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Abstract. This paper describes a variational formula-
tion for solving the 2D time-dependent incompressible
Navier–Stokes equations expressed in terms of the stream
function and vorticity. The difference between the pro-
posed approach and the standard one is that the vorticity
equation is interpreted as a dynamical equation govern-
ing the evolution of (the weak Laplacian of) the stream
function while the Poisson equation for the stream func-
tion is used as an expression to evaluate the distribution
of the vorticity in the domain and on the boundary. A
time discretization is adopted with the viscous diffusion
made explicit, which leads to split the viscous effects
from the incompressibility similarly to the fractional-step
projection methods for the primitive variable equations.
In some sense, the present method generalizes to the vari-
ational framework a well-known idea that is used in £nite
differences approximations and which is based on a Tay-
lor series expansion of the stream function on the bound-
ary. Some error estimates and some numerical results are
given.

1 INTRODUCTION

The prototype £nite element procedure for solving the
2D Stokes equations formulated in terms of the vortic-
ity and stream function is the uncoupled solution method
for the biharmonic problem introduced by Glowinski and
Pironneau [4]. This approach can compute the solution
of the Stokes problem by an uncoupled direct method.
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In the case of the time-dependent equations, this method
assumes necessarily an implicit treatment of the viscous
term and determines the unknown boundary value of
the vorticity by means of an operator associated with
that part of the boundary where no-slip velocity condi-
tions are prescribed. While the techniques based on this
method or on the related idea of an in¤uence matrix guar-
antee good stability properties, they are not so easy to im-
plement; hence one may be tempted to make a trade-off
between stability and simplicity. In the present paper we
investigate one possible alternative technique for solving
the evolutionary Navier–Stokes equations in two dimen-
sions expressed in a weak variational form.

In the context of £nite differences, which are known
for their simplicity, one classical approach is to assume
an explicit treatment of the viscous term to derive vortic-
ity boundary formulas. In this case, the Neumann con-
dition for the stream function can be used as the last
piece of the time-stepping algorithm. More precisely, the
derivative boundary condition can be interpreted as a re-
lationship specifying the boundary value of the new vor-
ticity after the time advancement of the (internal distri-
bution of) vorticity has been completed and after the new
stream function has been determined, for details see e.g.
Peyret and Taylor [7], E and Liu [2] or Napolitano et al.
[6]. The aim of this paper is to develop the variational
counterpart of this idea and to show that an interpretation
alternative to the standard one can be given to the vortic-
ity equation written in weak form which leads to a new
and very simple algorithm for the numerical solution of
the unsteady ψ-ω equations by means of £nite elements.

2 VARIATIONAL PROBLEM

The proposed numerical method stems from the follow-
ing variational statement of the incompressible Navier–
Stokes equation for 2D ¤ows in a simply connected,

c© 1998 J.-L. Guermond and L. Quartapelle
ECCOMAS 98.
Published in 1998 by John Wiley & Sons, Ltd.



bounded domain Ω with a smooth boundary Γ =
∂Ω. For the initial solenoidal velocity u0 belonging to
H1

0(Ω) and the body force f ∈ L2(0, T ; L2(Ω)), we
have the problem





Find ψ ∈ L2(0, T ;H2
0 (Ω)) ∩ C(0, T ;H1

0 (Ω)) and

ω ∈ L2(0, T ;L2(Ω)) ∩ C(0, T ;H−1(Ω)), so that

∀φ ∈ H1
0 (Ω), ((∇ψ)|t=0,∇φ) = (u0,∇φ×ẑ),

and that, for all t > 0,

∀ψ′ ∈ H2
0 (Ω),

(∂∇ψ
∂t

,∇ψ′
)

+ ν 〈∇ω,∇ψ′〉

+ b(ω, ψ, ψ′) = (f,∇ψ′×ẑ),

∀v ∈ L2(Ω), (ω, v) + (∇2ψ, v) = 0.

