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Lions/Sanchez-Palencia’s theory of sensitive boundary value problems is extended from
the scalar biharmonic equation to the vector Poisson equation and the Stokes problem
associated with the bilinear form (∇×u,∇×v) + (∇· u,∇· v). For both problems the
specification of completely natural conditions for the vector unknown on a part of the
boundary leads to a variational formulation admitting a unique solution which is however
sensitive to abitrarily small smooth perturbations of the data, as shown in the present
paper.
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1. Introduction

In the calculation of velocity fields for external incompressible flow problems it is
common to impose nonstandard conditions at the outer boundary of the computa-
tional domain. At outflow boundaries these conditions assume typically the form
of derivative boundary conditions for the velocity or can involve other unknown
variables of the assumed mathematical model, the aim being to reduce as much
as possible the perturbation on the solution caused by truncating the infinite do-
main at a large but finite distance from the internal boundary(ies). For instance,
for incompressible viscous flows governed by the Stokes or Navier–Stokes equations
in primitive variables, boundary conditions involving the tangential components of
the curl of velocity (vorticity) or the value of pressure have been considered (see eg.
Pironneau9).

In order to minimize the perturbations induced by the conditions imposed at
the external boundaries, one could also be temped to consider completely natural
boundary conditions for the velocity equation and thereby to build a variational
formulation of the problem according to standard techniques of functional analysis.
The aim of this paper is to investigate such a class of derivative boundary conditions
for the vector Poisson problem as well as the Stokes problem and to show that
the corresponding variational problems are sensitive in the sense of the theory of
Lions/Sanchez-Palencia7.

This paper is divided into three parts. Section 2 is devoted to some prelimi-
naries which recall elementary results concerning well-posedness as it is classically
understood in numerical analysis. The main results of this paper are presented in
sections 3 and 4. In section 3 we study the vector Poisson problem associated with
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the bilinear form (∇×u,∇×v)+(∇·u,∇·v). We show that, provided a Dirichlet-type
boundary condition is enforced on the normal or the tangential component of the
unknown, the problem is well-posed in some usual weak sense (i.e. in H1(Ω)). We
show also that, if neither the normal nor the tangential component of the unknown
is controlled on a nonzero part of the boundary, the problem is necessarily sensitive
in the sense defined by Lions/Sanchez-Palencia7, i.e. no control of the solution in
H1(Ω) is possible; actually, a unique solution possibly exists in a space which is not
contained in the space of distributions. In section 4 we generalize our conclusions
to the Stokes problem. We show that a sufficient and necessary condition for the
Stokes problem associated with the bilinear form (∇×u,∇×v) to be well-posed in
the classical (variational) sense is that either the normal component or the tan-
gential component of the velocity is controlled on the boundary of the domain. In
other words, enforcing the tangential component of the vorticity together with the
pressure yields a sensitive solution, though these boundary conditions may seem
natural for the weak formulation.

2. Preliminaries

For the sake of completeness, in this section we recall some known results that will
be used repeatedly hereafter. Since this paper is concerned with well-posedness
of some linear problems, we recall a series of conditions that are sufficient and
necessary for a linear continuous Banach operator to be bijective and its inverse to
be continuous.

Let X and Y be two real Banach spaces and A be in L(X,Y ). The analysis of
the properties of A requires to consider the dual space of X and Y , say X ′ and Y ′,
together with the transpose of A, say At : Y ′ −→ X ′ so that

∀x ∈ X, ∀y′ ∈ Y ′, 〈Aty′, x〉 = 〈y′, Ax〉.

A first step towards the characterization of the null space ker(A) and the range
im(A) of A is achieved by means of

Lemma 2.1 For A in L(X,Y ) we have

(i) ker(A) = im(At)⊥,

(ii) im(A) = ker(At)⊥.

Here we recall that for any subspace S of the dual Z ′ of any Banach space Z the
notation S⊥ represents the set {z ∈ Z; 〈s, z〉 = 0, ∀s ∈ S}. These results are
classical and may be found in Brezis1, p. 28-30, or Yosida11, p. 205–209.

Since surjectivity is an essential step towards the characterization of bijective
operators, we recall an important corollary of Banach’s closed range theorem, the
proof of which may be found in e.g. Brezis1, p. 29–30 or Yosida11, p. 205.

Lemma 2.2 For all A in L(X,Y ), the following propositions are equivalent

(i) At : Y ′ −→ X ′ is surjective.
(ii) A : X −→ Y is injective and the range of A is closed in Y .
(iii) There is a constant c > 0 so that

∀x ∈ X, ‖Ax‖Y ≥ c‖x‖X . (2.1)

Remark 2.1 The first consequence of this result is that if A ∈ L(X,Y ) is bijective,
then its inverse is necessarily continuous. In fact, the bijectivity of A implies that
A is injective and the range of A is closed in Y . From the lemma above we infer
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that there is a constant c so that ‖A−1y‖X ≤ c‖A(A−1y)‖Y . That is to say, A−1 is
continuous .

For subsequent use we recall also the transpose counterpart of lemma 2.2.

