
CONVERGENCE ANALYSIS OF A FINITE ELEMENT
PROJECTION/LAGRANGE–GALERKIN METHOD FOR THE

INCOMPRESSIBLE NAVIER–STOKES EQUATIONS∗

Y. ACHDOU† AND J.-L. GUERMOND‡

SIAM J. NUMER. ANAL. c© 2000 Society for Industrial and Applied Mathematics
Vol. 37, No. 3, pp. 799–826

Abstract. This paper provides a convergence analysis of a fractional-step method to compute
incompressible viscous flows by means of finite element approximations. In the proposed algorithm,
the convection, the diffusion, and the incompressibility are treated in three different substeps. The
convection is treated first by means of a Lagrange–Galerkin technique, whereas the diffusion and the
incompressibility are treated separately in two subsequent substeps by means of a projection method.
It is shown that provided the time step, δt, is of O(hd/4), where h is the meshsize and d is the space
dimension (2 ≤ d ≤ 3), the proposed method yields for finite time T an error of O(hl+1 + δt) in
the L2 norm for the velocity and an error of O(hl + δt) in the H1 norm (or the L2 norm for the
pressure), where l is the polynomial degree of the approximate velocity.
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1. Introduction. The Lagrange–Galerkin method is a numerical technique for
solving convection-dominated–convection-diffusion problems. It consists of combining
a Galerkin finite element procedure with a discretization of the Lagrangian material
derivative along the characteristics. It combines the advantages of the methods that
stabilize the convection (e.g., upwinding, Petrov–Galerkin, etc.) with the advantages
of the methods that treat the convection in an explicit manner; that is to say, the
linear systems to be solved at each time step involve only diffusion, are symmetric, and
are time-invariant. For the Navier–Stokes equations, each time step of the algorithm is
decomposed into two substeps: the first one accounts for the convection (i.e., transport
along the characteristics), whereas the second one accounts for the incompressibility
and diffusion effects. The second half step is a saddle point problem where the pressure
is a Lagrange multiplier associated with the incompressibility constraint enforced on
the velocity.

For convection-diffusion problems, the method has been analyzed by Bercovier &
Pironneau [3], Russell [20, 21], and Douglas and Russell [9]. For the Navier–Stokes
equations, the analysis has been done by Pironneau [17] and improved by Süli [23].

In recent years, renewed interest has developed in fractional-step projection meth-
ods for the incompressible Navier–Stokes equations in the primitive variables since the
pioneering works of Chorin [7, 8], Temam [25, 26]. This method is based on a special
time-discretization of the Navier–Stokes equations, in which the convection-diffusion
and the incompressibility are dealt with in two different substeps. The velocity ob-
tained in the convection-diffusion substep is projected in order to satisfy a weak in-
compressibility condition. A semidiscrete convergence analysis of Chorin’s projection
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method can be found in Rannacher [19] and Shen [22]. A complete convergence analy-
sis of an incremental version of the projection method for the Navier–Stokes equations
is described in Guermond and Quartapelle [14]. A finite element implementation of
the algorithm is reported in [15].

The aim of this paper is to combine the Lagrange–Galerkin method with the
projection method. We propose and analyze an algorithm where the convection, the
diffusion, and the incompressibility are treated in three different substeps. Even
though it may a priori seem unwise to try to combine into a single algorithm a
Lagrange–Galerkin approximation with a projection method—for the former relies
heavily on the incompressibility of the flow for its stability, whereas the latter relaxes
this constraint—the main result of this paper is that the two techniques can indeed
be combined to yield a convergent method. It is shown that provided the time step
δt is of O(hd/4), where h is the meshsize and d is the space dimension (2 ≤ d ≤ 3),
the proposed method yields for finite time T an error of O(hl+1 + δt) in the L2 norm
for the velocity and an error of O(hl + δt) in the H1 norm (or the L2 norm for the
pressure), where l is the order of the approximation of the velocity.

This paper is divided into six parts. In section 2, we introduce some notations and
hypotheses; we also introduce the finite element approximation and recall basic inter-
polation and stability results. The fractional step algorithm is presented in section 3.
In section 4, we give preliminary results on the approximation on the material deriva-
tive. The error analysis is carried out in section 5 with mild regularity assumptions
on the solution of the continuous problem. In section 6, we make stronger regularity
assumptions, which yield a less restrictive stability condition on the time step and
additional error estimates on the pressure.

2. The time-dependent Navier–Stokes problem.

2.1. Hypotheses and notations. Let Ω be an open connected bounded domain
of Rd (d ≤ 3) with a smooth boundary ∂Ω. More specifically, the domain must be
smooth enough so that the H2 regularity of the Stokes operator holds; for instance
we shall assume that ∂Ω is of class C2 or Ω is a two-dimensional convex polygon (see
Cattabriga [6]).

We consider the following time-dependent Navier–Stokes problem in which homo-
geneous Dirichlet condition has been assumed for simplicity. For a given body force f
(possibly dependent on time) and a given divergence-free initial velocity field u0, find
a velocity field u and a pressure field p (with regularities yet to be clearly defined)
such that u = u0 at t = 0, and for t > 0,

P


∂u
∂t
−∆u+ (u ·∇)u+∇p = f in Ω× (0, T ),

∇· u = 0 in Ω× (0, T ),
u = 0 on ∂Ω× (0, T ).

(2.1)

Of course, other types of boundary conditions are possible.
As usual, W s,p(Ω) denotes the real Sobolev spaces, 0 ≤ s < ∞, 0 ≤ p ≤ ∞,

equipped with the norm ‖ · ‖s,p and seminorm | · |s,p. The space W s,p
0 (Ω) is the

completion of the space of smooth functions compactly supported in Ω with respect
to the ‖ · ‖s,p norm. For p = 2, we denote the Hilbert spaces W s,2(Ω) (resp., W s,2

0 (Ω))
by Hs(Ω) (resp., Hs

0(Ω)). The related norm is denoted by ‖ · ‖s. The dual space of
Hs

0(Ω) is denoted by H−s(Ω). For a fixed positive real number T and a Banach space
X, we denote by Lp(X), Hs(X), and C(X) the spaces Lp(0, T ;X), Hs(0, T ;X), and
C([0, T ];X), respectively.
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To formulate the Navier–Stokes problem in a variational form, we shall seek the
velocity u(t) in H1

0(Ω)d and the pressure p(t) in L2
0(Ω) = {q ∈ L2(Ω),

∫
Ω
q = 0}.

Furthermore, we set

V = {v ∈ H1(Ω)d, ∇· v = 0}, H = {v ∈ L2(Ω)d, ∇· v = 0, v · n|∂Ω = 0}.(2.2)

The importance of H lies in the following classical orthogonal decomposition of
L2(Ω)d, whose discrete counterpart plays a key role in the projection technique that
is described hereafter:

L2(Ω)d = H ⊕∇(H1(Ω)).(2.3)

For a given f ∈W2,∞(L2(Ω)d) and a given initial velocity field u0 ∈ V ∩H2(Ω)d,
the variational formulation of problem P is as follows: find a pair (u, p) :

u ∈ L∞(H) ∩ L2(V ), ut ∈ L2(H−1(Ω)d), p ∈ L2(L2
0(Ω))(2.4)

such that

Pvar

 (ut, v) + (∇u,∇v) + (u · ∇u, v)− (p,∇·v) = (f, v) ∀v ∈ H1
0(Ω)d,

(q,∇·u) = 0 ∀q ∈ L2
0(Ω),

u(0) = u0.
(2.5)

It is known that there is some T > 0 for which Pvar has a solution. In the following,
we shall assume that the solution to Pvar exists for all times and that it is as smooth
as needed.

2.2. The spatial discretization. We introduce Xh and Mh, two continuous
finite element approximations of H1

0(Ω)d and L2
0(Ω) based on a regular, quasi-uniform

triangulation Th of Ω. The space Xh (resp., Mh) is composed of continuous piecewise
polynomial functions of degree less than or equal to l with l ≥ 1 (resp., of degree
less than or equal to l′, max(1, l − 1) ≤ l′ ≤ l). It is assumed hereafter that the
following properties hold (see, e.g., Bernardi and Raugel [4], Girault and Raviart [10],
or Quarteroni and Valli [18] for other details).

(HA1) There exists c > 0 such that for 0 ≤ r ≤ l,

inf
vh∈Xh

[‖v − vh‖0 + h‖v − vh‖1] ≤ chr+1‖v‖r+1 ∀v ∈ Hr+1(Ω)d ∩H1
0(Ω)d,

inf
vh∈Xh

‖v − vh‖1,p ≤ chr‖v‖r+1,p, 2 ≤ p ≤ ∞ ∀v ∈W r+1,p(Ω)d ∩H1
0(Ω)d.

(HA2) There exists c > 0 such that ∀ q in Hr(Ω) ∩ L2
0(Ω), 0 ≤ r ≤ l′,

inf
qh∈Mh

‖q − qh‖0 ≤ chr‖q‖r.

(HA3) The Brezzi–Babuška inf-sup condition is verified [5], [2]; i.e., there exists
c > 0 such that

inf
qh∈Mh

sup
vh∈Xh

(∇ · vh, qh)

‖vh‖1‖qh‖0 ≥ c.

(HA4) There exists c > 0 such that ∀vh in Xh, the following inverse inequalities
hold:
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‖vh‖n,p ≤ chm−n+ d
p− dq ‖vh‖m,q, 0 ≤ m ≤ n ≤ 1, 0 ≤ q ≤ p ≤ ∞.

‖vh‖0,∞ ≤ c(1 + | log(h)|)1/2‖vh‖1,2 in two dimensions,

‖vh‖0,∞ ≤ ch− 1
2 ‖vh‖1,2 in three dimensions.

We shall denote by D(h) the quantity c(1 + | log(h)|)1/2 in two dimensions (resp.,

ch−
1
2 in three dimensions) appearing in the inequality above. Numerous examples of

pairs of finite element spaces satisfying these four assumptions can be found.
Example 2.1. Assume that Ω is a polyhedral domain in Rd (2 ≤ d ≤ 3) and that

Th is a mesh of Ω consisting of triangles (resp., tetrahedron) in dimension 2 (resp.,
3). One can choose for Xh the space of continuous piecewise P2 vector functions with
respect to Th and for Mh the space of continuous piecewise linear scalar functions
with respect to Th. This pair of spaces is usually referred to as the Taylor–Hood finite
element spaces and satisfies the assumptions above with l = 2, l′ = 1.

Example 2.2. With the same hypothesis on the mesh as above and restricting
ourselves to two dimensions in space, let T ′h be the mesh obtained by dividing each
triangles of Th into four smaller triangles by joining together the middle points of
its sides. Then Xh (resp., Mh) can be chosen as the space of continuous piecewise
linear vector functions with respect to T ′h (resp., continuous piecewise linear scalar
functions with respect to Th). This pair of spaces is usually referred to as the P1-
iso-P2/P1 finite element spaces. It is frequently used because of the simplicity of its
shape functions. The assumptions above hold with l = 1, l′ = 1.

