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The objective of this article is to give an overview
of some advanced numerical methods commonly
used in fluid mechanics. The focus is set primarily
on finite elements methods and finite volume meth-
ods.

1. Fluid Mechanics Models

Let Ω be a domain in Rd (d = 2, 3) with bound-
ary ∂Ω and outer unit normal n. Ω is assumed to
be occupied by a fluid. The basic equations govern-
ing fluid flows are derived from three conservation
principles: conservation of mass, momentum, and
energy. Denoting the density by ρ, the velocity by
u , and the mass specific internal energy by ei, these
equations are

∂tρ+ ∇·(ρu) = 0(1)

∂t(ρu) + ∇·(ρu ⊗ u) = ∇·σ + ρf ,(2)

∂t(ρei) + ∇·(ρuei) = σ:ǫ + qT −∇·jT ,(3)

where σ is the stress tensor, ǫ = 1
2 (∇u + ∇u)T is

the strain tensor, f is a body force per unit mass
(gravity is a typical example), qT is a volume source
(it may model chemical reactions, Joule effects, ra-
dioactive decay, etc.), and jT is the heat flux. In ad-
dition to the above three fundamental conservation
equations, one may also have to add L equations

that accounts for the conservation of other quan-
tities, say φℓ, 1 ≤ ℓ ≤ L. These quantities may
be the concentration of constituents in an alloy, the
turbulent kinetic energy, the mass fractions of vari-
ous chemical species by unit volume, etc. All these
conservation equations take the following form

(4) ∂t(ρφℓ)+∇·(ρuφℓ) = qφℓ
−∇·jφℓ

, 1 ≤ ℓ ≤ L.

Henceforth the index ℓ is dropped to alleviate the
notation.

The above set of equations must be supple-
mented with initial and boundary conditions. Typ-
ical initial conditions are ρ|t=0 = ρ0, u|t=0 = u0,
and φ|t=0 = φ0. Boundary conditions are usu-
ally classified into two types: the essential bound-
ary conditions and the natural boundary conditions.
Natural conditions impose fluxes at the boundary.
Typical examples are

(σ·n + R·u)|∂Ω = au,

(jT ·n + rT ei)|∂Ω = aT

and

(jφ·n + rφφ)|∂Ω = aφ.

The quantities R, rT , rφ, au, aT , aφ are given.
Essential boundary conditions consist of enforcing
boundary values on the dependent variables. One
typical example is the so-called no-slip boundary
condition: u|∂Ω = 0.

The above system of conservation laws is closed
by adding three constitutive equations whose pur-
pose is to relate each field σ, jT , jφ to the fields ρ,
u, and φ. They account for microscopic properties
of the fluid and thus must be frame independent.
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Depending on the constitutive equations and ade-
quate hypotheses on time and space scales, various
models are obtained. An important class of fluid
model is one for which the stress tensor is a linear
function of the strain tensor, yielding the so-called
Newtonian fluid model:

(5) σ = (−p+ λ∇·u)I + 2µǫ.

Here p is the pressure, I is the identity matrix, and
λ and µ are viscosity coefficients. Still assuming
linearity, common models for heat and solute fluxes
consist of assuming

(6) jT = −κ∇T, jφ = −D∇φ,

where T is the temperature. These are the so-called
Fourier’s law and Fick’s law, respectively.

Having introduced two new quantities, namely
the pressure p and the temperature T , two new
scalar relations are needed to close the system.
These are the state equations. One admissible
assumption consists of setting ρ = ρ(p, T ). An-
other usual additional hypothesis consists of as-
suming that the variations on the internal energy
are proportional to those on the temperature, i.e.,
∂ei = cP∂T .

Let us now simplify the above models by assum-
ing that ρ is constant. Then, mass conservation im-
plies that the flow is incompressible, i.e., ∇·u = 0.
Let us further assume that neither λ, µ, nor p de-
pend on ei. Then, upon abusing the notation and
still denoting by p the ratio p/ρ, the above set
of assumptions yields the so-called incompressible
Navier–Stokes equations:

∇·u = 0,(7)

∂tu + u·∇u − ν∆u + ∇p = f .(8)

As a result, the mass and momentum conservation
equations are independent of that of the energy and
those of the solutes:

ρcP (∂tT + u·∇T ) −∇·(κ∇T ) = 2µǫ:ǫ + qT ,(9)

∂tφ+ u·∇φ− 1
ρ
∇·(D∇φ) = 1

ρ
qφ.(10)

Another model allowing for a weak dependency
of ρ on the temperature, while still enforcing incom-
pressibility, consists of setting ρ = ρ0(1−β(T−T0)).
If buoyancy effects induced by gravity are impor-
tant, it is then possible to account for those by set-
ting f = ρ0g(1 − β(T − T0)), where g is the grav-
ity acceleration, yielding the so-called Boussinesq
model.

