
A SUBGRID VISCOSITY METHOD FOR SOLVING NON-COERCIVEPDE'S IN ENVIRONMENTAL SCIENCEJ.-L. GUERMOND1Abstrat. The goal of this ourse is to present a stabilized Galerkin tehnique for approximat-ing non-oerive PDE's. This tehnique is based on a two-level hierarhial deomposition of theapproximation spae. This spae is broken up into resolved sales and subgrid sales. We showthat in general the Galerkin formulation provides an a priori ontrol on the resolved sales of theapproximate solution, whereas it annot ontrol the subgrid sales. The missing stability is obtainedby slightly modifying the Galerkin formulation by introduing an arti�ial di�usion on the subgridsales. Numerial tests show that the method applies also to nonlinear problems.1. Model problemsIn this setion we reall an abstrat existene result and we show that the Galerkin formulation isnot optimal for approximating PDE's dominated by �rst order di�erential operators.1.1. An abstrat existene and stability result. Let V � L be two real Hilbert spaes withdense and ontinuous embedding. For any Hilbert spae H we denote by (�:; �)H and k � kH the salarprodut and the norm in H respetively. For any Banah spae, we denote by B0 = L(B;R) the dualof B. Hereafter we make the usual identi�ations V � L � L0 � V 0. Let a 2 L(V �L;R) and onsiderthe following problem. (For all f 2 L, �nd u 2 V s.t.a(u; v) = (f; v)L; 8v 2 L:(1.1)SuÆient and neessary onditions for this problem to be well-posed are stated in the following theoremdue to Ne�as [Ne�62℄:Theorem 1.1 (Ne�as). Problem 1.1 is well-posed if and only if9� > 0; infu2V supv2L a(u; v)kukV kvkL � �;(1.2) 8v 2 L; (v 6= 0)) (supu2V a(u; v)kukV 6= 0):(1.3)To interpret this theorem, let us de�ne the operator A : D(A) = V � L �! L suh that (Au; v)L =a(u; v) for all (u; v) 2 V �L. Condition (1.2) is equivalent to assuming that A is injetive and its rangeis losed, whereas (1.3) states that At is injetive. As a result, these two onditions are equivalent toassuming that A is bijetive [Bre91℄.Now let us look at the approximation of (1.1). Let Vh � V and Lh � L be two �nite-dimensionalvetors spaes and onsider the following disrete problem.(Find uh 2 Vh s.t.a(uh; vh) = (f; vh)L; 8vh 2 Lh:(1.4)Proposition 1.1. Assume that dim Vh = dim Lh and9�h > 0; 8wh 2 Vh supvh2Lh a(wh; vh)kvhkL � �hkwhkV :(1.5)Then, problem (1.4) has a unique solution and kuhkV � 1�h kfkL.1LIMSI (CNRS-UPR 3152), BP 133, 91403, Orsay, Frane (guermond�limsi.fr).1



2 J.-L. GUERMONDLemma 1.1 (C�ea). Under the hypotheses of theorem 1.1 and proposition 1.1 we havejju� uhjjV � (1 + kak�h ) infwh2Wh jju� whjjV :(1.6)1.2. Example 1 : advetion/reation. Let us onsider an advetion/reation problem. Let � bea smooth vetor �eld in Rd , say � 2 L1(
)d and r�� 2 L1(
), and set�� = fx 2 � j �(x) � n(x) < 0g; �+ = fx 2 � j �(x) � n(x) > 0g:�� is the inow boundary and �+ is the outow boundary. It may happen that these two subsets of� are empty if � is suh that � � n(x) = 0 for all x 2 �. Let � be a funtion in L1(
). We introduethe following di�erential operator A(u) = �u+ � � ru:To give a preise meaning to A, we introdue its domainV = D(A) = fw 2 L2(
); � � rw 2 L2(
)g � L2(
):When equipped with the norm kwkV = (kwk20;
+k� �rwk20;
)1=2, it is lear that V is a Hilbert spaeand A 2 L(V ;L). In general A is not an isomorphism if we do not assume any other hypotheses on� and �. Hereafter we assume that there is �0 > 0 so that�(x) � 12r��(x) � �0 > 0 a.e. x in 
:(1.7)We de�ne V0 = fw 2 V ; wj�� = 0g. We introdue the bilinear form a 2 L(V0 � L2(
);R) assoiatedwith the restrition of A to V0 :a(u; v) = (�u+ � � ru; v)0;
; 8u 2 V0; 8v 2 L2(
):(1.8)Lemma 1.2. The bilinear form de�ned in (1.8) satis�es the two onditions of the Ne�as theorem.The onsequene of this lemma is that for all f 2 L2(
), the following problem(Find u in V0 s.t.a(u; v) = (f; v)0;
; 8v 2 L2(
);(1.9)has a unique solution. Equivalently, it means that A : V0 �! L2(
) is an isomorphism.Remark 1.1. If � = 0 and r�� = 0, the hypothesis (1.7) is not satis�ed. Nevertheless, the onlusionsof lemma 1.2 still hold if � is a �lling �eld: i.e., if for almost every x in 
, there is a harateristisof � that starts from x and reahes �� in �nite time. The reader is referred to Azerad and Pousin[Aze95℄ for other details on this problem.1.3. Example 2 : The Dary equation. let 
 be a porous medium haraterized by the perme-ability tensor K(x). This tensor is assumed to be symmetri positive de�nite and its smallest andlargest eigen values are assumed to be bounded from below and from above uniformly in 
. Let� = �1 [ �2 be a partition of �. We onsider the following problem:8>><>>:K�1 � u+rp = fr�u = gu � nj�1 = 0; pj�2 = 0:(1.10)This problem is known as the Dary problem. In nonlinear form, it plays an important role inunderground storage problems, hydro-geology, and in the petroleum industry. It is very often oupledto a transport equation for the onentration of a hemial speie or a phase fration.To formulate (1.10) in weak form, we introdue some de�nitions.X = fv 2 L2(
)d; r�v 2 L2(
); v � nj�1 = 0g; kvkX = (kvk20;
 + kr�vk20;
)1=2;Y = fq 2 L2(
); rq 2 L2(
); qj�2 = 0g; kqkY = kqk1;
:X and Y are Hilbert spaes. We set V = X � Y and L = L2(
)d � L2(
) that we equip with thenorms k(v; q)kV = (kvk2X +kqk2Y )1=2 and k(v; q)kL = (kvk20;
+kqk20;
)1=2 respetively. We now de�ne