Lemma 2.3 For all A in L(X,Y ), the following propositions are equivalent

(i) A : X −→ Y is surjective.
(ii) At : Y ′ −→ X ′ is injective and the range of At is closed in X ′.
(iii) There is a constant c > 0 so that

∀y′ ∈ Y ′, ‖Aty′‖X′ ≥ c‖y′‖Y ′ . (2.2)

Remark 2.2 When A is associated with some bilinear form a ∈ L(X × Z, IR)
by the definition 〈Ax, z〉 = a(x, z), then in the lemmas above Y is the dual of Z
(i.e. Y = Z ′). Under this condition the inequality (2.1) can be interpreted as an
“inf-sup” condition in the sense of Brezzi2:

inf
x∈X

sup
z∈Z

a(x, z)

‖x‖X ‖z‖Z
≥ c > 0. (2.3)

Furthermore, if Z is reflexive (i.e. Z ′′ = Z), the inequality (2.2) can also be under-
stood as the following “inf-sup” condition:

inf
z∈Z

sup
x∈X

a(x, z)

‖x‖X ‖z‖Z
≥ c > 0 . (2.4)

We are now a position of giving a first characterization of bijective Banach
operators.

Theorem 2.1 Let X and Y be two real Banach spaces and A an operator in
L(X,Y ). The following propositions are equivalent

(i) A is bijective.
(ii) At : Y ′ −→ X ′ is injective and there is a constant c > 0 so that

∀x ∈ X, ‖Ax‖Y ≥ c‖x‖X . (2.5)

Proof. (i) ⇒ (ii) Since A is surjective, ker(At) = im(A)⊥ = {0}, that is, At is
injective. Since im(A) = Y is closed and A is injective we deduce that there is c > 0
so that ‖Ax‖Y ≥ c‖x‖X .

(i) ⇐ (ii) The injectivity of At implies im(A) = (ker(At))⊥ = Y , that is, the
range of A is dense in Y . Let us prove now that the range of A is closed. Let xn
be a sequence in X so that Axn is a Cauchy sequence in Y . From the inequality
‖Axn‖Y ≥ c‖xn‖X we infer that xn is a Cauchy sequence in X; let x be the limit
of this sequence. The continuity of A implies that Axn → Ax, i.e. im(A) is closed.
The range of A being closed and dense, A is necessarily surjective. The injectivity
of A is an easy consequence of the inequality (2.5) .

Remark 2.3 This theorem amounts to saying that a Banach operator is bijective
if and only if it is injective, its range is closed, and its transpose is injective .
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Corollary 2.1 An operator A ∈ L(X,Y ) is bijective if and only if there are two
constants c > 0 and c′ > 0 so that

∀x ∈ X, ‖Ax‖Y ≥ c‖x‖X , ∀y′ ∈ Y ′, ‖Aty′‖X′ ≥ c′‖y′‖Y ′ . (2.6)

Proof. Saying that A is injective and im(A) is closed is equivalent to the first in-
equality (see lemma 2.2). The surjectivity of A is equivalent to the second inequality
(see lemma 2.3) .

Remark 2.4 When A is associated with some bilinear form a in L(X × Z, IR), so
that 〈Ax, z〉 = a(x, z), (i.e. Y = Z ′), and if Z is reflexive then the two inequalities
above are equivalent to two “inf-sup” conditions .

Let A be in L(X,X ′), we say that A is coercive if there is a constant c > 0 so
that

∀x ∈ X, 〈Ax, x〉 ≥ c‖x‖2X . (2.7)

Corollary 2.2 Given X a reflexive Banach space, coerciveness is a sufficient con-
dition for an operator A in L(X,X ′) to be bijective.

Proof. This is a direct consequence of corollary 2.1 .

Remark 2.5 Lax–Milgram theorem is a direct consequence of this result. Note
that coerciveness is sufficient but not necessary for bijectivity. Actually, we recall
below that coerciveness is also a necessary condition only in the special case of
self-adjoint monotonous operators .

Let A be in L(X,X ′) (X being a Banach space), we say that A is monotonous
if

∀x ∈ X, 〈Ax, x〉 ≥ 0. (2.8)

Assume that X is a reflexive Banach space, we say that A ∈ L(X,X ′) is self-adjoint
if At = A. We have the following characterization of bijective self-adjoint operators.

Corollary 2.3 Assume that X is a reflexive Banach space and A ∈ L(X,X ′) is
self-adjoint, then A is bijective if and only if there is a constant c > 0 so that

∀x ∈ X, ‖Ax‖X′ ≥ c‖x‖X . (2.9)

Proof. From theorem 2.1 we deduce that A is bijective if and only if At is injective
and A satisfies the inequality (2.9). Conversely, the inequality (2.9) means that A
is injective, that is to say At is injective, and theorem 2.1 yields the result .

We can further characterize bijective self-adjoint operators as follows

Corollary 2.4 Let X be a reflexive Banach space and A ∈ L(X,X ′) be self-adjoint
and monotonous; A is bijective if and only if it is coercive.

Proof. Assume A is bijective; we will prove by contradiction that A is coercive.
Assume that there is a sequence xn in X so that ‖xn‖X = 1 and 〈Axn, xn〉 converges
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to zero as n tends to infinity. Since A is bijective, we have

c‖xn‖X ≤ ‖Axn‖X′ = sup
y∈X

〈Axn, y〉

‖y‖X
.