Variations on these themes are numerous and a
wide range of fluids can be modeled by using nonlin-
ear constitutive laws and nonlinear state laws. For
the purpose of numerical simulations, however, it is
important to focus on simplified models.

2. The Building Blocks

From the above considerations we now extract a
small set of elementary problems which constitute
the building blocks of most numerical methods in
fluid mechanics.

2.1. Elliptic equations. By taking the divergence
of the momentum equation (8) and assuming u to
be known and renaming p to φ, one obtains the
Poisson equation

(11) −∆φ = f,

where f is a given source term. This equation plays
a key role in the computation of the pressure when
solving the Navier–Stokes equations; see (54b). As-
suming adequate boundary conditions are enforced,
this model equation is the prototype for the class
of the so-called elliptic equations. A simple gen-
eralization of the Poisson equation consists of the
advection-diffusion equation

(12) u·∇φ−∇·(κ∇φ) = f,

where κ > 0. Admissible boundary conditions are
(κ∂nφ + rφ)|∂Ω = a, r ≥ 0, or φ|∂Ω = a. This
type of equation is obtained by neglecting the time
derivative in the heat equation (9) or in the solute
conservation equation (10). Mathematically speak-
ing (12) is also elliptic since its properties (in par-
ticular, the way the boundary conditions must be
enforced) are controlled by the second-order deriva-
tives. For the sake of simplicity, assume that u = 0

in the above equation and that the boundary con-
dition is φ|∂Ω = 0, then it is possible to show that φ
solves (12) if and only if φ minimizes the following
functional

J (ψ) =

∫

Ω

(|∇ψ|2 − fψ) dx,

where | · | is the Euclidean norm and ψ spans

(13) H = {ψ;
∫

Ω
|∇ψ|2 dx <∞; ψ|∂Ω = 0}

Writing the first-order optimality condition for this
optimization problem yields

∫

Ω
∇φ · ∇ψ =

∫

Ω
fψ,
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for all ψ ∈ H. This is the so-called variational for-
mulation of (12). When u is not zero, no varia-
tional principle holds but a similar way to refor-
mulate (12) consists of multiplying the equation by
arbitrary functions in H and integrating by parts
the second-order term to give

(14)

∫

Ω

(u·∇φ)ψ + κ∇φ·∇ψ =

∫

Ω

fψ, ∀ψ ∈ H.

This is the so-called weak formulation of (12). Weak
and variational formulations are the starting point
for finite element approximations.

2.2. Stokes equations. Another elementary
building block is deduced from (8) by assuming
that the time derivative and the nonlinear term
are both small. The corresponding model is the
so-called Stokes equations

− ν∆u + ∇p = f ,(15)

∇·u = 0.(16)

Assume for the sake of simplicity that the no-slip
boundary condition is enforced: u|∂Ω = 0. Intro-
duce the Lagrangian functional

L(v, q) =

∫

Ω

(∇u:∇v − q∇·v − f ·v) dx.

Set

X = {v;

∫

Ω

|∇v|2 dx <∞; v|∂Ω = 0}

M = {q;

∫

Ω

q2 dx <∞}.

Then, the pair (u, p) ∈ X×M solves the Stokes
equations if and only if it is a saddle-point of L,
i.e.,

(17) L(u, q) ≤ L(u, p) ≤ L(v, p), ∀(v, q)∈X×M.

In other words, the pressure p is the Lagrange mul-
tiplier of the incompressibility constraint ∇·u = 0.
Realizing this fact helps to understand the nature
of the Stokes equations, specially when it comes to
construct discrete approximations. A variational
formulation of the Stokes equations is obtained by
writing the first-order optimality condition, namely:

∫

Ω

(ν∇u:∇v − p∇·v − f ·v) dx = 0, ∀v ∈ X,

∫

Ω

q∇·u dx = 0, ∀q ∈M.

When the nonlinear term is not zero in the momen-
tum equation, or when this term is linearized, there

is no saddle-point, but a weak formulation is ob-
tained by multiplying the momentum equation by
arbitrary functions v in X and integrating by parts
the Laplacian, and by multiplying the mass equa-
tion by arbitrary functions q in M :

∫

Ω

((u·∇u)·v+ν∇u:∇v−p∇·v) dx=

∫

Ω

f ·v,(18)

∫

Ω

q∇·u = 0.(19)

2.3. Parabolic equations. The class of elliptic
equations generalizes to that of the parabolic equa-
tions when time is accounted for:

(20) ∂tφ+ u·∇φ−∇·(κ∇φ) = f, φ|t=0 = φ0.

