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On incremental projection methods

1 Introduction

Achieving high order time-accuracy in the approximation of the incompressible Navier–
Stokes equations by means of fractional-step projection methods is a nontrivial task.
In fact, a basic feature of this kind of method is the uncoupling of the advection and
diffusion from the incompressibility condition, with a consequent introduction of a
time-splitting error in the computed solution. This splitting introduces an error that
depends in general on the size of the time step ∆t and is independent of how accurately
the subproblem of each partial step is approximated. For instance, the time-splitting
error is of O(∆t) for the nonincremental projection method originally proposed by
Chorin [2] and Temam [13].

The occurrence of the splitting error represents a serious obstacle to the construc-
tion of time-stepping algorithms with an accuracy of O((∆t)2) or higher within the
class of nonincremental projection methods. As a consequence, it is necessary to resort
to a fractional-step time discretization different from the nonincremental one adopted
originally. An alternative possibility studied in this paper consists in using the incre-

mental version of the projection method, also known as pressure correction method in
the literature. This method was first proposed by Goda [4] in a finite difference context
and has been also analyzed by Van Kan [14] in the special case of a MAC computa-
tional molecule combined with a Crank–Nicolson time discretization. The analysis of
[14] is however rather formal insofar as it shows that the error is of c(h)(∆t)2, the
constant c(h) being a mesh dependent factor that behaves like O(1/h2).

The finite element counterpart of the incremental method with the time derivative
approximated by the implicit Euler scheme has been analyzed and implemented by the
authors [8, 9]. In particular, numerical tests reported in [9] show that this algorithm
has a time-splitting error of O((∆t)2). As a consequence, the incremental strategy is
an appropriate starting point for deriving second-order accurate projection methods.

A method of this class, based on the three-level Backward Difference Formula ap-
plied to the momentum equation, has been proposed by the first author [7]. A judicious
choice of coefficients in the projection equation leads to an overall unconditional stabil-
ity, such that, when mixed finite elements are used, no ad hoc stabilization technique is
needed. The aim of this paper is to report on the theoretical results of [7] and [9] and
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to illustrate the second-order accuracy of the proposed method by means of numerical
tests.

The paper is organized as follows. First, the Navier–Stokes problem is stated and
some notation is introduced. Then, in section 2 we review the incremental fractional-
step projection method. A semi-implicit unconditionally stable treatment of the non-
linear term is considered. The incompressible projection step is interpreted as a Poisson
problem once a clear and explicit distinction is made between the vector spaces which
the intermediate and end-of-step velocity fields belong to. The final algorithm is how-
ever formulated in terms of only one velocity field, as explicitly shown in Section 3.
The weak equations of the fully discretized problem are given in Section 4. In Section
5, the stability and accuracy of the incremental method are also discussed recalling the
main result concerning the time-splitting error of the method. Section 6 introduces
a second-order time discretization using the three-level Backward Difference Formula
combined with a linear extrapolation for the advection field in the nonlinear terms.
In Section 7, some numerical results are given to illustrate the stability properties of
equal-order and unequal-order spatial interpolations for velocity and pressure. The
test calculations show the O((∆t)2) behavior of the splitting error for the incremental
Euler scheme and the O((∆t)2) accuracy of the new three-level BDF method [7]. The
last section is devoted to some concluding remarks.

We are hereafter concerned with the time-dependent incompressible Navier–Stokes
equations formulated in terms of the primitive variables: velocity u and pressure p (per
unit density). The fluid domain Ω is assumed to be smooth, bounded, and connected
in two or three dimensions. The formal mathematical statement of the problem is:
Find u and p (up to a constant) so that





∂u

∂t
− ν∇2u + (u ·∇)u + ∇p = f ,

∇· u = 0,

u|∂Ω = b,

u|t=0 = u0,

(1.1)

where ν is the viscosity, f is a known body force, b is the velocity prescribed on the
boundary ∂Ω, and u0 is the divergence-free initial velocity field. The boundary and
the data are assumed to be regular enough and to satisfy all the compatibility condi-
tions needed for a smooth solution to exist for all time. For simplicity, only a Dirichlet
boundary condition for velocity is considered here, but more general boundary condi-
tions can be handled by the techniques presented below (see [9]).
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2 The incremental fractional-step algorithm