Example 2.3. With the same hypothesis on the mesh as above, one can choose
for Xh the space of continuous vector functions the restriction of which to a given
element is the sum of linear functions and of a function vanishing on the boundary
of the element (bubble function) and for Mh the space of continuous piecewise linear
scalar functions with respect to Th. This pair of spaces is usually referred to as the
MINI finite element spaces. The assumptions above hold with l = 1, l′ = 1.

We now introduce a discrete divergence operator Bh : Xh −→ Mh and its trans-
pose Bt

h : Mh −→ X ′h as follows: for every couple (vh, qh) in Xh × Mh we have
(Bhvh, qh) = −(∇ · vh, qh) = (vh, B

t
hqh). Hypothesis (HA3) implies in particular that

Bh is surjective.

3. The fractional-step scheme. Introduce a partition of the time interval
[0, T ]: tk = k δt for 0 ≤ k ≤ K where δt = T/K. This section is concerned with the
time scheme for computing approximations to the velocity and pressure fields at each
time step tk.

3.1. The convective derivative and its approximation. Let X(x, s; t) be
the trajectory (or characteristics) under the action of the flow u(·, t) of a particle of
fluid which is at point x at time s. The characteristics are solutions of the initial value
problem {

dX(x, s; t)
dt

= u(X(x, s; t), t),

X(x, s; s) = x.
(3.1)

If u ∈ C(C0,1(Ω)d), this ODE has a unique solution thanks to the Cauchy–Lipschitz
theorem. When no confusion may arise we set Xk(x) = X(x, tk+1; tk). As shown
in, e.g., Pironneau [17], Douglas and Russell [9], or Süli [23], the opportunity of
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introducing the characteristics is motivated by the following formal approximation
property:

u(x, tk+1) · ∇u(x, tk+1) ≈ u(x, tk)− u(X(x, tk+1; tk))

δt
.(3.2)

Likewise, if ũkh ∈ Xh is an approximation of u(tk),∀ x in Ω we define Xh(x, tk+1; t) as
the solution to the initial value problem

{
d
dt
Xh(x, tk+1; t) = ũkh(Xh(x, tk+1; t)),

Xh(x, tk+1; tk+1) = x.
(3.3)

Note that this problem has a unique solution thanks to the Cauchy–Lipschitz theorem,
for functions of Xh have Lipschitz regularity. When no confusion may arise, we set,
for the sake of simplicity, Xk

h(x) = Xh(x, tk+1; tk). Hereafter, (ũkh(x) − ũkh(Xk
h))/δt

will be used as an approximation of u(x, tk+1) · ∇u(x, tk+1).

The main interest of this approximation is twofold. On the one hand, it yields re-
markable stability properties without relying on artificial diffusion (roughly speaking,
unconditional stability of the material derivative; see [17]) and thus avoids both large
spatial errors due to artificial diffusion and the need to cook up stabilizing parameters.
On the other hand, since the treatment of the nonlinear convective term u · ∇u is ex-
plicit, the linear system resulting from the implicit treatment of the diffusion and the
incompressibility is symmetric and time-invariant; see, e.g., [1] for two dimensional
and three dimension implementations of the method. In [1], different two dimensional
computations around a cylinder at Reynolds 9500 using a Galerkin characteristics
scheme and the (ψ, ω) formulation are also presented, assessing the good behavior of
the method of characteristics.

3.2. An additional discrete setting. As in Guermond [11, 12], to relax the
incompressibility constraint and to build a discrete version of the Helmholtz decom-
position (2.3), we introduce an additional discrete setting. More precisely, we want to
decompose each discrete vector field ũh ∈ Xh into the sum of a discrete-divergence-
free vector field uh plus the discrete-gradient of a scalar field ph in Mh. In practice,
there are numerous ways of achieving this decomposition. For instance we could set
ũh = uh + Bthph with uh ∈ Xh and Bhuh = 0. Another possibility could be to set
ũh = uh+∇ph where uh is enforced to be orthogonal to ∇Mh. In this case we shall see
that it is natural to choose uh to be in Xh +∇Mh. Even though this alternative may
seem weird, it turns out to be optimal and very easy to implement in practice (see
(3.11), (3.13)). To unify the first approach, the second one, and all the intermediate
ones, we introduce Yh a finite-dimensional subspace of L2(Ω)d in which we shall select
uh. For the sake of simplicity we assume that Xh ⊂ Yh and we denote by ih the
continuous injection of Xh into Yh; the transpose of ih is the L2 projection of Yh onto
Xh. Furthermore, we assume that we can build an operator Ch : Yh −→ Mh such
that we have the following.

(HA5) The operator Ch is an extension of Bh and ithC
t
h = Bt

h; i.e., the following
commutative diagrams hold:
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Example 3.1. The most trivial example consists in choosing Yh = Xh and Ch =
Bh. Even though this choice seems natural, it is not the simplest one in terms of
implementation.

Example 3.2. SinceMh is composed of continuous piecewise polynomial functions,
we have Mh ⊂ H1(Ω); as a result the following space Yh = Xh +∇Mh is a subspace
of L2(Ω)d. Furthermore, one may easily verify that Ch defined by

∀(vh, qh) ∈ Yh ×Mh, (Chvh, qh) = (vh,∇qh)(3.4)

is an extension of Bh, and Cth is the restriction of ∇ to Mh.
From (HA3), we infer that Ch is also surjective, for Ch is an extension of Bh; as a

consequence ‖Ct
hq‖0 is a norm. The null space of Ch playing an important role in the

sequel we set Hh = KerCh. This definition enables us to build a discrete counterpart
of the aforementioned orthogonal decomposition L2(Ω)d = H ⊕∇(H1(Ω)).

Corollary 3.1. We have the orthogonal decomposition

Yh = Hh ⊕ Ct
h(Mh).(3.5)

We also assume that Cth satisfies the following hypothesis.
(HA6) There exists c > 0 such that ∀ qh in Mh,

‖Cthqh‖0 ≤ c‖qh‖1.

Remark 3.1. Note that the hypothesis (HA6) is automatically satisfied if we
choose Yh = Xh + ∇Mh and Cth = ∇. In fact, (HA6) is assumed for the sake of
simplicity and it could be somewhat weakened if a discontinuous approximation of
the pressure was used (see Guermond [11] or Guermond and Quartapelle [14] for other
details).

3.3. Initial conditions. To avoid the technical difficulty of the blowing up of
the error estimates at the initial time induced by the possible lack of regularity of the
solution, we assume that the solution is as smooth as needed at t = 0.

Remark 3.2. Of course the smoothness hypothesis on u and p at t = 0 may be
too optimistic in some cases (see [16]). We could relax it by assuming that from k = 1
to some k0 (1 < k0 < K) such that t0 = k0 δt is some fixed time independent of K,
the solution is approximated in time and space by means of some coupled, implicit
Euler scheme of first order. Then, the approximate solution ûk0

h and p̂k0

h that would
be obtained from this preliminary step could serve as initial data for our fractional
step algorithm at subsequent time steps, k0 ≤ k ≤ K.

Hereafter we denote by û0
h ∈ Xh and p̂0

h ∈ Mh an approximation to u0 and
p(t = 0) such that

‖u0 − û0
h‖0 + h

(‖u0 − û0
h‖1 + ‖p(0)− p̂0

h‖0
) ≤ chl+1.(3.6)
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For instance, û0
h can be obtained by solving

(∇û0
h,∇vh) = (∇u0,∇vh) ∀vh ∈ Xh,(3.7)

and the initial pressure p̂0
h can be obtained by calculating an approximation of p(t =

0). For instance, one could (at least in principle) obtain it by solving

(∇p̂0
h,∇rh) = (∇p̂0,∇rh) = (f(0) + ∆u(0)− u(0) · ∇u(0),∇rh) ∀rh ∈Mh.(3.8)

3.4. The fractional-step projection/Lagrange–Galerkin scheme. We are
now interested in defining a projection/Lagrange–Galerkin scheme for 1 ≤ k ≤ K.
We define two sequences of approximate velocities {ũkh ∈ Xh} and {ukh ∈ Yh} and one
sequence of approximate pressures {pkh ∈Mh} as follows:

• Initialization. The sequences {ukh}, {ũkh} are initialized by u0
h = ũ0

h = û0
h and

the sequence {pkh} is initialized by p0
h = p̂0

h.
• Time loop. For 0 ≤ k, solve

(
ũk+1
h − ithukh

δt
, vh

)
+ (∇ũk+1

h ,∇vh)

(
ũkh − ũkh(Xk

h)
δt

, vh

)
+(Bt

hp
k
h, vh) = (f(tk+1), vh) ∀vh ∈ Xh

(3.9)

and {
uk+1
h − ihũk+1

h
δt

+ Ct
h(pk+1

h − pkh) = 0,

Chu
k+1
h = 0.

(3.10)

Remark 3.3. The problem (3.9) clearly has a unique solution. The problem (3.10)
is also well posed thanks to Corollary 3.1: indeed, the pair (uk+1

h , δt Ct
h(pk+1

h − pkh)) is

the decomposition of ihũ
k+1
h on Hh ⊕ Ct

h(Mh); in other words, uk+1
h = PHh(ihũ

k+1
h ),

where PHh is the orthogonal projector of Yh onto Hh.
Remark 3.4. In practice it is not convenient to solve the problem as presented

here, for Yh is possibly a very weird space. Actually, the projected velocity ukh may
(must) be eliminated from the algorithm as follows (see Rannacher [19] or Guermond
[11]). For k ≥ 1, replace ukh in (3.9) by its definition which is given by (3.10) at the
time step tk; note that ithC

t
h = Bt

h, as already mentioned. In (3.10), uk+1
h is eliminated

by applying Ch to the first equation and by noting that Ch is an extension of Bh.
Once uk+1

h and ukh are eliminated, and by setting p−1
h = p̂0

h, the algorithm that is
implemented in practice read as follows for k ≥ 0:(

ũk+1
h − ũkh(Xk

h)
δt

, vh

)
+ (∇ũk+1

h ,∇vh)

+(Bt
h(2pkh − pk−1

h ), vh) = (fk+1, vh) ∀vh ∈ Xh

(3.11)

and

ChC
t
h(pk+1

h − pkh) =
Bhũ

k+1
h

δt
.(3.12)

Remark 3.5. If we choose Yh = Xh+∇Mh, the projection step takes the following
form: find pk+1

h in Mh such that

∀qh ∈Mh, (∇(pk+1
h − pkh),∇qh) = − (∇· ũk+1

h , qh)

δt
.(3.13)
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With this particular choice of Yh, the projection step amounts to solving a discrete
Poisson problem with homogeneous Neumann boundary condition. If needed, the
velocity field uk+1

h is given by

uk+1
h = ũk+1

h − δt∇(pk+1
h − pkh).(3.14)

Note that in the particular case described here, the approximate velocity uk+1
h is not an

H1-conforming approximation, for it is discontinuous. Indeed, it is shown below that
uk+1
h is an L2(Ω)d-approximation of u(t), whereas ũk+1

h is an H1(Ω)d-approximation;

hence, ũk+1
h is a better approximation than uk+1

h , although its discrete divergence

Bhũ
k+1
h is not zero.