Since A is monotonous we can prove the following inequality

∀x, y ∈ X, 〈Ax, y〉 ≤ 〈Ax, x〉1/2〈Ay, y〉1/2.

As a result we deduce

‖xn‖X ≤ c sup
y∈X

〈Axn, xn〉
1/2〈Ay, y〉1/2

‖y‖X
≤ ‖A‖1/2〈Axn, xn〉

1/2,

hence, ‖xn‖ → 0 when n→∞, which is a contradiction.
Conversely, assume A is coercive; we have

‖Ax‖X′ = sup
y∈X

〈Ax, y〉

‖y‖X
≥
〈Ax, x〉

‖x‖X
≥ c‖x‖X .

From corollary 2.3 we infer that A is bijective .

Remark 2.6 This result emphasizes that coerciveness is a necessary and sufficient
condition for monotonous self-adjoint operators to be bijective .

We finish this section by recalling a condition which is sufficient to prove that
the range of an injective operator is closed.

Lemma 2.4 (Petree–Tartar) Let X, Y , Z be three Banach spaces. Let A ∈ L(X,Y )
be an injective operator and T ∈ L(X,Z) be a compact operator. Assume that there
is a constant c > 0 so that c‖x‖X ≤ ‖Ax‖Y +‖Tx‖Z . Then the range of A is closed,
or equivalently, there is a constant c > 0 so that

∀x ∈ X, c‖x‖X ≤ ‖Ax‖Y . (2.10)

Proof. (By contradiction) Assume that there is a sequence xn in X so that
‖xn‖X = 1 and ‖Axn‖Y converges to zero when n tends to infinity. Since T is
compact and the sequence xn is bounded, we deduce that there is a subsequence
xnk

so that Txnk
is a Cauchy sequence in Z. From the inequality

c‖xnk
− xmk

‖X ≤ ‖Axnk
−Axmk

‖Y + ‖Txnk
− Txmk

‖Z ,

we infer that xnk
is a Cauchy sequence in X. Let x be the limit of this subsequence

in X. By continuity we deduce Axnk
→ Ax and by unicity of the limit we obtain

Ax = 0, for Axnk
→ 0. The injectivity of A implies that x is zero, which is in

contradiction with the assumption ‖xnk
‖X = 1 .

Remark 2.7 As an illustration of this result, note that Poincaré and Poincaré–
Wirtinger inequalities are direct consequences of it (use ‖u‖1 ≤ ‖∇u‖1 + ‖u‖0
together with the compactness of the injection of H1(Ω) into L2(Ω)) .

3. The vector Poisson problem
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3.1. Hypotheses and notations

Let Ω be an open connected bounded domain of IRd (d = 2 or 3) with a smooth
boundary Γ. For the sake of simplicity we assume that Γ is of class C2. Of course,
some of our arguments can be generalized to rougher boundaries, but these consid-
erations are out of the scope of the present paper, since our goal is to show that
even with very smooth boundaries the solution can be very rough.

In the sequel, the set of real functions infinitely differentiable with compact
support in Ω is denoted by D(Ω). The set of distributions on Ω is denoted by
D′(Ω). As usual, L2(Ω) denotes the space of real-valued functions, the squares of
which are summable in Ω. We denote the inner product in L2(Ω) by ( · , · ) and its
norm by ‖ · ‖0. H

m(Ω), m ≥ 0, is the set of distributions the successive derivatives
of which, up to order m, can be identified with square summable functions. The
space Hm(Ω), equipped with the norm ‖u‖2m = (

∑m
|α|=0 ‖D

αu‖20)
1/2, expressed in

the multi-index notation, is a Hilbert space. Recall that a Hilbert space is also a
reflexive Banach space.

In this section we are mainly concerned with the solution of vector Poisson
problems in Ω. Recall that in terms of distributions we have the following relation

∇2u = −∇×∇×u+∇(∇· u). (3.1)

This yields to consider the following bilinear form

a(u, v) = (∇×u,∇×v) + (∇· u,∇· v), (3.2)

where u and v are smooth enough so that this expression makes sense. In the
following we analyze variational problems based on this form and we show that
fully natural boundary conditions associated with it yield sensitive solutions.

3.2. A vector Poisson problem with partially natural BCs

We assume in this section that Γ, the boundary of Ω, is partitioned into three
smooth pieces, Γ1, Γ2, and Γ3, so that

Γ =

3
⋃

k=1

Γk and

3
⋂

k=1

Γk = ∅. (3.3)

We define

X = {v ∈ H1(Ω)d; v|Γ1
= 0, v · n|Γ2

= 0, v × n|Γ3
= 0}. (3.4)

X is a Hilbert space when equipped with the scalar product of H1(Ω)d. Note that
for v in X, the traces v|Γ, v · n|Γ, and v× n|Γ are meaningful in H1/2(Γ). Note also
that the bilinear form a : X ×X −→ IR, defined above, is continuous. We associate
with a the continuous linear operator A : X −→ X ′ so that a(u, v) = 〈Au, v〉; A is
clearly self-adjoint and monotonous. Furthermore, provided meas(Γ1) > 0, we have

Lemma 3.5 A is bijective.