The incremental version of the fractional-step method consists in making explicit the
pressure at the viscous step and correcting it at the projection step by evaluating a
pressure increment to enforce the incompressibility condition. For the sake of com-
pleteness, we briefly restate some results established in [6, 9] and introduce the neces-
sary notations. In particular we focus on the difference in terms of functional setting
existing between the two substeps of the method, namely the viscous step and the
projection step. This distinction leads to consider two different vector spaces for ap-
proximating the intermediate velocity and the end-of-step velocity. It is shown in the
next sections that the distinction between the two velocity functional spaces plays
a key role in the convergence analysis of the fully discrete method as well as in its
practical implementation.

Setting u0 = u0 and assuming p0 to be known, for k ≥ 0 solve the following two
problems: First, consider the advection–diffusion step





uk+1 − it ûk

∆t
− ν∇2uk+1 + (uk·∇)uk+1 + 1

2
(∇· uk)uk+1 = f k+1 −∇pk,

uk+1
|∂Ω = bk+1;

(2.1)

then, perform the projection step in the following incremental (pressure-correction)
form: 




ûk+1 − iuk+1

∆t
+ ∇̂(pk+1 − pk) = 0,

∇̂· ûk+1 = 0,

n · ûk+1
|∂Ω = n · bk+1.

(2.2)

It is important to note the structural difference existing between the viscous step
(2.1) and the projection phase of (2.2) of the calculation. The first half-step constitutes
an elliptic boundary value problem for an intermediate velocity uk+1 accounting for
viscosity and convection, whereas the second half-step represents an essentially inviscid
problem which determines the end-of-step divergence-free velocity field ûk+1 together
with a suitable approximation of the pressure increment (pk+1−pk). As a consequence,
boundary conditions of a different kind are imposed on the velocity fields that are
calculated in the two half-steps. Accordingly, the two operators ∇· and ∇̂· occurring
in the two steps are distinct since they act on vector fields belonging to spaces which
are endowed with very different regularities, namely, H1 and Hdiv (or possibly L2),
respectively.

The presence of two velocity spaces requires to introduce the injection operator
i : H1

0 −→ Hdiv
0 and its transpose it, [5, 6]. Indeed, ∇̂· : Hdiv

0 −→ L2 is an extension
of ∇· : H1

0 −→ L2 in the sense that we have the remarkable property:

∇̂· i = ∇· and i t∇̂ = ∇ .
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This distinction may seem unduly pedantic in the context of the spatially continuous
problem, but it proves to be relevant when it comes to discretizing the equations in
space.

By applying ∇̂· to the first equation of (2.2), we obtain the following Poisson
equation for the pressure variation (pk+1 − pk):





−∇̂2(pk+1 − pk) = −(∆t)−1 ∇· uk+1,

∂(pk+1 − pk)

∂n |∂Ω
= 0,

(2.3)

where we have used ∇̂· i = ∇· . Once pk+1 is known, the end-of-step velocity is given
by the explicit relation

ûk+1 = iuk+1 −∆t ∇̂(pk+1 − pk). (2.4)

Note that, insofar as the pressure increment solution of the Poisson equation is in H 1,
∇̂(pk+1 − pk) belongs to L2; as a result, ûk+1 should not be expected a priori to have
more regularity than that of Hdiv (which is lower than that of H1).