4. Preliminary results for the error analysis.

4.1. Preliminaries on the approximation of the material derivative. We
recall in this section some results concerning the approximation of the material deriva-
tive by means of the Lagrange technique. Most of the results stated hereafter are
largely inspired from Russell [20, 21], Douglas and Russell [9], and Süli [23]; they are
recalled for the sake of completeness and most of the proofs are omitted.

Lemma 4.1. Assume that u ∈ C(C0,1(Ω)d ∩ V ). If |s − t| is sufficiently small,
then x −→ X(x, s; t) is a homeomorphism of Ω onto itself and its Jacobian equals 1
almost everywhere (a.e.) on Ω.

Lemma 4.2. Assume that for all k

δt‖ũkh‖1,∞eδt‖ũ
k
h‖1,∞ ≤ 1/8;

then ∀ t in [tk, tk+1], x −→ Xh(x, tk+1; t) is a homeomorphism of Ω onto itself and
for a.e. x in Ω its Jacobian satisfies 1/2 ≤ Jh(x, tk+1; t) ≤ 3/2.

Lemma 4.3. Assume that

(HS1) δt‖u‖L∞(W 1,∞(Ω)d) ≤ 1/6;

then the mapping x −→ (1 − θ)x + θX(x, tk+1; tk) is a homeomorphism of Ω onto
itself with a Jacobian ≥ 1/2 ∀ θ in [0, 1].

Lemma 4.4. Assume (HS1); then there exists ε such that if

δt‖ũkh‖1,∞ ≤ ε.(4.1)

then the mapping x −→ (1− θ)Xh(x, tk+1; tk) + θX(x, tk+1; tk) is a homeomorphism
of Ω onto itself with a Jacobian ≥ 1/2 ∀ θ in [0, 1].

Denoting by ε the small parameter introduced in the lemma above, we shall
assume hereafter that

(HS2) δt‖ũkh‖1,∞ ≤ ε.

Remark 4.1. Assumption (HS1) is a restriction on the time step, whereas (HS2) is a
stability hypothesis on the approximate velocity that we shall prove by induction in
the next subsection.

Lemma 4.5. Let x −→ ψ0(x) and x −→ ψ1(x) be two homeomorphisms of Ω onto
itself such that for all θ ∈ [0, 1], x −→ (1− θ)ψ0(x) + θψ1(x) is a homeomorphism of
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Ω onto itself with Jacobian ≥ 1/2. Then, ∀ p, q, 1 ≤ q < ∞, 1 ≤ p ≤ ∞, and for
η ∈W 1,qp′(Ω), (1/p+ 1/p′ = 1), we have

‖η ◦ ψ0 − η ◦ ψ1‖0,q ≤ 2‖ψ0 − ψ1‖0,pq‖∇η‖0,qp′ .(4.2)

From this lemma we infer a series of corollaries that will be used repeatedly hereafter.
Corollary 4.6. Assume that u ∈ C(C0,1(Ω)d), ut ∈ L∞(L2(Ω)d), and that

(HS1) and (HS2) hold, then there exists c = 2 exp(δt‖u‖C(C0,1(Ω)d)) such that

‖Xk −Xk
h‖0,2 ≤ cδt(‖u(tk)− ũkh‖0,2 + δt ‖ut‖L∞(L2(Ω)d)).(4.3)

A direct consequence of this corollary together with Lemma 4.5 is the following
corollary;

Corollary 4.7. Assume that u ∈ C(C0,1(Ω)d), ut ∈ L∞(L2(Ω)d), and that
(HS1) and (HS2) hold; then there exists c = 4 exp(δt‖u‖C(C0,1(Ω)d)) such that ∀ η ∈
H1(Ω)

‖η ◦Xk − η ◦Xk
h‖0,1 ≤ cδt(‖u(tk)− ũkh‖0,2 + δt‖ut‖L∞(L2(Ω)d))‖∇η‖0,2.(4.4)

The following corollary is crucial for deriving L2 optimal estimates; it is mainly
due to Douglas and Russell [9].

Corollary 4.8. Assume that u ∈ C(C0,1(Ω)d) and (HS1) holds; then ∀ η ∈
L2(Ω)

‖η − η ◦Xk‖−1 ≤ 2δt‖u‖C(C0,1(Ω)d)‖η‖0.(4.5)

4.2. Definition of suitable interpolations. Before going through the details
of the error analysis, we introduce some suitable interpolations of u(t) and p(t) which
will preserve the high approximation order hl+1 on u(t) in the L2(Ω)d-norm. For all t,
we define wh(t) ∈ Xh and qh(t) ∈Mh as the solutions of the following discrete Stokes
problem:{

(∇wh(t),∇vh) + (Bt
hqh(t), vh) = (∇u(t),∇vh)− (p(t),∇·vh) ∀vh ∈ Xh,

(rh, Bhwh(t)) = −(rh,∇·u(t)) ∀rh ∈Mh.
(4.6)
Thanks to the H2-regularity of the Stokes operator in regular domains together with
the Aubin–Nitsche trick, these interpolations satisfy the following lemma.

Lemma 4.9. Provided hypotheses (HA1), (HA2), and (HA3) hold and for 1 ≤
β ≤ ∞, u ∈ Lβ(H l+1(Ω)d ∩ V ), p ∈ Lβ(H l(Ω) ∩M), there exists c > 0 such that

‖u− wh‖Lβ(L2(Ω)d) + h(‖u− wh‖Lβ(H1(Ω)d) + ‖p− qh‖Lβ(L2(Ω)))
≤ chl+1(‖u‖Lβ(Hl+1(Ω)d) + ‖p‖Lβ(Hl(Ω))).

(4.7)

5. Error bounds on the velocity with mild regularity assumptions. In
this section, we derive error bounds on the velocity. For the sake of simplicity, we
assume the following regularity on the initial data.

(HR1) u0 ∈ H2(Ω)d ∩W 1,∞(Ω)d ∩ V .
Furthermore, denoting the material derivative ut +u·∇u by Dtu, we assume that the
solution (u, p) of the problem (2.1) satisfies

(HR2) u ∈ L∞(V ∩H l+1(Ω)d ∩W 1,∞(Ω)d) ∩ C(C0,1(Ω)d),
ut ∈ L2(V ∩H l+1(Ω)d) ∩ L∞(H),
D2
t u ∈ L2(L2(Ω)d), where D2

t = Dt(Dt),
p ∈ L∞(H l(Ω) ∩M) and pt ∈ L2(H l(Ω)).
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For the sake of simplicity we assume that the initial values, û0
h and p̂0

h, are chosen so
that

(HI1) ‖w0
h − û0

h‖0 ≤ chl+1, ‖w0
h − û0

h‖1 ≤ cmin(hl, hl+1/δt1/2),
‖q0
h − p̂0

h‖1 ≤ c.
The main result of this section is summarized in the following theorem.

Theorem 5.1. Assume that the approximation hypotheses (HA1)–(HA6), to-
gether with the regularity and initialization hypotheses (HR1), (HR2), and (HI1), hold.
Then, there exist cs > 0, ce > 0, and hs > 0 such that ∀ h ∈]0, hs] and ∀ δt ≤ cshd/3

‖u− uh‖l∞(L2(Ω)d) + ‖u− ũh‖l∞(L2(Ω)d) ≤ ce(hl+1 + δt),(5.1)

‖u− ũh‖l2(H1(Ω)d) ≤ ce(hl + δt).(5.2)

Proof. Hereafter, we shall denote by ci generic constants, independent of h, δt,
and the time index k. These constants may depend on u, p, T, and Ω. The strategy
that we adopt hereafter follows the ideas of Russell [20, 21], Douglas and Russell [9],
Süli [23], and Guermond and Quartapelle [14]. We proceed by finite induction on k.

Our induction hypothesis is that there exists cs > 0, ce > 0, and hs > 0 such that
at time step tm, 0 ≤ m < K, ∀ h ∈]0, hs] and ∀ δt ≤ cshd/3

‖u− uh‖l∞(0,tm;L2(Ω)d) + ‖u− ũh‖l∞(0,tm;L2(Ω)d) ≤ ce(hl+1 + δt),

‖u− ũh‖l2(0,tm;H1(Ω)d) ≤ ce(hl + δt),

and that the stability hypothesis (HS2) holds for all time steps 0 ≤ k ≤ m.
Initialization. We prove first that the induction hypothesis holds for m = 0. Given

the initialization hypothesis (HI1) and the regularity of u0, we have

‖u0 − u0
h‖0 + ‖u0 − ũ0

h‖0 + h‖u0 − ũ0
h‖1 ≤ chl+1.

The error estimate in the induction hypothesis is satisfied if we denote by ce,0 the
constant in the inequality above. Denoting by Phu0 an interpolate of u0 that satisfies
the error estimates (HA1), we have

‖ũ0
h‖1,∞ ≤ ‖ũ0

h − Phu0‖1,∞ + ‖Phu0‖1,∞
≤ c(h− d2 ‖ũ0

h − Phu0‖1,2 + ‖u0‖1,∞)

≤ c(h1− d2 ‖u0‖2,2 + ‖u0‖1,∞).

We can now choose a constant cs,0 depending only on the regularity of u0, such that
for all h ≤ hs,0 = 1 and for all δt ≤ cs,0hd/3, (HS2) is verified for ũ0

h.
Step 1. Assuming that the induction hypothesis holds for m such that 0 ≤ m <

K = T/δt, we shall now prove that it also holds for m+ 1. Note that before verifying
the induction hypothesis at step m = 1, we set cs = cs,0, ce = ce,0, hs = hs,0. The
value of cs and ce will be modified once at the end of step m = 1. The value of hs
will be modified at the end of steps m = 1 and m = 2 since its value may depend on
cs and ce. For shortness, we do not detail steps m = 1 and m = 2.

Step 2. First, we establish the equations that control the errors. For shortness, we
denote by ekh = wh(tk)−ukh, ẽkh = wh(tk)− ũkh and εkh = qh(tk)−pkh the error functions,
(u(t), p(t)) being the solution of the continuous problem (2.5). The interpolation error



A PROJECTION/LAGRANGE–GALERKIN METHOD 809

u(t)−wh(t) is denoted by η(t). For any function, φ(t), which is continuous with respect
to time, we set φk = φ(tk); furthermore, we introduce the notation δtφ

k+1 = φk+1−φk.
Given the particular approximation (wh, qh) that we have chosen, the exact solu-

tion of the Navier–Stokes problem satisfies at time tk+1

(
δtw

k+1
h
δt

, vh

)
+ (∇wk+1

h ,∇vh) + (uk+1 · ∇uk+1, vh)

+(Bt
hq
k+1
h , vh) =

(
fk+1 − uk+1

t +
δtw

k+1
h
δt

, vh

)
∀vh ∈ Xh,

Bhw
k+1
h = 0.