Proof. The demonstration of this result is not very well-known when boundary
conditions are mixed, so we give a proof (without claiming originality).

(i) First we prove that A is injective. If Ω is not simply connected, i.e. Ω is
p-connected, we define p cuts Σ1, . . . ,Σp so that the cuts in question are smooth
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manifolds of dimension d − 1, Σi ∩ Σj = ∅ if i 6= j, and Ω̇ = Ω \
⋃p

i=1 Σi is simply
connected and smooth. Let u be in X and assume that Au = 0, then ∇· u = 0
and ∇×u = 0 in Ω̇. Given the simple connectedness of Ω̇, this means that u is the
gradient of a harmonic scalar function φ. The boundary condition u|Γ1

= 0 means
that (∂φ/∂n)|Γ1

= 0 and φ|Γ1
= constant. Given the hypothesis meas(Γ1) > 0 and

the extension theorem of harmonic functions (cf. e.g. Dautray and Lions3, Chap.

II, p 308) we infer that φ is a constant in Ω̇; as a result, φ is constant almost
everywhere in Ω. That is to say u is zero almost everywhere in Ω; hence, the class
representative of u in X (in the sense of the Lebesgue measure) is zero.

(ii) Let u and v be some smooth functions X. Irrespective of any boundary
condition assumed by u and v, an integration by parts yields

(∇u,∇v) = a(u, v) +

∫

Γ

[

(∇×u) · v × n− (∇· u) v · n+
∂u

∂n
· v

]

.

Denote by IΓ(u, v) the boundary integral in the right-hand side. Provided Γ is
smooth enough and given the boundary conditions enforced on the functions of X
(namely w|Γ1

= 0, w · n|Γ2
= 0, w × n|Γ3

= 0), the surface integral can be bounded
(after some calculus) as follows

IΓ(u, v) ≤ c

∫

Γ

|u · v|.

For other details on the way of obtaining this inequality, the reader is referred to
Dautray and Lions3, Chap. IX, p. 246. Given the Poincaré inequality, the inequality
above and the continuous injection of H1/2(Γ) into L2(Γ) we infer

c‖u‖1 ≤
‖∇u‖20
‖u‖1

≤ sup
v∈X

(∇u,∇v)

‖v‖1

≤ ‖Au‖X′ + c′
(

∫

Γ

|u|2
)1/2

,

that is
c‖u‖1 ≤ ‖Au‖X′ + c′‖γ(u)‖L2(Γ)d , (3.5)

where γ : X −→ L2(Γ)d is the trace operator.
(iii) We are now in measure of applying Petree–Tartar’s lemma 2.4: A ∈ L(X,X ′)

is injective, the trace operator γ : X −→ L2(Γ)d is compact, and we have the in-
equality (3.5). As a result, we have

c‖u‖1 ≤ ‖Au‖X′ .

Since A is self-adjoint, we infer from corollary 2.3 that A is bijective .

Remark 3.1 As a by-product of the lemma above and the fact that A is self-adjoint
and monotonous, we deduce the following equivalence of norms (cf. corollary 2.4):

∀v ∈ X, c1‖v‖1 ≤ (‖∇×v‖20 + ‖∇· v‖
2
0)
1/2 ≤ c2‖v‖1 . (3.6)

Remark 3.2 The hypothesis meas(Γ1) > 0 plays a key role in the proof of the
injectivity of A. For other details on this matter the reader is referred to Girault
and Raviart5, p. 51–56 .
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For f ∈ L2(Ω)d we consider the following vector Poisson problem: find u in X
so that

∀v ∈ X, a(u, v) = (f, v). (3.7)

Clearly, this problem amounts to looking for a solution to the problem Au = f in
X ′ (where we have continuously embedded L2(Ω)d in X ′). As a consequence of
lemma 3.5 we deduce

Proposition 3.1 Problem (3.7) has a unique solution and this solution is stable
with respect to the datum: ‖u‖1 ≤ c‖f‖0.

Remark 3.3 Note that if u and v are smooth enough we have the following inte-
gration by parts formula

(−∇2u, v) = a(u, v) +

∫

Γ

(∇×u) · v × n−

∫

Γ

(∇· u) v · n. (3.8)

As a result, we deduce that u is solution to the following problem







































−∇2u = f,

u|Γ1
= 0,

u · n|Γ2
= 0, (∇×u)× n|Γ2

= 0,

u× n|Γ3
= 0, ∇· u|Γ3

= 0,

(3.9)

if u is smooth enough, say u is in H2(Ω)d .

Remark 3.4 Note that the boundary conditions (∇×u)×n|Γ2
= 0 and ∇·u|Γ3

= 0
are natural; that is, they are naturally enforced by the bilinear form a. These
boundary conditions are to be understood in some weak sense the exact meaning
of which is out of the scope of the present paper, cf. Lions and Magenes6 .

3.3. A sensitive Poisson problem

We show in this section that if there is a nonzero portion of the boundary where
neither the normal trace nor the tangential trace of the unknown is controlled, the
Poisson problem associated with the bilinear form a is ill-posed in the usual sense
(i.e. in H1(Ω)d or L2(Ω)d).

