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SIMULATION OF 2D EXTERNAL INCOMPRESSIBLE VISCOUS
FLOWS BY MEANS OF A DOMAIN DECOMPOSITION METHOD

J.-L. Guermond, S. Huberson, W.-Z. Shen
LIMSI-CNRS, BP n° 133, 91403 ORSAY Cedex.

1. INTRODUCTION - Visualization of incompressible viscous flows shows that vor-
ticity concentrates in wakes and advection dominates viscous diffusion as the Reynolds
number increases. These conditions are favourable for simulating such flows by means
of particle methods. Furthermore since this class of methods is grid-free, it is suit-
able for tackling problems with moving boundaries. However, particle methods are
inaccurate as viscous effects are of the same order as that of advection. Hence, in
boundary layers, methods which are adapted to parabolic problems are needed (eg.
finite differences, finite elements, ete.). The remarks above led us to develop a domain
decomposition method that combines advantages of both approaches (¢f. [3] [5]).

2. FORMULATION OF THE PROBLEM - Consider p moving solids (S;)i=1,.., in a
Galilean frame of reference (0,3, 7) of IR?. Let k = i x j, define (0i)i=1,..., origins of
reference for each solid, and let v; (resp. ;) be the velocity of O; (resp. the angular
velocity of S;). The solids are immersed in an incompressible Newtonian fluid which
is at rest at infinity. The fluid domain, denoted by D, is decomposed into p + 1 open
subdomains so that D = Dy U;=;,._, D;, where the subdomains D; are homeomorphic
to a ring. It is hereafter assumed that the domain decomposition has been done
so that convective effects are dominant in Dy. Let B; (resp. I';) be the interface
between D; and S; (resp. Dg), and m; be the outward normal to the boundary of
D; for i = 0,...,p. In Dy the Navier-Stokes equations are formulated in terms of
velocity and vorticity (uo,wp) and are approximated by means of a particle method,
whereas in each subdomain D; they are formulated in terms of stream function and
vorticity (4, w;) and are approximated by means of finite differences. Let T > 0 and
N € NN, approximations of (wg,wo) and (¥;,w;) are sought in parallel in the time
interval (x,tx41) where §t = T/N and t; = két for 0 < k< N

3. SOLUTION IN Dy - Let ve(t) the mean velocity of the p solids. The fluid
motion is studied in a frame of reference which moves with velocity v, (). In D, the
advection—diffusion equation of wy is approximated by:

Bwit! |8t + V. (WEH ub) = v T2k, (3:1)
P
i 5t /D VG x kdv+ 3 /B [(nj X ve;) x VG + (n,0)VG]dl,  (3.2)
J=1""

G is the Green function of the Laplace operator in R?, and v,; = v, + Q; x (y—0;).
Wellposedness of the problem requires that some transmission condition through
I'; is imposed on w;. Such a condition is obtained by taking into account the fact



Figure 1: Streaklines about two cylinders, ¢* = 2.5.

that in the vicinity of I'; viscous diffusion is dominated by advection. Hence, (3:1)
can locally be considered as a hyperbolic equation whose right hand side, VV2 gl
can be explicited and considered as a source term. For this kind of problem, Dirichlet
conditions are imposed on the subset of I'; where the flow enters Dy (eg. see [2], [4]):

i=1,...,p, wé“(m) = w;-‘(:c), if ué(m).no(:c) <0 (3.3)

Problem (3.1) (3.2) as presented above is approximated be means of a particle method
that take into account Dirichlet data (3.3) (see [3] for details on this technique).

4. SOLUTION IN D; - For each subdomain D;, the fluid motion is studied in a
non-inertial frame of reference that is linked to S;, and the Navier-Stokes equations
are formulated in terms of stream function of the relative velocity and the vorticity
of the absolute velocity. Hence, the PDE’s to be solved are:

Wit [0t + V. (wEHV x (¢F1k)) = vV 2k (4.1)
VE3pit! = 2Q); — Wit (4.2)
The system above is complemented by the following bounda‘ry conditions on B;:
a¢,k+1 awk+1
k+1 _ k+] 1 - L
! e =0amd [ Zais / kx(y—0).dl  (4.3)

Furthermore, transmission conditions need to be enforced so that continuity of the
physical variables along with their flux is ensured across I';. The conditions in question
depend on the local nature of the PDE’s to which 1; and w; are solutions. Since Y; 1s
solution to an elliptic problem (4.2) whatever the flow nature, a transmission condition
on 1; must be enforced everywhere on I';. Such a condition is provided by a Green
identity based on (4.2) and (4.3):