Fundamentally, this equation has many similarities
with the elliptic equation

(21) αφ+ u·∇φ−∇·(κ∇φ) = f,

where α > 0. In particular, the set of bound-
ary conditions that are admissible for (20) and
(21) are identical, i.e., it is legitimate to enforce
(κ∂nφ+ rφ)|∂Ω = a, r ≥ 0, or φ|∂Ω = a. Moreover,
solving (21) is always a building block of any algo-
rithm solving (20). The important fact to remember
here is that if a good approximation technique for
solving (21) is at hand, then extending it to solve
(20) is usually straightforward.

2.4. Hyperbolic equations. When κ
UL

→ 0,
where U is the reference velocity scale and L is the
reference length scale, (20) degenerates into the so-
called transport equation

(22) ∂tφ+ u·∇φ = f.

This is the prototypical example for the class of
hyperbolic equations. For this equation to be well-
posed it is necessary to enforce an initial condition
φ|t=0 = φ0 and an inflow boundary condition, i.e.,

φ|∂Ω− = a, where ∂Ω− = {x ∈ ∂Ω; (u·n)(x) < 0}
is the so-called inflow boundary of the domain. To
better understand the nature of this equation, in-
troduce the characteristic lines X(x, s; t) of u(x, t)
defined as follows:

(23)

{

dtX(x, s; t) = u(X(x, s; t), t),

X(x, s; s) = x.

If u is continuous with respect to t and Lipschitz
with respect to x, this ODE has a unique solution.
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Furthermore, (22) becomes

(24) dt

[

φ(X(x, s; t), t)
]

= f(X(x, s; t), t).

Then

φ(x, t) = φ0(X(x, t; 0)) +

∫ t

0

f(X(x, t; τ), τ) dτ

provided X(x, t; τ) ∈ Ω for all τ ∈ [0, t]. This shows
that the concept of characteristic curves is impor-
tant to construct an approximation to (22).

3. Meshes

The starting point of every approximation tech-
nique for solving any of the above model problems
consists of defining a mesh of Ω on which the ap-
proximate solution is defined. To avoid having to
account for curved boundaries, let us assume the do-
main Ω is a two-dimensional polygon (resp. three-
dimensional polyhedron). A mesh of Ω, say Th, is a
partition of Ω into small cells hereafter assumed to
be simple convex polygons in two dimensions (resp.
polyhedrons in three dimensions), say triangles or
quadrangles (resp. tetrahedrons or cuboids). More-
over, this partition is usually assumed to be such
that if two different cells have a nonempty intersec-
tion, then the intersection is a vertex, or an entire
edge, or an entire face. The left panel of Figure 1
shows a mesh satisfying the above requirement. The
mesh in the right panel is not admissible.

Fig 1: Admissible (left) and nonadmissible (right)

meshes.

4. Finite Elements: Interpolation

The finite element method is foremost an inter-
polation technique. The goal of this section is to
illustrate this idea by giving examples.

Let Th = {Km}1≤m≤Nel
be a mesh composed of

Nel simplices, i.e., triangles in two dimensions or
tetrahedrons in three dimensions. Consider the fol-
lowing vector spaces of functions
(25)
Vh = {vh ∈ C0(Ω); vh|Km

∈ Pk, 1 ≤ m ≤ Nel},

where Pk denotes the space of polynomials of global
degree at most k. Vh is called a finite element ap-
proximation space. We now construct a basis for
Vh.

Given a simplex Km in Rd, let vn be a vertex
of Km, let Fn be the face of Km opposite to vn,
and define nn to be the outward normal to Fn,
1 ≤ n ≤ d+ 1. Define the barycentric coordinates

(26) λn(x) = 1−
(x − vn) · nn

(vl − vn) · nn

, 1 ≤ n ≤ d+ 1,

where vl is an arbitrary vertex in Fn (the definition
of λn is clearly independent of vl provided vl be-
longs to Fn). The barycentric coordinate λn is an
affine function; it is equal to 1 at vn and vanishes
on Fn; its level-sets are hyperplanes parallel to Fn.
The barycenter of Km has barycentric coordinates

(
1

d+ 1
, . . . ,

1

d+ 1
).

The barycentric coordinates satisfy the following
properties: For all x ∈ Km, 0 ≤ λn(x) ≤ 1, and
for all x ∈ Rd,

d+1
∑

n=1

λn(x) = 1, and

d+1
∑

n=1

λn(x)(x − vn) = 0.

Consider the set of nodes {an,m}1≤n≤nsh
of Km

with barycentric coordinates
(

i0
k
, . . . ,

id
k

)

, 0 ≤ i0, . . . , id ≤ k, i0+. . .+id = k.