For sake of simplicity, we assume that Γ is partitioned into two smooth pieces
Γ1 and Γ2 so that

Γ = Γ1 ∪ Γ2 and Γ1 ∩ Γ2 = ∅. (3.10)

Accordingly, we define

X = {v ∈ H1(Ω)d; v|Γ1
= 0}. (3.11)

X is a Hilbert space when equipped with the scalar product of H1(Ω)d. Note that
the bilinear form a : X ×X −→ IR, defined above, is continuous and the operator
A : X −→ X ′ is self-adjoint and monotonous.

For f ∈ L2(Ω)d (or possibly smoother) we consider the vector Poisson problem:
find u in X so that

∀v ∈ X, a(u, v) = (f, v). (3.12)
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Ω
Ω0

ω0

Ο
Οε

nΓ1

Γ2

Fig. 1. Schematic representation of domain Ω.

If this problem has a solution and if this solution is smooth enough, say u is in
H2(Ω)d, we deduce from the distributions theory that u is solution to the following
problem























−∇2u = f,

u|Γ1
= 0,

(∇×u)× n|Γ2
= 0, ∇· u|Γ2

= 0.

(3.13)

Note here that only natural boundary conditions are enforced on Γ2, in contrast
with problem (3.7) where a piece of Dirichlet condition was enforced together with
the natural condition on Γ2 and Γ3.

Problem (3.12) is equivalent to looking for a solution to the problem Au = f in
X ′ (recall that L2(Ω)d is the pivot space). This problem is well-posed provided A
is bijective. Since A is self-adjoint and monotonous, A is bijective if and only if it
is coercive (cf. corollary 2.4). The striking characteristic of operator A is that:

Proposition 3.2 The operator A is not coercive.

Proof. We shall build a counter-example, that is to say, we shall build a sequence
of functions wε of X, the L2 norm of which is equal to 1 for all values of ε > 0,
whereas a(wε, wε) converges to 0 when ε tends to zero.

Let O be a point of Γ2 in the vicinity of which Γ is C2. Let n be the outward
normal to Γ2 at O. For ε > 0 we set Oε = O + εn. Let φ be a function which
is harmonic in IRd \ {0} (i.e. IRd without zero); recall that such a function is in

C∞(IRd \ {0}). Furthermore, we assume that for every cone C with vertex 0, we
have

∫

C∩B(0,1)

∣

∣

∣

∣

∂φ(x)

∂r

∣

∣

∣

∣

2

dx =∞,

where we have set r = |x| and B(0, 1) is the ball of center 0 and radius 1. Define

φε(x) = φ(x−Oε); it is clear that in IRd\{Oε} we have ∇·∇φε = 0 and ∇×∇φε = 0.
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Let D1 be the distance from O to Γ1, i.e. D1 = infx∈Γ1
dist(O, x); we set

D = min(D1, 4), ω0 = Ω ∩ B(O,D/4), and Ω0 = Ω ∩ B(O,D/2) (see figure 1).

Furthermore, define θ0 in C∞(IRd) so that θ0 = 1 in B(O,D/4) and θ0 = 0 in the
complement of B(O,D/2). We denote by vε(x) the restriction to Ω of θ0(x)∇φε(x).

It is clear that vε belongs to [C∞(IRd)]d ∩X. Furthermore, we have

a(vε, vε) =

∫

Ω

|∇×vε|
2 + |∇· vε|

2

=

∫

Ω0\ω0

|∇×(θ0∇φε)|
2 + |∇· (θ0∇φε)|

2

=

∫

Ω0\ω0

|∇θ0 ×∇φε|
2 + |∇θ0 · ∇φε|

2

≤ c

∫

Ω0\ω0

|∇φε|
2.

Assume that |O−Oε| = ε ≤ D/8, then D/8 ≤ dist(Oε,Ω0 \ω0) ≤ 5D/8. As a result

a(vε, vε) ≤ c meas(Ω0 \ ω0) max
x∈B(0, 5D

8
)\B(0,D

8
)
|∇φ(x)| ≤ c′.

However, for the L2 norm of vε we have

‖vε‖
2
0 =

∫

Ω

|θ0∇φε|
2

≥

∫

ω0

|∇φε|
2

≥

∫

ω0

∣

∣

∣

∣

∂φε

∂r

∣

∣

∣

∣

2

.

Let C0 be a cone with vertex O so that C0 ∩ B(O,D/4) = C0 ∩ ω0; we set Cε =

C0+ εn (Cε is a cone with vertex Oε). For all subset S of IRd, we denote by χS the
characteristic function of S.

‖vε‖
2
0 ≥

∫

Cε∩ω0

∣

∣

∣

∣

∂φε

∂r

∣

∣

∣

∣

2

=

∫

Cε

χω0
(x)

∣

∣

∣

∣

∂φ(x−Oε)

∂|x−Oε|

∣

∣

∣

∣

2

.

By the change of variable x−Oε = y −O, we obtain

‖vε‖
2
0 ≥

∫

C0

χω0
(y + εn)

∣

∣

∣

∣

∂φ(y −O)

∂|y −O|

∣

∣

∣

∣

2

.

