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CONVERGENCE ANALYSIS OF A FINITE ELEMENT
PROJECTION/LAGRANGE-GALERKIN METHOD FOR THE
INCOMPRESSIBLE NAVIER-STOKES EQUATIONS*
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Abstract. This paper provides a convergence analysis of a fractional-step method to compute
incompressible viscous flows by means of finite element approximations. In the proposed algorithm,
the convection, the diffusion, and the incompressibility are treated in three different substeps. The
convection is treated first by means of a Lagrange—Galerkin technique, whereas the diffusion and the
incompressibility are treated separately in two subsequent substeps by means of a projection method.
It is shown that provided the time step, 6t, is of O(hd/4), where h is the meshsize and d is the space
dimension (2 < d < 3), the proposed method yields for finite time T an error of O(R!*! + 6t) in
the L2 norm for the velocity and an error of O(h! 4 6t) in the H' norm (or the L? norm for the
pressure), where [ is the polynomial degree of the approximate velocity.
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1. Introduction. The Lagrange-Galerkin method is a numerical technique for
solving convection-dominated—convection-diffusion problems. It consists of combining
a Galerkin finite element procedure with a discretization of the Lagrangian material
derivative along the characteristics. It combines the advantages of the methods that
stabilize the convection (e.g., upwinding, Petrov—Galerkin, etc.) with the advantages
of the methods that treat the convection in an explicit manner; that is to say, the
linear systems to be solved at each time step involve only diffusion, are symmetric, and
are time-invariant. For the Navier—Stokes equations, each time step of the algorithm is
decomposed into two substeps: the first one accounts for the convection (i.e., transport
along the characteristics), whereas the second one accounts for the incompressibility
and diffusion effects. The second half step is a saddle point problem where the pressure
is a Lagrange multiplier associated with the incompressibility constraint enforced on
the velocity.

For convection-diffusion problems, the method has been analyzed by Bercovier &
Pironneau [3], Russell [20, 21], and Douglas and Russell [9]. For the Navier—Stokes
equations, the analysis has been done by Pironneau [17] and improved by Siili [23].

In recent years, renewed interest has developed in fractional-step projection meth-
ods for the incompressible Navier—Stokes equations in the primitive variables since the
pioneering works of Chorin [7, 8], Temam [25, 26]. This method is based on a special
time-discretization of the Navier—Stokes equations, in which the convection-diffusion
and the incompressibility are dealt with in two different substeps. The velocity ob-
tained in the convection-diffusion substep is projected in order to satisfy a weak in-
compressibility condition. A semidiscrete convergence analysis of Chorin’s projection
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method can be found in Rannacher [19] and Shen [22]. A complete convergence analy-
sis of an incremental version of the projection method for the Navier-Stokes equations
is described in Guermond and Quartapelle [14]. A finite element implementation of
the algorithm is reported in [15].

The aim of this paper is to combine the Lagrange—Galerkin method with the
projection method. We propose and analyze an algorithm where the convection, the
diffusion, and the incompressibility are treated in three different substeps. Even
though it may a priori seem unwise to try to combine into a single algorithm a
Lagrange—Galerkin approximation with a projection method—for the former relies
heavily on the incompressibility of the flow for its stability, whereas the latter relaxes
this constraint—the main result of this paper is that the two techniques can indeed
be combined to yield a convergent method. It is shown that provided the time step
6t is of O(h%*), where h is the meshsize and d is the space dimension (2 < d < 3),
the proposed method yields for finite time 7" an error of O(h!*! + 6t) in the L? norm
for the velocity and an error of O(h! + 6t) in the H! norm (or the L? norm for the
pressure), where [ is the order of the approximation of the velocity.