A SUBGRID VISCOSITY METHOD FOR ENVIRONMENTAL SCIENCE 3the operator A : V �! L(v; q) 7�! (K�1v +rq;r�v):A is learly ontinuous. Finally, we introdue the bilinear form a 2 L(V �L;R) suh that a((u; p); (v; q)) =(A(u; p); (v; q))L.Lemma 1.3. The bilinear form a satis�es the two onditions of the Ne�as theorem.The diret onsequene of this lemma is that for all f 2 L2(
)d and q 2 L2(
), the followingproblem (Find (u; p) 2 V s.t.a((u; p); (v; q)) = ((f; g); (v; q))L; 8(v; q) 2 L;(1.11)has a unique solution.1.4. A 1D model problem. Let us simplify the advetion problem (1.9). Let 
 =℄0; 1[ and set� = 1, � = 0. We de�ne the Hilbert spae X = fv 2 H1(
); v(0) = 0g, and we seta(u; v) = Z 10 u0(x)v(x):It is lear that a 2 L(X � L2(
);R) and a satis�es the hypotheses of theorem 1.1. In this setion weshall onsider the following problem. For f 2 L2(
)8<:Find u in X s.t.a(u; v) = Z 10 fv; 8v 2 L2(
):(1.12)This problem has a unique solution in X . We shall now build a Galerkin approximation of u by meansof P1 �nite elements, and we shall see that this approah is not optimal.Let us de�ne a mesh on 
 = [0; 1℄. For N 2 N? set h = 1=N and xi = ih for i 2 f0; 1; : : : ; Ng. Wede�ne Xh = fvh 2 C0(
); vhj[xi;xi+1℄ 2 P1; 0 � i � N � 1; vh(0) = 0g:(1.13)It is lear that Xh � X . The disrete Galerkin formulation of (1.12) is8><>:Find uh in Xh s.t.a(uh; vh) = Z 10 fvh; 8vh 2 Xh:(1.14)We an apply proposition 1.1 with Vh = Lh = Xh The disrete problem is well posed i� there is �h > 0suh that (1.5) holds. Furthermore, the error estimate is optimal only if �h is uniformly boundedfrom below as h! 0. Unfortunately we an prove the following negative theorem.Theorem 1.2. There are two onstants 1 > 0 and 2 > 0, independent of h, s.t.1h � infuh2Xh supvh2Xh a(uh; vh)kuhk1;
kvhk0;
 � 2h:Proof. let us assume that N is even; the other ase an be treated similarly. Let (�i)1�i�N be the baseof Xh suh that �i(xj) = Æij . To prove the bound from above let us onsider the following osillatingfuntion uh: uh = NX1 Ui�i with (U2i = 2ih; if 1 � i � N2 ,U2i+1 = 1; if 0 � i � N2 � 1.Let fh be the L2 projetion of u0h onto Xh. After some alulus we an showsupvh2Xh a(uh; vh)kuhk1;
kvhk0;
 � 1juhj1;
 supvh2Xh R 10 fhvhkvhk0;
 = kfhk0;
juhj1;
 � 4p3h:In other words, the quantity juhj1;
 diverges when h! 0 whereas the L2 projetion of u0h onto Xh isbounded. The bound from below is evident.



4 J.-L. GUERMONDRemark 1.2. The onsequene of this negative theorem is that the Galerkin tehnique is not optimalfor approximating �rst order PDE's.2. Stabilization by means of a subgrid visosity methodIn this setion, we propose a new tehnique that is optimal for approximating �rst order PDE's. Thistehnique is based on a hierarhial two-level deomposition of the approximation spae. Hereafterwe assume that a is positive; i.e. 8v 2 V; a(v; v) � 0:2.1. Introdution. To build an approximate solution to problem (1.1), we introdue a sequene of�nite dimensional spaes (XH)(H>0) � V , and we assume that there is a dense subspae W � Vtogether with a linear interpolation operator IH 2 L(W ;XH) and two onstants k > 0,  > 0 suhthat 8H; 8v 2 W; kv � IHvkL +Hkv � IHvkV � Hk+1kvkW :(2.1)Theorem 1.2 learly states that (1.1) annot be approximated by means of the Galerkin tehniquewhen A is a �rst order di�erential operator. A simple ure to this problem onsists of enlarging thespae of the test funtions. Indeed, it is lear that infuH2XH supv2L a(uH ; v)=kuHkV kvkL � �. Hene,it is likely that, still approximating u in XH , there exists a disrete spae wedged between XH and Lsuh that the inf-sup inequality (1.5) is satis�ed uniformly. For the time being, let us denote by Xhthis spae, and let us assume that there is a �nite-dimensional spae XHh � V � L with XHh \XH = ;,suh that Xh = XH �XHh and the bilinear form a satis�es uniformly the disrete inf-sup inequality9a > 0; 8(H;h); infvH2XH sup�h2Xh a(vH ; �h)kvHkV k�hkL � a:(2.2)We are now in measure of building a Petrov{Galerkin approximation:�Find uH 2 XH , s.t.a(uH ; vh) = (f; vh)L; vh 2 Xh:Clearly, if this problem has a solution, (2.2) states that this solution is stable uniformly with respetto H and h. Unfortunately, the dimension of Xh is larger than that of XH ; as a result, proposition1.1 does not hold. To avoid this dimension problem, we ould try to approximate u in Xh and testthe equation with Xh. By doing so we would be led bak to the Galerkin formulation, whih we knowis not optimal in general. Let us summarize:1. The hypothesis (2.2) allows for a ontrol on uH .2. To have as many unknown as equations, we want to work with one disrete spae only, but theGalerkin formulation annot ontrol orretly uh. That is to say, we have no a priori ontrol onthe quantity uh � uH .3. One simple way to ontrol uh�uH is to add to our problem a oerive bilinear form ating onlyon uh � uH and small enough suh that it does not spoil the onsisteny.Let us now state preisely the hypotheses that we need to arry out our program.1. We assume the deomposition Xh = XH � XHh to be diret. We de�ne PH : Xh �! XH asbeing the projetion of Xh onto XH that is parallel to XHh . We assume that PH is stable in thenorm of L uniformly with respet to H and h. For all vh in Xh we denotevH = PHvh and vHh = (1� PH )vh:(2.3)2. Xh being �nite dimensional, we assume that there is i > 0, independent of h and H , s.t.8vh 2 Xh; kvhkV � iH�1kvhkL:(2.4)3. We introdue a norm k � kb s.t.9e1 > 0; 9e2 > 0; 8vHh 2 XHh ; e1kvHh kV � kvHh kb � e2H�1kvHh kL:(2.5)4. We de�ne a bilinear form bh 2 L(XHh �XHh ;R) suh that for all (vHh ; wHh ) in XHh �XHhbHkvHh k2b � bh(vHh ; vHh ) and bh(vHh ; wHh ) � b2HkvHh kbkwHh kb:(2.6)