(5.3)

By subtracting (3.9) from (5.3), we derive the equation that controls the error
ẽk+1
h : (

ẽk+1
h − ithekh

δt
, vh

)
+ (∇̃ek+1

h ,∇vh) + (Bt
hψ

k
h, vh) = −

(
δtη

k+1

δt
, vh

)
+

(
uk+1 − uk(Xk)

δt
−Dtu

k+1, vh

)
−
(
uk − ũkh − (uk − ũkh)(Xk)

δt
, vh

)
−
(

(uk − ũkh)(Xk)− (uk − ũkh)(Xk
h)

δt
, vh

)
−
(
uk(Xk

h)− uk(Xk)
δt

, vh

)
,

(5.4)

where we have set

ψkh = qk+1
h − pkh = δtq

k+1
h + εkh.

We denote by R1(vh), . . . , R5(vh) the five terms in the right-hand side of (5.4) .
On the other hand, since wk+1

h ∈ Xh, Bhw
k+1
h = 0, and Ch is an extension of Bh,

we obtain the system of equations that controls ek+1
h and εk+1

h :{
ek+1
h − ihẽk+1

h
δt

+ Ct
h(εk+1

h − ψkh) = 0,

Che
k+1
h = 0.

(5.5)

Step 3. To obtain a bound on ẽk+1
h , we take the inner product of (5.4) by 2δt ẽk+1

h .
Using the algebraic relation 2(a, a−b) = |a|2+|a−b|2−|b|2 and the Poincaré–Friedrichs
inequality (α is the constant such that ‖v‖21 ≤ α‖∇v‖20 ∀v ∈ H1

0 (Ω)), we have

‖ẽk+1
h ‖20 + ‖ẽk+1

h − ithekh‖20 − ‖ithekh‖20 + 2αδt‖ẽk+1
h ‖21

+2δt(ẽk+1
h , Bt

hψ
k
h) ≤ 2δt

5∑
i=1

|Ri(ẽk+1
h )|.

The terms in the right-hand side of the inequality above may be bounded from
above as follows:

2δt|R1(ẽk+1
h )| ≤ δt‖ẽk+1

h ‖20 + ‖ηt‖2L2(tk,tk+1;L2(Ω)d).

Exactly as in [23], and from assumption (HR2),

2δt|R2(ẽk+1
h )| ≤ δt‖ẽk+1

h ‖20 + δt2‖D2
t u‖2L2(tk,tk+1;L2(Ω)d).
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Corollary 4.8 implies

2δt|R3(ẽk+1
h )| ≤ 2‖ẽk+1

h ‖1‖uk − ũkh − (uk − ũkh)(Xk)‖−1

≤ α

5
δt‖ẽk+1

h ‖21 + cδt‖uk − ũkh‖20.

By using Corollary 4.7, we have

2δt|R4(ẽk+1
h )| ≤ 2‖ẽk+1

h ‖0,∞‖(uk − ũkh)(Xk)− (uk − ũkh)(Xk
h)‖0,1

≤ cδtD(h)‖ẽk+1
h ‖1

(‖uk − ũkh‖0 + δt‖ut‖L∞(L2(Ω)d)

) ‖∇(uk − ũkh)‖0
≤ cδtD(h)‖ẽk+1

h ‖1
(‖uk − ũkh‖0 + δt‖ut‖L∞(L2(Ω)d)

)
(‖ηk‖1 + ‖ẽkh‖1).

The induction hypothesis implies that

‖uk − ũkh‖0 + δt‖ut‖L∞(L2(Ω)d) ≤ c(ce)(hl+1 + δt).

There exists hs,1 > 0 which does not depend on m but possibly depends on cs and ce
such that ∀ h ≤ hs,1 and δt ≤ cshd/3,

cD(h)
(‖uk − ũkh‖0 + δt‖ut‖L∞(L2(Ω)d)

) ≤ α

5
.

Furthermore, given the regularity of u (i.e., hypothesis (HR2)), there exists hs,2 > 0
which does not depend on m such that ∀ h ≤ hs,2,

cD(h)‖ηk‖1 ≤ 1.

As a result, there are positive constants c1 and c2 independent of ce, cs, h and δt so
that ∀ h ≤ min(hs,1, hs,2) and δt ≤ cshd/3,

2δt|R4(ẽk+1
h )| ≤ δt‖ẽk+1

h ‖1(
α

5
‖ẽkh‖1 + ‖uk − ũkh‖0 + δt‖ut‖L∞(L2(Ω)d))

≤ δt3α
5
‖ẽk+1
h ‖21 + δt

α

5
‖ẽkh‖21 + c1δt‖uk − ũkh‖20 + c2δt

3.

The last residual R5(ẽk+1
h ) is bounded from above as follows:

2δt|R5(ẽk+1
h )| ≤ 2‖ẽk+1

h ‖0‖uk(Xk
h)− uk(Xk)‖0

≤ c‖ẽk+1
h ‖0‖Xk −Xk

h‖0‖u‖L∞(tk,tk+1;W 1,∞(Ω)d)

≤ cδt‖ẽk+1
h ‖0(‖uk − ũkh‖0,2 + δt‖ut‖L∞(L2(Ω)d))‖u‖L∞(W 1,∞(Ω)d)

≤ δt‖ẽk+1
h ‖20 + c1δt‖uk − ũkh‖20 + c2δt

3,

After collecting all the bounds we obtain

‖ẽk+1
h ‖20+‖ẽk+1

h − ithekh‖20 + 2δt(ẽk+1
h , Bt

hψ
k
h) + 2αδt‖ẽk+1

h ‖21
≤ ‖ekh‖20 + 3δt‖ẽk+1

h ‖20 +
4α

5
δt‖ẽk+1

h ‖21 +
α

5
δt‖ẽkh‖21 + c1δt‖uk − ũkh‖20

+c2δt
3 + ‖ηt‖2L2(tk,tk+1;L2(Ω)d) + δt2‖D2

t u‖2L2(tk,tk+1;L2(Ω)d).

Now we use

‖ẽk+1
h ‖20 ≤ 2‖ẽk+1

h − ithekh‖20 + 2‖ekh‖20,
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and using the convention e−1
h = 0, we have

‖uk − ũkh‖20 ≤ 2‖ηk‖20 + 4‖ẽkh − ithek−1
h ‖20 + 4‖ek−1

h ‖20.
The final bound is

‖ẽk+1
h ‖20+(1− 6δt)‖ẽk+1

h − ithekh‖20 + 2δt(ẽk+1
h , Bt

hψ
k
h) +

6α

5
δt‖ẽk+1

h ‖21
≤ ‖ekh‖20 + 6δt‖ekh‖20 +

α

5
δt|ẽkh|21

+c1δt‖ek−1
h ‖20 + c2δt‖ẽkh − ithek−1

h ‖20 + c3δt‖ηk‖20(5.6)

+c4δt
3 + ‖ηt‖2L2(tk,tk+1;L2(Ω)d) + δt2‖D2

t u‖2L2(tk,tk+1;L2(Ω)d).

We can pick hs,3 > 0 (independent of m, but dependent of cs) such that for all h ≤ hs,3
and δt ≤ cshd/3, the following inequality holds: c2δt ≤ 1/4 < 3/4 ≤ 1− 6δt, where c2
is the constant in bound (5.6) above. Finally the current values of hs are replaced by

min(hs, hs,1, hs,2, hs,3).

Step 4. To obtain some control on δt(ẽk+1
h , Bt

hψ
k
h), we take the inner product of

the first equation of (5.5) by 2δt2Ct
hψ

k
h and we obtain

−2δt(ẽk+1
h , Bt

hψ
k
h) + δt2‖Ct

hε
k+1
h ‖20 − ‖ek+1

h − ihẽk+1
h ‖20=δt2‖Ct

hψ
k
h‖20

=δt2‖Ct
h(δtq

k+1
h + εkh)‖20,2;

that is to say, given the stability property (HA6),

−2δt(ẽk+1
h , Bt

hψ
k
h)+δt2‖Ct

hε
k+1
h ‖20 − ‖ek+1

h − ihẽk+1
h ‖20

≤ δt2(1 + δt)‖Ct
hε
k
h‖20 + cδt2‖qht‖2L2(tk,tk+1;H1(Ω)).(5.7)

Step 5. We obtain some control on ek+1
h by taking the inner product of (5.5) by

2δtek+1
h :

‖ek+1
h ‖20 + ‖ek+1

h − ihẽk+1
h ‖20 − ‖ẽk+1

h ‖20 = 0.(5.8)

Step 6. After summing up (5.6) + (5.7) + (5.8), we obtain

‖ek+1
h ‖20 +δt2‖Ct

hε
k+1
h ‖20 +

3

4
‖ẽk+1
h − ithekh‖20 +

6α

5
δt‖ẽk+1

h ‖21
≤ ‖ekh‖20 + δt2‖Ct

hε
k
h‖20 + 6δt‖ekh‖20 + δt3‖Ct

hε
k
h‖20 +

α

5
δt‖ẽkh‖21

+ c1δt‖ek−1
h ‖20,2 +

1

4
‖ẽkh − ithek−1

h ‖20,2 + c2δt‖ηk‖20,2 + c3δt
3

+ ‖ηt‖2L2(tk,tk+1;L2(Ω)d) + δt2‖D2
t u‖2L2(tk,tk+1;L2(Ω)d) + c4δt

2‖qht‖2L2(tk,tk+1;H1(Ω)).

By taking the sum from k = 0 to m, we obtain

‖em+1
h ‖20 + δt2‖Ct

hε
m+1
h ‖20+

1

2

m∑
k=0

‖ẽk+1
h − itheh‖20 + αδt

m∑
k=0

‖ẽk+1
h ‖21

≤c1δt
m∑
k=0

[‖ekh‖20 + δt2‖Ct
hε
k
h‖20
]

+c2δt
m∑
k=0

‖ηk‖20 + c3δt
2 + ‖e0

h‖20 + δt2‖ε0h‖21 +
α

5
δt‖ẽ0

h‖21

+‖ηt‖2L2(L2(Ω)d) + δt2‖D2
t u‖2L2(L2(Ω)d) + c4δt

2‖qht‖2L2(H1(Ω)).
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From the initialization hypothesis, we infer that the term ‖e0
h‖20 + δt2‖ε0h‖21 + α/5δt‖ẽ0

h‖21
is bounded from above by c(δt + hl+1). From the definition of (wh(t), qh(t)) (see
(4.6)) we infer that ‖qht‖L2(H1(Ω)) is bounded from above by C(‖ut‖L2(H2(Ω)d) +
‖pt‖L2(H1(Ω))), which is well defined from assumption (HR2); we may write ‖qht‖L2(H1(Ω))

≤ c. Likewise, the approximation error η satisfies

δt

m∑
k=0

‖ηk‖20 ≤ ch2(l+1)δt
m∑
k=0

(‖uk‖2l+1 + ‖pk‖2l ) ≤ ch2(l+1),

and from assumption (HR2)

‖ηt‖L2(L2(Ω)d) ≤ chl+1(‖ut‖L2(Hl+1(Ω)d) + ‖pt‖L2(Hl(Ω))) ≤ chl+1.

