the end-of-step velocity satisfies a Dirichlet condition. This
scheme is shown to be efficient for finite element approximations. A discrete projec-
tion scheme with an approximation space enforcing a boundary condition only on the
normal component of the end-of-step velocity is analyzed in §4. This functional frame-
work is shown to be useful for spectral approximations. In §5, the projection step is
formulated as a Poisson problem supplemented with a Neumann boundary condition.
This technique is probably the easiest to implement, for it turns around a mass matrix
problem that plagues the two others. Some generalization and convergence results are
presented in §6. In §7, we show that the three projection algorithms are, in some sense,
equivalent to some known preconditioning techniques of the Uzawa operator for which
the preconditioner is applied only once.

2. Preliminaries.

2.1. The continuous unsteady Stokes problem. In this paper we consider nu-
merical approximations with respect to time and space of the time-dependent Navier–
Stokes equations formulated in the primitive variables, namely velocity and pressure.
However, to simplify the presentation and since we are mainly concerned with the
parabolic aspect of the problem, we restrict ourselves to the time-dependent Stokes
problem



















































∂u
∂t −∇

2u+∇p = f

∇ · u = 0

u|∂Ω = 0

u|t=0 = v0,

(2.1)
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where f(t) is a body force, and the boundary condition on the velocity is set to zero for
sake of simplicity. The fluid domain Ω is open connected and bounded in IRd (d = 2 or
3 in practical applications). The domain boundary ∂Ω is assumed to be smooth; say
∂Ω is Lipschitz and Ω is locally on one side of its boundary.

In the following we work within the classical framework of the Sobolev spaces.
The set of real functions infinitely differentiable with compact support in Ω is denoted
by D(Ω), and the set of distributions on Ω is denoted by D′(Ω). As usual, L2(Ω)
denotes the space of real-valued functions the squares of which are summable in Ω.
The inner product in L2(Ω) is denoted by ( · , · ) and | · |0 is the associated norm; we
identify L2(Ω) with its dual. Hm(Ω), m ≥ 0, is the set of distributions the successive
derivatives of which, up to order m, can be identified with square summable functions.
The space Hm(Ω), equipped with the norm |u|2m = (

∑m
|α|=0 |Dαu|20)1/2, expressed in the

multi-index notation, is a Hilbert space [18]. We define Hm
0 (Ω) as the completion of

D(Ω) in Hm(Ω), and we denote H−m(Ω) the dual of Hm
0 (Ω).

The incompressibility condition on the velocity leads to consider solenoidal vector
fields. For this reason, we define N(Ω) = {v ∈ D(Ω), ∇ · v = 0}, and we denote by H
and V the completions of N(Ω) in L2(Ω)d and H10(Ω)

d, respectively. Spaces H and V
are characterized by:

H = {v ∈ L2(Ω)d, ∇ · v = 0, v · n|∂Ω = 0},(2.2)

V = {v ∈ H1(Ω)d, ∇ · v = 0, v|∂Ω = 0}.(2.3)

See for instance Temam [22, pp. 15–18] for a proof. In the following, the space H plays
an important role by means of

Theorem 2.1. Under the hypotheses on Ω stated above, we have the orthogonal
decomposition

L2(Ω)d = H⊕∇(H1(Ω)/IR).(2.4)

Proof. See for instance Girault and Raviart [10].
If one assumes that f ∈ L2(0, T ; H−1(Ω)d) and u0 ∈ H, then it is well-known that

(2.1) is well-posed (look for u ∈ L2(0, T ; V)∩C0(0, T ; H) and restrict the time evolution
problem to L2(0, T ; V′) where V′ is the dual of V and apply Lions’s theorem [18, p.
257]). Furthermore, one may verify that p ∈ L2(0, T ; L2(Ω)/IR). It is hereafter assumed
that the data are regular enough and satisfy all the compatibility conditions that are
needed for a smooth solution to exit.

We now turn the attention to the time approximation of (2.1) by means of projec-
tion methods. To make the presentation self-contained, we begin by recalling the main
features of some projection schemes.

2.2. The non-incremental and incremental projection schemes. Projec-
tion methods have been introduced by Chorin [8] and Temam [23]. They are time
marching procedures based on a fractional step technique that may be viewed also as
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a predictor-corrector strategy aiming at uncoupling viscous diffusion and incompress-
ibility effects. The time interval [0, T ] on which the solution is sought is partitioned
into K + 1 time steps that are hereafter denoted by tk = kδt for 0 ≤ k ≤ K, where
δt = T/K. In the algorithm originally devised by Chorin and Temam, each time step
is decomposed into two substeps as follows. For each time step, solve first















ũk+1 − uk

δt −∇2ũk+1 = fk+1

ũk+1
|∂Ω = 0,

(2.5)

then project the provisional velocity ũk+1 onto H; in other words, solve


































uk+1 − ũk+1

δt +∇pk+1 = 0

∇ · uk+1 = 0

uk+1 · n|∂Ω = 0.

(2.6)

The series (uk) is initialized by u0 = v0. The velocity ũk+1 is a prediction of u(tk+1),
and uk+1 is a correction of ũk+1.

One possible improvement of the algorithm above consists in predicting a better
value of the provisional velocity ũk+1 by putting the gradient of the pressure that
has been calculated at the time step tk in the right-hand side of (2.5). This algorithm,
hereafter referred to as the incremental form of the projection technique [11], consists in
the following. Initialize the series (uk) and (pk) respectively by u0 = v0 and p

0 = p|t=0,
assuming that p ∈ C0(0, T ; L2(Ω)/IR). For each time step solve















ũk+1 − uk

δt −∇2ũk+1 = fk+1 −∇pk

ũk+1
h|∂Ω = 0,

(2.7)

and project ũk+1 onto H


































uk+1 − ũk+1

δt +∇(pk+1 − pk) = 0

∇ · uk+1 = 0

uk+1 · n|∂Ω = 0.

(2.8)

Note that this algorithm assumes more regularity than the non incremental one since
it requires an additional condition, ie. p0 = p|t=0, that was not specified in the original
Stokes problem (2.1) so that some regularity on p as t→ 0 needs to be assured.

Steps (2.6) and (2.8) are called projection steps since, according to theorem 2.1,
they are equivalent to uk+1 = PHũ

k+1 and either ∇pk+1 = (ũk+1 − PHũ
k+1)/δt or

∇(pk+1 − pk) = (ũk+1 − PHũ
k+1)/δt, where PH is the orthogonal projection of L2(Ω)d
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onto H. In both cases, the velocity ũk+1 is a prediction of u(tk+1) that satisfies the
correct boundary condition but is not divergence free. This defect is corrected by
projecting ũk+1 onto H (this step has given its name to the method). However, the
end-of-step velocity, uk+1, does not satisfy exactly the correct boundary condition since
its tangential component is not necessarily zero.

Note that fractional step techniques (2.5)–(2.6) and (2.7)–(2.8) uncouple viscous
diffusion and incompressibility. In practice these techniques require solving Helmholtz
problems and performing projections onto H, whereas classical coupled techniques usu-
ally involve a Uzawa operator: ∇ · (Id− σ∇2)−1∇ where σ is proportional to δt and Id
is the identity. This operator, called after Uzawa’s algorithm in which it is implicitly
used (see for instance Temam [22, p. 138]), is non-local and ill-conditioned as the time
step tend to zero (see also §7 for other details).