A SUBGRID VISCOSITY METHOD FOR ENVIRONMENTAL SCIENCE 5Remark 2.1. We shall hereafter refer to XH and XHh as the resolved sales spae and the subgridsales spae respetively. The operator PH an be thought of as a �lter whih when ating on afuntion of Xh gets rid of its utuating subgrid sales.Remark 2.2. The property (2.4) is an inverse inequality. Note that for �nite elements, if A is a �rstorder di�erential operator and h, H denote the mesh size on whih Xh and XH are built respetively,then (2.4) holds true if H and h are of the same order; i.e., 1h � H � 2h. In pratie we shallalways use H = 2h.Remark 2.3. Let us give some examples. Assume that (�; �)V is the salar produt of V . The simplesthoie for bh onsists in bh(vHh ; wHh ) = H(vHh ; wHh )V . For the advetion problem of setion 1.2, onean hoose bh(vHh ; wHh ) = H(�vHh + � � rvHh ; �wHh + � � rwHh )0;
:Within this framework we have k � kb = k � kV . There is a seond possibility if one an exhibit asubspae X � V with dense and ontinuous embedding suh that the following inverse inequalityholds: kvhkX � e2H�1kvhkL for all vHh in XHh . In pratie, this hypothesis means that V and X aredomains of di�erential operators of the same order. Assume that Xh � X , and denote by (�; �)X thesalar produt in X . One an set bh(vHh ; wHh ) = H(vHh ; wHh )X . For the advetion problem of setion1.2, we have X = H10 (
) � V , and assuming XHh � H10 (
) we an setbh(vHh ; wHh ) = H(vHh ; wHh )0;
 +H(rvHh ;rwHh )0;
:In this ase we have k � kb = k � k1;
. In pratie, this bilinear form is simple to program and problemindependent.Remark 2.4. To some extent, the idea of sale separation and subgrid visosity is rooted in the spetralvisosity theory developed by Tadmor [Tad89℄ for approximating nonlinear onservation laws by meansof spetral methods.2.2. The disrete problem. The disrete problem we onsider now reads:(Find uh 2 Xh s.t.a(uh; vh) + bh(uHh ; vHh ) = (f; vh)L; 8vh 2 Xh:(2.7)Remark 2.5. Note that the only di�erene between the Galerkin formulation and (2.7) onsists of thepresene of the bilinear form bh; i.e., for the Galerkin formulation bh = 0.Let us de�ne as(u; v) = 12 (a(u; v) + a(v; u)). It is lear that as 2 L(V � V ;R) and as is symmetripositive. The major result of this setion is the following.Theorem 2.1. Under the hypotheses (2.1) to (2.6), problem (2.7) has a unique solution uh, and if,u, the solution to (1.1) is in W we have the following error estimates.( as(u� uh; u� uh)1=2 � Hk+1=2kukW ;ku� uhkV + kuHh kb � HkkukW :(2.8)Proof. See Guermond [Gue99b℄ and [Gue99a℄.Remark 2.6. The estimate (2.8) is optimal in V . If as is L-oerive, (2.8) is not optimal in L; a fatorH1=2 is missing. Optimality an reovered for �nite elements if the mesh satis�es speial geometriproperties (see [Zho97℄ for details).Remark 2.7. The estimate (2.8) is idential to that obtained with the Galerkin Least Square method[JNP84℄.2.3. Re�nement of the hypotheses. It happens frequently that the operator A an be deomposedinto A = A0+A1 where A0 is a zeroth order operator and A1 is a �rst order di�erential operator. Forinstane, for the advetion operator onsidered in setion 1.2, we have A0u = �u and A1u = � � ru.Let us onsider the deomposition a = a0+a1 where a0(u; v) = (A0u; v)L and a1(u; v) = (A1u; v)L.We now make the following hypotheses:



6 J.-L. GUERMOND1. There is a semi-norm in V , whih we denote by j � jV , suh that the deomposition a = a0 + a1satis�es: 8(u; v) 2 V � L; 8>><>>: kukV � (as(u; u)1=2 + jujV );a0(u; v) � 0as(u; u)1=2kvkL;a1(u; v) � 1jujV kvkL:(2.9)2. We weaken hypothesis (2.2) by replaing it by: there are two onstants a1 > 0, Æ � 0,independent of (H;h), s.t.8uh 2 Xh; supvh2Xh a1(uH ; vh)kvhkL � a1juH jV � Æas(uh; uh)1=2:(2.10)3. We weaken the de�nition of bh. We assume that there is a semi-norm j � jb suh that bh satis�esthe following properties:8(vHh ; wHh ) 2 XHh �XHh ; 8>><>>: e1jvHh jV � jvHh jb � e2H�1kvHh kL;bh(vHh ; vHh ) � b1H jvHh j2b ;bh(vHh ; wHh ) � b2H jvHh jbjwHh jb:(2.11)Remark 2.8. The reason for weakening (2.2) is that (2.10) is usually simpler to prove.Remark 2.9. For the advetion equation �u+ � �ru = f , assuming �� 12r�� � �0 > 0, the bilinearform a is L2(
)-oerive. Hene, one an use the following de�nition8(vHh ; wHh ) 2 XHh �XHh ; bh(vHh ; wHh ) = H(rvHh ;rwHh )0;
:(2.12)Proposition 2.1. Under the hypotheses (2.9), (2.1), (2.3), (2.4), (2.10) and (2.11), if the solutionto (1.1) is in W , the solution to (2.7) satis�es the estimates (2.8).Remark 2.10. The theory developed above generalizes easily to non-uniform regular meshes providedthe de�nition of the bilinear form bh is loalized, see [Gue99a℄ and [Gue01b℄.2.4. A singular perturbation problem. The tehnique developed above is tailored for problemswhere A is a �rst order di�erential operator. In pratie we frequently have to deal with operators ofthe form B = A+ �D, where A is a positive �rst order di�erential operator and D is seond order andoerive. Given the positiveness of A, the operator B is oerive with � as the oerivity onstant.If � is of order 1, the problem Bu = f is ellipti and an easily be approximated by means of theGalerkin tehnique. On the other hand, if � is small the oerivity is not strong enough to guaranteethe Galerkin tehnique to work properly, for in �rst approximation B � A. We shall show in thefollowing that the subgrid visosity tehnique developed above generalizes to this situation and yieldoptimal onvergene estimates.Let us retain the same hypotheses on a, V , and L as before. Moreover, we introdue a newHilbert spae X , and we assume that X � V with dense and ontinuous embedding. We de�ned 2 L(X�X ;R) and we assume that the bilinear form a+d is X-oerive, i.e., kvk2X � a(v; v)+d(v; v).For 0 � � � 1, we onsider the following problem. For f 2 L,(Find u 2 X s.t.a(u; v) + �d(u; v) = (f; v); 8v 2 X:(2.13)Remark 2.11. For an advetion/di�usion/reation problem we have a(u; v) = (�u+ � � ru; v)0;
 andd(u; v) = (ru;rv)
 with X = H10 (
), V = fv 2 L2(
); � � rv 2 L2(
); wj�� = 0g, and L = L2(
).Let us now approximate the solution to problem (2.13). Let Xh � XH � X satisfying hypotheses(2.1), (2.3), (2.4), (2.9), (2.10), and (2.11). Assume furthermore that there is  > 0 independent of(H;h) suh that 8vh 2 Xh; kvhkX � H�1kvhkL:(2.14)This hypothesis means that X and V are domains of di�erential operators of the same order. Thedisrete problem with onsider now reads:(Find uh 2 Xh s.t.a(uh; vh) + �d(uh; vh) + bh(uHh ; vHh ) = (f; vh); 8vh 2 Xh:(2.15)