This paper is divided into six parts. In section 2, we introduce some notations and
hypotheses; we also introduce the finite element approximation and recall basic inter-
polation and stability results. The fractional step algorithm is presented in section 3.
In section 4, we give preliminary results on the approximation on the material deriva-
tive. The error analysis is carried out in section 5 with mild regularity assumptions
on the solution of the continuous problem. In section 6, we make stronger regularity
assumptions, which yield a less restrictive stability condition on the time step and
additional error estimates on the pressure.

2. The time-dependent Navier—Stokes problem.

2.1. Hypotheses and notations. Let {2 be an open connected bounded domain
of R? (d < 3) with a smooth boundary 9€). More specifically, the domain must be
smooth enough so that the H? regularity of the Stokes operator holds; for instance
we shall assume that 9 is of class C? or € is a two-dimensional convex polygon (see
Cattabriga [6]).

We consider the following time-dependent Navier—Stokes problem in which homo-
geneous Dirichlet condition has been assumed for simplicity. For a given body force f
(possibly dependent on time) and a given divergence-free initial velocity field ug, find
a velocity field u and a pressure field p (with regularities yet to be clearly defined)
such that u = ug at ¢ = 0, and for ¢ > 0,

QU — Au+(u-Vyu+Vp=f inQx(0,7),
(2.1) P V-u=0 1in Qx (0,7),
u=0 ondQx(0,T).

Of course, other types of boundary conditions are possible.

As usual, W*P(Q) denotes the real Sobolev spaces, 0 < s < 00, 0 < p < 00,
equipped with the norm | - |5, and seminorm |- |s,. The space Wy (Q) is the
completion of the space of smooth functions compactly supported in €2 with respect
to the || -||s, norm. For p = 2, we denote the Hilbert spaces W*2(2) (resp., Wg*(Q))
by H*(Q2) (resp., H3(€2)). The related norm is denoted by || - ||s. The dual space of
HE(Q) is denoted by H~?(€2). For a fixed positive real number T and a Banach space
X, we denote by L?(X), H*(X), and C(X) the spaces LP(0,T;X), H*(0,T; X), and
C([0,T]; X), respectively.
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To formulate the Navier—-Stokes problem in a variational form, we shall seek the
velocity u(t) in Hj(Q2)? and the pressure p(t) in L§(Q) = {q € L*(), [,q = 0}.
Furthermore, we set

(22) V={veH Q)Y V-v=0}, H={vel?*)? V-v=0, v- njan = 0}.

The importance of H lies in the following classical orthogonal decomposition of
L2(Q)¢, whose discrete counterpart plays a key role in the projection technique that
is described hereafter:

(2.3) L2(Q)? = Ha V(H'(Q)).

For a given f € W2>°(L2(2)9) and a given initial velocity field ug € V N H?(Q)4,
the variational formulation of problem P is as follows: find a pair (u,p) :

(2.4) u € L®(H)NL2(V), u, € L2HYHQ)Y), p e L2(L3(Q))
such that

(g, v) + (Vu, W) + (u - Vu,v) — (p, V-v) = (f,v) Yo € Hy ()4,
(25) Puar q, V- ) =0 Vq € L(Q)(Q),
u(0) = up.

It is known that there is some T' > 0 for which Py, has a solution. In the following,
we shall assume that the solution to Pyar exists for all times and that it is as smooth
as needed.

2.2. The spatial discretization. We introduce X, and M;, two continuous
finite element approximations of H}(Q)? and L2(2) based on a regular, quasi-uniform
triangulation 7, of Q. The space X}, (resp., M}) is composed of continuous piecewise
polynomial functions of degree less than or equal to [ with { > 1 (resp., of degree
less than or equal to I', max(1,l — 1) < I’ < ). It is assumed hereafter that the
following properties hold (see, e.g., Bernardi and Raugel [4], Girault and Raviart [10],
or Quarteroni and Valli [18] for other details).