As a result, we can apply the discrete Gronwall lemma, which leads to

‖em+1
h ‖20+δt2‖Ct

hε
m+1
h ‖20 +

1

2

m∑
k=0

‖ẽk+1
h − ithekh‖20 + αδt

m+1∑
k=0

‖ẽkh‖21

≤ c1 exp (c2δt
m)
(
δt+ hl+1

)2
.

From this bound we deduce

‖um+1 − um+1
h ‖0 ≤ ‖em+1

h ‖0 + ‖ηm+1‖0
≤ c1 exp(c2T )

(
δt+ hl+1

)
.

Now we set ce,1 = c1 exp(c2T ), where c1 and c2 are the constants used in the bound
above. Now, using

‖ẽm+1
h ‖0 ≤ ‖ẽm+1

h − itnemh ‖0 + ‖emh ‖0
≤ c1 exp (c2T )

(
δt+ hl+1

)
,

we infer that

‖um+1 − ũm+1
h ‖0 ≤ ‖ηm+1‖0 + ‖ẽm+1

h ‖0
≤ c1 exp (c2T )

(
δt+ hl+1

)
.

Now we set ce,2 = c1 exp(c2T ), where c1 and c2 are the constants used in the bound
above. The error bound in the H1 norm is obtained as follows:

‖u− ũh‖2l2(0,tm+1;H1(Ω)d) ≤ 2‖η‖2l2(0,tm+1;H1(Ω)d) + 2‖ẽh‖2l2(0,tm+1;H1(Ω)d)

≤ c1 exp (c2T )
(
δt+ hl

)
.

Note that although the approximation error ‖ẽm+1
h ‖l2(0,tm+1;H1(Ω)d) is of order O(δt+

hl+1), the total error is spoiled by the interpolation error in space which is of order
O(hl). Now we set ce,3 = c1 exp(c2T ), where c1 and c2 are the constants used in the
bound above, and we redefine ce as being

max(ce,0, ce,1, ce,2, ce,3).

It is important to note that ce is redefined once at the end of time step m = 1; as a
result, it is definitely independent of m, h, and δt.
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Step 7. Now we turn our attention to the stability hypothesis (HS2). Let us denote
by Phu

m+1 some interpolate of um+1 that satisfies the error estimates of (HA1). We
have

‖ũm+1
h ‖1,∞ ≤ ‖ũm+1

h − Phum+1‖1,∞ + ‖Phum+1‖1,∞
≤ c1h− d2 (‖ũm+1

h − um+1‖1,2 + ‖um+1 − Phum+1‖1,2) + c2‖um+1‖1,∞.
Given the error bound we have obtained at time step m + 1 (after using a classical
inverse inequality in time), we clearly have

‖ũm+1
h − um+1‖1,2 ≤ ce(δt1/2 + hlδt−1/2).

As a result, setting δt ≤ cshd/3 we obtain

δt‖ũm+1
h ‖1,∞ ≤ c1h− d2 (ce(δt

3
2 + hlδt

1
2 ) + c2h

lδt) + c3δt‖um+1‖1,∞
≤ c1(ce(c

3
2
s + c

1
2
s ) + c2cs) + c3cs.

From this bound we can define cs,1 such that (HS2) holds. Then we redefine a new
value of cs as being equal to

min(cs, cs,1).

Note that ce and cs are fixed after the first time step m = 1. As a result, hs is fixed
at the end of time step m = 2.

In conclusion the induction hypothesis is satisfied at step m+ 1.
Remark 5.1. We obtained a stability condition of the type δt = O(hd/3) with

mild regularity assumptions on the solution of the continuous problem, whereas Süli
[23] obtained δt = O(hd/4). The main reason for this more demanding condition
on the time step is the fact that the projection algorithm does not easily yield an
estimate in the l∞(0, tm+1; H1(Ω)d) norm. Since we are not able to obtain it with these
regularity assumptions, we have derived it from the l2(0, tm+1; H1(Ω)d) norm by using
an inverse inequality in time. By doing so we lose a δt1/2 factor, which in turn yields
the stability condition δt = O(hd/3). However, if such a l∞(0, tm+1; H1(Ω)d) estimate
was at hand then Süli’s stability condition would imply the stability condition (HS2).
In the next section, we shall make stronger regularity assumptions on the solution of
the continuous problem as well as additional hypothesis on the initialization of the
scheme; then, assuming δt = O(hd/4), we shall obtain the result of Theorem 5.1 as
well as error estimates on the pressure.

6. Error bounds on velocity and pressure with stronger regularity as-
sumptions. In this section, we derive error bounds on the velocity and the pressure
with the weaker condition δt = O(hd/4). For that, we reproduce exactly the proof
of 5.1 up to Step 6, but we replace Step 7 of the above mentioned proof by a much
more involved argument, which yields an error estimate for the pressure and for the
velocity in the l∞(0, tm+1; H1(Ω)d) norm.

To this end, we reconstruct a momentum equation on the error by summing (5.4)
and (5.5). Then, the inf-sup condition yields a bound on εk+1

h if we can control the

approximate time derivative (ek+1
h − ekh)/δt. The classical way for obtaining such a

control consists of using δte
k+1
h as a test function in the momentum equation. In the

present case, this procedure does not seem to be feasible since δte
k+1
h does not belong

to the right function space. To avoid this difficulty, we shall construct the equations
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that control the incremental errors δtẽ
k+1
h , δte

k+1
h , and δtε

k+1
h ; then we shall proceed

as in the proof of Theorem 5.1.

Throughout this section we shall make the following assumptions.

(HI2) The algorithm is initialized so that

‖e0
h‖0 ≤ min(hl+1, δthl), ‖ẽ0

h‖1 ≤ cδt1/2hl, ‖ε0h‖1 ≤ chl.
(HR3) In addition to (HR1) and (HR2) the solution (u, p) is assumed to be such

that

u ∈W 1,∞(V ∩H l+1(Ω)d ∩W 1,∞(Ω)d)∩ = L∞(W 2,∞(Ω)d),
utt ∈ L2(V ∩H l+1(Ω)d) ∩ L∞(H),
∂tD

2
t u ∈ L2(L2(Ω)d),

D3
t u ∈ L2(L2(Ω)d),

pt ∈ L∞(H l(Ω) ∩M) and ptt ∈ L2(H l(Ω)).

6.1. Preliminary results. We need first to establish a series of preliminary
lemmas: the next lemma can be proved as in [23].

Lemma 6.1. Setting Xk
θ = θXk + (1− θ)Xk−1 and Xk

h,θ = θXk
h + (1− θ)Xk−1

h ,

and Xk
h,ζ,θ = ζXk

θ + (1− ζ)Xk
h,θ, there exists ε such that if

δt(‖u‖L∞(W 1,∞(Ω)d) + ‖ũkh‖1,∞ + ‖ũk−1
h ‖1,∞) ≤ ε,(6.1)

then the mappings x −→ (1 − θ)Xk
h(x) + θXk(x) , Xk

θ ,Xk
h,θ, X

k
h,ζ,θ are homeomor-

phisms of Ω onto itself with a Jacobian ≥ 1/2 for all θ in [0, 1].

Denoting by ε the small parameter introduced in the lemma above, we shall make
the assumption

(HS3) ∀k ∈ {1, . . . ,K}, δt(‖u‖L∞(W 1,∞(Ω)d) + ‖ũkh‖1,∞ + ‖ũk−1
h ‖1,∞) ≤ ε.

Lemma 6.2. Assume (HR2) and (HR3); moreover, assume that there is ce > 0
so that max(‖ẽkh‖1, ‖ẽk−1

h ‖1) ≤ ce(δt + hl). Then, there exist hs(ce) > 0 and c1, c2
independent of ce but possibly depending on u so that ∀ h ∈]0, hs(ce)] and ∀ δt ≤ hd/4
we have

1

δt
‖δtXk − δtXk

h‖0 ≤ c1δt
[
δt+ hl + ‖ẽkh‖1 + ‖ẽk−1

h ‖1)
]

+ c2‖δtẽkh‖0.(6.2)

Proof. For shortness, we shall adopt the following notations: X l(s) = X(x, tl; s)
and X l

h(s) = X(x, tl; s); note that Xk+1(tk) is by definition equal to Xk. For any
function φk(s), the quantity φk(s)−φk−1(s− δt) is denoted by δtφ

k(s). The quantity
δtX

k+1(s)− δtXk+1
h (s) satisfies

d

ds
(δtX

k+1(s)− δtXk+1
h (s)) = u(Xk+1(s), s)− u(Xk(s− δt), s− δt)

−ũkh(Xk+1
h (s)) + ũk−1

h (Xk
h(s− δt))

=

∫ s

tk
[uτ (Xk+1(s), τ)− uτ (Xk(s− δt), τ − δt)]dτ

+uk(Xk+1(s))− uk(Xk+1
h (s))− uk−1(Xk(s− δt)) + uk−1(Xk

h(s− δt))
+ηk(Xk+1

h (s))− ηk−1(Xk+1
h (s)) + ηk−1(Xk+1

h (s))− ηk−1(Xk
h(s− δt))

+ẽkh(Xk+1
h (s))− ẽk−1

h (Xk+1
h (s)) + ẽk−1

h (Xk+1
h (s))− ẽk−1

h (Xk
h(s− δt)).
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From (HR3), we infer that∥∥∥∥∫ s

tk
[uτ (Xk+1(s), τ)− uτ (Xk(s− δt), τ − δt)]dτ

∥∥∥∥
0

≤ cδt2.

For the second term, we use Lemma 4.5 together with Corollary 4.6:

‖uk(Xk+1(s))− uk(Xk+1
h (s))‖0 ≤ c‖Xk+1(s))−Xk+1

h (s)‖0
≤ cδt(δt+ hl+1 + ‖ẽkh‖0).

In the same manner, for the third term we have

‖uk−1(Xk(s− δt))− uk−1(Xk
h(s− δt))‖0 ≤ cδt(δt+ hl+1 + ‖ẽk−1

h ‖0).

For the fourth term, we use Lemma 4.2 together with (HR3):

‖ηk(Xk+1
h (s))− ηk−1(Xk+1

h (s))‖0 ≤ c‖ηk − ηk−1‖0
≤ cδthl+1.

Similarly, for the sixth term, we have

‖ẽkh(Xk+1
h (s))− ẽk−1

h (Xk+1
h (s))‖0 ≤ c‖δtẽkh‖0.