A SUBGRID VISCOSITY METHOD FOR ENVIRONMENTAL SCIENCE 7Theorem 2.2. Under the hypotheses (2.1), (2.3), (2.4), (2.9), (2.10), (2.11) and (2.14), and providedthat u 2W , the solution to (2.15) satis�es( as(u� uh; u� uh)1=2 + �1=2ku� uhkX � (Hk+1=2 +Hk�1=2)kukW ;ku� uhkV � HkkukW :(2.16)Proof. Voir [Gue01b℄.Remark 2.12. Note that the error estimate in the V -norm is uniform with respet to �. The uniformityis an improvement with respet to the Galerkin Least Square method.2.5. Two-level P1 and P2 interpolation. In this setion we desribe two �nite element settings thatsatisfy the hypotheses of the subgrid visosity tehnique presented above. For the sake of simpliitywe assume that 
 is a polyhedron in Rd and TH is a regular triangulation of 
 omposed of aÆnesimplies (KH). The referene simplex is denoted by K̂ and TKH : K̂ �! KH is the aÆne mappingthat maps K̂ onto KH .2.5.1. De�nitions and preliminaries. To onsider at one every linear �rst order di�erential operator,we introdue a family of d funtions (Ak)k=1;d with values in the spae of real matries of order m�mwhere m > 0.; i.e., Ak : 
 �!Mm(R). We de�ne the matrix �eld � = (A1; : : : ; Ad), and for a smoothfuntion u : 
 �! Rm we denote by � �ru the funtion � �ru : 
 �! Rm s.t.1 � i � m; (� �ru)i = dXk=1 mXj=1Akij �uj�xk :(2.17)For a smooth funtion v : 
 �! Rm , we set kvk0;
 = (Pmi=1 kvik20;
)1=2, and we de�ne v � (� �ru) =Pmi=1 vi(� �ru)i. We introdue also the semi-norm juj1;�;
 = �R
(� �ru) � (� �ru)�1=2.2.5.2. Two-level P1 interpolation. We restrit ourselves to 2D, but all that is said an be generalizedto 3D. Let us de�ne �rst XH byXH = fvH 2 H1(
)m; vHjKH 2 P1(KH)m; 8KH 2 THg:(2.18)From eah triangle KH 2 TH , we reate 4 new triangles by onneting the middles of the 3 edges ofKH . Let us set h = H=2 and denote by Th the resulting new triangulation. For eah maro-triangleKH , we de�ne P as being the spae of the funtions that are ontinuous on KH , vanish at the threeverties of KH , and are pieewise P1 on eah sub-triangle of KH . We de�neXHh = fvHh 2 H1(
)m j vHhjKH 2 Pm; 8KH 2 THg:(2.19)By setting Xh = XH �XHh , it is lear that we an haraterize Xh byXh = fvh 2 H1(
)m j vhjKh 2 P1(Kh)m; 8Kh 2 Thg:(2.20)The ouple (XH ; Xh) is referred to as the two-level P1 setting.
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Figure 1. De�nition of PH for the two-level P1 setting.On �gure 1 we show a shemati representation of the ation of the �lter PH : Xh �! XH on amaro-element KH of TH .



8 J.-L. GUERMOND2.5.3. Two-level P2 interpolation. Let us build now a two-level P2 setting. One more, we set h = H=2and we denote by Th the triangulation obtained by dividing eah maro-triangle of TH into 4 sub-triangles. For eah triangle Kh, we denote by  1,  2,  3 the three nodal P2 funtions assoiated withthe middle of the three edges of Kh. We setXH = fvH 2 H1(
)m; vHjKH 2 P2(KH)m; 8KH 2 THg:(2.21)and we de�ne the spae of the subgrid sales as followsXHh = fvHh 2 H1(
)m; vHhjKh 2 vet( 1;  2;  3)m; 8Kh 2 Thg:(2.22)The spae Xh = XH �XHh is haraterized byXh = fvh 2 H1(
)m; vhjKh 2 P2(Kh)m; 8Kh 2 Thg:(2.23)The ouple (XH ; Xh) is alled the two-level P2 setting.The two interpolation settings desribed above are shown in �gure 2.

Figure 2. Two examples of hierarhial �nite elements. Resolved sales spaes areon the left and subgrid sales spaes on the right. From top to bottom: two-level P1;two-level P2.2.5.4. The inf-sup ondition. It is quite easy to show that for the interpolation settings onsideredabove, the deomposition Xh = XH �XHh is L2-stable. Furthermore, for we have the following result.Lemma 2.1. If � is pieewise onstant on eah simplex KH of TH , there is a onstant � > 0,independent of (H;h), s.t.8uH 2 XH ; supvh2Xh R
 vh � (� �ruH)kvhk0;
 � � juH j1;�;
:(2.24)Corollary 2.1. If � is in C1(
;Mm(R)d), there are two onstants � > 0 and Æ � 0, both indepen-dent of (H;h), s.t.8uH 2 XH ; supvh2Xh R
(� �ruH)vhkvhk0;
 � �juH j1;�;
 � ÆkuHk0;
:(2.25)Proof. The reader is referred to �a [Gue99a℄ and [Gue99b℄ for the tehnial details.Remark 2.13. The stabilizing properties of bubble funtions for advetion/di�usion problems havebeen put in evidene in [BBF+92℄. Theoretial justi�ations an be found in [BBF93℄ and [BFHR97℄.The importane of the inf-sup inequality (2.2) for problems like (1.1) does not seem to be well knownby numeriists.2.6. Some examples. We show now that for the two problems onsidered in setions 1.2 and 1.3,the hypotheses (2.9), (2.10), and (2.11) are satis�ed.