G oy,

k41 _ K ej

! Ve / WFGdv + Z f (s + 5 ) o Jd, (4.4)
where, gbej(:c) = 'Uj.{(ﬂ? = OJ) X k] — Qj II: = 01[2/2 (45)

Note that (4.4) is global, i.e. it transmits the whole spectrum of information to each
subdomain at once, whereas classical Dirichlet-Neumann coupling conditions (eg. see



Figure 2: Streaklines about two cylinders, g* = 1.

[2] [4]) poorly transmit low frequencies. By using the same arguments as that of §3,
transmission of information on wj; is achieved by:
witl(z) = wi(z), if u¥(z).ni(z) < 0. (4.6)
As far as information transfert is concerned, this condition is sufficient. Nevertheless,
since (4.1) is approximated by means of a centered finite differences scheme, a bound-
ary condition for wi*! on T is required. Since the flow regime is almost hyperbolic,
the piece of information that is missing on the subset of I'; where the flow goes out is
obtained by doing an approximate Lagrangian integration of (4.1):
Wit (@) = Wiz — ukét) + vtV (2 — ufbt), if uf(z).ni(z) > 0. (4.7)

The (%, w;) problem as formulated above is linearized and solved by means of a
finite differences method that has been developed in [1].

5. NUMERICAL EXAMPLES — The present method has been coded and tested; com-
parisons with experimental data have shown reasonable agreement (see [3] for details
on tests). In the three examples shown below we try to emphasize the versatility of
the present approach and give some flavor of its possibilities.

The first example concerns the flow about two interacting cylinders. In figures
1 and 2 are shown the streaklines about two impulsively started cylinders at times
t =80 (fig. 1) and t = 70 (fig. 2). The Reynolds number based on the diameter of
the cylinders is equal to 110. In each case the finite differences domains are composed
of rings the width of which are set to one cylinder radius. The dimensionless gap ¢~
between the cylinders (i.e. gap/diameter) is equal to 2.5 and 1 in case 1 and case 2
respectively. It is clearly shown here that the stable flow regime consists of two out of
phase Karman streets. The phase between the two vortex sheddings depends on the
dimensionless gap g*. A stability analysis of the wake interactions by means of the
present method is under way. Since the finite differences subdomains are disconnected,
it is possible, at the same numerical cost, to let the cylinders oscillate.

In figures 3, 4, and 5 we present numerical simulations of the flow about tandem
airfoils. The leading airfoil oscillates in pitch and the rear one is fixed. This con-
figuration may be viewed as a model for the rotor/stator interaction in turbines and
rotating machines. The fluid domain is decomposed into three subdomains as shown
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Figure 5: Instantaneous velocity field about the tamdem airfoil at time ¢ = 10. Notice
the large eddies shed by the leading airfoil.



Figure 6: Shed particles and streamline patterns about a Darrieus wind turbine at
t=2.

in figure 3. Each airfoil is embedded in a small finite differences subdomain. Since
each subdomain moves with the airfoil it embeds, no regridding is required as time
evolves.

In figure 4 we present streamline patterns about the impulsively started tandem
airfoils at times ¢t = 1.5, 2.5, 3.5 and 4.5. Shown here is the interaction between the
rear airfoil and the starting vortex that has been shed by the leading airfoil. The
Reynolds number v,,C/2v is set to 3000, the reduced frequency of the oscillating
airfoil fC/2v,, is equal to 0.2 and amax = 45°.

In figure 5 is shown the instantaneous velocity field at time ¢ = 10. One may
verify in figures 4 and 5 that the velocity field is smooth across the interfaces of the
subdomains. Note that the tandem airfoil problem or other problems of this kind
would be difficult to treat by means of classical global approaches, since for these
class of methods the flow domain would have to be either regridded or deformed at
each time step.

The third examples concerns the simulation of a Darrieus wind turbine. In figure 6
is shown shed particles and streamline patterns about a Darrieus-like wind turbine at
t = 2.2 after an impulsive start. There are four subdomains. The wind turbine rotates
in the anti-clockwise direction and the fluid moves from right to left with velocity v..
denote by R be the windmill radius, QR/v,, = 2.16 and v.,2r /v = 3000.
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