The time integration scheme chosen in the momentum equation is fully implicit for
the viscous term and semi-implicit for the advection term. To guarantee unconditional
stability, i.e., to avoid any restriction on the time step ∆t, the advection term (v ·∇)u
has been replaced by its well known skew-symmetric form (v ·∇)u + 1

2
(∇· v)u, see

e.g., Temam [12] or Quarteroni and Valli [10]. Note that, since the skew-symmetry of
the advection term relies on the fact that v is divergence free, one could imagine using
ûk as the advection field and writing the advection term in the form (ûk·∇)uk+1 for
ûk is divergence free. Actually, this form is not natural since the theoretical analysis
shows that û is not regular enough for (ûk·∇)uk+1 to be controlled by means of the
usual Sobolev inequalities. This theoretical remark leads quite naturally to formulate
a very simple projection method, with the end-of-step velocity eliminated completely
from the final algorithm, as shown below.

3 Elimination of the end-of-step velocity

The final velocity ûk+1 is made to disappear from the fractional-step algorithm by
substituting its expression (2.4) into the equation of the (next) viscous step, since we
have

it ûk = it[iuk −∆t ∇̂(pk − pk−1)]

= it iuk −∆t it[∇̂(pk − pk−1)]

= uk −∆t∇(pk − pk−1),
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where we have made use of the property it∇̂= ∇. This argument is purely formal here
but plays a fundamental role in the spatially discrete case. By virtue of this result, the
viscous step problem can be rewritten in the simpler, but strictly equivalent, form:





uk+1 − uk

∆t
− ν∇2uk+1 + (uk·∇)uk+1

+ 1
2
(∇· uk)uk+1 = f k+1 −∇(2pk − pk−1),

uk+1
|∂Ω = bk+1.

(3.1)

4 Fully discretized equations

Let us introduce a finite element approximation X0,h ⊂ H1
0 for the intermediate

velocity uh and Nh ⊂ H1 for the pressure ph, each pressure field being defined up to
a constant. Let the polynomial order of interpolation for the velocity be denoted by `
(≥ 1) and that for the pressure by `′, with max(`− 1, 1) ≤ `′ ≤ `.

The weak formulation of the advection–diffusion step (3.1) reads: For k ≥ 0, find
uk+1
h ∈ Xbk+1, h such that, for all vh ∈ X0,h,

(
uk+1
h − ukh
∆t

,vh

)
+ ν (∇uk+1

h ,∇vh) + ((ukh·∇)uk+1
h , vh)

+ 1
2
(∇· ukh, uk+1

h · vh) = (f k+1,vh)− (∇(2pkh − pk−1
h ),vh).

(4.1)

The intermediate velocity u1
h at the first time step is also evaluated from equation

(4.1) where by convention we set p−1
h = p0

h.
The projection step has a unique expression only once the functional space for the

end-of-step velocity is chosen. It is shown in [5, 6] that many options are possible; one
of the simplest consists in selecting ûk+1

h in Xh + ∇Nh. Given this particular choice,
it can be proven that the operator ∇̂h, the discrete counterpart of ∇̂, coincides exactly
with the restriction to Nh of the gradient operator (in terms of distributions); as a
result, the projection step takes the following form: For k ≥ 0, find (pk+1

h − pkh) ∈ Nh
such that, for all qh ∈ Nh,

(∇(pk+1
h − pkh),∇qh) = −(∆t)−1 (∇· uk+1

h , qh). (4.2)

It must be emphasized that a basic aspect of the method is the introduction of two
different spaces for representing the velocity computed in each of the two (half-)steps
of the method. In fact, the discrete velocity field that is solution of the projection
step belongs to a space of vector functions (Xh+∇Nh) which are discontinuous at the
interfaces of the finite elements. More precisely, the normal component of the end-of-
step velocity ûk+1 is discontinuous at the interfaces between the (pressure) elements.
Although this choice may seem peculiar, it is the most natural in the context of
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projection schemes based on the Poisson equation for pressure or pressure increment.
Note, however, that the discrete end-of-step velocity is never explicitly referenced in
the numerical algorithm which is formulated in terms of the intermediate velocity only.