Finally, for bounding the two remaining terms, we shall need an estimate on ‖Xk+1
h (s))−

Xk
h(s − δt))‖0,∞. Using the triangular inequality together with the Gronwall lemma

we obtain

‖Xk+1
h (s)−Xk

h(s− δt)‖0,∞ ≤ ‖Xk+1(s)−Xk+1
h (s)‖0,∞ + ‖Xk+1(s)−Xk(s− δt)‖0,∞

+‖Xk(s− δt)−Xk
h(s− δt)‖0,∞

≤ cδt(δt+D(h)hl + ‖ẽkh‖0,∞ + ‖ẽk−1
h ‖0,∞)

≤ cD(h)δt(δt+ hl + ‖ẽkh‖1 + ‖ẽk−1
h ‖1),

where we have used the fact that ‖ηh(t)‖0,∞ ≤ cD(h)hl‖u(t)‖l+1 and assumption
(HR2). By hypothesis, the right-hand side is bounded by c(ce)δt(h

d/4 + hl)D(h). We
can choose hs(ce) so that ∀ h ∈]0, hs(ce)], c(ce)(h

d/4 + hl)D(h) ≤ 1. As a result we
obtain

‖Xk+1
h (s)−Xk

h(s− δt)‖0,∞ ≤ δt.
Therefore, the last two terms are bounded from above as follows:

‖ẽk−1
h (Xk+1

h (s))− ẽk−1
h (Xk

h(s− δt))‖0 ≤ c‖ẽk−1
h ‖1,2‖Xk+1

h (s)−Xk
h(s− δt))‖0,∞

≤ cδt‖ẽk−1
h ‖1,

‖ηk−1(Xk+1
h (s))− ηk−1(Xk

h(s− δt))‖0 ≤ c‖ηk−1‖1,2‖X̃k+1
h (s)−Xk

h(s− δt))‖0,∞
≤ cδthl.

By combining the bounds obtained above we infer

1

δt
‖δtXk − δtXk

h‖0 ≤ c1δt(δt+ hl + ‖ẽk−1
h ‖1 + ‖ẽkh‖1) + c2‖δtẽkh‖0.
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The proof of the lemma is complete.
We shall also need the next lemma.
Lemma 6.3. With the same assumptions as in Lemma 6.2 and assuming (HS3),

there is hs(ce) > 0 so that ∀ h ∈]0, hs(ce)],∀ δt ≤ hd/4,∀ 2 ≤ q ≤ ∞, ξ ∈ W 1,q(Ω),
vh ∈ Xh, we have

1

δt

∣∣∣∣∫
Ω

[
δtξ(X

k)− δtξ(Xk
h)
]
vhdx

∣∣∣∣
≤ c(|ξ|1,q‖vh‖0,q′ + |ξ|1,2‖vh‖1,2)

[
δt(δt+ hl + ‖ẽkh‖1 + ‖ẽkh‖1) + ‖δtẽkh‖0

]
,

where we have set δtξ(φ
k) = ξ(φk)− ξ(φk−1) and 1/q + 1/q′ = 1/2.

Proof. Setting Xk
θ = θXk + (1− θ)Xk−1 and Xk

h,θ = θXk
h + (1− θ)Xk−1

h , for an
arbitrary function vh in Xh we have∫

Ω

[
δtξ(X

k)− δtξ(Xk
h)
]
vhdx =

∫
Ω

∫ 1

θ=0

[∇ξ(Xk
θ ) · δtXk −∇ξ(Xk

h,θ) · δtXk
h

]
vhdθdx

=

∫ 1

θ=0

∫
Ω

[∇ξ(Xk
θ )−∇ξ(Xk

h,θ)
] · δtXkvhdxdθ

+

∫ 1

θ=0

∫
Ω

∇ξ(Xk
h,θ) · (δtXk − δtXk

h)vhdxdθ.

As a result∫
Ω

[
δtξ(X

k)− δtξ(Xk
h)
]
vhdx ≤

∫ 1

θ=0

∫
Ω

[∇ξ(Xk
θ )−∇ξ(Xk

h,θ

] · δtXkvhdxdθ

+ c‖∇ξ‖0,q‖δtXk − δtXk
h‖0,2‖vh‖0,q′ .

Here, we have used the hypothesis (HS3)(to be verified by induction) to bound
‖∇ξ(Xk

h,θ)‖0,q by C‖∇ξ‖0,q. Let us denote by I0 the second term in the right-hand
side. This term is easily bounded from above by using Lemma 6.2:

|I0| ≤ c|ξ|1,q‖vh‖0,q′
[
δt2(δt+ hl + ‖ẽkh‖1 + ‖ẽk−1

h ‖1) + δt‖δtẽkh‖0
]
.

For the other term we proceed as follows:∫
Ω

[∇ξ(Xk
θ )−∇ξ(Xk

h,θ)
] · δtXkvhdx =

∫
Ω

∇ξ(Xk
θ ) · δtXkvh

[
1− det(∇Xk

θ )
]
dx

−
∫

Ω

∇ξ(Xk
h,θ) · δtXkvh

[
1− det(∇Xk

h,θ)
]
dx

+

∫
Ω

[
det(∇Xk

θ )∇ξ(Xk
θ )− det(∇Xk

h,θ)∇ξ(Xk
h,θ)
] · δtXkvhdx.

Let us denote, respectively, by I1, I2, and I3 the three integrals in the right-hand side
above. For I1 we have

|I1| ≤ |ξ(Xk
θ )|1,q‖δtXk‖0,∞‖1− det(∇Xk

θ )‖0,2‖vh‖0,q′ .

From Lemma 6.1 we infer

|I1| ≤ c|ξ|1,q‖δtXk‖0,∞‖1− det(∇Xk
θ )‖0,2‖vh‖0,q′ .
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Provided Xk+1 and Xk satisfy the hypothesis of Lemma 4.5 (i.e., δt small enough)
and u ∈ L∞(W 1,∞(Ω)d), ut ∈ L∞(L∞(Ω)d), we infer

‖δtXk‖0,∞ ≤ cδt2.
For the remaing term involving 1− det(∇Xk

θ ) we use the equality

‖1− det(∇Xk
θ )‖0,2 = ‖ det

[
θ∇(Xk)− (1− θ)∇(Xk)

]
)− det(∇Xk

θ )‖0,2,
together with the inequality

‖ det(∇ψk1,θ)− det(∇ψk2,θ)‖0,2 ≤ cmax(‖ψk1‖1,∞, ‖ψk−1
1 ‖1,∞, ‖ψk2‖1,∞, ‖ψk−1

2 ‖1,∞)[‖ψk1 − ψk2‖1,2 + ‖ψk−1
1 − ψk−1

2 ‖1,2
]
,(6.3)

where ψk1 , ψ
k−1
1 , ψk2 , and ψk−1

2 are four arbitrary mappings of Ω onto Ω. By setting
ψk1 = ψk−1

1 = Xk, ψk2 = Xk, and ψk−1
2 = Xk−1 we infer from (6.3)

‖1− det(∇Xk
θ )‖0,2 ≤ cδt2.

As a result, we obtain

|I1| ≤ cδt4|ξ|1,q‖vh‖0,q′ .
For I2 we proceed similarly:

|I2| ≤ |ξ|1,q‖δtXk‖0,∞‖1− det(∇Xk
h,θ)‖0,2‖vh‖0,q′ ,

≤ cδt2|ξ|1,q‖1− det(∇Xk
h,θ)‖0,2‖vh‖0,q′ .

Given the assumed regularity u ∈ L∞(W 2,∞(Ω)d) ∩W 1,∞(L2(Ω)d), we infer

‖Xk −Xk
h‖1 + ‖Xk−1 −Xk−1

h ‖1 ≤ cδt
[
δt+ hl + ‖ẽkh‖1 + ‖ẽk−1

h ‖1
]
.

Furthermore, given the hypothesis (HS3) (to be verified by induction), we infer

‖Xk
h‖1,∞ + ‖Xk−1

h ‖1,∞ ≤ c.
By using formula (6.3), we obtain

|I2| ≤ cδt3
[
δt+ hl + ‖ẽkh‖1 + ‖ẽk−1

h ‖1
] |ξ|1,q‖vh‖0,q′ .

For I3 we have

|I3| =
∫

Ω

∇ξ ·
[
(vhδtX)(X−kθ )− (vhδtX)(X−kh,θ)

]
dx,

where X−kθ and X−kh,θ denote the inverse mappings of Xk
θ and Xk

h,θ, respectively. By
using Lemmas 4.5 and 6.1, we infer

|I3| ≤ |ξ|1,2|vhδtX|0,2‖X−kθ −X−kh,θ‖0,∞
≤ |ξ|1,2‖vh‖1,2‖δtX‖1,∞‖X−kθ −X−kh,θ‖0,∞.

It is possible to prove

‖X−kθ −X−kh,θ‖0,∞ ≤ cD(h)δt(δt+ hl + ‖ẽkh‖1 + ‖ẽk−1
h ‖1),

which yields ‖X−kθ −X−kh,θ‖0,∞ ≤ δt if δt ≤ hd/4 and h is small enough. As a result,
for I3 we obtain

|I3| ≤ cδt3|ξ|1,2‖vh‖1,2.
Note that the bound on |I3| is rather coarse, but we do not need a finer one here since
the bound on I0 is already more restrictive. The final bound is obtained by collecting
the bounds on I0, I1, I2, and I3.
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6.2. Error bounds. We now state the main theorem of section 6.
Theorem 6.4. Under the approximations hypotheses (HA1)–(HA6), the regular-

ity assumptions (HR1)–(HR3), and the initialization hypothesis (HI2), there exist ce,

cs, and hs such that ∀ h in ]0, hs] and for δt ≤ csh
d
4 , the solution of the projection

scheme (3.12)–(3.13) satisfies

‖u− uh‖l∞(L2(Ω)d) + ‖u− ũh‖l∞(L2(Ω)d) ≤ ce(hl+1 + δt),(6.4)

‖u− ũh‖l∞(H1(Ω)d) ≤ ce(hl + δt),(6.5)

‖p− p̃h‖l∞(L2(Ω)d) ≤ ce(hl + δt).(6.6)

Proof. The proof is done by induction: the induction hypothesis is that there
exist cs > 0, ce > 0, c′e > 0, and hs > 0 such that at time step tm, 0 ≤ m < K,
∀ h ∈]0, hs] and ∀ δt ≤ cshd/4{ ‖eh‖l∞(0,tm;L2(Ω)d) + ‖ẽh‖l∞(0,tm;L2(Ω)d) ≤ ce(hl+1 + δt),

‖ẽh‖l2(0,tm;H1(Ω)d) ≤ ce(hl + δt),
(6.7)

∥∥∥∥δtehδt
∥∥∥∥
l∞(0,tm;L2(Ω)d)

+

∥∥∥∥δtẽhδt
∥∥∥∥
l2(0,tm;H1(Ω)d)

≤ c′e(δt+ hl),(6.8)

‖εh‖l∞(0,tm;L2(Ω)) ≤ c′e(δt+ hl),(6.9)

‖ẽh‖l∞(0,tm;H1(Ω)d) ≤ c′e(δt+ hl),(6.10)

and that the stability hypothesis (HS3) holds for all time steps 0 ≤ k ≤ m.
Initialization. It is possible to find a constant cs,0 such that ∀ h ≤ hs,0 = 1 and

δt ≤ cs,0h
d
4 , (HS3) is verified. We also need to find bounds on the error on the first

time increment of velocity and pressure, namely, δtẽ
1 and δtε̃

1. We first control ẽ1; it
is clear that

‖ẽ1
h‖20 ≤ ‖e0

h‖20 + 2δt|(ẽ1, Bthψ
0
h)|+ 2δt

5∑
i=1

|Ri(ẽ1
h)|

≤ ‖e0
h‖20 + γ‖ẽ1

h‖20 + cδt2‖ψ0
h‖21 + 2δt

5∑
i=1

|Ri(ẽ1
h)|,

with the same notations as in the proof of Theorem 5.1, and γ is a positive real
number that can be chosen as small as needed.