When it comes to analyzing the convergence of projection algorithms (2.5)–(2.6)
and (2.7)–(2.8), it is sufficient to restrict the analysis to that of the incremental algo-
rithm, for the error equations of the non-incremental one can be put into an incremental
form as follows















ẽk+1 − ek

δt −∇2ẽk+1 = Rk+1 −∇p(tk+1)

ẽk+1|∂Ω = 0,

and


































ek+1 − ẽk+1

δt +∇(δk+1 − p(tk+1)) = 0

∇ · ek+1 = 0

ek+1 · n|∂Ω = 0.

Where Rk+1 is the integral Taylor residual, and we have defined the error functions
ek = u(tk)−uk, ẽk = u(tk)− ũk and δk = p(tk)−pk. As a consequence, in the following
we only consider the incremental form of the projection algorithm.

Global accuracy of projection schemes can be further improved by replacing the
one-step backward Euler scheme in (2.7) by a Crank–Nicolson approximation as Van
Kan did [25] or by a two-step backward Euler approximation. Stability and convergence
of some of these modified scheme is studied in [13], [15], [16], [20], [21], and [25], but
these considerations are out of the scope of the present paper. The objective of the work
presented herein is to bring some answers to questions concerning spatially discrete
approximations of the projection step (2.6) or (2.8).

2.3. The spatially discrete unsteady Stokes problem. Let Xh and Mh be
convergent, internal, and stable approximations of H10(Ω)

d and L2(Ω)/IR. It is hereafter
assumed that Xh and Mh are finite dimensional vector spaces. We define X ′

h the dual
of Xh; X

′
h is identical to Xh in terms of vector space but is equipped with the dual

norm induced be the scalar product of L2(Ω)d. We identify Mh with its dual space, for
the natural norm of Mh is that of L2(Ω).
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We now introduce the continuous bilinear form bh : Xh × Mh −→ IR so that
bh(uh, ph) = −(divuh, ph), and we associate with bh the continuous linear operator
Bh : Xh −→ Mh and its transpose Bt

h : Mh −→ X ′
h so that for every couple (uh, ph)

in Xh ×Mh we have (Bhuh, ph) = bh(uh, ph) and (uh, B
t
hph) = bh(uh, ph). We assume

that Bh : X −→ M is onto. An important consequence of the surjectivity of Bh is
summarized by the following well-known result which is a corollary of Banach’s closed
range theorem.

Lemma 2.1. Let E and F be two Hilbert spaces, and T ∈ L(E,F ). The following
propositions are equivalent:

(i) T : E −→ F is onto.
(ii) T t : F ′ −→ ker(T )o is one to one1 and there is β > 0, so that |T tp|E′ ≥ β|p|E,

for all p ∈ E.
For a proof, the reader is referred to Brezzi [5] or Girault–Raviart [10, pp. 58–59].

As a result, there is βh > 0 so that

∀qh ∈Mh, |Bt
hqh|X′

h
≥ βh|qh|0.(2.9)

The constant βh is sometimes referred to as the inf-sup constant or the LBB constant
(LBB being for Ladyzhenskaya–Babǔska–Brezzi). A large choice of discrete spaces Xh

andMh satisfying such a condition is available in the literature. A review of compatible
spaces in the framework of finite elements may be found in Girault–Raviart [10]. For
spectral approximation see, for instance, Bernardi–Maday [4].

The null space of Bh playing an important rôle in the following, we set Vh =
ker(Bh), and we equip Vh with the norm induced by that of Xh. We also define by
Hh = Vh in term of vector space and we equip Hh with the norm of L2(Ω)d (in some
sense Hh plays the role of the completion of Vh in L2(Ω)d)

Let us also introduce the continuous bilinear form ah : Xh × Xh −→ IR so that
ah(uh, vh) = (∇uh,∇vh), and recall that, thanks to the Poincaré inequality in H10(Ω)

d,
ah is Xh-elliptic; that is,

∃α > 0, ∀uh ∈ Xh, ah(uh, uh) ≥ α|uh|21.(2.10)

We associate with ah the linear continuous operator Ah : Xh −→ X ′
h so that for all

(uh, vh) ∈ Xh ×X, ah(u, v) = (Ahuh, vh).
In the functional framework defined above, the spatially discrete version of the

time-dependent Stokes problem can be formulated as follows. For fh ∈ L2(0, T,X ′
h)

and v0,h ∈ Hh, find uh ∈ L2(0, T ;Xh) ∩ C0(0, T ;Hh) and ph ∈ L2(0, T ;Mh) so that



































duh
dt + Ahu+Bt

hp = fh

Bhuh = 0

uh|t=0 = v0,h,

(2.11)

1 Recall that the polar set of a space V ⊂ E is defined by V o = {e′ ∈ E′, 〈e′, v〉 = 0, ∀v ∈ V }
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where fh and vh are suitable approximations of f and v0 in Xh. The data, f and
v0, are assumed to be as smooth as needed, and in the rest of the paper we focus on
time approximations of (2.11). This problem has a unique solution (uh, ph), and this
solution is stable (in the appropriate norms) with respect to the data.

Since Xh andMh are convergent and stable internal approximations of H10(Ω)
d and

L2(Ω)/IR respectively, the solution to (2.11) converges in an appropriate sense to that
of the continuous unsteady Stokes problem (2.1). Our main concern now consists in
approximating the time derivative in (2.11). In what follows, we are exclusively con-
cerned with time approximations of problem (2.11) by means of projection techniques
similar to (2.5)–(2.6) or (2.7)–(2.8).

3. A full Dirichlet boundary condition on the end-of-step velocity.

3.1. The functional framework. In this section we build a discrete projection
algorithm in which we take the provisional velocity ũk

h and the end-of-step velocity uk
h

in the same approximation space.
In order to build an analogy between the discrete framework and its continuum

counterpart, we introduce a subspace of Mh that is the analogue of H1(Ω) ⊂ L2(Ω).
For this purpose we define the positive bilinear form (p, q)M1

h
= (Bt

hp,B
t
hq). According

to (ii) in lemma 2.1, it is clear that (·, ·)M1

h
is a scalar product, and |p|M1

h
= |Bt

hp|0 is a
norm. We now define M 1

h so that M 1
h =Mh in terms of vector space, but we equip M 1

h

with the norm | · |M1

h
. Furthermore, we define Yh = Xh in term of vector space and we

equip Yh with the norm of L2(Ω)d. The introduction M 1
h and Yh is justified by

Corollary 3.1. We have the stable, orthogonal decomposition:

Yh = Hh ⊕Bt
h(M

1
h).(3.1)

Proof. Let lh ∈ Yh and define PHh
: Yh −→ Hh the orthogonal projection onto

Hh. We have (lh − PHh
lh, vh) = 0 for all vh in Hh, in other words we also have

(lh − PHh
lh, vh) = 0 for all vh in Vh; that is to say, (lh − PHh

lh) ∈ V o
h . From (ii)

of lemma 2.1, we infer that there is a unique ph ∈ Mh so that Bt
hph = lh − PHh

lh.
Furthermore, it is clear that (PHh

lh, B
t
hph) = 0; as a result, |PHh

lh|20 = (lh, PHh
lh) and

|Bt
hph|20 = (lh, B

t
hph), from which we infer that the decomposition is stable: |PHh

lh|0 ≤
|lh|0 and |ph|M1

h
≤ |lh|0.