Other choices of the functional space for the end-of-step velocity are possible. For
instance, one may pick ûk+1

h in Xbk+1, h. This choice is permitted, provided that the
inf-sup condition between Xh and Nh is satisfied; however, it is not optimal and yields
a discrete problem for the pressure involving the inverse of the mass matrix. The
reader is referred to [6] for a review of other possible choices.

5 Stability and convergence

We want to discuss now the stability and convergence properties of the incremental
projection scheme (4.1) and (4.2). Since the incompressibility constraint is enforced
through an uncoupled pressure Poisson problem, one may think that in principle any
spatial discretization for approximating elliptic problems is admissible. More precisely,
since the two steps (4.1) and (4.2) are fully uncoupled, it is conceivable to solve these
problems by anyH1-conformal finite element technique without the two approximation
spaces X0,h and Nh being subordinate to the inf-sup condition. However, this view
(widely shared in the literature) is false since the stability provided by the Poisson
equation of the incremental scheme only applies to the pressure variation. This is a
critical difference with the nonincremental projection method which guarantee some
sort of stability on the instantaneous pressure field itself, but only for ∆t large enough.
As a matter of facts, the nonincremental technique trades accuracy for (conditional)
stability. This feature is clearly illustrated by the numerical tests to be presented in
section 7.

The description of the incremental fractional-step projection method is concluded
by recalling the following result established in [8].

Theorem 1 Under convenient regularity assumptions on the data f , u0, b, and
provided the inf-sup condition is satisfied, the solution to the incremental projection
scheme (4.1)-(4.2) satisfies the error bounds:

max
0≤k≤K

∥∥∥ukh − u(tk)
∥∥∥
0
+ max

0≤k≤K

∥∥∥ûkh − u(tk)
∥∥∥
0
≤ c[u, p](∆t+ h`+1), (5.1)

max
0≤k≤K

∥∥∥ukh − u(tk)
∥∥∥
1
+ max

0≤k≤K

∥∥∥pkh − p(tk)
∥∥∥
0
≤ c[u, p](∆t+ h`), (5.2)

as ∆t→ 0 and h→ 0, where ` is the interpolation degree of the velocity.

These error estimates show that the incremental algorithm achieves an O(
√
∆t)

increase of accuracy with respect to the nonincremental algorithm. Moreover, let us
denote by (wh, qh) the solution of the fully coupled problem: set w0

h = u0
h, and for
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k ≥ 0 define wk+1
h ∈Xbk+1, h and qk+1

h ∈ Nh such that,





(
wk+1
h −wk

h

∆t
,vh

)
+ ν (∇wk+1

h ,∇vh) + ((wk
h·∇)wk+1

h , vh)

+ 1
2
(∇· wk

h, wk+1
h · vh)− (qk+1

h ,∇· vh) = (f k+1,vh), ∀vh ∈ X0,h,

(∇· wk+1
h , rh) = 0, ∀rh ∈ Nh.

(5.3)

The solution of this problem can be obtained by various means; for instance, it can
be calculated by solving iteratively the Uzawa operator (see e.g. Temam [12] for an
introduction to this technique). The computational cost for evaluating the coupled
solution, (wh, qh), is in general much higher than that needed for evaluating the uncou-
pled solution (uh, ph) of (4.1)-(4.2). Indeed, it is this difference in the computational
costs that is at the origin of the popularity of fractional-step projection methods. The
difference between wh and uh is the error induced by the uncoupling of the incom-
pressibility constraint; this difference is conventionally called the time-splitting error.
It is proved in Guermond [7] that the time-splitting error induced by the incremental
algorithm is indeed O((∆t)2):

Theorem 2 Provided the inf-sup condition is satisfied, the solution (uh, ph) to the
incremental projection scheme (4.1)-(4.2) satisfies the following bounds:

‖uh −wh‖l2(L2) + ‖ûh −wh‖l2(L2) ≤ c[wh, qh](∆t)2 (5.4)

as ∆t→ 0, where (wh, qh) is the solution to the coupled problem (5.3).