In order to control ‖e1
h‖0, the terms |Ri(ẽ1

h)|, 1 ≤ i ≤ 5 will be treated differently
from what we did in the proof of Theorem 5.1:

2δt|R1(ẽ1
h)| ≤ γ‖ẽ1

h‖20 + c(δthl+1)2,

2δt|R2(ẽ1
h)| ≤ γ‖ẽ1

h‖20 + c(δt)4,
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2δt|R3(ẽ1
h)| ≤ 2‖ẽ1

h‖0‖u0 − ũ0
h − (u0 − ũ0

h)(X0)‖0
≤ c‖ẽ1

h‖0,2‖u0 − ũ0
h‖0,2

≤ γ‖ẽ1
h‖20 + c(δthl)2.

Similarly, for |R4(ẽ1
h)| one obtains

2δt|R4(ẽ1
h)| ≤ 2‖ẽ1

h‖0‖(u0 − ũ0
h)(X0)− (u0 − ũ0

h)(X0
h)‖0

≤ c‖ẽ1
h‖0,2‖u0 − ũ0

h‖0
≤ γ‖ẽ1

h‖20 + c(δthl)2.

Finally,

2δt|R5(ẽ1
h)| ≤ 2‖ẽ1

h‖0‖u0(X0
h)− u0(X0)‖0

≤ c‖ẽ1
h‖0‖X0 −X0

h‖0‖u0‖L∞(t0,t1;W 1,∞(Ω))

≤ cδt‖ẽ1
h‖0(‖u0 − ũ0

h‖0 + δt‖ut‖L∞(L2(Ω)d))‖u‖L∞(W 1,∞(Ω))

≤ γ‖ẽ1
h‖20 + cδt2(δt+ hl+1)2.

From these bounds and from the assumptions on e0
h and ε0h (recalling that ψ0

h =
(q1
h − q0

h) + ε0h and that ‖q1
h − q0

h‖1 ≤ cδt), we deduce that

‖ẽ1
h‖0 ≤ cδt(δt+ hl).

Thence,

‖δtẽ1
h‖0 ≤ cδt(δt+ hl).

Furthermore, from the projection step (5.5) we obtain{ ‖e1
h‖0 ≤ ‖ẽ1

h‖0,
‖Ct

h(ε1h − ψ0
h)‖0 ≤ ‖ẽ1

h‖0/δt.
The first bound yields easily

‖δte1
h‖0 ≤ cδt(δt+ hl).(6.11)

The other bound yields

‖Ct
hδtε

1
h‖0 ≤ c(δt+ hl).(6.12)

Thus the induction hypothesis is verified at step m = 0 with c′e = c′e,0. To verify it
for m+ 1 > 0, the strategy is the following: by reproducing Steps 1 to 6 of the proof
of Theorem 5.1, we obtain that (6.7) holds at time step m + 1. Then we derive the
equations that controls the incremental errors δteh/δt, δtẽh/δt, and δtεh/δt. Assuming
that (HS3) holds, we obtain bound (6.8) by proceeding as in the proof of Theorem
5.1. By summing (5.4) and ith(5.5) we obtain the momentum equation and the inf-sup
inequality yields the bound (6.9). Then using δtẽ

m+1
h /δt as a test function in the same

momentum equation yields (6.10). The last steps consist of verifying (HS3) at step
m+ 1 provided δt ≤ cshd/4. Thus the induction hypothesis is verified in five steps.

Step 1. We reproduce the arguments of Theorem 5.1 up to Step 6 and prove that
(6.7) holds at time step tm+1.
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Step 2. We derive an error estimate on the time increments of the errors δtẽ
k+1.

Let us consider the equations that control the time increments of the errors δtẽ
k+1,

δtẽ
k+1, and δtψ̃

k+1:(
δtẽ

k+1
h − ithδtekh

δt
, vh

)
+ (∇δtẽk+1

h ,∇vh) + (Bt
hδtψ

k
h, vh) = (δtR

k+1, vh)(6.13)

and {
δte

k+1
h − ihδtẽk+1

h
δt

+ Ct
h(δtε

k+1
h − δtψkh) = 0,

Chδte
k+1
h = 0,

(6.14)

where δtR
k+1 is given by

δtR
k+1 = − 1

δt
(δt

2ηk+1, vh) +

(
uk+1 − uk

δt
−Dtu

k+1, vh

)
− 1

δt
(ũkh(Xk

h)− ũkh, vh),

−
(
uk − uk−1

δt
−Dtu

k, vh

)
+

1

δt
(ũk−1
h (Xk−1

h )− ũk−1
h , vh).

The term δtR
k+1 is in turn decomposed into the sum of nine terms:

δtR
k+1 =

8∑
i=0

δtR
k+1
i ,

where

δtR
k+1
0 (vh) = − 1

δt
(δttη

k+1, vh),

δtR
k+1
1 (vh) =

(
uk+1 − uk(Xk)

δt
−Dtu

k+1, vh

)
−
(
uk − uk−1(Xk−1)

δt
−Dtu

k, vh

)
,

δtR
k+1
2 (vh) =

1

δt

(
ηk(Xk)− ηk − ηk−1(Xk−1) + ηk−1, vh

)
,

δtR
k+1
3 (vh) =

1

δt

(
δtẽ

k
h(Xk)− δtẽkh, vh

)
,

δtR
k+1
4 (vh) =

1

δt

(
ẽk−1
h (Xk)− ẽk−1

h (Xk−1), vh
)
,

δtR
k+1
5 (vh) =

1

δt

(
δtẽ

k
h(Xk

h)− δtẽkh(Xk), vh
)
,

δtR
k+1
6 (vh) =

1

δt

(
ẽk−1
h (Xk

h)− ẽk−1
h (Xk)− ẽk−1

h (Xk−1
h ) + ẽk−1

h (Xk−1), vh
)
,

δtR
k+1
7 (vh) =

1

δt

(
wkh(Xk)− wkh(Xk

h)− wkh(Xk−1) + wkh(Xk−1
h ), vh

)
,

δtR
k+1
8 (vh) =

1

δt

(
δtw

k
h(Xk−1)− δtwkh(Xk−1

h ), vh
)
.

Recall that wh(t) is the approximate of u(t) that has been defined in (4.6). From the
regularity assumption (HR3) on u, it is clear that

|δtRk+1
0 (vh)| ≤ δt‖vh‖20 + c‖ηtt‖2L2(tk,tk+1;L2(Ω)d),
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and from (HR3)

|δtRk+1
1 (vh)|

≤ 1

δt

∥∥∥∥∫ tk+1

tk
(s− tk)D2

t u(Xk+1(s), s)−
∫ tk

tk−1

(s− tk−1)D2
t u(Xk(s), s)

∥∥∥∥
0

‖vh‖0

≤ cδt 3
2

(∥∥∥∥ ∂∂tD2
t u

∥∥∥∥
L2(tk,tk+1;L2(Ω)d)

+ ‖D3
t u‖L2(tk−1,tk+1;L2(Ω)d)

)
‖vh‖0

≤ cδt‖vh‖20 + δt2

(∥∥∥∥ ∂∂tD2
t u

∥∥∥∥2

L2(tk,tk+1;L2(Ω)d)

+ ‖D3
t u‖2L2(tk,tk+1;L2(Ω)d)

)
.

Using Lemma 4.5 and Corollary 4.8, the term δtR
k+1
2 (vh) is bounded as follows:

|δtRk+1
2 (vh)| = 1

δt
(ηk(Xk)− ηk(Xk−1) + δtη

k(Xk−1)− δtηk, vh)

≤ 1

δt
‖ηk(Xk)− ηk(Xk−1)‖0‖vh‖0 +

1

δt
‖δtηk(Xk−1)− δtηk‖−1‖vh‖1

≤ c1
δt
‖∇ηk‖0,2‖Xk −Xk−1‖0,∞‖vh‖0,2 + c2‖δtηk‖0‖vh‖1

≤ δt‖vh‖20 + γδt‖vh‖21 + c1δt‖ηk‖21 + c2‖ηt‖2L2(tk,tk+1;L2(Ω)d),

where γ is an arbitrary constant. In the same manner,

|δtRk+1
3 (vh)| ≤ 1

δt
‖δtẽkh(Xk)− δtẽkh‖−1‖vh‖1

≤ c‖δtẽkh‖0‖vh‖1
≤ δtγ‖vh‖21 + c

‖δtẽkh‖20
δt

.

Given the regularity of u and from Lemma 4.5, the fourth term is bounded from above
as follows:

|δtRk+1
4 (vh)| ≤ 1

δt
‖ẽk−1
h (Xk)− ẽk−1

h (Xk−1)‖0‖vh‖0
≤ cδt‖∇ẽk−1

h ‖0‖vh‖0
≤ δtγ‖vh‖21 + cδt‖ẽk−1

h ‖21.

For the fifth term, we use Corollary 4.7, and if h is small enough we have

|δtRk+1
5 (vh)| ≤ 1

δt
‖δtẽkh(Xk

h)− δtẽkh(Xk)‖0,1‖vh‖0,∞
≤ cD(h)‖vh‖1‖δtẽkh‖1(hl+1 + δt)

≤ δtγ‖vh‖21 + γ
‖δtẽkh‖21
δt

.

Given the induction hypothesis, we can apply Lemma 6.3 with q = 2; hence, the sixth
term is bounded by

|δtRk+1
6 (vh)| ≤ cD(h)‖vh‖1‖ẽk−1

h ‖1
[
δt(δt+ hl + ‖ẽkh‖1 + ‖ẽk−1

h ‖1) + ‖δtẽkh‖0
]
.
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If h is small enough, cD(h)(δt + hl + ‖ẽkh‖1 + ‖ẽk−1
h ‖1) is bounded by an arbitrary

constant, say γ; as a result, we have

|δtRk+1
6 (vh)| ≤ γδt‖vh‖21 + γ

‖δtẽkh‖20
δt

+ γδt‖ẽk−1
h ‖21.

The seventh term is treated similarly: by using Lemma 6.3 with q = 2 and q = ∞,
we obtain

|δtRk+1
7 (vh)| = 1

δt

∫
Ω

[
ηkh(Xk)− ηkh(Xk

h)− ηkh(Xk−1) + ηkh(Xk−1
h )

]
vhdx

+

∫
Ω

[
uk(Xk)− uk(Xk

h)− uk(Xk−1) + uk(Xk−1
h )

]
vhdx

≤ c(D(h)‖vh‖1‖ηkh‖1 + ‖vh‖1,2‖uk‖1,∞
)(‖δtẽkh‖0

+δt
(
δt+ hl + ‖ẽkh‖1 + ‖ẽk−1

h ‖1
))
.