A SUBGRID VISCOSITY METHOD FOR ENVIRONMENTAL SCIENCE 92.6.1. The advetion/reation problem. The advetion/reation problem of setion 1.2 an be refor-mulated within our abstrat framework by setting m = 1 andAk11 = �k:Let us de�ne a0(u; v) = (�u; v)0;
, a1(u; v) = (� �ru; v)0;
 and jujV = juj1;�;
. The hypothesis (2.9) isa simple onsequene of the relation as(u; u) � �0kuk20;
 together with the de�nition of the semi-normj � jV . The hypothesis (2.10) is a onsequene of orollary 2.1 together with the L2(
)-oerivity ofas. By setting b(vHh ; wHh ) = bH(rvHh ;rwHh )0;
 and jvHh jb = jvHh j1;
;the hypothesis (2.11) is obviously satis�ed.2.6.2. Le Dary problem. Let us reformulate the Dary problem onsidered in setion 1.3 within ourabstrat framework. Let us set m = d+ 1 andAkij = 0; if 1 � i � m� 1; 1 � j � m� 1;Akij = Æi;k; if 1 � i � m� 1; j = m;Akij = Æj;k; if i = m; 1 � j � m� 1;Akij = 0; if i = m; j = m;where Æi;k is the Kroneker symbol. De�ne a0((u; p); (v; q)) = (K�1 � u; v)0;
 and a1((u; p); (v; q)) =(� � r(u; p); (v; q))0;
. It is lear that given de�nition (2.17), we have a1((u; p); (v; q)) = (q;r�u)0;
 +(rp; v)0;
. Let us de�ne j(u; p)jV = j(u; p)j1;�;
. A simple alulation shows that j(u; p)jV = (kr�uk20;
 + krpk20;
)1=2. The hypothesis (2.9) is a simple onsequene of the relation as((u; p); (u; p)) =a0((u; p); (u; p)) � �0kuk20;
 together with the de�nition of the semi-norm j � jV and the Poinar�einequality. Sine the matrix �eld � is onstant on 
, the hypothesis (2.10) is a onsequene of lemma2.1. By setting b((vHh ; qHh ); (wHh ; rHh )) = bH((rvHh ;rwHh )0;
 + (rqHh ;rrHh )0;
)and j(vHh ; qHh )jb = (jvHh j21;
 + jqHh j21;
)1=2, the hypothesis (2.11) is obviously satis�ed.2.7. Numerial illustrations.2.7.1. Example 1: an advetion problem. Let us onsider the following problem.( �yu = 12� (1� (tanh(y�0:5� ))2) in 
 =℄0; 1[2;ujy=0 = 0;(2.26)where u = 12 (tanh(y�0:5� ) + 1) is the exat solution. We make numerial tests with � = 0:04. Weuse two-level P1 and P2 �nite elements on a mesh Th omposed of 952 triangles and 517 verties; i.e.h � 1=20. The bilinear form bh is de�ned bybh(vHh ; wHh ) = b XKh2Thmes(Kh)1=2 ZKh rvHh � rwHh :(2.27)We use b = 1. The results are shown in �gure 3. The projetions in the plane x = 0 of the graphs ofthe P1 and P2 interpolates of the exat solution are shown on the left of the �gure. The two-level P1and P2 solutions are in the enter; the Galerkin P1 and P2 solutions are on the right. The stabilizinge�ets of the subgrid visosity method are learly illustrated by this example.2.7.2. Example 2 : boundary layer problem. We illustrate now the method on an advetion/di�usionproblem. ( �yu� �r2u = 0 in 
 =℄0; 1[2;ujy=0 = ujy=1 = 0; �xujx=0 = �xujx=1 = 0;(2.28)where u = (exp(y=�) � 1)=(exp(1=�) � 1) is the exat solution. We take � = 0:002 in the numerialtests. We use the same mesh as in the previous example and we approximate the solution by meansof two-level P1 �nite elements. The bilinear form bh is the same as in (2.27). In �gure 4 we show: themesh (top left); the graph of the P1 Galerkin solution (top enter); the projetion in plane x = 0 ofthe Galerkin solution (top right), note the spurious osillations spreading throughout the omputationdomain; the projetion of the graph of the P1 interpolate of the solution (bottom right).
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A SUBGRID VISCOSITY METHOD FOR ENVIRONMENTAL SCIENCE 11not enough), see Rudin [Rud87, p. 97{98℄ for more details. A simple trik to eliminate this unwelomeosillations onsists of adding strong dissipation in the region of spae where the solution is rough. Ofourse, one does not know a priori where the solution is rough, but one may expet that in this regionthe quantity ruHh = r(uh � PHuh) is of the same order as ruh. Indeed, it is easy to show that, if uis a smooth funtion, denoting by Ihu the Lagrange interpolate of u, the quantity kIhu� PHIhuk0;
is of order hk+1 and jIhu � PHIhuj1;
 is of order hk. Hene, we are led to introdue the followingnonlinear form:h(uHh ; vh; wh) = s XKH2TH meas(KH)1=2 kruHh k0;KHkruhk0;KH ZKH (rvh �rwh):(2.29)This form is alled the shok apturing form. The modi�ed problem we onsider is the following.�Find uh 2 Xh s.t.a(uh; vh) + bh(uHh ; vHh ) + h(uHh ; uh; vh) = (f; vh); 8vh 2 Xh:Sine the nonlinearity is small, this problem an be solved by means of a very rude �xed pointalgorithm. The solution is shown in �gure 4 at the bottom enter loation. The eÆieny of the shokapturing form is evident. The boundary layer is aptured within one element with s = 0:1.3. Evolution problem with non oerivityIn this setion we show how the subgrid visosity tehnique an be extended to treat time-dependentproblems with no oerivity.3.1. The model problem. The goal of this setion is to introdue a general framework for non-oerive time-dependent problems. Let L be a separable Hilbert spae and A : D(A) � L �! L be alinear operator.D�e�nition 3.1. We say that A is monotone i�8v 2 D(A); (Av; v)L � 0;(3.1)and A is maximal i� 8f 2 L; 9v 2 D(A); v +Av = f:(3.2)Lemma 3.1. If A : D(A) � L �! L is maximal and monotone, then(i) D(A) is dense in L.(ii) The graph of A is losed.(iii) For all � > 0, I + �A : D(A) � L �! L is bijetive and (I + �A)�1kL(L;L) � 1.Proof. See Brezis [Bre91, p. 101℄, Showalter [Sho96, p. 22℄ or Yosida [Yos80, p. 246℄.The major result of this setion is the following.Theorem 3.1 (Hille{Yosida). For all f 2 C1([0;+1[;L) and all u0 2 D(A), the problem8><>:Find u 2 C1([0;+1[;L) \ C0([0;+1[;D(A)) s.t.ujt=0 = u0;dtu+Au = f;(3.3)has a unique solution and( kukC0([0;T ℄;L) �  (ku0kL + TkfkC0([0;T ℄;L));kukC1([0;T ℄;L) + kukC0([0;T ℄;V ) �  (ku0kV + TkfkC1([0;T ℄;L)):(3.4)Proof. See [Bre91, p. 110℄ or Yosida [Yos80, p. 248℄.To reformulate problem (3.3), we introdue the bilinear form a suh that a(u; v) = (Au; v)L forall u 2 D(A) and v 2 L. We set V = D(A) and we equip V with the graph norm: kvkV =(kvk2L + kAvk2L)1=2. Sine the graph of A is losed, lemma 3.1 implies that V is a Banah spae.Hene, the bilinear form a : V � L �! R is ontinuous. Furthermore, when equipped with the salarprodut (u; v)L+ (Au;Av)L, V is a Hilbert spae. Sine D(A) = V is dense in L (lemma 3.1), we arein the lassial situation V � L � L0 � V 0.