These points are called the Lagrange nodes of Km.
It is clear that there are nsh = 1

2 (k + 1)(k + 2) of

these points in two dimensions and nsh = 1
6 (k +

1)(k + 2)(k + 3) in three dimensions. It is remark-
able that nsh = dim Pk.

Let {b1, . . . , bN} =
⋃

Km∈Th
{a1,m, . . . ,ansh,m}

be the set of all the Lagrange nodes in the mesh.
For Km ∈ Th and n ∈ {1, . . . , nsh}, let j(n,m) ∈
{1, . . . , N} be the integer such that an,m = bj(n,m);
j(n,m) is the global index of the Lagrange node
an,m. Let {ϕ1, . . . , ϕN} be the set of functions in
Vh defined by ϕi(bj) = δij , then it can be shown
that

(27) {ϕ1, . . . , ϕN} is a basis for Vh.

The functions ϕi are called global shape functions.
An important property of global shape functions is
that their supports are small sets of cells. More pre-
cisely, let i ∈ {1, . . . N} and let Vi = {m; ∃n; i =
j(n,m)} be the set of cell indices to which the node
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bi belongs, then the support of ϕi is ∪m∈Vi
Km. For

k = 1, it is clear that ϕi|Km
= λn for all m ∈ Vi and

all n such that i = j(n,m), and ϕi|Km
= 0 other-

wise. The graph of such a shape function in two di-
mensions is shown in the left panel of Figure 2. For
k = 2, enumerate from 1 to d+1 the vertices of Km,
and enumerate from d+2 to nsh the Lagrange nodes
located at the midedges. For a midedge node of in-
dex d+ 2 ≤ n ≤ nsh, let b(n), e(n) ∈ {1, . . . , d+ 1}
be the two indices of the two Lagrange nodes at
the extremities of the edge in question. Then, the
restriction to Km of a P2 shape function ϕi is

(28) ϕi|Km
=

{

λn(2λn − 1), if 1 ≤ n ≤ d+ 1,

4λb(n)λe(n), if d+ 2 ≤ n ≤ nsh,

Figure 2 shows the graph of two P2 shape functions
in two dimensions.

Fig 2: Two-dimensional Lagrange shape functions:

Piecewise P1 (left) and Piecewise P2 (center and right).

Once the space Vh is introduced, it is natural to
define the interpolation operator

(29) Πh : C0(Ω) ∋ v 7−→

N
∑

i=1

v(bi)ϕi ∈ Vh.

This operator is such that for all continuous func-
tion v, the restriction of Πh(v) to each mesh cell is
a polynomial in Pk and Πh(v) takes the same val-
ues as v at the Lagrange nodes. Moreover, setting
h = maxKm∈Th

diam(Km), and defining

‖r‖Lp = (

∫

Ω

|r|p dx)
1
p for 1 ≤ p <∞,

the following approximation result holds

(30) ‖v − Πh(v)‖Lp + h‖∇(v − Πh(v))‖Lp

≤ chk+1‖v‖Ck+1(Ω),

where c is a constant that depends on the quality of
the mesh. More precisely, for Km ∈ Th, let ρKm

be
the diameter of the largest ball that can be inscribed
into Km and let hKm

be the diameter of Km. Then,
c depends on σ = maxKm∈Th

hKm
/ρKm

. Hence, for
the mesh to have good interpolation properties, it is
recommended that the cells be not too flat. Fami-
lies of meshes for which σ is bounded uniformly with

respect to h as h → 0 are said to be shape-regular
families.

The above example of finite element approxima-
tion space generalizes easily to meshes composed
of quadrangles or cuboids. In this case, the shape
functions are piecewise polynomial of partial degree
at most k. These spaces are usually referred to as
Qk approximation spaces.

5. Finite Elements: Approximation

We show in this section how finite element ap-
proximation spaces can be used to approximate
some model problems exhibited in §2.

5.1. Advection-diffusion. Consider the model
problem (21) supplemented with the boundary con-
dition (κ∂nφ + rφ)|∂Ω = g. Assume κ > 0,

α+ 1
2∇·u ≥ 0, and r ≥ 0. Define

a(φ, ψ) =

∫

Ω

((αφ+ β·∇φ)ψ + κ∇φ·∇ψ) dx

+

∫

∂Ω

rφψ ds.

Then, the weak formulation of (21) is: Seek φ ∈ H
(H defined in (13)) such that for all ψ ∈ H

(31) a(φ, ψ) =

∫

Ω

fψ dx +

∫

∂Ω

gψ ds.

Using the approximation space Vh defined in
(25) together with the basis defined in (27), we
seek an approximate solution to the above prob-

lem in the form φh =
∑N

i=1 Uiϕi ∈ Vh. Then, a
simple way of approximating (31) consists of seek-
ing U = (U1, . . . , UN )T ∈ RN such that for all
1 ≤ i ≤ N

(32) a(φh, ϕi) =

∫

Ω

fϕi dx +

∫

∂Ω

gϕi ds.