Since it can be shown that ‖ηkh‖1 ≤ chl, and since hlD(h) is smaller than any fixed
constant γ if h is small enough, we infer

|δtRk+1
7 (vh)| ≤ γδt‖vh‖21 + c1

‖δtẽkh‖20
δt

+ c2δt
(
(δt+ hl)2 + ‖ẽkh‖21 + ‖ẽk−1

h ‖21
)
.

Finally, using the fact that ‖δtuk‖1,∞ ≤ cδt provided ut belongs to L∞(0, T,W 1,∞(Ω)d)
according to (HR3), we have

|δtRk+1
8 (vh)| ≤ 1

δt
‖δtwkh(Xk−1)− δtwkh(Xk−1

h )‖0,2‖vh‖0,2

≤ 1

δt
c‖Xk−1 −Xk−1

h ‖0,2
[‖δtuk‖1,∞‖vh‖0,2 +D(h)‖δtηkh‖1‖vh‖1

]
≤ γδt‖vh‖21 + cδt(hl+1 + δt)2.

With these estimates, it is now possible to apply the same arguments as in the proof
of Theorem 5.1 to prove that at time step tm+1 the following bound applies:

‖δteh
δt
‖l∞(0,tm+1;L2(Ω)d) + ‖δtẽh

δt
‖l2(0,tm+1;H1(Ω)d) ≤ c′e,1(δt+ hl).(6.15)

Step 3. We derive the bound on ‖εh‖l2(0,tm+1;L2(Ω)). By summing (5.4) and ith(5.5)
we obtain

(Bt
hε
k+1
h , vh) = −

(
ithδte

k+1
h

δt
, vh

)
− (∇ẽk+1

h ,∇vh) +
5∑
i=1

Rk+1
i (vh).(6.16)

The inf-sup condition yields

c1‖εk+1
h ‖0 ≤ ‖δte

k+1
h ‖0
δt

+ c2‖ẽk+1
h ‖1 + sup

|vh|1=1

∣∣∣∣∣
5∑
i=1

Rk+1
i (vh)

∣∣∣∣∣,
which implies

c1‖εk+1
h ‖0 ≤ ‖δte

k+1
h ‖0
δt

+ c2‖ẽk+1
h ‖1 + c3‖ẽkh‖1 + c4(δt+ hl+1).
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The desired bound can be derived directly from this inequality and the bounds on
‖ẽh‖l2(0,tm+1;H1(Ω)d) and on ‖δtek+1

h ‖l∞(0,tm+1;L2(Ω)d) that have been obtained above:

‖εh‖l2(0,tm+1;L2(Ω)d) ≤ C(c′e,1)(δt+ hl) ≤ c′e,2(δt+ hl),

where c′e,2 depends of c′e,1.

Step 4. The bound on ‖ẽh‖l∞(H1(Ω)d) is derived as follows by taking 2δtẽ
m+1
h as

a test function in (6.16): we obtain for 0 ≤ k ≤ m (given the algebraic identity
2(a, a− b) = |a|2 + |a− b|2 − |b|2),

‖∇ẽk+1
h ‖20 + ‖∇δtẽk+1

h ‖20 +
2

δt
(δte

k+1
h , δtẽ

k+1
h ) ≤ ‖∇ẽkh‖20 + δt‖εk+1

h ‖20 +
1

δt
‖∇δtẽk+1

h ‖20

+
5∑
i=1

Rk+1
i (2δtẽ

k+1
h ).(6.17)

But

(δte
k+1
h , δtẽ

k+1
h ) = (δte

k+1
h , δte

k+1
h + δtCth(δtε

k+1
h − δtψk+1

h )) = ‖δtek+1
h ‖20

is nonnegative, and

|Rk+1
1 (2δtẽ

k+1
h )| ≤ 1

δt
‖δtẽk+1

h ‖20 + ch2(l+1)||ut||2L2(tk,tk+1,Hl+1(Ω)d),

|Rk+1
2 (2δtẽ

k+1
h )| ≤ 1

δt
‖δtẽk+1

h ‖20 + cδt2‖D2
t u‖2L2(tk,tk+1;L2(Ω)d),

|Rk+1
3 (2δtẽ

k+1
h )| ≤ 1

δt
‖δtẽk+1

h ‖20 + c1δt‖ẽkh‖21 + c2δth
2l,

|Rk+1
4 (2δtẽ

k+1
h )| ≤ 2

δt
‖δtẽk+1

h ‖0‖(uk − ũkh)(Xk)− (uk − ũkh)(Xk
h)‖0

≤ 1

δt
‖δtẽk+1

h ‖20 + c2δt(‖ẽkh‖21 + h2l),

|Rk+1
5 (2δtẽ

k+1
h )| ≤ 1

δt
‖δtẽk+1

h ‖20 + cδt(δt+ hl+1)2.

Therefore, by summing (6.17) from k = 0 to k = m and by making use of the
bounds above on the residuals, we obtain that

‖∇ẽm+1
h ‖0 ≤ C(ce, c

′
e,1, c

′
e,2)(δt+ hl) ≤ c′e,3(δt+ hl),(6.18)

which yields (6.10) by taking c′e = max(c′e,0, c
′
e,1, c

′
e,2, c

′
e,3).

Step 5. From (6.16), (6.15), and (6.10), we deduce

‖εk+1
h ‖0 ≤ c(δ + hl).

Step 6. There remains to check the stability hypothesis (HS3). Let us denote
by Phu

m+1 some interpolate of um+1 that satisfies the error estimates of (HA1). We
have

‖ũm+1
h ‖1,∞ ≤ ‖ũm+1

h − Phum+1‖1,∞ + ‖Phum+1‖1,∞
≤ c1h− d2 (‖ũm+1

h − wm+1
h ‖1,2 + ‖wm+1

h − Phum+1‖1,2) + c2‖um+1‖1,∞.
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Given the error bound we have obtained at time step m+ 1, and setting δt ≤ cshd/4
we obtain

δt‖ũm+1
h ‖1,∞ ≤ δt

[
C(c′e)h

− d2 (δt+ hl) + c
]
.

From this bound we can define cs such that (HS3) holds.
Step 7. The bounds (6.4), (6.5), and ( 6.6) are easy consequences of (6.7), (6.8),

(6.9), and (6.10) since

um+1 − um+1
h = ηm+1 + em+1

h ,

um+1 − ũm+1
h = ηm+1 + ẽm+1

h ,

pm+1 − pm+1
h = pm+1 − qm+1

h + εm+1
h .

This completes the proof of Theorem 6.4.

7. Conclusions. We have carried out the convergence analysis of a fractional
step method to compute incompressible viscous flows. The algorithm is composed of
three substeps: a Lagrange–Galerkin step (advection), a Helmholtz problem (diffu-
sion), and a Poisson problem (incompressibility). Provided the solution is smooth
enough on a finite time interval [0, T ] and the time step is smaller than csh

d/4, the
method is shown to yield an error of O(hl+1 + δt) in the L2 norm for the veloc-
ity and an error of O(hl + δt) in the H1 norm (or the L2 norm for the pressure).
In practice the Lagrange–Galerkin step cannot be performed exactly: the velocity
ũkh(Xh(·, tk+1; tk)) is evaluated at some Gauss-points (xl) and Xh(xl, t

k+1; tk) is ob-
tained by solving approximately the ODE (3.3). For a detailed analysis of the effects
of nonexact integration on the Lagrange–Galerkin technique the reader is referred to
Süli [24].

The method proposed above has been implemented in a three dimensional Navier–
Stokes code; see [1], for simulating flows in cavities and around cylinders. The observed
behavior of the scheme seems to be in agreement with the estimates reported above,
but no systematic numerical study has been carried out yet.

We finish this paper by giving an improvement of the algorithm to obtain second
order accuracy in time. First we build a second order approximation of the advection
derivative uk+1 · ∇uk+1. Denote by u?,k+1

h the second order extrapolation of the ve-

locity: 2ũkh− ũk−1
h . For all x in Ω we define Xh(x, tk+1; t) as the solution to the initial

value problem{
dXh(x, tk+1; t)

dt
= u?,k+1

h (Xh(x, tk+1; t)), tk−1 ≤ t < tk+1,

Xh(x, tk+1; tk+1) = x.
(7.1)

Let us set Xk+1,k
h = Xh(x, tk+1; tk) and Xk+1,k−1

h = Xh(x, tk+1; tk−1); then we may

use 2δt−1(ũkh − ũkh(Xk+1,k
h ))− 0.5δt−1(ũk−1

h − ũkh(Xk+1,k−1
h )) as an approximation to

uk+1 · ∇uk+1. Now we assume that û0
h, û

1
h, and p̂1

h are some known approximations
of u(0), u(δt), and p(δt). For k = 0, 1 we set ukh = ũkh = ûkh and p1

h = p̂1
h. For

1 ≤ k ≤ K − 1, we define ũk+1
h ∈ Xh as being the solution to the following problem:



(
3ũk+1

h − 4ithu
k
h + ithu

k−1
h

2δt
, vh

)
+ (∇uk+1

h ,∇vh)

+

(
4(ũkh − ũkh(Xk+1,k

h ))− (ũk−1
h − ũkh(Xk+1,k−1

h ))
2δt

, vh

)
+(Bthp

k
h, vh) = (fk+1, vh) ∀vh ∈ Xh;

(7.2)
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then the projection step reads as follows: find uk+1
h in Yh and pk+1

h in Mh so that 3uk+1
h − 3ihũ

k+1
h

2δt
+ Ct

h(pk+1
h − pkh) = 0,

Chu
k+1
h = 0.

(7.3)

In practice, the projected velocities ukh are eliminated: for k ≥ 3, the algorithm takes
the form (

3ũk+1
h − 4ũkh(Xk+1,k

h ) + ũk−1
h (Xk+1,k−1

h )
2δt

, vh

)
+ (∇ũk+1

h ,∇vh)

+1
3(Bt

h(7pkh − 5pk−1
h + pk−2

h ), vh) = (fk+1, vh) ∀vh ∈ Xh

(7.4)
and

ChC
t
h(pk+1

h − pkh) =
3Bhũ

k+1
h

2δt
.(7.5)

For k = 3, ũ3
h, is computed by eliminating u2

h, whereas the computation of ũ2
h does not

require any elimination since u1
h and u0

h are known. Note that in the diffusion step the
pressure term (7pkh − 5pk−1

h + pk−2
h )/3 can be written in the form 2pkh − pk−1

h + (pkh −
2pk−1
h +pk−2

h )/3; hence, it can be seen as a second order extrapolation. This scheme is
being investigated numerically and numerical results will be reported in a forthcoming
work. The convergence analysis of a scheme similar to the one proposed here where
the advection term is made semi-implicit is given in Guermond [13]; it is shown in
this reference that the error on the velocity in the L2 norm is of O(δt2 + hl+1).

Acknowledgments. The authors are grateful to Oliver Pironneau and Yvon
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