(1)
Homogeneous velocity boundary conditions for the sake
of simplicity. The trilinear form b(ω, ψ, ψ′) associated
with the advection term is written in rotational form,
namely,

b(ω, ψ, ψ′) = (ω∇ψ,∇ψ′×ẑ), (2)

to guarantee conservation of the (kinetic) energy, when
ν = 0, also in the spatially discrete case of H1-
conformal approximations.

Note the unusual form of the evolutionary term which
involves mixed time and space derivatives of ψ. Actu-
ally, this weak form of the dynamical equation is the most
natural one within the present variational setting since it
stems from the momentum equation where

• the velocity is replaced by∇ψ×ẑ,
• the viscous term is written as the curl of ω, and
• the velocity test functions belonging to

V = {v ∈ H
1
0(Ω), ∇· v = 0}

are expressed as ∇ψ′×ẑ by virtue of the the well-
known isomorphim (see Girault and Raviart [3])

∇. . .×ẑ : H2
0 (Ω) −→ V.

At variance with more usual ways of writing the vor-
ticity transport equation, no integration by parts is to be
performed; in other words, the curl of the momentum
equation has not been taken in a strong form. In this way
the momentum equation becomes an evolutionary equa-
tion for the stream function (actually for its Laplacian in
weak form) whereas the Poisson equation is used as the
de£nition of vorticity.

3 SPATIAL DISCRETIZATION

Let Wh and Ψ0,h be two £nite dimensional subspaces
of H1(Ω) and H1

0 (Ω), respectively. We assume that
Ψ0,h ⊂ Wh, and Wh, Ψ0,h satisfy standard interpolation
and inverse properties (described in detail in [5]).

4 FIRST ORDER SCHEME

In this section we approximate the time derivative by
means of the £rst order Euler scheme. Let [0, T ] be
a £nite time interval and N be an integer. We denote
δt = T/N and tn = nδt for 0 ≤ n ≤ N . For any
function of time, ϕ(t), we denote ϕn = ϕ(tn).

The fully discrete problem is formulated as follows.
The initialization step reads:

{
Find ψ0

h ∈ Ψ0,h so that, ∀φh ∈ Ψ0,h,

(∇ψ0
h,∇φh) = (u0,∇φh×ẑ),

(3)

{
Find ω0

h ∈Wh so that, ∀vh ∈Wh,

(ω0
h, vh) = (∇ψ0

h,∇vh).
(4)

Then for each n ≥ 0, carry out the following two uncou-
pled steps:





Find ψn+1
h ∈ Ψ0,h so that, ∀φh ∈ Ψ0,h,

(∇(ψn+1
h − ψnh ),∇φh)

δt
+ b(ωnh , ψ

n+1
h , φh)

= −ν (∇ωnh ,∇φh) + (fn+1,∇φh×ẑ),

(5)

and
{

Find ωn+1
h ∈Wh so that, ∀vh ∈Wh,

(ωn+1
h , vh) = (∇ψn+1

h ,∇vh).
(6)

The nonlinear term is accounted for in a semi-implicit
form for the sake of simplicity. All that is said afterwards
holds with minor modi£cations if this term is made ex-
plicit. From the theoretical point of view, the modi£ca-
tions in question essentially amount to deriving slightly
sharper bounds for the nonlinear residuals.

Observe that, when compared to the classical ω-ψ for-
mulation, the present method interchanges the role of the
variables ψ and ω. Here, the dynamical equation for the
transport of ω has turned into an equation governing the
evolution of (the weak form of) −∇2ψh, whereas the
Poisson equation for ψh has become an expression con-
trolling ωh explicitly.
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4.1 Vorticity integral conditions

Note that the explicit evaluation of the new vorticity £eld
ωn+1
h through the solution of the mass matrix problem

(6) does enforce the integral conditions for the vorticity
which underlay the uncoupled method due to Glowinski
and Pironneau [4]. In fact, considering more general, i.e.,
nonhomogeneous, boundary conditions

ψn+1
|Γ = an+1 and

∂ψn+1

∂n |Γ
= bn+1,

the vorticity problem would read





Find ωn+1
h ∈Wh so that, ∀vh ∈Wh,

(ωn+1
h , vh) = (∇ψn+1

h ,∇vh)−

∫

Γ

bn+1vh.