This problem finally amounts to solving the follow-
ing linear system

(33) AU = F,

where Aij = a(ϕj , ϕi) and Fi =
∫

Ω
fϕi dx +

∫

∂Ω
gϕi ds. The above approximation technique is

usually referred to as the Galerkin method. The fol-
lowing error estimate can be proved

(34) ‖φ− φh‖Lp + h‖∇(φ− φh)‖Lp

≤ chk+1‖φ‖Ck+1(Ω),
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where in addition to depending on the shape-
regularity of the mesh, the constant c also depends
on κ, α, and β.

5.2. Stokes equations. The line of thought devel-
oped above can be used to approximate the Navier–
Stokes problem (15)–(16). Let us assume that the
nonlinear term u·∇u is linearized in the form v·∇u,
where v is known. Let Th be a mesh of Ω, and as-
sume that finite element approximation spaces have
been constructed to approximate the velocity and
the pressure, say Xh and Mh. Assume for the sake
of simplicity that Xh ⊂ X and Mh ⊂ M . As-
sume that bases for Xh and Mh are at hand, say
{ϕ1, . . . ,ϕNu

} and {ψ1, . . . , ψNp
}, respectively. Set

a(u,ϕ) =

∫

Ω

((v·∇u)·ϕ + ν∇u:∇ϕ dx

and

b(v, ψ) = −

∫

Ω

ψ∇·v dx.

Then, we seek an approximate velocity uh =
∑Nu

i=1 Uiϕi and an approximate pressure ph =
∑Np

k=1 Pkψk such that for all i ∈ {1, . . . , Nu} and
all k ∈ {1, . . . , Np} the following holds

a(uh,ϕi) + b(ϕi, ph) =

∫

Ω

f ·ϕi dx,(35)

b(uh, ψk) = 0.(36)

Define the matrix A ∈ RNu,Nu such that Aij =
a(ϕj ,ϕi). Define the matrix B ∈ RNp,Nu such that
Bki = b(ϕi, ψk). Then, the above problem can be
recast into the following partitioned linear system

(37)

[

A BT

B 0

] [

U
P

]

=

[

F
0

]

,

where the vector F ∈ RNu is such that Fi =
∫

Ω
f ·ϕi.
An important aspect of the above approximation

technique is that for the linear system to be invert-
ible, the matrix BT must have full row rank (i.e., B
has full column rank). This amounts to

(38) ∃βh > 0, inf
qh∈Mh

sup
vh∈Xh

∫

Ω
qh∇·vh dx

‖vh‖X‖qh‖M

≥ βh,

where

‖vh‖
2
X =

∫

Ω

|∇vh|
2 dx, ‖qh‖

2
M =

∫

Ω

q2h dx.

This nontrivial condition is called the
Ladyženskaja–Babuška–Brezzi condition (LBB) in

the literature. For instance, if P1 finite elements
are used to approximate both the velocity and the
pressure, the above condition does not hold, since
there are nonzero pressure fields qh in Mh such
that

∫

Ω
qh∇·vh dx = 0 for all vh in Xh. Such fields

are called spurious pressure modes. An example is
shown in Figure 3. The spurious function alterna-
tively takes the values −1, 0, and +1 at the vertices
of the mesh so that its mean value on each cell is
zero.
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Fig 3: The P1/P1 finite element: the mesh (left); one

pressure spurious mode (right).

Couples of finite element spaces satisfying the
LBB condition are numerous. For instance, assum-
ing k ≥ 2, using Pk finite elements to approximate
the velocity and Pk−1 finite elements to approx-
imate the pressure is acceptable. Likewise using
Qk elements for the velocity and Qk−1 elements for
the pressure on meshes composed of quadrangles or
cuboids is admissible.

Approximation techniques for which the pressure
and the velocity degrees of freedom are not associ-
ated with the same nodes are usually called stag-
gered approximations. Staggering pressure and ve-
locity unknowns is common in solution methods for
the incompressible Stokes and Navier–Stokes equa-
tions; see also §7.3.