Note that the above decomposition of Yh is the spatially discrete counterpart of
the classical decomposition: L2(Ω)d = H⊕∇(H1(Ω)/IR).

3.2. The discrete projection algorithm. With the functional framework in-
troduced above, the logical implementation of the viscous step (2.7) consists in looking
for ũk+1

h in Xh so that

ũk+1
h − uk

h

δt
+ Ahũ

k+1
h = fk+1

h −Bt
hp

k
h.(3.2)

This problem is well posed thanks to the Xh-ellipticity of Ah. Note that ũk+1
h , being

approximated in Xh, satisfies the Dirichlet condition ũk+1
h|∂Ω = 0. We now turn the

attention to the discrete projection step.
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The projection step of the incremental algorithm can be implemented as follows.
Find uk+1

h in Yh and pk+1h − pkh in Mh so that















uk+1
h − ũk+1

h
δt +Bt

h(p
k+1
h − pkh) = 0

Bhu
k+1
h = 0.

(3.3)

According to corollary 3.1 this problem is well posed. Actually, the couple (uk+1
h , δt(pk+1h −

pkh)) is the decomposition of ũk+1
h in Hh ⊕ Bt

h(M
1
h); that is, uk+1

h = PHh
ũk+1
h . Note,

however, that this way of setting the discrete projection step may not seem the most
appropriate since the velocity test functions involved satisfy a Dirichlet boundary con-
dition. In order to emphasize this point we can reformulate (3.3) as follows: find uk+1

h

in Xh and pk+1h in Mh so that















∀vh ∈ Xh ⊂ H10(Ω)
d, 1

δt(u
k+1
h − ũk+1

h , vh)− (∇ · vh, pk+1h − pkh) = 0

∀qh ∈Mh ⊂ L2(Ω)/IR, (∇ · uk+1
h , qh) = 0.

(3.4)

Xh being an internal approximation to H10(Ω)
d, uk+1

h satisfies uk+1
|∂Ω = 0 and the velocity

test functions satisfy vh|∂Ω = 0, whereas it might seem more appropriate to enforce
only uk+1

h · n|∂Ω = 0 and vh · n|∂Ω = 0 as suggested by the continuous projection step
(2.6) or (2.8). We show in the following that this choice has some consequence on the
condition number of the pressure operator involved the linear system (3.4).

3.3. The condition number issue. If the velocity uk+1
h is eliminated from (3.3),

the projection step reduces to solving the following pressure problem

BhB
t
h(p

k+1
h − pkh) =

Bhũ
k+1
h

δt
.(3.5)

We now turn the attention to the influence of the end-of-step boundary condition
on the condition number of the pressure operator BhB

t
h. We analyze this influence

for finite element approximations and for spectral approximations. It is shown that
the full Dirichlet boundary condition on the end-of-step velocity is optimal, in term
of condition number of BhB

t
h, for finite element approximations, whereas it is not for

spectral approximations.
In the following we assume that Xh and Mh are composed of finite elements based

on a uniformly regular triangulation Th of Ω, the characteristic mesh size of which is
denoted by h. We also assume that these two spaces are uniformly compatible in the
sense that the inf-sup constant βh is independent of h. Recall that for uniformly regular
triangulation we have the inverse inequality

Lemma 3.1. (cf. Girault–Raviart [10, p. 103]) There is a constant c > 0 indepen-
dent of h so that

∀vh ∈ X, |∇vh|0 ≤ ch−1|vh|0.(3.6)

9



We now give an upper bound on the condition number κ(BhB
t
h)

Theorem 3.1. There is a constant c > 0 so that

κ(BhB
t
h) ≤

c

β2hh
2
.(3.7)

Proof. Let ph be in Mh and define gh in Mh so that gh = BhB
t
hph. By setting

uh = −Bt
hph we have















uh +Bt
hph = 0

Bhuh = gh.

(a) From this system we deduce the bound |uh|20 = −(Bhuh, ph) ≤ |gh|0|ph|0. Fur-
thermore, (ii) in lemma 2.1 yields |uh|0 = |Bt

hph|0 ≥ βh|ph|0. As a result, we have
β2h|ph|0 ≤ |gh|0, from which we deduce that the smallest eigenvalue of BhB

t
h is bounded

from below by β2h.
(b) From the system above we also deduce |uh|20 = (divuh, ph), which together with
the inverse inequality (3.6), yields h|uh|0 ≤ c|ph|0. Furthermore, we have |gh|20 =
−(divuh, gh), which for the same reason as above yields h|gh|0 ≤ c|uh|0. By combining
the two bounds above, we obtain that the largest eigenvalue of BhB

t
h is bounded from

above by c/h2.
(c) The operator BhB

t
h being symmetric, its condition number is equal to the ratio of

its largest to its smallest eigenvalues.
This bound on κ(BhB

t
h) is likely to be optimal since the underlying partial differen-

tial equation is a Poisson problem supplemented with a Neumann boundary condition,
and it is known that approximating such a problem by finite elements yields an operator
the condition number of which is equivalent to 1/h2. Hence, the important conclusion
of this section is that although approximating the projection step by means of test
functions satisfying vh|∂Ω = 0 does not seem natural, it nevertheless remains optimal
in the framework of finite element approximations since it yields a pressure operator
with an optimal condition number.

Now assume that Ω =] − 1,+1[2, and let N ≥ K > 0 be two integers. Let
Xh = IPN(Ω) ∩ H10(Ω)

d be the space of the polynomial velocities on Ω vanishing on
∂Ω and the partial degree of which are less than or equal to N . Likewise, we define
Mh = PK(Ω) ∩ L2(Ω)/IR the space of the pressures on Ω that are polynomials with
partial degree less than or equal to K. We assume that Mh is compatible with Xh,
and we denote by βNK the corresponding inf-sup constant (cf. Bernardi–Maday [4]
for a review on such approximations). The counterpart of lemma 2.1 for spectral
approximations is the following.

Lemma 3.2. (cf. Canuto–Quarteroni [7] lemma 2.1, p. 73) There is a constant
c > 0, independent of N , so that

∀vn ∈ PN([−1,+1]), |∇vn|0 ≤ cN 2|vn|0.(3.8)
10



We now give an upper bound on the condition number of the pressure operator.
Theorem 3.2. There is c > 0 so that

κ(BhB
t
h) ≤

cN4

β2NK

.(3.9)

Proof. Proceed as for the proof of theorem 3.1
In general the exponent 4 is optimal for spectral Poisson problems supplemented

with either Dirichlet or Neumann boundary conditions. It may be further reduced to 3
through the action of a mass matrix if the base functions are conveniently weighted (cf.
Bernardi–Maday [4, Lemma 5.5, ch. III]). Note that the present functional framework
is intrinsic (ie. no particular base is chosen); that is, we deal with operators instead of
matrices. In this context, the intrinsic counterpart of the mass matrix is the identity
operator. This reason explains why we obtained the exponent 4 instead of 3.

