A fully parallel mortar finite element projection
method for the solution of the unsteady
Navier—Stokes equations
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Abstract. This paper describes the parallel implementation
of a mortar finite-element projection method to compute in-
compressibleviscousflows. The basicideain the derivation of
this method is that the appropriate functional setting for pro-
jection methods must accommodate two different spacesfor
representing the two velocity fields calculated in the viscous
and incompressiblehalf stepsof the method. Thevelocity cal-
culated in the viscous step is chosen in the space constrained
by the mortar elements; that is, aweak continuity through the
subdomain interfaces is enforced, whereas in the projection
step, the weak continuity is relaxed. As a result, the projec-
tion step is fully parallel. The numerical solutions of a series
of test problems in two dimensions calculated by the pro-
posed method compare quite satisfactorily with the reference
solutions.

1 INTRODUCTION

The projection method of Chorin [4, 5] and Temam [14] (see
also [13] and [12]) is the most frequently employed technique
for the numerical solution of the primitive variable Navier—
Stokes equations. This method is based on a peculiar time-
discretization of the equationsgoverning viscousincompress-
ible flows, in which the viscosity and the incompressibility of
the fluid are dealt within two separate steps.

A functional analytical setting which properly accountsfor the
different character of the equations of the two half-steps has
been proposed recently by Guermond [8, 9] and Guermond-
Quartapelle[10]. The aim of thiswork isto describethe par-
alel implementation of a finite-element projection method
which fully exploits the different mathematical structure of
the two half-steps. The spatial discretization is based on a
mortar finite-element approximation. In thefirst step, the vis-
cous velocity is approximated by means of the mortar finite
element technique, whereas in the second step the constraint
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enforced by the mortar element is relaxed, i.e. the weak con-
tinuity through the subdomains' interface is not enforced for
the projected velocity. Thisalgorithm is shown to be uncondi-
tionally stableand to converge provided thetime step is small
enough (basically 6t = A%, with o > 1/2). The origina
point is that the projection step amounts to solving as many
independent linear systems as subdomains; this step is fully
parallel since the subproblemsare independent.

This technique has been tested on a network of workstations
and a CRAY 3D by using MPI. Accuracy tests together with
measures of speed-up have been performed and are reported
at the end of this paper.

2 THE UNSTEADY STOKES PROBLEM
2.1 Hypotheses and notations

Let © be an open connected bounded domain of IR? (d = 2
or 3 in applications) with a smooth boundary 9€2; say 912 is
Lipschitz and €2 is locally on one side of its boundary.

In order to formulate the time-dependent Stokes problem in a
variational setting, we define the following Hilbert spaces:

X =Hy ()¢, M=L(0)/R, @
and

V={veX,dive =0}, H={veV, vngy = 0}.
@
We now consider the following variational problem. For f €
L*(0,T; L2(Q)%), and wo € H, findu € C°(0,T; H) N
L*(0,T; X)andp € L?(0,T; M) sothat U)g=o = uo and

Yo € X, (%—;‘, ‘U) + (Vu, Vo) — (p, divv) = (f,v),
Vge M, (divu,q)=0,

©)
In the sequel we assumethat «, p are smooth solutions of the
problem aboveand that at theinitial time all the compatibility
conditions implied by the required smoothness are satisfied.
For instance, such conditions are satisfied if the initial datum
is zero and the sourcetermis regularized at ¢t = 0.



2.2 Thespatial discretization

Themortar element technique have been developed by Bernardi,

Maday and Patera [1], [2]. In this section we recall some as-
pects of this technique and we formulate our time dependent
Stokes problem within this discrete setting.

We assume that we have at hand a partition of 2 into N
non-overlapping polygonals:

Q=0 0" and Va#£m Q"NQ"=0. (4

For sake of simplicity weassumeal so that €2 istwo-dimensional,

though the fractional step technique we develop isdimension
independent. We restrict ourself to polygonal sub-domains.
Furthermore, we assume that the decomposition of €2 is ge-
ometrically conformal; that is to say, the intersection of two
subdomains is an edge, a vertex or empty. This hypothesis
simplifies the implementation of the technique but is not a
limitation of the mortar method. The interface between sub-
domain 2™ and Q™ is denoted by 9Q2™".