6. Finite Volumes: Principles

The finite volume method is an approximation
technique whose primary goal is to approximate
conservation equations, whether time-dependent or
not. Given a mesh, say Th = {Km}1≤m≤Nel

, and a
conservation equation

(39) α∂tφ+ ∇·F (φ,∇φ,x, t) = f,

(α = 0 if the problem is time-independent and
α = 1 otherwise), the main idea underlying every
finite volume method is to represent the approx-
imate solution by its mean values over the mesh
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cells (φK1
, . . . , φKNel

)T ∈ RNel and to test the con-
servation equation by the characteristic functions
of the mesh cells {1K1

, . . . , 1KNel
}. For each cell

Km ∈ Th, denote by nKm
the outward unit nor-

mal vector and denote by Fm the set of the faces
of Km. The finite volume approximation to (39)
consists of seeking (φK1

, . . . , φKNel
)T ∈ RNel such

that the function φh =
∑Nel

m=1 φKm
1K1m satisfies

the following: For all 1 ≤ m ≤ Nel

(40) |Km|αdtφKm
(t) +

∑

σ∈Fm

Fm,σ
h (φh,∇hφh, t) =

∫

K

f dx,

where

|Km| =

∫

K

dx,

∇hφh is an approximation of ∇φ, and Fm,σ
h is an

approximation of
∫

σ

F (φ,∇φ,x, t)·nKm
dσ.

The precise definition of the so-called approximate
flux Fm,σ

h depends on the the nature of the problem
(e.g., elliptic, parabolic, hyperbolic, saddle point)
and the desired accuracy. In general the approxi-
mate fluxes are required to satisfy the following two
important properties:
1. Conservativity: For Km,Kl ∈ Th such that

σ = Km ∩Kl, F
m,σ
h = −F l,σ

h .
2. Consistency: Let ψ be the solution to (39), and

set ψh =
1K1

|K1|

∫

K1
ψ dx+. . .+

1KNel

|KNel
|

∫

KNel

ψ dx, then

Fm,σ
h (ψh,∇hψh, t)

h→0
−→

∫

σ

F (ψ,∇ψ,x, t)·ndσ.

The quantity

|Fm,σ
h (ψh,∇hψh, t) −

∫

σ

F (ψ,∇ψ,x, t)·n dσ|

is called the consistency error.
Note that (40) is a system of Ordinary Differ-

ential Equations (ODEs). This system is usually
discretized in time by using standard time-marching
techniques such as explicit Euler, Runge-Kutta, etc.

The discretization technique above described is
sometimes referred to as cell-centered finite volume
method. Another method, called vertex-centered
finite volume, consists of using the characteristic
functions associated with the vertices of the mesh
instead of those associated with the cells.

7. Finite Volumes: Examples

In this section we illustrate the ideas introduced
above. Three examples are developed: the Poisson
equation, the transport equation, and the Stokes
equations.

7.1. Poisson problem. Consider the Poisson
equation (11) equipped with the boundary condi-
tion ∂nφ|∂Ω = a. To avoid technical details, assume

that Ω =]0, 1[d. Let Kh be a mesh of Ω composed
of rectangles (or cuboids in three dimensions).

The flux function is F (φ,∇φ,x) = −∇φ; hence,
Fm,σ

h must be a consistent conservative approxima-
tion of −

∫

σ
nKm

·∇φdσ. Let σ be an interior face of
the mesh and let Km,Kl be the two cells such that
σ = Km ∩ Kl. Let xKm

,xKl
be the barycenters

of Km and Kl, respectively. Then, an admissible
formula for the approximate flux is

(41) Fm,σ
h = −

|σ|

|xKm
− xKl

|
(φKl

− φKm
),

where |σ| =
∫

σ
dσ. The consistency error is O(h)

in general, and is O(h2) if the mesh is composed of
identical cuboids. The conservativity is evident. If
σ is part of ∂Ω, an admissible formula for the ap-
proximate flux is Fm,σ

h = −
∫

σ
adσ. Then, upon

defining F i
Km

= FKm
\∂Ω and F∂

Km
= FKm

∩ ∂Ω,
the finite volume approximation of the Poisson
problem is: Seek φh ∈ RNel such that for all
1 ≤ m ≤ Nel

(42)
∑

σ∈Fi
Km

Fm,σ
h =

∫

Km

f dx +
∑

σ∈F∂
Km

∫

σ

adσ.

7.2. Transport equation. Consider the transport
equation

∂tφ+ ∇·(uφ) = f,(43)

φ|t=0 = φ0, φ|∂Ω− = a,(44)

where u(x, t) is a given field in C1(Ω × [0, T ]). Let
Th be a mesh of Ω. For the sake of simplicity, let
us use the explicit Euler time-stepping to approxi-
mate (40). Let N be positive integer, set ∆t = T

N
,

set tn = n∆t for 0 ≤ n ≤ N , and partition [0, T ] as
follows

[0, T ] =

N−1
⋃

n=0

[tn, tn+1].