(HA1) There exists ¢ > 0 such that for 0 <r </,

inf ([l = vnllo +hllv = vnlh] < e Hpollpa Vo € HHQ) N H ()
Vh h

ini lv —vnllip < ch"||v]lrg1,p, 2<p<oo WYve W”l’p(Q)d N H(l)(Q)d.
VhEXh

(HA2) There exists ¢ > 0 such that V ¢ in H"(Q) NL3(Q), 0 <r <V,
inf - < ch"||qll
onf g = anllo < ch” |l

(HA3) The Brezzi-Babuska inf-sup condition is verified [5], [2]; i.e., there exists
¢ > 0 such that

) (V- vn,qn)
inf B
an€Mn vy, ex,, ||vnll1llgnllo

(HA4) There exists ¢ > 0 such that Vv, in X, the following inverse inequalities
hold:
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hllnp < ch™ Ca Uh|lm,q> Sm>nx>d, Y
Opllnp < k™ q 0<m<n<l1 0<g<p<

[vnllo.00 < (14 |log(h))*?||on 12 in two dimensions,

0,00 < ch™? lup]l1,2 in three dimensions.

[[on|

We shall denote by D(h) the quantity c(1 + |log(h)|)!/? in two dimensions (resp.,
ch™?% in three dimensions) appearing in the inequality above. Numerous examples of
pairs of finite element spaces satisfying these four assumptions can be found.

Ezample 2.1.  Assume that € is a polyhedral domain in R? (2 < d < 3) and that
7y, is a mesh of € consisting of triangles (resp., tetrahedron) in dimension 2 (resp.,
3). One can choose for X}, the space of continuous piecewise P, vector functions with
respect to 7 and for M), the space of continuous piecewise linear scalar functions
with respect to 7j. This pair of spaces is usually referred to as the Taylor—Hood finite
element spaces and satisfies the assumptions above with | =2, I’ = 1. ]

Example 2.2. With the same hypothesis on the mesh as above and restricting
ourselves to two dimensions in space, let 77j, be the mesh obtained by dividing each
triangles of 7; into four smaller triangles by joining together the middle points of
its sides. Then X}, (resp., My) can be chosen as the space of continuous piecewise
linear vector functions with respect to 7'j, (resp., continuous piecewise linear scalar
functions with respect to 7). This pair of spaces is usually referred to as the P;-
iso-P5/ P finite element spaces. It is frequently used because of the simplicity of its
shape functions. The assumptions above hold with [ =1, I’ = 1. 1]

Ezxample 2.3. With the same hypothesis on the mesh as above, one can choose
for X}, the space of continuous vector functions the restriction of which to a given
element is the sum of linear functions and of a function vanishing on the boundary
of the element (bubble function) and for M}, the space of continuous piecewise linear
scalar functions with respect to 7;,. This pair of spaces is usually referred to as the
MINI finite element spaces. The assumptions above hold with [ =1, I’ = 1. a

We now introduce a discrete divergence operator By : X, — M}, and its trans-
pose By : M;, — X, as follows: for every couple (vp,qs) in Xj, x Mj; we have
(Bron,qn) = —(V -vp,qn) = (vn, Bhqn). Hypothesis (HA3) implies in particular that
By, is surjective.

3. The fractional-step scheme. Introduce a partition of the time interval
[0,T]: t* = k&6t for 0 < k < K where 6t = T//K. This section is concerned with the
time scheme for computing approximations to the velocity and pressure fields at each
time step t*.