Selecting the functions vh in the subspace of the discrete
harmonic functions, namely, vh = ηh ∈ Wh so that
(∇ηh,∇vh) = 0, ∀vh ∈ Wh, the weak equation above
gives

(ωn+1
h , ηh) ≈

∫

Γ

(
an+1 ∂ηh

∂n
− bn+1ηh

)
,

since it can be shown that
∫
Γ
an+1∂ηh/∂n ≈

(∇ψn+1
h ,∇ηh). One recovers the vorticity integral con-

ditions for the transient problem at time tn+1. Thus, the
proposed method, with the viscous diffusion made ex-
plicit, allows the vorticity integral conditions to be ful-
£lled a posteriori, as already pointed out in [6].

In the present formulation the vorticity boundary value
is determined in a way that is very similar to the classical
procedure used in the context of £nite differences. In fact
the vorticity boundary formula used in second-order ac-
curate central differences is obtained by means of a Tay-
lor series expansion as follows

ψh(∆x) = ψ(0) +∆x
∂ψ(0)

∂x

−
(∆x)2

2

[
ωh(0) +

∂2ψ(0)

∂y2

]
+O((∆x)3).

This argument uses the Poisson equation for ψ on
the boundary together with the Dirichlet and Neumann
boundary data for ψ. In some sense, the Taylor expansion
above mimics the weak vorticity equation for a weighting
function vh such that vh|Γ 6= 0.

5 STABILITY ANALYSIS

The following convergence result is established in [5]:

Theorem 1 Under convenient regularity hypothesis on
the solution (ψ, ω) of the continuous problem (1), there
is cs(Ω) > 0 and ce(T, ν, ψ,Ω) > 0 so that if δt ≤
csh

2/ν, then

‖ψ−ψh‖l∞(H1(Ω))+‖ω−ωh‖l2(L2(Ω)) ≤ ce(δt+h
`).

6 SECOND ORDER BDF SCHEME

The present technique is not restricted to £rst order; it can
be modi£ed to obtain high order accuracy in time. This
can be done simply by approximating the time deriva-
tive by a high order £nite differencing (Crank–Nicolson,
three-level backward differencing, etc...) and by extrapo-
lating the terms that involve ω, accordingly. To illustrate
this possibility we present in the following a second order
scheme based on the three-level backward differencing of
the time derivative and using a semi-implicit evaluation
of the nonlinear term by means of linear extrapolation in
time of the the vorticity.

Initialize the scheme by evaluating (ψ0
h, ω0

h) and (ψ1
h,

ω1
h). ψ0

h and ω0
h are evaluated from the initial data

through (3) and (4). ψ1
h can be obtained by many means;

for instance, it can be calculated by using a second order
Runge–Kutta technique; from ψ1

h one evaluates ω1
h eas-

ily. Then, for each n ≥ 1, carry out the following two
steps:





Find ψn+1
h ∈ Ψ0,h so that, ∀φh ∈ Ψ0,h,

(∇(3ψn+1
h − 4ψnh + ψn−1

h ),∇φh)
2δt

+ b(2ωnh − ω
n−1
h , ψn+1

h , φh)

= −ν (∇(2ωnh − ω
n−1
h ),∇φh) + (fn+1,∇φh×ẑ),

(7)
and

{
Find ωn+1

h ∈Wh so that, ∀vh ∈Wh,

(ωn+1
h , vh) = (∇ψn+1

h ,∇vh).
(8)

This scheme is second order accurate in time. Its error
analysis follows the same ideas as those that have been
used to analyze the £rst order scheme and a uniform sta-
bility result can be found in [5].