372 Fluid Mechanics: Numerical Methods

Denote by φn
h ∈ RNel the finite volume approxi-

mation of φh(tn). Then, (40) is approximated as
follows
|Km|
∆t

(φn+1
Km

− φn
Km

) +
∑

σ∈Fm

Fm,σ
h (φh,∇hφh, t

n) =

∫

K

f(x, tn) dx,(45)

where φ0
Km

=
∫

Km
φ0 dx. The approximate flux

Fm,σ
h must be a consistent conservative approxi-

mation of
∫

σ
(u·nKm

)φdσ. Let σ be a face of the
mesh and let Km, Kl be the two cells such that
σ = Km ∩Kl (note that if σ is on ∂Ω, σ belongs to
one cell only and we set Km = Kl). If σ is on ∂Ω−,
set

(46) Fm,σ
h =

∫

σ

(u·nKm
)adσ.

If σ is not on ∂Ω−, set un
m,σ =

∫

σ
(u·nKm

) dσ and
define

(47) Fm,σ
h =

{

φn
Km

un
m,σ if un

m,σ ≥ 0,

φn
Kl
un

m,σ if un
m,σ < 0.

The above choice for the approximate flux is usu-
ally called the upwind flux. It is consistent with the
analysis that has been done for (22), i.e., informa-
tion flows along the characteristic lines of the field
u; see (24). In other words, the updating of φn+1

km

must be done by using the approximate values φn
h

coming from the cells that are upstream the flow
field.

An important feature of the above approxima-
tion technique is that it is L∞-stable in the sense
that

max
0≤n≤N,1≤m≤Nel

|φn
Km

| ≤ c(u0, f)

if the two mesh parameters ∆t and h satisfy the
so-called Courant–Friedrichs–Levy (CFL) condition
‖u‖L∞∆t/h ≤ c(σ), where c(σ) is a constant that
depends on the mesh regularity parameter σ =
maxKm∈Th

hKm
/ρKm

. In one dimension c(σ) = 1.

7.3. Stokes equations. To finish this short review
of finite volume methods, we turn our attention to
the Stokes problem (15)–(16) equipped with the ho-
mogeneous Dirichlet boundary condition u|∂Ω = 0.

Let Th be a mesh of Ω composed of triangles (or
tetrahedrons). All the angles in the triangulation
are assumed to be acute so that for all K ∈ Th, the
intersection of the orthogonal bisectors of the sides
of K, say xK , is in K. We propose a finite volume

approximation for the velocity and a finite element
approximation for the pressure. Let {e1, . . . ,ed} be
a Cartesian basis for Rd. Set 1k

Km
= 1Km

ek for all
1 ≤ m ≤ Nel and 1 ≤ k ≤ d, then define

Xh = span{11
K1
, . . . ,1d

K1
, . . . ,11

KNel
, . . . ,1d

KNel
}.

Let {b1, . . . , bNv
} be the vertices of the mesh, and

let {ϕ1, . . . , ϕNv
} be the associated piecewise linear

global shape functions. Then, set

Nh = span{ϕ1, . . . , ϕNv
},

Mh = {q ∈ Nh;

∫

Ω

q dx = 0};

see §4. The approximate problem consists of seek-
ing (uK1

, . . . ,uKNel
) ∈ RdNel and ph ∈ Mh such

that for all 1 ≤ m ≤ Nel, 1 ≤ k ≤ d, and all
1 ≤ i ≤ Nv,

∑

σ∈Fm

1k
Km

·F m,σ
h + c(1k

Km
, ph) =

∫

Km

1k
Km

·f dx,(48)

c(uKm
, ϕi) = 0,(49)

where

c(vKm
, ph) =

∫

Km

vKm
·∇ph dx.

Moreover,

F
m,σ
h =















ν|σ|

|xm − xl|
(uKm

− uKl
) if σ = Km ∩Kl,

ν|σ|

d(xm, σ)
uKm

if σ = Km ∩ ∂Ω,

where d(xKm
, σ) is the Euclidean distance between

xKm
and σ. This formulation yields a linear sys-

tem with the same structure as in (37). Note in
particular that

(50) sup
vh∈Xh

c(vh, ph)

‖vh‖L∞

= ‖∇ph‖L1 ,

Since the mean-value of ph is zero, ‖∇ph‖L1 is a
norm on Mh. As a result, an inequality similar to
(38) holds. This inequality is a key step to proving
that the linear system is wellposed and the approx-
imate solution converges to the exact solution of
(15)–(16).
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8. Projection methods for Navier–Stokes

In this section we focus on the time approxima-
tion of the Navier–Stokes problem:

∂tu − ν∆u + u·∇u + ∇p = f ,(51a)

∇·u = 0,(51b)

u|∂Ω = 0,(51c)

u|t=0 = u0.(51d)

where f is a body force and u0 is a solenoidal ve-
locity field. There are numerous ways to discretize
this problem in time, but, undoubtedly, one of the
most popular strategies is to use projection meth-
ods, sometimes also referred to as Chorin–Temam
methods.