3.1. The convective derivative and its approximation. Let X(z,s;t) be
the trajectory (or characteristics) under the action of the flow u(-,t) of a particle of
fluid which is at point x at time s. The characteristics are solutions of the initial value
problem

dX(x,s;t
(3.1) AX(@ 5 (X (0,551, 1),

X(z,s;8) = .
If u € C(C%1(Q)4), this ODE has a unique solution thanks to the Cauchy-Lipschitz
theorem. When no confusion may arise we set X*(z) = X (z,t*T1;¢¥). As shown
in, e.g., Pironneau [17], Douglas and Russell [9], or Siili [23], the opportunity of
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introducing the characteristics is motivated by the following formal approximation
property:

u(@, t*) — u(X (a2, t**117))

(3.2) w41 - Vu(z, 441) & 5t

Likewise, if @} € X, is an approximation of u(t*),V z in Q we define X, (z, t**1;¢) as
the solution to the initial value problem

4 X (z,th+1t) = ak (X (2, 5415 1)),
(3.3) di
Xy (z, thHL k1) = 2.

Note that this problem has a unique solution thanks to the Cauchy—Lipschitz theorem,
for functions of X} have Lipschitz regularity. When no confusion may arise, we set,
for the sake of simplicity, XF(z) = Xp(x, t**1;t%). Hereafter, (af(z) — af (XF))/ét
will be used as an approximation of u(x, t**1) . Vu(z, tF+1).

The main interest of this approximation is twofold. On the one hand, it yields re-
markable stability properties without relying on artificial diffusion (roughly speaking,
unconditional stability of the material derivative; see [17]) and thus avoids both large
spatial errors due to artificial diffusion and the need to cook up stabilizing parameters.
On the other hand, since the treatment of the nonlinear convective term u - Vu is ex-
plicit, the linear system resulting from the implicit treatment of the diffusion and the
incompressibility is symmetric and time-invariant; see, e.g., [1] for two dimensional
and three dimension implementations of the method. In [1], different two dimensional
computations around a cylinder at Reynolds 9500 using a Galerkin characteristics
scheme and the (¢, w) formulation are also presented, assessing the good behavior of
the method of characteristics.

3.2. An additional discrete setting. As in Guermond [11, 12], to relax the
incompressibility constraint and to build a discrete version of the Helmholtz decom-
position (2.3), we introduce an additional discrete setting. More precisely, we want to
decompose each discrete vector field 4;, € X}, into the sum of a discrete-divergence-
free vector field uj, plus the discrete-gradient of a scalar field p, in Mj. In practice,
there are numerous ways of achieving this decomposition. For instance we could set
ap = up + Blp, with u, € X, and Bju, = 0. Another possibility could be to set
up = up + Vpp, where uy, is enforced to be orthogonal to V Mj,. In this case we shall see
that it is natural to choose uy to be in Xy, + VM},. Even though this alternative may
seem weird, it turns out to be optimal and very easy to implement in practice (see
(3.11), (3.13)). To unify the first approach, the second one, and all the intermediate
ones, we introduce Y}, a finite-dimensional subspace of L2(€)? in which we shall select
up. For the sake of simplicity we assume that X, C Yj and we denote by i; the
continuous injection of X, into Yj,; the transpose of iy, is the L? projection of Y}, onto
Xp,. Furthermore, we assume that we can build an operator Cj : Y, — M} such
that we have the following.

HAS5) The operator Cj, is an extension of By and it Ct = B!: i.e., the following
h~h h
commutative diagrams hold:
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X My, X — M),
1h Ch Z;L CitL
\ 7

Ezxample 3.1. The most trivial example consists in choosing Y}, = X} and Cf, =
By,. Even though this choice seems natural, it is not the simplest one in terms of
implementation.

Ezxample 3.2. Since M}, is composed of continuous piecewise polynomial functions,
we have M) C Hl(Q); as a result the following space Y, = X} + VM, is a subspace
of L2(2)4. Furthermore, one may easily verify that C}, defined by

(3.4) V(Vn, qn) € Y X My, (Crvn, gn) = (v, Var)

is an extension of By, and C}, is the restriction of V to Mj,. 0
From (HA3), we infer that C}, is also surjective, for C}, is an extension of By; as a
consequence ||C} ql|o is a norm. The null space of C}, playing an important role in the
sequel we set Hy = Ker C}. This definition enables us to build a discrete counterpart
of the aforementioned orthogonal decomposition L2(Q)¢ = H & V(H(Q)).
COROLLARY 3.1. We have the orthogonal decomposition