12 J.-L. GUERMONDWe reformulate problem (3.3) as follows. For f 2 C1([0;+1[;L) and u0 2 V ,8>><>>:Find u in C1([0;+1[;L) \ C0([0;+1[;V ) s.t.(u(0); v) = (u0; v); 8v 2 L;(dtu; v)L + a(u; v) = (f; v)L; 8v 2 L; 8t � 0:(3.5)Remark 3.1. This problem is stritly equivalent to the original problem (3.3). The Hille-Yosida the-orem guarantees that it is well-posed.Remark 3.2. The reader an very that the advetion/reation operator and the Dary operator intro-dued in setions 1.2 and 1.3 are maximal and monotone.Let us introdue the semi-norm jvjV = kAvkL.Proposition 3.1. Let A 2 L(V ;L) be a monotone operator. The following two properties are equiv-alent.(i) A is maximal.(ii) There are two onstants 1 > 0, 2 � 0 suh that8u 2 V; supv2L a(u; v)kvkL � 1jujV � 2kukL:(3.6)Remark 3.3. In general, if the bilinear form a is not oerive, when using the Galerkin tehnique tobuild an approximate solution to problem (3.5), the inequality (3.6) is not satis�ed uniformly withrespet to the mesh size.To build an optimal approximate solution to problem (3.5), one possible approah onsists ingeneralizing the Galerkin Least Square tehnique. This hoie implies that no di�erene is madebetween spae and time, the onsequene being that a disontinuous Galerkin approximation of timemust be done. The reader interested in this approah is referred to [BCS00℄, [LR74℄, [Joh87℄ or[JNP84℄.The other approah that we shall develop herein onsists in using the subgrid visosity tehnique.3.2. The subgrid visosity tehnique. Let us reall the disrete setting introdued in setion 2.1.Let XH � Xh � V be two sequenes of �nite dimensional spaes satisfying (2.1).We assume that a disrete version of (3.6) is satis�ed. More preisely, there are a > 0 and Æ � 0,independent of (H;h) suh that8vh 2 Xh; sup�h2Xh a(vH ; �h)k�hkL � ajvH jV � ÆkvhkL:(3.7)Furthermore, we assume that the hypotheses (2.3), (2.4), and (2.11) hold true. We refer to setions2.1 and 2.5 for a disussion on these hypotheses and examples of admissible �nite element ouples(Xh; XH).Let us assume that u0 2 W suh that u0 an be approximated by IHu0. The disrete problem weonsider reads: 8>><>>:Find uh 2 C1([0;+1[;Xh) s.t.(dtuh; vh)L + a(uh; vh) + bh(uHh ; vHh ) = (f; vh); 8vh 2 Xh;uhjt=0 = IHu0:(3.8)This problem has a unique solution, for it is a system of linear ordinary di�erential equations.The major onvergene result of this setion is the following.Theorem 3.2. Under hypotheses (2.1), (3.7), (2.3), (2.4), and (2.11), if u is in C2([0; T ℄;W ), thenuh satis�es the following error estimates.ku� uhkC0([0;T ℄;L) + "Z T0 a(u� uh; u� uh)#1=2 � 1Hk+1=2;(3.9) " 1T Z T0 ku� uhk2V #1=2 � 2Hk;(3.10)



A SUBGRID VISCOSITY METHOD FOR ENVIRONMENTAL SCIENCE 13where onstants 1 and 2 are bound from above as follows.1 �  [H + T (1 + T )℄1=2 kukC2([0;T ℄;W ); 2 �  [1 + T ℄ kukC2([0;T ℄;W ):Remark 3.4. Note that the norm used in the error estimates are the same as those of the stabilityestimates (3.4). The estimate (3.10) is optimal in the graph norm. The estimate (3.9) is the same asthat obtained by the Disontinuous Galerkin tehnique (see for instane Johnson{Pitk�aranta [JNP84℄).Remark 3.5. Note when T is large 1 = O(T ) and 2 = O(T ); that is, in the most unfavorable asethe error inrease linearly with T .3.3. A singular perturbation problem. The tehnique developed above is tailored for �rst orderdi�erential operators. In pratie, we have to deal with situations where B = A+�D, A is a �rst orderdi�erential operator and D is a oerive seond order di�erential operator. From the mathematialpoint of view, the oerivity of D implies that the evolution equation is paraboli. If � is O(1),the problem falls within the framework of paraboli equations whose approximation by the Galerkintehnique is optimal. On the other hand, if � is small, the oerivity is not strong enough to guaranteethat the Galerkin approximation is satisfatory, for in �rst approximation B � A. We show now thatthe subgrid visosity tehnique an easily be extended to treat this situation.Let us retain the notation introdued above. In addition to the two Hilbert spaes already intro-dued, L and D(A) = V , we introdue a new Hilbert spae X with dense and ontinuous embeddingin V . We introdue also a bilinear form d 2 L(X �X ;R), and we assume that there is a semi-normj � jX in X so that d(u; v) � djujX jvjX for all u, v in X . In pratie D an be a degenerate elliptioperator. We assume that a+ d is oerive with respet to the semi-norm j � jX , i.e.8v 2 X; jvj2X � a(v; v) + d(v; v):(3.11)We onsider now the following problem: for f 2 C1([0;+1[;L) and u0 2 X ,8>><>>:Find u in W (X) = fv 2 L2(0;+1;X); dtv 2 L2(0;+1;X 0)g s.t.(u(0); v) = (u0; v); 8v 2 L;(dtu; v)L + a(u; v) + �d(u; v) = (f; v)L; 8v 2 X; 8t � 0;(3.12)where � is a positive real number whih may possibly be zero. We assume that the problem isnormalized so that � � 1. Furthermore, we assume that there is  > 0 so that kvkX � (kvkL+ jvjX).The onsequene of this hypothesis is that problem (3.12) is paraboli in Lions' sense [LM68, p. 253℄and has a unique solution.Now we use the disrete setting of x3.2 to build an approximate solution to problem (3.12). Letus introdue two sequenes of �nite dimensional spaes XH � Xh � X satisfying hypotheses (2.1),(3.7), (2.3), (2.4), and (2.11). Furthermore, we assume that the following inverse inequality holdsjvhjX � H�1kvhkL:(3.13)We assume that u0 2 W so that IHu0 is a good approximation to u0. The disrete problem thatwe onsider reads8>><>>:Find uh in C1([0;+1[;Xh) so thatuhjt=0 = IHu0;(dtuh; vh)L + a(uh; vh) + �d(uh; vh) + bh(uHh ; vHh ) = (f; vh); 8vh 2 Xh:(3.14)Problem (3.14) is well-posed sine it is a linear system of ordinary di�erential equations.Theorem 3.3. If u is in C2([0; T ℄;W ), then uh, solution to (3.14), satis�esku� uhkC0([0;T ℄;L) + "Z T0 as(u� uh; u� uh)#1=2 + �1=2ku� uhkL2([0;T ℄;X)� 1(T; u) hHk+1=2 + �1=2Hki ;(3.15) " 1T Z T0 ku� uhk2V #1=2 � 2(T; u)Hk;(3.16)