The bound (3.9) would be optimal if βNK were bounded from below by a constant
when N and K tend to infinity. Unfortunately, in general βNK tends to zero. For
instance, for K = N − 2 (ie. the (IP0N ,PN−2) approximation) we have (see Bernardi-
Maday [4, p. 147])

c√
N
≤ βN,N−2 ≤

c′√
N
.(3.10)

As a result, κ(BhB
t
h) ≤ cN 5 which is no longer optimal. This default to the optimality

is even worse if the pressure is taken in PN(Ω), for in this case (once the spurious
modes are discarded) the inf-sup constant behaves like 1/N .

In conclusion, enforcing v|∂Ω = 0 on the test functions for the projection step
may not be optimal in the framework of spectral approximations. This default to
the optimality comes from the inf-sup constant that vanish as the number of modes
increases. It is shown in the next section that if the boundary condition on the velocity
test functions is relaxed (ie. v · n|∂Ω = 0), then the corresponding inf-sup constant can
be uniformly bounded from below by a strictly positive constant.

4. The normal trace of the end-of-step velocity enforced.

4.1. The functional framework. In order to take into account the boundary
condition v ·n|∂Ω = 0, we introduce Hdiv0 (Ω) = {v ∈ L2(Ω)d, divv ∈ L2(Ω), v ·n|∂Ω = 0}.
Equipped with the norm (|v|20 + |divv|20)1/2, Hdiv0 (Ω) is a Hilbert space, and we have
H10(Ω)

d ⊂ Hdiv0 (Ω) ⊂ L2(Ω)d ≡ L2(Ω)d
′ ⊂ Hdiv0 (Ω)

′ ⊂ H−1(Ω)d, where the embeddings
are dense and continuous.

Let Yh be a finite dimensional, internal and convergent approximation of Hdiv0 (Ω).
Though it may seem natural to equip Yh with the norm of Hdiv0 (Ω), we equip it with
the norm of L2(Ω)d for it will be sufficient for our purposes as shown below. A discrete
divergence operator Ch : Yh −→Mh ≡M ′

h and its transpose C t
h :Mh −→ Y ′h are defined

so that for all (vh, qh) in Yh ×Mh we have (Chvh, qh) = −(divvh, ph) = (vh, C
t
hph). We

11



assume also that Ch : Yh −→ Mh is onto in the sense that C t
h satisfies the following

inf-sup condition

∃β′h > 0,∀qh ∈Mh |Ct
hqh|0 ≥ β′h|qh|0.(4.1)

Now, in order to build some discrete counterpart to H, define Hh = ker(Ch) and equip
Hh with the L2 norm. Introduce also the norm |qh|M1

h
= |Ct

hqh|0, and defineM 1
h so that

M1
h = Mh in terms of vector space, and equip M 1

h with the | · |M1

h
norm. We are now

in measure of establishing
Corollary 4.1. We have the decomposition:

Yh = Hh ⊕ Ct
h(M

1
h).(4.2)

This decomposition is orthogonal and stable with respect to the L2 norm.
It is also assumed that Xh ⊂ Yh. We denote by ih : Xh −→ Yh the natural injection

of Xh into Yh and ith : Y ′h ≡ Yh −→ X ′
h its transpose. Note that ith can be identified to

the L2 projection of Yh onto Xh; in particular, we have

|ithvh|0 ≤ |vh|0.(4.3)

The relationship between Bh and Ch is brought to light by
Proposition 4.1. Ch is an extension of Bh and ithC

t
h = Bt

h.
Proof. (a) For all (vh, qh) in Xh × Mh, we have (Chihvh, qh) = −(divvh, qh) =

(Bhvh, qh) since Xh ⊂ Yh; that is to say, Chihvh = Bhvh for all vh ∈ Xh.
(b) From (a) we have Chih = Bh, from which we easily infer ithC

t
h = Bt

h.

4.2. The discrete projection algorithm. In the framework defined above the
viscous step reads as follows: find ũk

h ∈ X so that

ũk+1
h − ithu

k
h

δt
+ Ahũ

k+1
h = fk+1

h −Bt
hp

k
h.(4.4)

This problem is well posed thanks to the ellipticity of Ah. Note that uk
h must be

projected onto X ′
h since it naturally belongs to Yh.

The discrete projection step reads: find uk+1
h in Yh and pk+1h in Mh so that















uk+1
h − ihũ

k+1
h

δt + Ct
h(p

k+1
h − pkh) = 0

Chu
k+1
h = 0.

(4.5)

Corollary 4.1 implies that this linear system has a unique solution.
Note that the solvability of the viscous and projection steps (4.4)–(4.5) do not

require Bt
h to be into. In other words, the pressure is uniquely defined (in a seemingly

stable manner) by the projection step (4.5). At this point it may come to one’s mind
that requiring Bh to be onto is an un-necessary stringent condition. As a result,
one may think of choosing Xh and Mh with no reference to any inf-sup condition so
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that Bt
h may possibly have spurious modes. However, when it comes to studying the

convergence in time of the global scheme, it is shown below (see proof of theorem 6.2)
that the discrete pressure of interest is that which is rid of the possible spurious modes
of Bt

h, and the global stability constant on the pressure is not that of C t
h : Mh −→ Yh

but that of Bt
h :Mh −→ X ′

h.
In order to illustrate the definitions above, let us give an example in the frame-

work of spectral approximations (this example is borrowed from Azaiez–Bernardi–
Grundmann [1]). Define Ω =] − 1,+1[2, and let Xh = IPN(Ω) ∩ H10(Ω)

d be the space
of the polynomial velocities on Ω vanishing on ∂Ω and the partial degree of which
are less than or equal to N . Likewise, define Yh = IPN(Ω) ∩ Hdiv0 (Ω) the space of the
velocities which are polynomials with partial degree less than or equal to N and the
normal component of which vanish on ∂Ω. When the pressure space is PN(Ω)/IR and
the velocity space is Yh, it can be shown that the gradient operator has three spurious
pressure modes (cf. [1, Lemma 4.1]): span〈LN(x), LN(y), LN(x)LN(y)〉, where LN is
the Legendre polynomial of order N . We get rid of these unwelcome modes by defining
Nh as the orthogonal of the modes in question in PN(Ω)/IR. Thus defined, Nh and
Yh are compatible and there is a inf-sup constant, β ′, independent of N and strictly
positive (cf. [1, Lemma 4.2]) so that

inf
qh∈Nh

sup
vh∈Yh

(divvh, qh)

|vh|0|qh|0
≥ β′.