Now, without loss of generality, we assume that D is small enough (we can choose
it this way) so that for all y in ω0, y + εn crosses Γ only once as ε goes from D to
0. As a result, for all y ∈ ω0, χω0

(y + εn) is a monotonously increasing sequence
as ε goes from D to 0. This means that χω0

(y + εn)(∂φ(y − O)/∂|y − O|)2 is an
increasing monotonous sequence of functions of L1(C0), converging to χω0

(y)(∂φ(y−
O)/∂|y−O|)2 for all y ∈ C0 \{O}. Since, by hypothesis, C0∩ω0 = C0∩B(O,D/4)
and |∂φ/∂r| is not in L1(C0 ∩ B(O, 1)), we infer from Beppo-Levi’s monotonous
convergence theorem that

∫

C0

χω0
(y + εn)

∣

∣

∣

∣

∂φ(y −O)

∂|y −O|

∣

∣

∣

∣

2

→∞ when ε→ 0.
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Now we set wε = vε/‖vε‖0; the sequence wε is such that ‖wε‖0 = 1 and a(wε, wε)→ 0
when ε→ 0 .

Remark 3.5 There are many choices for the singular harmonic function that we
used in the proof above. By using polar coordinates and assuming separation of
variable one can built such functions in IRd; by setting r = |x| and σ = x/r, these
functions have the general form φ(x) = f(σ)/rk, where k is any positive integer.
For instance, in two dimension we have (see Dautray–Lions3, Chap. II, p. 662):

φ(x) =
cos(ϕ− ϕ0)

rk
, k ≥ 1. (3.14)

In IR3 we have

φ(x) =
P
|m|
k (cos θ) cos(ϕ− ϕ0)

rk
, −k ≤ m ≤ k, k ≥ 1, (3.15)

where (r, θ, ϕ) are the spherical coordinates in IR3, P
|m|
k (z) is a polynomial the exact

form of which may be found in Dautray–Lions3, Chap. II, p. 624 .

Remark 3.6 The lack of coerciveness of A is equivalent to the fact that the range
of A is not closed in X ′. Indeed, since A is injective, the statement: im(A) is closed,
is equivalent to At is surjective (lemma 2.1); A being self-adjoint, this statement is
equivalent to A is injective and surjective, i.e. A is bijective, or in other words A is
coercive (corollary 2.4) .

To recover some well-posedness we can follow Lions and Sanchez-Palencia’s
strategy7. Since A is injective, self-adjoint, and monotonous, a(u, v) induces a
scalar product on X. Introduce Xa the completion of X with respect to the metric
induced by the norm a(u, u)1/2. It is clear that Xa is a Hilbert space when equipped
with the scalar product a(u, v). Assume that v 7→

∫

Ω
fv can be extended by continu-

ity as a continuous linear form on Xa, then Riesz’s representation theorem implies
that problem (3.12) has unique (stable) solution in Xa (recall that a is the norm
that induces the Hilbertian structure of Xa). This conclusion could be of practical
purpose if the elements of Xa could be characterized as “good” functions or at least
“not too bad” distributions. Unfortunately (cf. Lions and Sanchez-Palencia7), we
have the following negative result

Proposition 3.3 Xa is not contained in D(Ω)′ (i.e. the space of distributions).

Proof. (from Sanchez-Palencia10) We take a subspace of X and we show that the
completion of this subspace with respect to the norm a1/2 is not contained in D(Ω)′.

Define Φ = {φ ∈ H2(Ω); φ|Γ1
= 0, (∂φ/∂n)|Γ1

= 0}. Define Y = ∇Φ; it is

clear that Y is a subset of X. For y = ∇φ, we have a(y, y) = (∇2φ,∇2φ); as a result,
the completion of Y for the norm a1/2 is the gradient of the completion of Φ for the
norm induced by b(φ, φ) = (∇2φ,∇2φ). Lions and Sanchez-Palencia7 have shown
that Φb, the completion of Φ for the norm b1/2, is not a contained in D(Ω)′ .

Remark 3.7 As a consequence of this proposition we infer that the dual of Xa does
not contain D(Ω) (although X clearly contains D(Ω)), that is to say, even if f is a
C∞ function with compact support, problem (3.12) has not necessarily a solution.
Furthermore, let f be an admissible source term (i.e. f is in the dual of Xa) and
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δf be an arbitrarily small C∞ function with a compact support, then f + δf is not
necessarily admissible; in other words, the solution of (3.12) is not continuous with
respect to C∞ perturbations with compact support of the datum. In this sense
problem (3.12) is sensitive, according to Lions and Sanchez-Palencia’s terminology
.

Remark 3.8 One can have some insight on the structure of some pathological
functions of Xa by looking back at the proof of proposition 3.2. Let O be a point
of Γ2 in the vicinity of which Γ is C2 and set Oε = O + εn. Let φ be any function
which is harmonic in IRd\{0}; recall that such a function is in C∞(IRd\{0}). Define
φε(x) = φ(x− Oε) and vε(x) = θ0(x)∇φε(x), where θ0 is defined as in the proof of
proposition 3.2; we have

a(vε − vε′ , vε − vε′) ≤ c max
x∈Ω0\ω0

|∇(φ(x−Oε)− φ(x−Oε′))|
2.