(35) Y, = Hh@CZ(Mh)

We also assume that C}, satisfies the following hypothesis.
(HAG6) There exists ¢ > 0 such that V ¢, in M,

IChanllo < cllgnll1-

Remark 3.1. Note that the hypothesis (HAG) is automatically satisfied if we
choose Y}, = X;, + VM), and C}, = V. In fact, (HA6) is assumed for the sake of
simplicity and it could be somewhat weakened if a discontinuous approximation of

the pressure was used (see Guermond [11] or Guermond and Quartapelle [14] for other
details). 0

3.3. Initial conditions. To avoid the technical difficulty of the blowing up of
the error estimates at the initial time induced by the possible lack of regularity of the
solution, we assume that the solution is as smooth as needed at ¢t = 0.

Remark 3.2. Of course the smoothness hypothesis on v and p at ¢ = 0 may be
too optimistic in some cases (see [16]). We could relax it by assuming that from k =1
to some kg (1 < kg < K) such that tg = ko 6t is some fixed time independent of K,
the solution is approximated in time and space by means of some coupled, implicit
Euler scheme of first order. Then, the approximate solution ﬁﬁo and ﬁZO that would
be obtained from this preliminary step could serve as initial data for our fractional
step algorithm at subsequent time steps, kg < k < K. 1]

Hereafter we denote by 112 € X and 132 € M} an approximation to ug and
p(t = 0) such that

(3.6) [uo = @pllo + h (luo = @ llx + [1p(0) = Ahllo) < ch!*t.
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For instance, @) can be obtained by solving

(3.7) (Vi) Vor) = (Vug, Voy,) Yo, € X,

and the initial pressure p9 can be obtained by calculating an approximation of p(t =
0). For instance, one could (at least in principle) obtain it by solving

(3.8)  (VpY, Virn) = (Vp°, Vir) = (£(0) + Au(0) — u(0) - Vu(0), Viry,)  Vry € M.

3.4. The fractional-step projection/Lagrange—Galerkin scheme. We are
now interested in defining a projection/Lagrange—Galerkin scheme for 1 < k < K.
We define two sequences of approximate velocities {@f € X} and {uf € Y},} and one
sequence of approximate pressures {pZ € My} as follows:

e Initialization. The sequences {uf}, {GiF} are initialized by u) = @9 = 49 and
the sequence {p}} is initialized by p = p9.
e Time loop. For 0 < k, solve

~k+1 _ otk k ~k/vk
Uy — iU 1 Uy, — Uy (Xp)
(3.9) ( ot 7vh) + (V™ Vog) ( , Up
+(Bypf,vn) = (f(t*1),0n)  Von € Xy,

and

k+1 . ~k+1

urTt — it

(3.10) et h— 1 Gl (p T - pf) = 0,
Chul,f“ =0.

Remark 3.3. The problem (3.9) clearly has a unique solution. The problem (3.10)

is also well posed thanks to Corollary 3.1: indeed, the pair (uﬁ“, 6t Cy (pf;“ —pf)) is

the decomposition of iy ™ on Hy, ® C(My,); in other words, uf ™ = Py, (ina, ™),
where Py, is the orthogonal projector of Y3, onto Hj,. 0

Remark 3.4. In practice it is not convenient to solve the problem as presented
here, for Y}, is possibly a very weird space. Actually, the projected velocity u’fl may
(must) be eliminated from the algorithm as follows (see Rannacher [19] or Guermond
[11]). For k > 1, replace uf in (3.9) by its definition which is given by (3.10) at the
time step t*; note that it Cf = BY, as already mentioned. In (3.10), uf** is eliminated
by applying C}, to the first equation and by noting that C}, is an extension of Bj.
Once uf™" and uf are eliminated, and by setting p, ' = p?, the algorithm that is

implemented in practice read as follows for & > 0:

~k+1 ~k k
Up — — (X)) ~ k1
(3.11) ( 6t’”h> + (Vay, 7va};)
+(By(20F —pp D) vn) = (f¥ o) Vo, € X

and

Bhﬂk‘+l
(3.12) ChCRT —ph) = ——. D

Remark 3.5. If we choose Y, = X, +V M}, the projection step takes the following
form: find p’fLH in M}, such that

(v aﬁ—‘rly qh)

(3.13) Van € My,  (V(pit = pk), Van) = — 57
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With this particular choice of Y}, the projection step amounts to solving a discrete
Poisson problem with homogeneous Neumann boundary condition. If needed, the

velocity field uﬁ“ is given by

(3.14) up = At = stV (- ).

Note that in the particular case described here, the approximate velocity uﬁ“ is not an
H!-conforming approximation, for it is discontinuous. Indeed, it is shown below that

up™ s an L2(Q)%-approximation of u(t), whereas i)' is an H'(Q)%approximation;

hence, ﬁffl is a better approximation than uf;“, although its discrete divergence

B;Laffl is not zero. 0
4. Preliminary results for the error analysis.

4.1. Preliminaries on the approximation of the material derivative. We
recall in this section some results concerning the approximation of the material deriva-
tive by means of the Lagrange technique. Most of the results stated hereafter are
largely inspired from Russell [20, 21], Douglas and Russell [9], and Siili [23]; they are
recalled for the sake of completeness and most of the proofs are omitted.

LEMMA 4.1. Assume that u € C(C*Y( Q)N V). If |s —t| is sufficiently small,
then © — X (x, s;t) is a homeomorphism of Q onto itself and its Jacobian equals 1
almost everywhere (a.e.) on €.

LEMMA 4.2. Assume that for all k

S|k |11 00?111 < 1/8;

then ¥ t in [tF %1z — Xy (z,t51t) is a homeomorphism of Q0 onto itself and
for a.e. x in Q its Jacobian satisfies 1/2 < Jy,(x, tkF+1;t) < 3/2.
LEMMA 4.3. Assume that

(HSl) 5tHU||Loo(W1,oo(Q)d) < 1/6;

then the mapping x — (1 — )z + 0X (x,t*+1: %) is a homeomorphism of Q onto
itself with a Jacobian > 1/2 ¥ 6 in [0, 1].
LEMMA 4.4. Assume (HS1); then there exists € such that if

(4.1) 5t 1,00 < €.

then the mapping x — (1 — 0) X, (z, t* T ¢7) + 0X (2, t¥+1: %) is a homeomorphism
of Q onto itself with a Jacobian > 1/2V 6 in [0,1].

Denoting by € the small parameter introduced in the lemma above, we shall
assume hereafter that

(HS2) 5t 1,00 < €.

Remark 4.1.  Assumption (HS1) is a restriction on the time step, whereas (HS2) is a
stability hypothesis on the approximate velocity that we shall prove by induction in
the next subsection. ad

LEMMA 4.5. Let x — to(x) and © — 1 (x) be two homeomorphisms of {2 onto
itself such that for all 0 € [0,1], z — (1 — 0)po(x) + 01 (x) is a homeomorphism of
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Q onto dtself with Jacobian > 1/2. Then, ¥V p, ¢, 1 < g < 00, 1 < p < o0, and for
ne W' (Q), (1/p+1/p = 1), we have

(4.2) 7 0o —notillog < 2[v0 — Y1llopgll Villo.gp -

From this lemma we infer a series of corollaries that will be used repeatedly hereafter.
COROLLARY 4.6. Assume that u € C(C%Y(Q)%), uy € L>*(L2(Q)9), and that
(HS1) and (HS2) hold, then there exists ¢ = 2exp(5t||uHC(Co‘1(§)d)) such that