In this spectral framework, the condition number of the pressure operator ChC
t
h

satisfies the optimal bound

κ(ChC
t
h) ≤ cN 4.(4.6)

Furthermore, it is shown in Bernardi–Maday [4, Proposition 5.2, p. 135] that the
discrete gradientBt

h : Nh −→ X ′
h has still four spurious modes: Sh = span〈L′N(x)L′N(y),

L′N(x)yL
′
N(y), xL

′
N(x)L

′
N(y), xL

′
N(x)yL

′
N(y)〉. This unwelcome modes should be dis-

carded by defining Mh as the orthogonal of Sh in Nh. Hence, not only the pressure
space should be rid of the three modes span〈LN(x), LN(y), LN(x)LN(y)〉 so that C t

h

is into, but it should also be rid of the four spurious modes of Sh. In practice, the
regularization of the pressure can be done as a post processing. Furthermore, it can
be shown (cf. [4, p. 135]) that the resulting stability constant of B t

h, βh, is equivalent
to 1/N .

In conclusion, introducing velocity test functions satisfying the boundary condition
v · n|∂Ω = 0 may be justified for some spectral approximations, for it yields a pressure
operator with an optimal condition number. Note, however, that this procedure is less
economical than the previous one since it involves two approximation spaces for the
velocity and it involves two gradient operators (ie. two matrices), namely B t

h and Ct
h.

It is not clear whether the present approach should be preferred to the previous one
as far as finite element approximations are concerned (see also Quartapelle [19, pp.
191–201] for other details on this technique). Furthermore, although the algorithm
(4.4)–(4.5) does not explicitly require Bt

h to be into, the pressure of interest (ie. the
13



one on which we have some stability) is that which is rid of the spurious modes of B t
h

(if such modes exist).

5. The projection step as a Poisson problem.

5.1. Motivation. Assume as in the previous sections that the projection step
is formulated in the form of a Darcy problem with velocity test functions satisfying
either a Dirichlet condition or a boundary condition only for the normal component.
In practical implementations we have to choose particular bases of Xh (or Yh) and Mh.
Each of these choices yields a mass matrix Ih and a matrix Bh associated with the
divergence operator Bh. For a velocity field uh in Xh (or Yh) and a pressure field ph in
Mh, we denote by Uh and Ph the vectors of the components of uh and ph in the bases
in question. In this context, the projection step (3.3) (or (4.5)) yields the following
linear system in terms of the pressure unknowns

BhI−1h Bt
h(Pk+1 − Pk) =

BhŨk+1

δt
.(5.1)

Though this approach is quite natural, for it is based on the definition of the projection
operator (cf. theorem 2.1), the presence of the inverse of the mass matrix may hamper
its practicability in some circumstances. For instance, for finite element approximations
the mass matrix is not diagonal, and the direct solution of the pressure problem may
not be feasible, especially when a large number of unknowns is involved. In practice,
alternative approaches consist in lumping the mass matrix (cf. Gresho and Chan [12,
part II] or Quartapelle [19, pp. 191–201]). Though this technique may work, no
stability result has yet been proven.

It is the purpose of this section to show that the mass matrix problem may be
circumvented if the projection step is recast in the form of a Poisson problem (1.2), as
advocated in Temam [24].

5.2. The functional framework. As in the previous sections we denote by Xh

the Hilbert space in which the provisional velocities are approximated. Recall that Xh

is an internal approximation of H10(Ω)
d. Thanks to the Poincaré-Wirtinger inequality

in H1(Ω)/IR, we equip H1(Ω)/IR with the equivalent norm |∇p|0. We now introduce
M1

h a stable and internal approximation of H1(Ω)/IR and we equip it with the norm of
H1(Ω)/IR defined above. To make a clear difference between the H1 norm in M 1

h , the
L2 norm, and the dual norm, we introduce Mh and M1′

h . These spaces are identical to
M1

h in terms of vector space and they are respectively equipped with the L2 norm and
the dual norm induced by the L2 scalar product.

Note that we now impose Mh ⊂ H1(Ω)/IR, whereas in the previous sections we
only needed Mh ⊂ L2(Ω)/IR. In the following, the definitions of Ah : Xh −→ X ′

h, and
Bh : Xh −→Mh remain unchanged.

In order to build a discrete Poisson problem for the pressure, we introduce the
continuous bilinear form dh :M1

h ×M1
h −→ IR so that

∀(ph, qh) ∈M 1
h ×M1

h , dh(ph, q) = (∇ph,∇qh).(5.2)
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This bilinear form is obviously M 1
h-elliptic. We associate with dh the linear continuous

operator Dh : M1
h −→ M 1′

h so that dh(ph, qh) = (Dhph, qh) for all (ph, qh) in M
1
h ×M1

h .
The ellipticity of dh implies that Dh :M1

h −→M 1′
h is one to one.

We introduce also the vector space Yh = Xh+∇M1
h and we equip it with the norm

of L2(Ω)d. It is clear that Xh ⊂ Yh. We respectively denote by ih : Xh −→ Yh and
by ith : Y ′h −→ X ′

h the natural injection of Xh into Yh and its transpose. Note that we
have the following stability inequality

∀vh ∈ Yh, |ithvh|0 ≤ |vh|0.(5.3)

5.3. The discrete projection algorithm. In a way much similar to that in the
other sections, the viscous step reduces to finding ũk+1

h in Xh so that

ũk+1
h − ithu

k
h

δt
+ Ahũ

k+1
h = fk+1

h −Bt
hp

k
h.(5.4)

The ellipticity of Ah guarantees that this problem is well posed. Note that for reasons
explained further, uk

h must be projected onto X ′
h for uk

h naturally belongs to Yh =
Xh +∇M1

h (see (5.6)).
We now solve the projection step (2.8) as a Poisson problem supplemented with a

homogeneous Neumann condition

Dh(p
k+1
h − pkh) =

Bhũ
k+1
h

δt
.(5.5)

Given the ellipticity of Dh, this discrete problem has a unique solution. Note that this
problem is very classical, and the CFD and applied mathematics communities have
spent a lot of energy devising efficient numerical algorithms permitting to solve it. In
some sense this problem is more attractive than its div-grad counterparts (3.3) or (4.5)
since its matrix formulation does not involve the inverse of the mass matrix.

The last step of the algorithm consists in correcting the velocity. This is done by
setting

uk+1
h = ũk+1

h − δt∇(pk+1h − pkh).(5.6)

Note that uk+1
h belongs to Xh +∇M1

h which is a subset of L2(Ω)d. Strictly speaking,
this velocity is not divergence free since there is no reason for divũk+1

h to be equal
to ∇2(pk+1h − pkh). For instance, if P1 finite elements are used for approximating the
pressure, the Laplacian of the pressure increment is a H−1(Ω) measure, whereas the
divergence of the provisional velocity is in L2(Ω); hence, the divergence of uk+1

h is a
H−1(Ω) measure. However, we have

Proposition 5.1. uk+1
h is weakly divergence free in the sense that

∀qh ∈Mh, (uk+1
h ,∇qh) = 0,(5.7)

and its divergence and normal trace converge to zero (in some weak sense) as h→ 0 if
ũk+1
h converges in H10(Ω)

d when h→ 0.
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Proof. (a) By definition, (5.5) is equivalent to

∀qh ∈Mh, δt(∇(pk+1h − pkh),∇qh) + (divũk+1
h , qh) = 0.