This result implies that second order accuracy in time is possible if the first-order
time stepping is replaced by a second-order scheme, for instance the trapezoidal rule or
the three-level backward difference (BDF) formula to be discussed in the next section.

6 A second-order BDF projection scheme

The three-level BDF is chosen to benefit from better stability properties than those of
the commonly used Crank–Nicolson scheme, which is known to be marginally stable.
The unconditional stability is maintained in the nonlinear regime by using the skew-
symmetric form of the advection term evaluated semi-implicitly by means of a linear
extrapolation in time of the new advection velocity. The scheme reads:





3uk+1 − 4itûk + itûk−1

2∆t
− ν∇2uk+1 + (uk+1

? ·∇)uk+1

+ 1
2
(∇· uk+1

? )uk+1 = f k+1 −∇pk,

uk+1
|∂Ω = bk+1,

(6.1)
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having introduced the linearly extrapolated velocity

uk+1
? = 2uk − uk−1; (6.2)

then, perform the projection step in the following incremental form:





3ûk+1 − 3iuk+1

2∆t
+ ∇̂(pk+1 − pk) = 0,

∇̂· ûk+1 = 0,

n · ûk+1
|∂Ω = n · bk+1.

(6.3)

Once the intermediate velocities ûk and ûk−1 are eliminated, the first step takes
the following form in practice:





3uk+1 − 4uk + uk−1

2∆t
− ν∇2uk+1 + (uk+1

? ·∇)uk+1

+ 1
2
(∇· uk+1

? )uk+1 = f k+1 − 1
3
∇(7pk − 5pk−1 + pk−2),

uk+1
|∂Ω = bk+1.

(6.4)





−∇̂2(pk+1 − pk) = − 3

2∆t
∇· uk+1,

∂(pk+1 − pk)

∂n |∂Ω
= 0,

(6.5)

The following convergence result is proven in Guermond [7]:

Theorem 3 Under convenient regularity assumptions on the data f , u0, b, and pro-
vided the inf-sup condition is satisfied, the solution to the three-level BDF projection
scheme (6.4)-(6.5) satisfies the error bounds:

‖uh − u‖l2(L2) + ‖ûh − u‖l2(L2) ≤ c[u, p][(∆t)2 + h`+1] (6.6)

as ∆t→ 0 and h→ 0.

7 Numerical results

For the numerical illustrations, we rely upon the well known standard driven cavity
problem [1]. We have taken a Reynolds number equal to 100, which is well documented
in the literature. All the linear systems involved in the algorithm are solved by direct
methods for large sparse systems of linear equations. The calculations are performed
on uniform meshes.
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Figure 1: Pressure field in the driven cavity R = 100: Incremental method with
equal-order P1/P1 interpolation. Left ∆t = 0.1 and right ∆t = 0.01.

To illustrate the fact that the inf-sup condition is a necessary condition for the
incremental projection technique to work properly, we show some counter-examples.
We consider first the incremental method with an equal-order P1/P1 interpolation
using a mesh of 2 × 402 equal triangles. Recall that the P1/P1 element does not
satisfy the inf-sup condition. The steady-state pressure fields computed with two
representative time steps ∆t = 0.1 and ∆t = 0.01 are shown in Figure 1. Severe
node-to-node oscillations clearly appear in both cases, the worst case corresponding to
the smaller time-step. These results confirm that the inf-sup compatibility condition
must be satisfied for the incremental method to work properly, although the use of
large time steps can make this necessity less evident.