For each subdomain 2", we define F; a regular mixed tri-
angulation (e.g. Pi-iso-P» /P, or P>/ P, seeGirault-Raviart
[6] or Brezzi [3] for other details). We denoteby X}’ and M}}
the linear spaces spanned by the velocity and the pressure
triangulation of Q™ respectively. Note that we do not require
the grids of each subdomains to match; the weak continu-
ity through the subdomains’ interfacesis enforced by mortar
functions. We denote by W;*" the space of the mortar func-
tions associated to the interface 92™"; for a clear definition
of this spacewerefer to [1]. The spaceof the mortar functions
is defined by

N
Wi = H Wi, (5)
n=1
For afunction x5, in Wj we denote by p7*" the components
of pup iINW™,

We now define, X, the subspaceof X} x ... x X} sothat

Xn = {(vp,...,0F

/ (o — o)™ = 0},
aﬂmn

)|Vm, n,vﬂh € VVh, ‘U)7Z|8ﬂ = Oa

(6)
where ¢ denotes the trace operator from H'(Q™) onto
H'?(99™). The space X, is equipped with the following
scalar product:

uh,Uh

Z/ up,. Uh—|—/ Vauy . Voy. (7)

We also introduce the scalar product (., .)z, sothat

E/ up.vp. (8

We usethis scalar product to definethe dual norm of X; the
dual of X, equipped with the dual norm is hereafter denoted

LLh,Uh
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by X. Finally, we define 7/ : ()¢ — X}, the L?

projection onto X,.
The pressure will be approximated in M}, so that

N

My = H M. ©)

n=1

M, is equipped with the scalar product

(P, an) E/ Phn- (10)
L et us also introduce the continuousbilinear formap : Xn x
Xp — |R, so that for all ('U,h, 'Uh) in Xn X Xh,
N
n(un,vn) = Z/ Vup . Voy (11)
n=1 "

It can be shown that a, is coercive with respect to the norm
|'|Xh of Xhn.

dec > 0, Yun € Xh, ah(uh,uh) > C|Uh|Xh (12)
We associate with ap, the linear continuous operator Aj, :
X, — X/, sothat, for al (un,vr) in Xn x X5, we have
(Anun,vn)z, = an(un, va).
We now introduce the continuous bilinear form by, :
My, — IR so that

Xh><

N
Yon € Xn,Yqn € Mp, bu(vn,qn) = —Z/ qb div v}

(13)
We associate with b, the continuous linear operator By, :
Xy — My, anditstranspose B}, : M, — X, so that for
every couple(vn, gn) IN Xy x My wehave(Brvn, qn)n, =
bh(vh, qh) and (’Uh, B)tLQh)Lh = bh(vh, qh). It can be shown
that By, is onto; that is to say, there is a constant ¢ > 0
(independent of &) so that
Van € Mr,  |Bhan|x: > clgn|a, - (14)
In the functional framework defined above, the spatially dis-
cretized time-dependent Stokes problem can be reformulated
asfollows. For f € L*(0,T; L*(Q)%) and uo,» € ker(Bp)
findun € L2(0, T Xh) and p, € L2(0, T Alh) so that:

dgth + Apup + Bipn = Wx;Lf
Brunp =0 (15)

Up|t=0 = U0,k

whereug,r, € ker(Br) isanapproximationof uo in Xn. The
discrete counterpart of the sourceterm f is hereafter denoted
by fr for simplicity.
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The problem (15) canbe shownto bewell posed. We hereafter
assumethat the solution of this semi-discretized problem con-
vergesin the appropriate senseto that of (3); the convergence
analysisis very classical. In the following we are interested
only in approximating the time-dependent problem by means
of a projection technique.

3 THE FRACTIONAL-STEP
PROJECTION ALGORITHMS

3.1 Thediscrete setting

In order to uncoupletheincompressibility constraint from the
time evolution problem, we are led to introduce additional
tools (see[8] [9] for other details).