14 J.-L. GUERMONDwhere onstants 1 and 2 are bounded from above as follows1 �  [H + T (1 + T )℄1=2 kukC2([0;T ℄;W ); 2 �  [1 + T ℄ kukC2([0;T ℄;W ):Proof. See [Gue01a℄.3.4. Some numerial examples. We evaluate the performane of the method by testing it onproblems of inreasing diÆulties.3.4.1. Example 1 : Advetion in 1D. Let us �rst make onvergene tests in spae on the following 1Dlinear advetion problem. 8><>:ujt=0 = sin(2�x�);�tu+ �xu = 0; in 
 =℄0; 1[;Periodi boundary ondition.(3.17)The exat solution is u = sin(2�(x � t)�). The problem falls within the framework developed abovewhen setting L = L2(
);V = fv 2 L2(
) j �xv 2 L2(
); vjx=0 = vjx=1g;A = �x:
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Figure 5. Convergene tests; L2 and H1 norms with respet to h. Solid line : sta-bilized P1 solution; disontinuous line: Galerkin P1 solution. Left: u0 = sin(2�x0:6);right: u0 = sin(2�x0:8)).We approximate the solution by means of the two-level P1 �nite elements de�ned in x2.5. Bysetting � = (1; 0), lemma 2.1 guarantees that the disrete inf-sup ondition (3.7) is satis�ed. Wede�ne bh as in (2.27). In our tests b = 0:1. The family of meshes onsidered is regular, but to avoidsuper-onvergene phenomena eah mesh is obtained by a random mapping of the uniform grid withthe same number of nodes.To approximate the time derivative, we use the seond order BDF2 sheme. The time step Ætis hosen small enough to guarantee that the time error is muh smaller than the spae error, i.e.,Æt = 10�3. The total integration time is T = 1; i.e., the solution has rossed the domain one.Convergene tests with � = 0:6 and � = 0:8 are reported in �gure 5. In both ases the solution isin C0([0;+1[;H1(
)). We plot the L2 and H1 norms of the error as a funtion of h for the stabilizedsolution and the Galerkin solution. It is lear that the onvergene properties of the stabilized solutionare superior to that of the Galerkin solution.To illustrate the onvergene problems of the Galerkin approximation, we show in �gure 6 thestabilized solution and the Galerkin solution on three di�erent meshes: h = 1=60, h = 100 andh = 1=200. Note that for the three meshes onsidered, the Galerkin solution is polluted by spuriousnumerial osillations spreading all over the domain, whereas the stabilized solution exhibits somevery loalized osillations lose to point where the �rst derivative is singular.
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Figure 6. Convergene tests with u0 = sin(2�x0:6); top: stabilized P1 solution;bottom: Galerkin P1 solution; from left to right: h = 1=60, h = 1=100, h = 1=200.3.4.2. Example 2 : Advetion in 2D. To illustrate further the performane of the subgrid stabilizationtehnique, we solve problem (3.17) in 2D, 
 =℄0; 1[2, with periodi boundary onditions and � = 0:6.We use the P1 approximation on a mesh omposed of 3728 triangles and 1945 nodes, i.e., h � 1=40.The solution at T = 1 is shown in �gure 7. As in 1 dimension, the Galerkin solution osillatesthroughout the domain, whereas the stabilized solution is smooth almost everywhere, exept in theviinity of the line where �xu is singular.
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16 J.-L. GUERMONDwe introdue the nonlinear form (2.29). The approximate problem reads:8>><>>: Find uh in C1([0;+1[;Xh) s.t.uhjt=0 = IHu0;(dtuh; vh)L + a(uh; vh) + �d(uh; vh) + bh(uHh ; vHh )+h(uHh ; uh; vh) = (f; vh); 8vh 2 Xh:(3.19)We make tests with two-level P1 �nite elements on three di�erent grids omposed of 50, 100, and200 nodes respetively. We set b = 0:05 and s = 0:05. We use BDF2 with Æt = 10�3 to marh intime.The two-level solution at T = 4 on the three onsidered meshes is plotted at the top of �gure 8.The Galerkin solution is shown at the bottom of the �gure. The Galerkin solution is of no use to
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Figure 8. 1D advetion problem with rough initial data. Top: stabilized P1 solution;bottom: Galerkin P1 solution; From left to right: 50 nodes, 100 nodes, 200 nodes.engineers. It is lear that the stabilization is eÆient and that the stabilized P1 solution onverges tothe exat solution satisfatorily.3.4.4. Example 4 : A nonlinear degenerate paraboli problem. To test the apability of the proposedmethod to deal with degenerate paraboli problems, we onsider a new lass of onvetion-di�usionequations proposed in a series of papers by Kurganov and Rosenau (see [JGR99℄ and the literatureited). \The novel feature of these equations is that large amplitude solutions develop spontaneousdisontinuities, while small solutions remain smooth at all times."Let us onsider the following problem in 
 =℄� 3; 3[8>>>>><>>>>>: ujt=0 = � 1:2 if � 3 � x < 0;�1:2 if 0 < x � 3;u(�3; t) = �1:2 for 0 � t;�tu+ �xu2 � �x �xup1 + (�xu)2! = 0:(3.20)This equation is a prototype for some types of ows in porous media.The problem is solved, up to time T = 1:5, by using formulation (3.19) with P1 �nite elements onthree grids: h = 6=100, h = 6=200, and h = 6=400. The results are shown in �gure 9. Quite surpris-ingly, the Galerkin solution is not plagued by spurious osillations but onverges to a non-entropisolution. To illustrate the insensitivity of the method to variations on the stabilizing parameters, wemake two sets of omputations. In the �rst set we use b = 0:2, s = 0:2 and in the other set we useb = 0:5, s = 0:1. The results shown in �gure 9 demonstrate that the stabilized solution onvergesand does not depend too muh on the hoie of the stabilizing parameters.
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Figure 9. Degenerate paraboli problem on three grids: h = 6=100, h = 6=200,and h = 6=400; left: P1 Galerkin solution; enter: two-level P1 approximation withb = s = 0:2, right: two-level P1 approximation with b = 0:5, s = 0:1.3.4.5. Example 5 : The ompressible Navier{Stokes equations. To further illustrate the apability ofthe method we solve a ompressible Navier{Stokes problem by Tenaud{Daru [VD00℄. We onsider abox 
 =℄0; 1[2 �lled with a visous ideal gas. A diaphragm situated at x = 1=2 separates the box intotwo parts. The uid is initially at rest and in two di�erent thermodynami states on eah sides of thediaphragm. On the left we have �l = 120 and pl = �l=, whereas on the right we have �r = 1:2 andpr = �r=. The onstant  is set to 1:4. At t = 0 the diaphragm is removed. The shok moves tothe right of the box, then reets on the right side. When oming bak to the left, the shok stronglyinterats with the boundary layer that it reated at the bottom of the box. The interation produesa � shok and a massive separation of the boundary layer.
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Figure 10. Shok box problem; P1 approximation; density ontour lines; Reynolds200 (top); Reynolds 1000 (bottom); t = 0:6 (left); t = 1 (right).The solution is assumed to be symmetri with respet to the axis y = 1=2; as a result, the ompu-tational domain is restrited to 
 =℄0; 1[�℄0; 1=2[. We use two-level P1 �nite elements. Two Reynoldsnumbers are onsidered: Re = 200 and Re = 1000. The Prandtl number is set to 0:73. In �gure 10we show density ontours for these two Reynolds numbers at times T = 0:6 and T = 1. The ontourstep is �� = 5, and the ontour lines are shown from � = 10 to � = 120. The solution shown hereompares quite well with that reported in [VD00℄.