Furthermore, by taking the inner product of (5.6) by ∇qh we obtain

∀q ∈Mh, (uk+1
h ,∇qh) = −(divũk+1

h , qh)− δt(∇(pk+1h − pkh),∇qh),
from which (5.7) is easily deduced.

(b) Assume for sake of simplicity that Ω is a polygon and ũk+1
h converges in H10(Ω)

d

to some function ũ, then the series of functions (pk+1h − pkh) converges in H1(Ω)/IR to
the solution of the Poisson problem ∇2φ = divũ/δt and ∂φ/∂n|∂Ω = 0. As a result,
uk+1
h converges to u = ũ− δt∇φ in L2(Ω)d; the limit function u is divergence free and

its normal trace is zero.
Indeed, the scheme (5.4)–(5.5) can be put formally in a form quite similar to that

of the two other techniques described in the sections above. A discrete divergence
operator Ch : Yh −→Mh can be defined by

∀vh ∈ Yh, ∀qh ∈Mh, (Chvh, qh) = (vh,∇qh).(5.8)

By setting Hh = ker(Ch), we clearly have

Yh = Hh ⊕ Ct
h(M

1
h).(5.9)

Furthermore, the relation between Ch and Bh is brought to light by
Proposition 5.2. Ch is an extension of Bh and ithC

t
h = Bt

h.
The particular choice we have made on Yh implies that

Proposition 5.3. C t
h is the restriction of ∇ to Mh.

Proof. For all (vh, qh) in Yh ×Mh, we have (Ct
hqh, vh) = (∇qh, vh); that is to say

(Ct
hqh −∇qh, vh) = 0. But ∇qh is in Yh by definition and C t

hq is in Y ′h (= Yh in terms
of vector space), hence C t

hqh = ∇qh.
Corollary 5.1. The projection step (5.4)–(5.5) is equivalent to the problem:

look for uk+1
h in Yh and pk+1h in Mh so that















uk+1
h − ihũ

k+1
h

δt + Ct
h(p

k+1
h − pkh) = 0

Chu
k+1
h = 0.

(5.10)

Remark that the algorithm described above does not explicitly involve any compat-
ibility condition between Xh andMh; that is, no inf-sup condition is required to ensure
wellposedness of any of the fractional steps (5.4), (5.5), or (5.6). For instance, (IP1,P1)
finite elements would be perfectly suited to the algorithm above. Actually a compati-
bility condition shows up when we are interested in the stability and the convergence
of the scheme (see proof of theorem 6.2). After all, we are interested in approximating
the velocity and pressure which are solution to (2.11), but uniqueness and stability
on the pressure in (2.11) is ensured only if Bt

h has no spurious modes. Hence, if such
modes exist, they have eventually to be discarded. If for some reason one is interested
in solving the problem by means of continuous finite elements of degree one, a possible
choice consists in using (IP1–iso–IP2,P1) finite elements (cf. Bercovier–Pironneau [3]).
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6. Generalization and error bounds.

6.1. Generalization. We show in this section that the three projection algo-
rithms described above can be put into a unified framework.

The definitions of the spaces Xh and Mh together that of the operators Ah and Bh

are unchanged. We define Yh a finite dimensional subspace of L2(Ω)d and endow Yh

with the norm of L2(Ω)d; we assume also that Xh ⊂ Yh (in terms of vector space) and
we denote by ih the continuous injection of Xh into Yh; the transpose of ih is the L2

projection of Yh onto Xh. Note that Yh is an internal approximation of L2(Ω)d, for Xh

is an approximation of H10(Ω)
d and H10(Ω)

d is dense in L2(Ω)d. In addition, we assume
that there is an operator Ch : Yh −→ Mh so that Ch is an extension of Bh; in other
words we assume that we have the following commutative diagrams:

Bh
Xh

- Mh

ih

¡
¡
¡
¡
¡
¡µ

Ch

?
Yh

Bt
h

X ′
h
¾ Mh

ith

¡
¡
¡

¡
¡

¡ª

Ct
h

6

Y ′h

Since Bh is onto and Ch is an extension of Bh, Ch is necessarily onto. One con-
sequence of this (together with (ii) of lemma 2.1) is that |C t

hq|0 is a norm; this norm
is hereafter denoted by |q|M1

h
= |Ct

hq|0 and we denote by M 1
h the vector space Mh

equipped with this norm. The null space of Ch is denoted by Hh. The definitions
above enable us to build a discrete counterpart of the aforementioned orthogonal de-
composition L2(Ω)d = H⊕∇(H1(Ω)):

Yh = Hh ⊕ Ct
h(M

1
h).(6.1)

The three algorithms described above can be put into the following unified form.
The diffusion step reads: find ũk

h ∈ X so that

ũk+1
h − ithu

k
h

δt
+ Ahũ

k+1
h = fk+1

h −Bt
hp

k
h.(6.2)

The projection step consists in looking for uk+1
h in Yh and pk+1h in Mh so that















uk+1
h − ihũ

k+1
h

δt + Ct
h(p

k+1
h − pkh) = 0

Chu
k+1
h = 0.

(6.3)

The decomposition (6.1) implies that this linear system has a unique solution. This
step is a projection step in the sense that uk+1

h is the projection of ũk+1
h onto Hh.

We now turn our attention to the convergence issue.
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6.2. The convergence issue. We prove in this section that the solution to the
projection algorithm composed of the viscous step (6.2) and the projection step (6.3)
converges in some sense to the solution of (2.1). However, since a complete proof
of convergence is out of the scope of the present paper we only give the main ideas.
For complete proofs of convergence in the context of the non-linear Navier–Stokes
equations, the reader is referred to Guermond–Quartapelle [16].

For sake of simplicity, we shall compare the solution of the projection scheme
(6.2)–(6.3) to that of the following coupled scheme: set w0h = vo,h and for k ≥ 0 solve















wk+1
h − wk

h
δt + Ahw̃

k+1
h +Bt

hq
k+1
h = fk+1

h ,

Bhw
k+1
h = 0.

(6.4)

We shall assume that for some k0 large enough, the solution to this algorithm satisfies
the following local in time convergence result:

max
k0≤k≤K

[

|u(tk)− wk
h|1 + |p(tk)− qkh|0

]

≤ c(δt+ h),(6.5)

where c is a generic constant that does not depend on h but possibly depends on the
regularity of the data of (2.1). We will restrict our analysis to tk ≥ tk0 in order to avoid
a possible blow up of the error estimates at t = 0 due to a possible lack of smoothness
of the solution to (2.1) (and/or incompatibility of the data at t = 0 [20]). We assume
also that the extended gradient operator, C t

h, is somewhat stable in H1(Ω) (a precise
meaning of this stability is given in Guermond–Quartapelle [16]) so that we have

max
k0≤k≤K

|Ct
h(q

k+1
h − qkh)|0 ≤ cδt,(6.6)

Of course (6.5) and (6.6) can be proved under reasonable hypotheses on Xh andMh and
on the data of (2.1); the reader is referred to Guermond–Quartapelle [16] for further
details.

In order to initialize our fractional step technique, we assume that we have carried
out k0 steps of (6.4); that is to say, we set uk0

h = wk0

h and pk0

h = qk0

h and the projection
algorithm (6.2)–(6.3) is implemented for k ≥ k0.