We emphasize that a refinement of the mesh for the equal-order interpolation is
not capable of curing the spatial oscillations, as clearly demonstrated by Figure 2 for
∆t = 0.01. Here we compare the solution obtained by the equal-order P1/P1 approxi-
mation on a mesh of 2× 802 of equal triangles with that obtained by the mixed P1/P2

approximation on a mesh of 2× 402 linear/parabolic elements for pressure/velocity.
To illustrate the capability of the incremental method to provide O((∆t)2) time

splitting error as predicted in Theorem 2, we conduct a convergence test on a fixed
mesh by comparing the solution calculated by the projection method to that of the
coupled system (5.3) obtained by solving the Uzawa operator. The tests are performed
on the driven cavity using a unstructured P1/P2 triangulation consisting of ≈ 400 P2-
nodes. In Figure 7, we plot the errors on velocity and pressure measured, respectively,
by the maximum in time of the energy norm, i.e., l∞(0, 1;L2), for the velocity (solid
line) and by the energy norm in space and time, i.e., l2(0, 1;L2), for the pressure
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Figure 2: Pressure field in the driven cavity R = 100 on finer meshes: Incremental
method with equal-order P1/P1 interpolation on a 2×802 mesh (left) and mixed P1/P2

interpolation on a 2× 402 mesh (right); ∆t = 0.01.

(dotted line). The dashed line corresponds to second-order convergence in time. The
present test clearly shows that the incremental scheme yields a time splitting error of
O((∆t)2).

To verify the theoreticalO((∆t)2) accuracy of the three-level BDF scheme predicted
by Theorem 3, this scheme has been tested with the following analytical solution in
the unit square Ω = [0, 1]2:





ux = − cos x sin y g(t),

uy = sin x cos y g(t),

p = −1
4
[cos(2x) + cos(2y)] g2(t),

where g(t) = sin(2t). Setting the velocity in the formal form u = u(x, y)g(t), then
the source term corresponding to the Navier–Stokes equations is f = u(x, y)[g ′(t) +
2g(t)/R]. The Reynolds number is set to 100 and we use a mesh of 2 × 402 P1/P2

triangles. Figure 4 shows the maximum value in time, over 0 ≤ t ≤ 1.5, of the error in
the L2 norm for the pressure and the error in the H1 and L2 norms for the velocity;
the tests have been carried out on two P1/P2 meshes composed of 2× 202 P2-triangles
and 2×402 P2-triangles respectively. The different saturations of the errors as ∆t→ 0
are due to the spatial discretization error, which is of order h2 for the velocity (resp.
pressure) in the H1 (resp. L2) norm, while it is of order h3 for the velocity in the L2
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Figure 4: Convergence tests for the second-
order BDF projection method, with mixed
P1/P2 interpolation. Analytical test prob-
lem for R = 100; finite element mesh of
2 × 202 P2-triangles (left) and 2 × 402 P2-
triangles (right).

norm. This convergence test confirms that the incremental projection method retains
the optimal space approximation property of the finite elements and introduces only
a second-order error in time as expected.

8 Conclusions

The convergence as h and ∆t→ 0, where h is the mesh size and ∆t is the time step, is
the basic issue in any numerical method for the computation of transient flows. For the
approximation of the incompressible Navier–Stokes equations by means of projection
methods, the convergence analysis is complicated by the occurrence of a time-splitting
error brought about by the fractional character of the time discretization. It is shown
in this paper that the time splitting error induced by uncoupling the viscosity from
incompressibility is of O((∆t)2) if the pressure is dealt with in an incremental form.

The three-level backward difference formula has been adopted and combined with
the incremental version of the projection method to obtain an overall second-order
accurate true projection method. An O((∆t)2) convergence theorem is given and this
result is illustrated by numerical tests. The functional setting that comes into play
involves two different vector spaces endowed with quite different regularities for the
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velocity fields implied in the two half-steps of the method.
Though, by naively looking at each substep of the incremental projection method,

one may conceive solving each subproblem by any H1-conformal finite element tech-
nique without the two approximation spaces satisfying the inf-sup condition, we have
shown by giving counter-examples that this idea is wrong. Unwanted spurious modes
for pressure (and possibly also for velocity) are a priori avoided by resorting to mixed
finite element approximations, for example, the classical P1/P2 polynomial approxi-
mation. Respecting the inf-sup condition yields an unconditionally stable projection
method of second-order time accuracy which needs no help from artificial stabilization
techniques.
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