We define Y3, the finite dimensional linear space so that

Vi = {(vhy--- 08 ) € Xp x ... x Xi'| vhjaq = 0}. (1)
We equip Y5 with the norm of Z%(Q)* and we denote this
normby |.|y, . It isclear that X, isasubspaceof Y3 (interms
of linear space) and we denote by i, the continuousinjection
of X, into Y. Actually, X5 is composed of the functions
of Y5, which are weakly continuous across the subdomains’
interfaces.

We introduce another discrete version of the divergence op-
erator; let Cy, : Y, — My, be so that

N

V('Uh,qh) cYn Xﬂffh, (Ch’l)h,qh) = —Z/ (div ’U;T;,qg)

an
@

n=1
Therelation between Bj, and C, is brought to light by
Proposition 1 C, isan extensionof By, andi; Cf = B}.

A consequence of this proposition is that Cj, is aso nec-
essarily onto, for By, is onto. As a consequence, if we set
Hp = ker Cp,, wehaveadiscrete counterpart of the classical
decomposition L?(Q)* = H @ V(H*(Q)):

Corollary 1 We have the orthogonal decomposition:

Yy = Hp @ CH(Mp). (©)

3.2 Theprojection scheme

We introduce a partition of the time interval [0, T]: t* = k6t
for 0 < k < K where §t = T/ K, and define two series of
approximate velocities {if € X5} and {u} € Y3} and one
series of approximate pressures {py € My} so that

{ '&’;+1 _ﬁluﬁ 1 Ayt _fk+1 _ Bty 4
51 hlUp =T hPh
and
k41 . ~kt
u — ipll E+1 ky _
h ; h +C)tz(1’h pr)=0 )
Chufl‘l'l =0
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The series {uf} is initialized by u) = uo,, and assuming
that pr € C(0, T; M) the series {pk } isinitialized by p, =
Phlt=0-

Relmark 3.1. The problem (4) is well posed since Ay, is Xp,-
elliptic. Theproblem (5) isalsowell posedthanksto corollary
1: indeed the couple (u;**, 6t(pi*' — pk)) is the decompo-
stion of @ft! in Hy, @ CL(My); ie, uf™ = Py, apt!
where Py, isthe orthogonal projection of Y3, onto Hp,.
Remark 3.2. Note that since no weak continuity through the
subdomains’ interfaces is enforced on uf*! and pi*!, the
projection problem (5) reducesto a series of N completely
independent problems that can be solved in parallel.
Remark3.3. In practicethe projected velocity « f iseliminated
fromthealgorithm asfollows (see[8]). Replace «. in (4) by its
definition which isgiven by (5) at the k-th time step; note that
i,,C}, = B}, asalready mentioned. In (5), u; " iseliminated
by applying C}, to the first equation and by noting that C
is an extension of Bj. The agorithm which is implemented
reads, for k > 1,

'&IEH - f‘ﬁ ~Ek+1 k+1 t k k—1
LU g it = - B - ), ©)
and fi1
Bri
CrCh(pi™ = ph) = =5 0

Remark 3.4. Higher accuracy in time can be obtained if we

replace the two-level backward Euler step of first order by a

backward three-level Euler step of second order asfollows

3aptt —af — if (3uf —
26

E—1
b )yt = Bk,

®
and
3uFt Wk gL 3attt — ak
b . 25’;( b w4 ol — ) =0,
Chuz‘l'l =0.
©

Of course, thealgorithm can beimplemented in amore conve-
nient form by eliminating the end-of-step velocity, asfollows:

3aptt —daf +ap!
26t

+Anu, Tt = frH =Bl (2ph—py ),
(10)

and to~k41 "
BL(3aH — 7
Gt —phy = DOm0 )

It can be shown that for a fixed mesh size A, this algorithm
yields second order accuracy in time in the natural norms
defined below.

3.3 Stability and convergence analysis

The projection algorithm introduced above is stable in the
following sense:
1/2

S C(u()apoa.f)a

(12)

K
k k|2 k|2
0Lkt [unlz, + MZ phlas, + s lx,
T k=1
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where ¢(uo, po, f) isafunction of the data of the problem.
The fact that the projection step is parallel is paid by the
fact that the discrete gradient operator is not optimally stable;
indeed if we denote by p; an interpolation operator on M,
we only have
[

Yee H'(Q),  [Chpndli, < jrjzlah (19)
Thisdefault of stability, yieldsaconditional convergencerate;
indeed, we have been ableto prove

K
maXo<k<K |U(tk) - ’&mLh + 5152 |P(tk) —Pﬁﬁvfh
k=1

+ u(t) = k%, ] < elh+6t/0112),
(14
Hencewehaveconvergenceprovided 6t = 2% witha > 1/2.