Let us denote by ekh = wk
h− uk

h, ẽ
k
h = wk

h− ũk
h and εkh = qkh − pkh the error functions.

For conciseness we introduce the notation δtz
k+1 = zk+1 − zk for any function z. The

ability of the solution to (6.2)–(6.3) to approximate that of (2.1) for k0 ≤ k ≤ K is
stated in

Theorem 6.1. If δt is small enough, the solution to the projection scheme (6.2)–
(6.3) satisfies:

max
k0≤k≤K

|u(tk)− uk
h|0 +



δt
K

∑

k=k0

|u(tk)− ũk
h|21





1/2

≤ c(δt+ h).(6.7)
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Proof. (a) By subtracting (6.2) from the first equation of (6.4), we derive the
equation which controls the error ẽk+1h

ẽk+1h − ithe
k
h

δt
+ Ahẽ

k+1
h +Bt

hψ
k
h = 0(6.8)

where we have set

ψk
h = qk+1h − pkh = δtq

k+1
h + εkh.

Note that we have used ithw
k
h = wk

h since wk
h is in Xh.

Furthermore, noticing that wk+1
h is in Xh, Bhw

k+1 = 0, and Ch is an extension of
Bh, we obtain the system of equations which controls ekh and εkh















ek+1h − ihẽ
k+1
h

δt + Ct
h(ε

k+1
h − ψk

h) = 0,

Che
k+1
h = 0.

(6.9)

(b) In order to obtain a bound on ẽk+1h , we take the inner product of (6.8) by
2δt ẽk+1h . Using the ellipticity of Ah (the ellipticity constant is denoted by α) together
with the classical relation 2(a, a− b) = |a|2 + |a− b|2 − |b|2 we obtain:

|ẽk+1h |20 + |ẽk+1h − ithe
k
h|20 + 2αδt|ẽk+1|21 + 2δt(ẽk+1h , Bt

hψ
k
h) = |ithekh|20.

The stability of ith yields

|ẽk+1h |20 + 2αδt|ẽk+1|21 + 2δt(ẽk+1h , Bt
hψ

k
h) ≤ |ekh|20.(6.10)

(c) In order to obtain some control on Bt
hε

k+1
h , we take the inner product of the

first equation of (6.9) by 2δt2Ct
hψ

k
h, and using the fact that Ch is an extension of Bh

we obtain

−2δt(ẽk+1h , Bt
hψ

k
h) + δt2|Ct

hε
k+1
h |20 − |ek+1h − ihẽ

k+1
h |20 = δt2|Ct

hψ
k
h|20.

With the help of (6.6), the right hand side of this equation is bounded from above as
follows.

δt2|Ct
hψ

k
h|20 = δt2|δtqk+1h + εkh|20,

≤ δt2(1 + δt)|C t
hε

k
h|20 + δt(1 + δt)|C t

hδtq
k+1
h |20,

≤ δt2(1 + δt)|C t
hε

k
h|20 + cδt3,

that is to say

−2δt(ẽk+1h , Bt
hψ

k
h) + δt2|Ct

hε
k+1
h |20 − |ek+1h − ihẽ

k+1
h |20

≤ δt2(1 + δt)|C t
hε

k
h|20 + cδt3.

(6.11)
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(d) We obtain some control on ek+1h by taking the inner product of (6.9) by 2δtek+1h

|ek+1h |20 + |ek+1h − ihẽ
k+1
h |20 − |ẽk+1h |20 = 0.(6.12)

(e) After summing up (6.10) + (6.11) + (6.12) we obtain

|ek+1h |20 + δt2|Ct
hε

k+1
h |20 + 2αδt|ẽk+1|21 ≤ |ekh|20 + (1 + δt)δt2|Ct

hε
k
h|20 + cδt3.

By taking the sum from k = k0 to some integer n ≤ K we obtain

|en+1h |20 + δt2|Ct
hε

n+1
h |20 + 2αδt

∑n
k=k0

|ẽk+1h |21 ≤ |ek0

h |20 + δt2|Ct
hε

k0

h |20 + cδt2

+δt
n

∑

k=k0

[

δt2|Ct
hε

k
h|20

]

By our particular choice of the initial conditions we have

|ek0

h |0 = 0, and |Ct
hε

k0

h |0 = 0.

As a result, the discrete Gronwall lemma yields

|en+1h |20 + δt
n

∑

k=k0

|ẽk+1h |21 ≤ cδt2.(6.13)

The final result is a consequence of

u(tk)− uk
h = ekh + u(tk)− wk

h, u(tk)− ũk
h = ẽkh + u(tk)− wk

h,

together with the convergence hypothesis (6.5).
The ability of δtu

k+1
h /δt to approximate δtw

k+1
h /dt is explicited by

Proposition 6.1. If δt is small enough, the solution to the projection scheme
(6.2)–(6.3) satisfies:

max
k0≤k≤K

|δtekh|0 +


δt
K

∑

k=k0

|δtẽkh|21





1/2

≤ cδt2.(6.14)

Proof. (a) In a first step we control δtẽ
k0+1
h , δte

k0+1
h , and δtε

k0+1. We note first that

|ẽk0+1
h |20 ≤ |ithek0

h |20 − 2δt(ẽk0+1
h , Bt

hψ
k0

h )

≤ −2δt(ẽk0+1
h , Bt

h[δtq
k0+1
h + εk0

h ])

≤ 1
2 |ẽ

k0+1
h |20 + cδt4.

We obtain the bound

|ẽk0+1
h |0 ≤ cδt2,
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which yields

|δtẽk0+1
h |0 ≤ cδt2.(6.15)

Furthermore, from the projection step (6.9) we obtain















|ek0+1
h |0 ≤ |ẽk0+1

h |0,

|Ct
h(ε

k0+1
h − ψk0

h )|0 ≤ |ẽk0+1
h |0/δt.

The first bound easily yields

|δtek0+1
h |0 ≤ cδt2.(6.16)

The other bound yields

|Ct
h(ε

k0+1
h − εk0

h )|0 ≤ |ẽk0+1
h |0/δt+ |Ct

hδtq
k0+1
h |0

≤ cδt.

In other words, we have

|Ct
hδtε

k0+1
h |0 ≤ cδt.(6.17)

(b) Now we proceed as in the proof of theorem 6.1. For k ≥ k0 + 1, the equation
which controls the error δtẽ

k+1
h is

δtẽ
k+1
h − ithδte

k
h

δt
+ Ahδtẽ

k+1
h +Bt

hδtψ
k
h = 0,(6.18)

and the system of equations which controls δte
k
h and δtε

k
h is found to be















δte
k+1
h − ihδtẽ

k+1
h

δt + Ct
h[δtε

k+1
h − δtψ

k
h] = 0,

Chδte
k+1
h = 0.

(6.19)

(c) By reasoning as in the proof of theorem 6.1, we see that the final bound is a
consequence of (a) and (b).