A projection method is a fractional-step time-
marching technique. It is a predictor–corrector
strategy aiming at uncoupling viscous diffusion and
incompressibility effects. One time step is com-
posed of three substeps: in the first substep, the
pressure is made explicit and a provisional veloc-
ity field is computed using the momentum equa-
tion; in the second substep, the provisional velocity
field is projected onto the space of incompressible
(solenoidal) vector fields; in the third substep, the
pressure is updated.

Let q > 0 be an integer and approximate the time
derivative of u using a backward difference formula
of order q. To this end, introduce a positive integer
N , set ∆t = T

N
, set tn = n∆t for 0 ≤ n ≤ N , and

consider a partitioning of the time interval in the
form

[0, T ] =
N−1
⋃

n=0

[tn, tn+1].

For all sequences v∆t = (v0,v1, . . . ,vN ), set

(52) D(q)vn+1 = βqv
n+1 −

q−1
∑

j=0

βjv
n−j ,

where q − 1 ≤ n ≤ N − 1. The coefficients βj are
such that

1

∆t
(βqu(tn+1) −

q−1
∑

j=0

βju(tn−j))

is a qth-order backward difference formula approx-
imating ∂tu(tn+1). For instance,

D(1)vn+1 = vn+1 − vn,

D(2)vn+1 = 3
2vn+1 − 2vn + 1

2vn−1.

Furthermore, for all sequences φ∆t =
(φ0, φ1, . . . , φN ), define

(53) φ⋆,n+1 =

q−1
∑

j=0

γjφ
n−j ,

so that
∑q−1

j=0 γjp(t
n−j) is a (q−1)th-order extrapo-

lation of p(tn+1). For instance, p⋆,n+1 = 0 for q = 1,
p⋆,n+1 = pn for q = 2, and p⋆,n+1 = 2pn − pn−1 for
q = 3. Finally, denote by (u·∇u)⋆,n+1 a q-th order
extrapolation of (u·∇u)(tn+1). For instance,

(u·∇u)⋆,n+1 =

{

un·∇un if q = 1,

2un·∇un−un−1·∇un−1 if q = 2.

A general projection algorithm is as follows. Set
ũ0 = u0 and φl = 0 for 0 ≤ l ≤ q − 1. If q > 1,
assume that ũ1, . . . , ũq−1, p⋆,q and (u·∇u)⋆,q have
been initialized properly. For n ≥ q − 1, seek ũn+1

such that ũn+1
|∂Ω = 0 and

(54a) D(q)

∆t
ũn+1 − ν∆ũn+1

+ ∇
(

p⋆,n+1 +
∑q−1

j=0
βj

∆t
φn−j

)

= Sn+1,

where Sn+1 = f(tn+1) − (u·∇u)⋆,n+1. Then solve

(54b) ∆φn+1 = ∇·ũn+1, ∂nφ
n+1
|∂Ω = 0.

And finally update the pressure as follows:

(54c) pn+1 =
βq

∆t
φn+1 + p⋆,n+1 − ν∇·ũn+1.

The algorithm (54a)–(54b)–(54c) is known in the
literature as the rotational form of the pressure-
correction method. Upon denoting u∆t =
(u(t0), . . . ,u(tN )) and p∆t = (p(t0), . . . , p(tN )), the
above algorithm has been proved to yield the follow-
ing error estimates

‖u∆t − ũ∆t‖ℓ2(L2) ≤ c∆t2,

‖∇(u∆t − ũ∆t)‖ℓ2(L2) + ‖p∆t − p∆t‖ℓ2(L2) ≤ c∆t
3
2 .

where ‖φ∆t‖
2
ℓ2(L2) = ∆t

∑N
n=0

∫

Ω
|φn|2 dx.

A simple strategy to initialize the algorithm con-
sists of using D(1)u1 at the first step in (54a), then
using D(2)u2 at the second step, and proceeding
likewise until ũ1, . . . , ũq−1 have all been computed.

At the present time, projection methods count
among the few methods that are capable of solving
the time-dependent incompressible Navier–Stokes
equations in three dimensions on fine meshes within
reasonable computation times. The reason for this
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success is that the unsplit strategy, which consists
of solving

D(q)

∆t
un+1 − ν∆un+1 + ∇pn+1 = Sn+1,(55a)

∇·un+1 = 0; un+1
|∂Ω = 0,(55b)

yields a linear system similar to (37), which usu-
ally takes far more time to solve than sequentially
solving (54a) and (54b). It is commonly reported
in the literature that the ratio of the CPU time for
solving (55a)–(55b) to that for solving (54a)–(54b)–
(54c) ranges between 10 to 30.
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