If ε is small enough (i.e. ε < D/8), |∇∇φε| is bounded in Ω0 \ ω0 independently of
ε; as a result, ∇φε is Lipschitzian; that is to say

a(vε − vε′ , vε − vε′)
1/2 ≤ c|ε− ε′|.

This means that vε is a Cauchy sequence in Xa; as a result, the limit function v0 is
an element of Xa. The function v0 is in [C∞(IRd \ {O})]d but is possibly singular
in O. Actually, as shown in remark 3.5, by using spherical harmonic functions one
can build for any integer k a function v0 of X

a which behaves like 1/|x−O|k in the
vicinity of O .

Now let us look at the Poisson problem we can build on the sequence of functions
vε. Let us set fε(x) = −∇

2vε(x), dε(xΓ2
) = ∇· vε(x)|Γ2

, and rε(xΓ2
) = (∇×vε(x))×

n|Γ2
; these functions have the following “good” properties:

(i) Functions fε are smooth and all their derivatives of any order are bounded
uniformly with respect to ε.

(ii) For all ε, fε is zero in ω0.
(iii) For all ε, dε and rε are zero on Γ\∂(Ω0 \ω0) and are as smooth as the normal,

n, on Γ∩ ∂(Ω0 \ω0), and up to the maximum degree of smoothness of n their
derivatives are bounded uniformly.

As a result, one could say that fε, dε, and rε are “very nice” source term and
boundary data. It is clear that vε is solution to the following problem







































−∇2vε = fε,

vε|Γ1
= 0,

(∇×vε)× n|Γ2\∂(Ω0\ω0) = 0, ∇· vε|Γ2\∂(Ω0\ω0) = 0,

(∇×vε)× n|Γ2∩∂(Ω0\ω0) = rε, ∇· vε|Γ2∩∂(Ω0\ω0) = dε.

(3.16)

This example concretely illustrates the fact that, from a uniformly smooth sequence
of source terms fε, dε, and rε, one can obtain a sequence of solutions to the Poisson
problem (3.16) which converges to a function v0 which is arbitrarily rough in O
(recall that the degree k of the singularity is arbitrary!). Note however that v0 is in
C∞(Ω) (i.e. v0 is a distribution). We have not yet been able to exhibit a sequence
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of functions of Xa the limit of which is not a distribution. For such an exemple in
another context, the reader is referred to Lions/Sanchez-Palencia8.

4. A Stokes problem

In this section we briefly extend to the Stokes problem the results obtained for the
vector Poisson problem.

4.1. A well posed Stokes problem

We show in this section that provided the normal component or the tangential com-
ponent of the velocity is controlled on the boundary, natural boundary conditions
can be taken into account within the classical variational framework. For sake of
simplicity let us assume that Γ is partitioned into three smooth pieces, Γ1, Γ2, and
Γ3 so that

Γ =
3
⋃

k=1

Γk and
3
⋂

k=1

Γk = ∅. (4.1)

We introduce

V = {v ∈ H1(Ω)d; ∇· v = 0, v|Γ1
= 0, v · n|Γ2

= 0, v × n|Γ3
= 0}. (4.2)

Let us denote by aV the restriction to V × V of the bilinear form a; for all u, v in
V we have

aV (u, v) = (∇×u,∇×v). (4.3)

We associate with aV the continuous linear operator AV : V −→ V ′ so that
aV (u, v) = 〈AV u, v〉; AV is self-adjoint and monotonous, and provided meas(Γ1) > 0
we have

Lemma 4.6 AV is bijective.

Proof. From the definition of AV and remark 3.1 we infer

〈AV u, u〉 = aV (u, u)

= a(u, u)

≥ c‖u‖21.

Hence AV is coercive, which is a necessary and sufficient condition for AV to be
bijective (see corollary 2.4) .

For f in L2(Ω)d we consider the following Stokes problem in variational form:
find u in V so that

∀v ∈ V, aV (u, v) = (f, v). (4.4)

Equivalently, this problem amounts to looking for a solution to the problem AV u =
f in V ′ (where the duality product has been identified as an extension of the L2

scalar product). From lemma 4.6 we deduce

Proposition 4.4 Problem (4.4) has a unique solution and this solution is stable
with respect to the datum: ‖u‖1 ≤ c‖f‖0.

A formal interpretation of problem (4.4) is given by
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Proposition 4.5 If u, the solution to the variational problem (4.4), is in H2(Ω)d,
there is a function p in H1(Ω) so that (u, p) is solution to the following Stokes
problem























































−∇2u+∇p = f,

∇· u = 0,

u|Γ1
= 0,

u · n|Γ2
= 0, (∇×u)× n|Γ2

= 0,

u× n|Γ3
= 0, p|Γ3

= 0.

(4.5)

Proof. This is an easy consequence of De Rham’s theorem and the formula of
integration by parts (3.8) .

Remark 4.1 Note that in problem (4.4) a natural boundary condition is enforced
on the pressure on Γ3 though this variable is not explicitly involved in the variational
formulation. The boundary conditions (∇×u)× n|Γ2

= 0 and p|Γ3
= 0 are natural

in the sense that they are naturally enforced by the bilinear form aV .