7 NUMERICAT TESTS

We have implemented the three-level BDF scheme above
in two different manners: £rst by evaluating the nonlin-
ear term in a fully explicit manner by time extrapolation
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Figure 1. Streamlines of FEM solution of the driven cavity
problem for Re = 1000 at t = 6.25: fully explicit scheme

with direct solution of the symmetric linear systems.

of both ψn+1
h and ωn+1

h , leading to the weak equation,
∀φh ∈ Ψ0,h,

(3∇ψn+1
h /2δt,∇φh)

= −b(2ωnh − ω
n−1
h , 2ψnh − ψ

n−1
h , φh) + gn(φh),

second, by evaluating the nonlinear term by means of a
semi-implicit approximation which gives a nonsymmet-
ric contribution to the elliptic problem for ψn+1

h , as fol-
lows,

(3∇ψn+1
h /2δt,∇φh) + b(2ωnh − ω

n−1
h , ψn+1

h , φh)

= gn(φh).

In both cases the source term gn(φh) is de£ned by

gn(φh) = (∇(2ψnh − ψ
n−1
h /2)/δt

− ν∇(2ωnh − ω
n−1
h ),∇φh).

The £rst scheme allows using direct algorithms for solv-
ing the two symmetric and time-independent linear sys-
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Figure 2. Streamlines of FEM solution of the driven cavity
problem for Re = 1000 at t = 6.25: semi-implicit scheme

with iterative solution of the linear systems.

tems (stiffness and mass matrix) for ψn+1
h and ωn+1

h , re-
spectively. Beside the mass matrix problem, the second
scheme has a nonsymmetric system of linear equations to
be solved at each time step. As a consequence, we used
the GMRES technique with preconditioning based on in-
complete factorization of the (constant) stiffness matrix.

The two algorithms have been tested and compared by
solving the unsteady driven cavity problem using nonuni-
form meshes of ≈ 2 × 802 linear triangles, £rst for
Re = 1000.

In £gures 1 and 2 we report the streamlines at time
t = 6.25 calculated by the direct and the iterative FEM
scheme using δt = 0.001 and δt = 0.0005, respectively.
Figures 3 and 4 contains the vorticity distribution at the
same time, to be compared with the spectral solution
calculated by a Galerkin spectral method of Glowinski–
Pironneau type [1] with δt = 0.001 and 150 Legendre
polynomials in each direction, shown in £gure 5. The
two FE methods are equally accurate, the slight differ-
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ences between them being caused by the use of different
meshes.

The second example is the calculation of the same
problem for a moderately high Reynolds number Re =
104. The streamlines at time t = 5.0 provided by the ex-
plicit direct FEM scheme with δt = 0.001 are shown in
£gure 6. This solution is in fair agreement with a £nite
difference solution obtained on a uniform 5012 grid and
using a centered h4-accurate approximation of the fully
explicit Jacobian reported in £gure 7.
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Figure 3. Vorticity of FEM solution of the driven cavity
problem for Re = 1000 at t = 6.25: fully explicit scheme

with direct solution of the symmetric linear systems.

8 CONCLUSIONS

In this paper we have presented a £nite element scheme
for solving the time-dependent Navier–Stokes equations
formulated in terms of the stream function and the vor-
ticity. The calculation of the stream function and the vor-
ticity are uncoupled owing to an explicit treatment of the
viscous diffusion together with a non-standard writing of
the evolutionary term in the weak form of the momen-
tum equation. The explicit treatment of viscous diffusion
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Figure 4. Vorticity of FEM solution of the driven cavity
problem for Re = 1000 at t = 6.25: semi-implicit scheme

with iterative solution of the linear systems.

implies a stability condition of the type: νδt/h2 ≤ c.
This stability constraint is the price to be paid for the
extreme algorithmic simplicity of the proposed uncou-
pled scheme, especially when compared to Glowinski–
Pironneau method and related techniques. While the sta-
bility restriction may be severe for creeping ¤ows, the
matter improves for convection dominated ¤ows since
the combination of the cell Reynolds number condition
for adequate spatial resolution with the stability condi-
tion gives a condition δt ≤ ch. The uncoupling strategy
proposed in the paper is not limited to time discretiza-
tions of low order; a second order accurate scheme based
on the three-level backward difference formula has been
presented.
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