18 J.-L. GUERMOND3.4.6. Example 6 : The Rihards equation. We �nish this paper by using the two-level stabilizationtehnique to approximate the solution of a Rihards problem.
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Figure 11. Hydrauli head: From top to bottom: two-level P1 approximation;Galerkin approximation. From left to right: t = 1, t = 2, and t = 3.We onsider 
 =℄0; 1[, and we look for funtions �, h and v so that8>>>>>>>>>>>>>><>>>>>>>>>>>>>>:
h(x; 0) = �3; for 0 < x < 1h(0; t) = 1; for 0 < t�t� + �xv = 0v = �k(h)�xh�(h) = � 1�0:21+h2 + 0:2; if h < 0;1; if 0 � h;k(h) = � 11+10h3 ; if h < 0;1; if 0 � h:(3.21)

This set of equations models the ow in nonsaturated porous media and plays an important role inenvironmental sienes. The �rst PDE is the mass onservation law whereas the seond one is theDary law. The quantity h is the hydrauli head and � is the saturation ratio. The two other salarrelations are empirial behavior laws. Note that this problem is highly nonlinear and degenerates fromparaboli to ellipti as the sign of h hanges.We solve this problem by means of P1 �nite elements. In �gure 11 we ompare the approximatehead h obtained by the two-level tehnique and the Galerkin tehnique at times t = 1, t = 2, andt = 3. Note that the Galerkin solution exhibits a very strong undershoot at the foot of the movingfront. Though, this problem does not learly �t within the funtional framework desribed in thispaper, this example shows that the shok apturing feature of the two-level subgrid visosity tehniqueis robust and an be useful for solving PDE's whose solutions exhibits disontinuity or sharp fronts,as it is frequently the ase in ow problems in porous media.



A SUBGRID VISCOSITY METHOD FOR ENVIRONMENTAL SCIENCE 19Referenes[Aze95℄ P. Azerad. Analyse des �equations de Navier{Stokes en bassin peu profond et de l'�equation de transport.Th�ese de l'Univerist�e de Neuhâtel, 1995.[BBF+92℄ F. Brezzi, M.O. Bristeau, L. Frana, M. Mallet, and G. Rog�e. A relationship between stabilized �nite elementmethods and the Galerkin method with bubble funtions. Comput. Methods Appl. Meh. Engrg., 96:117{129,1992.[BBF93℄ C. Baiohi, F. Brezzi, and L.P. Frana. Virtual bubbles and Galerkin-Least-Square type methods (GaLS).Comput. Methods Appl. Meh. Engrg., 105:125{141, 1993.[BCS00℄ G.E. Karniadakis B. Cokburn and C.W. Shu. Disontinuous Galerkin methods - theory, omputation andappliations, volume 11 of LNCSE. Springer, 2000.[BFHR97℄ F. Brezzi, L. Frana, T.J.R. Hughes, and A. Russo. b = R g. Comput. Methods Appl. Meh. Engrg., 145:329{364, 1997.[Bre91℄ H. Brezis. Analyse fontionnelle. Masson, Paris, 1991.[Gue99a℄ J.-L. Guermond. Stabilisation par visosit�e de sous-maille pour l'approximation de Galerkin des op�erateurslin�eaires monotones. C. R. Aad. Si. Paris, S�er. I, 328:617{622, 1999.[Gue99b℄ J.-L. Guermond. Stabilization of Galerkin approximations of transport equations by subgrid modeling. Mod.Math. Anl. Num�er. (M2AN), 33(6):1293{1316, 1999.[Gue01a℄ J.-L. Guermond. Subgrid stabilization of Galerkin approximations of linear ontration semi-groups of lassC0 in Hilbert spaes. Numerial Methods for Partial Di�erential Equations, 17:1{25, 2001.[Gue01b℄ J.-L. Guermond. Subgrid stabilization of Galerkin approximations of linear monotone operators. IMA, J.Numer. Anal., 21:165{197, 2001.[JGR99℄ A. Kurganov J. Goodman and P. Rosenau. Breakdown in burgers-type equations with saturating dissipationuxes. Nonlinearity, 12:247{268, 1999.[JNP84℄ C. Johnson, U. N�avert, and J. Pitk�aranta. Finite element methods for linear hyperboli equations. Comput.Methods Appl. Meh. Engrg., 45:285{312, 1984.[Joh87℄ C. Johnson. Numerial solution of partial di�erential equations by the �nite element method. CambridgeUniversity Press, Cambridge, 1987.[LM68℄ J.-L. Lions and E. Magenes. Probl�emes aux limites non homog�enes et appliations, volume 1. Dunod, Paris,1968.[LR74℄ P. Lesaint and P.-A. Raviart. On a �nite element method for solving the neutron transport equation. InC. de Boors, editor, Mathematial aspets of Finite Elements in Partial Di�erential Equations, pages 89{123, Aademi Press, 1974.[Ne�62℄ J. Ne�as. Sur une m�ethode pour r�esoudre les �equations aux d�eriv�ees partielles de type elliptique, voisine dela variationnelle. Ann. Suola Norm. Sup. Pisa, 16:305{326, 1962.[Rud87℄ W. Rudin. Analyse r�eelle et omplexe. Masson, Paris, 4�eme edition, 1987.[Sho96℄ R.E. Showalter.Monotone operators in Banah spaes and nonlinear partial di�erential equations, volume 49of MSM. AMS, 1996.[SO89℄ C.W. Shu and S. Osher. EÆient implementation of essentially non-osillatory shok-apturing shemes, ii.J. Comput. Phys., 83:32{78, 1989.[Tad89℄ E. Tadmor. Convergene of spetral methods for nonlinear onservation laws. SIAM J. Numer. Anal.,26(1):30{44, 1989.[VD00℄ C. Tenaud V. Daru. Evaluation of tvd high resolution shemes for the unsteady visous shoked ows.Computers and Fluids, 2000.[Yos80℄ K. Yosida. Funtional analysis. Springer-Verlag, 6�eme edition, 1980.[Zho97℄ G. Zhou. How aurate is the streamline di�usion �nite element method? Math. Comp., 66:31{44, 1997.