We are now in measure of establishing a convergence result on the pressure.
Theorem 6.2. The approximate pressure given by the projection scheme (6.2)–

(6.3) satisfies:



δt
K

∑

k=k0

|p(tk)− pkh|20





1/2

≤ c(δt+ h).(6.20)
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Proof. By summing (6.8) and ith(6.9), and using the relation ithC
t
h = Bt

h, we obtain

Bt
hε

k+1
h = − i

t
hδte

k+1
h

δt
− Ahẽ

k+1
h .(6.21)

The inf-sup condition on Bt
h :Mh −→ X ′

h implies that

c1|εkh|0 ≤
|δtek+1h |0

δt
+ c2|ẽk+1h |1.

The final bound is a consequence of this inequality and (6.13), (6.14) together with the
convergence hypothesis (6.5) and the identity

p(tk)− pkh = εkh + p(tk)− qkh.

Note that in order to obtain an error estimate on the pressure we have reconstructed
an approximation of the momentum equation (6.21), by combining the viscous step
(6.8) and the projection step (6.9). The discrete momentum equation (6.21) clearly
shows that the discrete gradient operator which comes into play is not C t

h :Mh −→ Yh

but Bt
h : Mh −→ X ′

h. Hence, although the fractional steps (6.2)–(6.3) do not seem
to require Bt

h to be onto, convergence in time is ensured only if Xh and Mh satisfy a
inf-sup condition.

7. Relationship with some Uzawa preconditioning. We show in this section
how the three projection algorithms presented above can be interpreted as particular
preconditioning techniques.

Our starting point is still the time-dependent Stokes problem (2.11). Assume we
wish to approximate it by means of the one step backward Euler scheme (6.4). The
formulation (6.4) is classical; it couples the pressure and the velocity by means of the
kinematical constraint Bhw

k+1
h = 0. One way of looking at this problem consists in

eliminating the velocity by means of a Gauss elimination, for the first pivot in the
system (6.4), Id/δt+Ah, is invertible. As a result the problem (6.4) consists in finding
the pressure field qk+1h so that

Bh(Id − δtAh)
−1Bt

h(q
k+1
h ) =

1

δt
Bh(Id − δtAh)

−1(δtfk+1
h + wk

h).(7.1)

In the literature, the operator Bh(Id−δtAh)
−1Bt

h is frequently referred to as the Uzawa
operator; it is hereafter denoted by Uδt. Note that this operator has a condition number
of O(1) if δt is of O(1). However, δt is bound to tend to zero. As a result, the condition
number of Uδt is very large in practice, and iterative solutions of (7.1) are possible only
if Uδt is preconditioned. If a preconditioner were at hand, one crude iterative technique
would consist of Picard iterations. In the following we show how such an algorithm
can be implemented.

Assume that qkh is the first guess of the pressure, then the pressure increment,
qk+1h − qkh, is solution to

Uδt(q
k+1
h − qkh) =

Bhũ
k+1
h

δt
,(7.2)
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where we have set ũk+1
h = Bh(Id − δtAh)

−1(δtfk+1
h + wk

h − Bt
hq

k
h); in other words,

ũk+1
h ∈ X is the solution to

ũk+1
h − wk

h

δt
+ Ahũ

k+1
h +Bt

hq
k
h = fk+1

h .(7.3)

Note that this problem coincides exactly with the provisional step of the three projec-
tion algorithms studied in the previous sections.

The difficult task, now, consists in solving (7.2) approximately. One possibility
consists in assuming that if δt is small, Uδt should not be very different from U0 = BhB

t
h.

As a result, if δt is small enough, it is legitimate to solve approximately the pressure
problem in the following form (see eg. [13])

BhB
t
h(p

k+1
h − qkh) =

Bhũ
k+1
h

δt
.(7.4)

Note that (7.4) is equivalent to the projection step of the first algorithm. Likewise,
by defining Ch as the discrete divergence operator introduced in the second projection
algorithm (4.5), an other preconditioning technique consists in solving

ChC
t
h(p

k+1
h − qkh) =

Bhũ
k+1
h

δt
.(7.5)

This approximate solution corresponds to the projection step of the second algorithm.
A third alternative that is equivalent to the projection step of the third algorithm
consists in solving

Dh(p
k+1
h − qkh) =

Bhũ
k+1
h

δt
.(7.6)

In conclusion, one may interpret the projection step of the three projection algo-
rithms presented above as a one step preconditioned Picard iteration on Uδt, the three
preconditioners being either BhB

t
h, ChC

t
h, or Dh. Note also that if instead of qkh, the

first guess of the pressure is zero, the preconditioning techniques in question reduce to
the non incremental version of the three projection algorithms (see Cahouet–Chabard
[6], Guermond [14], or Lababie–Lasbleiz [17] for other details on these preconditioners).
Incidentally, it is shown in [6] and confirmed in [14] that BhB

t
h is really a precondi-

tioner of Uδt in purely algebraic terms only if δt is very small; for finite elements this
condition reads δt ≤ ch3. The fact that such a condition did not show up in the anal-
ysis of the stability of projection algorithms may possibly mean that BhB

t
h acts as a

preconditioner of Uδt if the spatial spectral content of the right hand side is dominated
by low frequencies.

The next and final step consists is correcting the provisional velocity ũk+1
h . In a pure

fixed point strategy, the end-of-step velocity should be set to (Id − δtAh)
−1(δtfk+1

h +
wk

h − Bt
hp

k+1
h ), and depending on the satisfaction of some convergence criterion, new

iterations could be performed as advocated in [2]. It is at this very point that classical
iterative techniques differ from the projection techniques. Actually, if the velocity is
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corrected as suggested above, the stability on the discrete divergence of this velocity
cannot be ensured in only one step. As a consequence, in practice this technique
requires more than one iteration (see Cahouet–Chabard [6] or Lababie–Lasbleiz [17]
for other details on this technique). In contrast, the distinctive feature of projection
algorithms is that the provisional velocity ũk+1

h is corrected in a way so that the new
velocity is discretely divergence free (see second equation in (3.3) and (4.5), and (5.7)
in proposition 5.1), the consequence being that the scheme is stable and converges (ie.
reachs the consistency level) in only one iteration per time step.

Finally, note that when it comes to implementing the three projection algorithms
described above, it is not necessary to calculate explicitly the end-of-step velocities
(uk

h)k=0,...,K since they can be eliminated. Indeed, by replacing the velocity uk
h in the

prediction steps (3.2), (4.4), or (5.4) by its value calculated at the previous projection
step (3.3), (4.5), or (5.6) one obtains

ũk+1
h − ũk

h

δt
+ Ahũ

k+1
h = fk+1

h −Bt
h(2p

k
h − pk−1h ).(7.7)

ChC
t
h(p

k+1
h − pkh) =

Bhũ
k+1
h

δt
,(7.8)

where Ch denotes any extension of Bh that has already been defined.
Proof. This is a consequence of the fact that ithũ

k
h = ũk

h and ithC
t
h = Bt

h.
This remark means that in practice the possibly weird space Yh is never used.
Once again, this algorithm could be interpreted as a one step preconditioned Picard

algorithm if the initial guess qkh in (7.8) was replaced by 2pkh−pk−1h , but in this case the
algorithm would not be stable. Global stability is ensured by taking qkh = 2pkh − pk−1h

in the first step (7.7) and qkh = pkh in the second step (7.8).
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