Actually we have convergenceof order & if 6t = A%/

Figure1l. Display of the four subdomainstogether with their
unstructured P; mesh.

4 NUMERICAL TESTSAND
DISCUSSIONS

4.1 Spatial discretization and solution of
linear systems

The fractional-step method described in the previous sec-
tion hasbeenimplemented using P; -iso- P> / P; finite element
meshes. In each subdomain, a P; Delaunay grid is generated.
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Figure2. Display of the sixteen subdomainstogether with their
P mesh.

The finer mesh P;-iso-P» is then obtained from the coarse
one by splitting each coarse triangle into four equal small
triangles introducing the mid-side nodes on al sides of the
coarse mesh.

The integration over the triangles is performed by means of
numerical quadrature using athree-point Gaussformula. This
assures the exact evaluation of all scalar products including
those which involve the nonlinear convection term. The val-
uesof the Jacobian determinant and of the weighting function
derivatives at Gauss points of all elements are evaluated once
an for all at the beginning of the calculation and stored in
arraysfor subsequent use.

The projection algorithm requires to solve sparse linear sys-
tems of algebraic equationsfor both the velocity and the pres-
sure in each subdomain Q™, n = 1,..., N. To obtain the
velocity components, we have to solve a saddle-point prob-
lem

Apu+ RIA=F

1)
Rpu =0,

where R, is the mortar elements matrix and Ay is a bloc
diagonal matrix, each bloc is factorised locally on each sub-
domain by means of Cholesky algorithm. The hole system is
solved by means of conjugategradient applied to the equation

RLA'RLN = RRAL'F @

The Poisson-like pressure problem require to solve systems

A. Ben Abdallah and J.-L. Guermond



of type

Chl7'CLP = F ?)
where I, isamassmatrix. Thissystemis solvediteratively by
means of a conjugate gradient preconditioned by Cr 1, ot
where [}, is the lumped mass matrix.

4.2 Implementation

The code is written in FORTRAN 90 and uses the MPI
message passing library. It is run on a CRAY-T3D which
has 128 Dec Alpha processors. Each processor can deliver
150M flops/s but, still now, because of hardware imple-
mentation (mutilated memory caches), hardly 10% of the
peak 150 flops/s can be used. (recall that T3D is an ex-
perimental machine, hopefully, these problemswill be solved
with the T3E).

4.3 Test problems

In order to illustrate the second order algorithm described
above,(10)-(11), we provide convergencetests on atest prob-
lem. We consider the following exact solution on the square
Q =0, 1[%,

uy = cos(wt)z + sin(7t)y + sin2(7rt) + 3sin(xt),
uy = sin2(7rt):£ — cos(mt)y + cos(xt),
p = sin(wt)(y —1/2)

—[stn(27t) 4+ 3 cos(nt)](z — 1/2).

We have chosen linear functions in space to avoid spending
much time on error calculation.

The domain €2 is divided into sixteen subdomains as shown
infigure 2. Fore sake of simplicity, we used structured grid on
subdomains. We solve the time-dependent Stokes problem on
thetimeinterval 0 < ¢ < 1 with asourceterm corresponding
to our chosen solution.

In figure 3, we have reported the errors on the velocity in the
norms1°°(0, T; L2(Q)¢) and I2(0, T; H* (Q)4) asfunctions
of thetime step 6t for different global mesh sizes. Asexpected
we observe a second order slope for moderate ¢ but we can
see that the estimation constant seems to be dependent of &
in the rate of h~*. This result is not surprising since we have
proven convergence of order A + &t/h'/? for the first order
scheme (6)-(7); hence, convergence in time of order 6t>/h
for (10)-(11) seemsreasonable. (but has yet to be proven).
The error on pressure in the norm of (0, T; L*(Q)) is re-
ported as afunction of é¢ in figure 4. The same second order
slope and mesh size dependency as that obtained on the ve-
locity are observed on the pressure.