4.2. A sensitive Stokes problem

As for the vector Poisson problem we show now that if there is a nonzero portion
where neither the normal trace nor the tangential trace of the unknown is controlled,
the Stokes problem associated with the bilinear form aV is sensitive.

For sake of simplicity, we partition Γ into two smooth pieces Γ1 and Γ2 so that

Γ = Γ1 ∪ Γ2 and Γ1 ∩ Γ2 = ∅. (4.6)

Accordingly, we introduce

V = {v ∈ H1(Ω)d; ∇· v = 0, v|Γ1
= 0}. (4.7)

V is a Hilbert space when equipped with the scalar product of H1(Ω)d. The
definition of bilinear form aV : V × V −→ IR together its associated operator
AV : V −→ V ′ remains unchanged.

For a source term f in L2(Ω)d (or possibly smoother) we consider the Stokes
problem: find u in V so that

∀v ∈ V, aV (u, v) = (f, v). (4.8)

Let us assume that this problem has a solution and that the solution is smooth, say
u is in H2(Ω)d; we infer from classical arguments that u is solution to the following
formal problem







































−∇2u+∇p = f,

∇· u = 0,

u|Γ1
= 0,

(∇×u)× n|Γ2
= 0, p|Γ2

= 0.

(4.9)
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Note here that on Γ2 only natural boundary conditions are enforced. Problem (4.8)
is well-posed provided AV is bijective. Since AV is self-adjoint and monotonous, AV
is bijective if and only if it is coercive (cf. corollary 2.4). Concerning the possible
coerciveness of AV we have the following negative result

Proposition 4.6 The operator AV is not coercive.

Proof. We proceed as in the proof of proposition 3.2. We built a sequence of
functions wε the L

2 norm of which is equal to one and so that aV (wε, wε) converges
to zero as ε tends to zero.

Using the same notation as in the proof of proposition 3.2, we set vε(x) = ∇φε(x)
for all x in Ω0. Furthermore, in Ω\Ω0, we define vε as being a divergence free lifting
of the trace of ∇φε on ∂Ω0 so that vε is zero on Γ1 (such a lifting exists cf. Girault–
Raviart5, p. 24). It is easily shown that thus defined vε is in V and the sequence
wε = vε/‖vε‖0 is the counter-example we look for .

Remark 4.2 Since AV is injective, self-adjoint, and monotonous, aV (u, v) induces
a scalar product on V ; hence, we can recover some well-posedness by considering
V a the completion of V with respect to the metric induced by the norm aV (u, u)

1/2;
V a is a Hilbert space when equipped with the scalar product aV (u, v). If v 7→

∫

Ω
fv

can be extended by continuity as a continuous linear form on V a, then Riesz’s
representation theorem implies that problem (4.8) has a unique (stable) solution in
V a. However, concerning the characterization of V a we could show that this space is
not contained in the space of distributions D(Ω)′. We only sketch a possible proof of
this fact. Define Ψ = {ψ ∈ H2(Ω)d; ∇· ψ = 0, ψ × n|Γ1

= 0, (∇×ψ)× n|Γ1
= 0}.

Define Y = ∇×Ψ; it is clear that Y is a subset of V . For y = ∇×ψ, we have

aV (y, y) = (∇2ψ,∇2ψ); as a result, the completion of Y for the norm a
1/2
V is the

rotational of the completion of Ψ for the norm induced by b(ψ,ψ) = (∇2ψ,∇2ψ).
By using arguments similar to that of Lions and Sanchez-Palencia7 we could show
that Ψb, the completion of Ψ for the norm b1/2, is not a contained in D(Ω)′. From
classical results on distributions, this means that Y a is not contained in D(Ω)′. As
a result, Y being a subspace of V , we conclude that V a is not contained in D(Ω)′

.

5. Conclusions

This note has investigated the possibility of building up well-posed boundary value
problems of vector type in the presence of purely natural boundary conditions on
a part of the boundary. By generalizing Lions/Sanchez-Palencia theory of sensitive
boundary value problems for the scalar biharmonic problem in two dimensions, we
have demonstrated that the vector Poisson equation and the Stokes system in two
and three dimensions under the aformentioned natural boundary conditions give rise
to a variational formulation of the problem which admits uniqueness of the solution
but which is nevertheless possibly sensitive to arbitrarily small smooth perturbations
of the data. This result establishes a limitation on the kind of natural boundary
conditions which can be enforced in vector elliptic and incompressible viscous flows
problems. In particular, the tangential components of vorticity cannot be prescribed
together with the value of pressure on any part of the boundary, as one could instead
think advisable at outflow boundaries to minimize the perturbation on the solution
due to lack of knowledge of the exact velocity field in the downstream region.

In conclusion, the proposed analysis confirms that the well-posedness of the con-
sidered vector problems (i.e. using the bilinear form (3.2)), as classically understood
in numerical analysis, is guaranteed only provided that at least one of either the
normal or the tangential component of the vector unknown is specified on every
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part of the entire boundary.
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tions, (Dunod, Paris, 1968).
7. J.-L. Lions and E. Sanchez-Palencia, Problèmes aux limites sensitifs, C. R. Acad. Sci.
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