To illustrate the mesh size influence on the convergence,
we have reported in figure 5 the errors on both velocity
and pressure as functions of & while 6¢ is kept equal to
ch®/?. We note a second order slope on the velocity in the
norm 1°°(0, T; L2(9)%). First order slope is obtained in the
2(0,T; H*(2)?) norm (practically we obtained better than
first order for theterm in A% = 6t /k is still dominant). The
same observations can be made for the pressure.
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STOKES Problem

Errors on the velocity U

Errors on U

——enorm: I7(0,T;LY(Q)"), h=1/256
0% o norm : I(0,T;H(Q)") , h= 1/256
— norm : I°(0,T;L%(Q)") , h=1/128
10 oo morm < (0,7 ;HY(Q)") ,h=1/128  []
= norm : I°(0,T;L%Q)") .h=164 [
v norm : 10T ;H(Q)") . h=1/64

H P ‘ H P ‘ H P
10° 107 10
at

10° 2

Figure 3. tky — gk and
gure3. M) =~ Tnlraaye

K
[&sz |u(t*) — @k | g1 gyya ]2 versusst.
k=1

STOKES Problem

Errors on the pressure p

Errors on p
“~

3 e——e norm: I (0,T;L(Q)),h=1/256

o norm : I(0,T;L%(Q) ), h=1/128

= norm : I(0,T;L%(Q)) ,h=1/64

T Tt

10° 107 10"
at

&

10

K
Figure 4. [6tz |p(¢*) — pﬁﬁﬁ(m]l/2 versus §t.
k=1
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STOKES Problem

(8t=ch®, c=0.8192)
10

10

Errors

10"

e velocity, I"(0,T;L(Q)") [+
o velocity, | O,T;ngﬂ)") ins
e — - pressure, IZ( 0,T;LY(Q)) [+
- H oo ‘ H oo

10" 10 10"

10

o

10
h

Figure5. max |u(t®) — ﬂZ|L2(Q)d'

0<k<K

K
[t lu(t) = af | g1 (gya]*/? and
k=1

K
[&Z (%) = P12 2] /? versus k with 6t = ch?/2.
k=1

44 Speed-Up

The numerical tests reported in this section were performed
with different numbers of processors for a global mesh size
h = 1/256 (66049 nodes) and with §¢ = 0.002. In table
1, we can see for different numbers PE. of processors the
elapsetime 7; for onetime step iteration, the mono-processor
equivalent time PE. x T, the elapse time and the number
of Conjugate Gradient iterations N,C G (resp. thetime and
the number of Preconditioned Conjugate Gradient iterations
Ny PCG;;) for one prediction (resp. projection) step. At first
sight, we can notice that the algorithm has almost the right
speed-up (from PE, = 16 to PE. = 32 we have a global
speed-up of 1.9). But if we look at the projection step we
notice better results; recall that this step amounts to solve a
Poisson problem. If we look at the prediction step, wherethe
communications between processors occur, the speed-up be-
tween16 PE.and32PE, (resp.32PFE, and64 P E,) isabout
1.8 (resp. 1.75). Actually, if we consider the speed-upfor one
CG iteration of the prediction step we obtain 2.28 (resp. 2.0).
There are two reasons for this. First, in the prediction step,
the linear system is solved by means of a Conjugate Gradi-
ent algorithm which is not preconditioned. As a result, the
total number of iterations that is needed to reach convergence
is dependent of both the problem size and ¢ (the condition
number of RhA,jJR; dependson ét). The second reason is
that the cost of one CG iteration is not of order N but rather
between N and N2 (we use sparse matrix techniques, seefor
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instance[7]). Theefficiency rate hasnot been calculated since
the problem is too big to be solved on one single processor
(Nnodes = 66049).

Table1l. Timeinventory for onetime step iteration.

Prediction Projection
step step

PE, T ° ¢ L ¢ L)

16 6.1 984 427 65 188 9
32 32 1023 236 82 083 8
64 17 1115 135 94 039 8

o: PE: x Ty inseconds, < :elapsetimein seconds,
& N,CGp, &:N,PCGy;.
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