(4.3) 1X* — Xillo,2 < est(u(t®) — @y llo2 + 8t el oo r2(0yay)-

A direct consequence of this corollary together with Lemma 4.5 is the following
corollary;

COROLLARY 4.7. Assume that u € C(COY(Q)9), uy € L*(L*(Q)9), and that
(HS1) and (HS2) hold; then there exists ¢ = 4exp(6t||u\|c(covl(§)d)) such that ¥ n €

H'(Q)
(44) |lno X* —no Xpllo,x < cbt([|u(t®) — @fllo,2 + 6tlluell oo r2(0)a)) [ Villo,2-

The following corollary is crucial for deriving L? optimal estimates; it is mainly
due to Douglas and Russell [9]. -

COROLLARY 4.8. Assume that u € C(C%1(Q)?) and (HS1) holds; then ¥V 1 €
L2(Q)

(4.5) I — o X* -1 < 28t]jull o @y Inllo-

4.2. Definition of suitable interpolations. Before going through the details
of the error analysis, we introduce some suitable interpolations of u(t) and p(t) which
will preserve the high approximation order A!*! on u(t) in the L2(Q)%norm. For all ¢,
we define wy, () € X}, and gy (t) € M}, as the solutions of the following discrete Stokes
problem:

{ (Vawp (), Vo) + (Bjqn(t), vs) = (Vu(t), Vo) — (p(t), V-op,) Yoy, € Xy,
(Th, Bhwh(t)) = 7(7’]1, Vu(t)) Yrn, € My,.
(4.6)
Thanks to the H2-regularity of the Stokes operator in regular domains together with
the Aubin—Nitsche trick, these interpolations satisfy the following lemma.

LEMMA 4.9. Provided hypotheses (HA1), (HA2), and (HA3) hold and for 1 <
B < oo, u€ LP(HIHQ)INV), pe LA(HY(Q) N M), there exists ¢ > 0 such that

(@7) v — wnllLs 2@y + h(llu = will Lo @ @)yay + 12— anllLe@z(@)))
< ch! (||lull o i yay + 1Pl Lo (ae)))-

5. Error bounds on the velocity with mild regularity assumptions. In
this section, we derive error bounds on the velocity. For the sake of simplicity, we
assume the following regularity on the initial data.

(HR1) uo € H2(Q)4nWh>(Q)¥nV.

Furthermore, denoting the material derivative u; + u-Vu by D;u, we assume that the
solution (u,p) of the problem (2.1) satisfies

(HR2) u € L>®(V N HHY(Q)I N Wh>(Q)?) nC(COH(Q)9),

ug € L2(V N HFL( Q) N L>®(H),
D2y € L*(12(Q)?), where D? = Dy(D,),
p € L®(HY(Q) N M) and p; € L2(HY(Q)).
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For the sake of simplicity we assume that the initial values, 49 and p9, are chosen so
that
(HID [of — e < ch, ol — alls < emin(h kI /502),
g — Al < c.
The main result of this section is summarized in the following theorem.
THEOREM 5.1. Assume that the approzimation hypotheses (HA1)—-(HASG), to-
gether with the reqularity and initialization hypotheses (HR1), (HR2), and (HI1), hold.
Then, there exist cs > 0, c. > 0, and hg > 0 such that ¥V h €]0, hs] and V 6t < csh/3

(5.1) = |y 22y + 1 = Gl L2)ay < ce(h'F! + 6t),

(5.2) Hu — th”lz(Hl(Q)d) < Ce(hZ + (St)

Proof. Hereafter, we shall denote by c¢; generic constants, independent of h, 6t,
and the time index k. These constants may depend on u, p, T, and ). The strategy
that we adopt hereafter follows the ideas of Russell [20, 21], Douglas and Russell [9],
Siili [23], and Guermond and Quartapelle [14]. We proceed by finite induction on k.

Our induction hypothesis is that there exists c¢; > 0, ¢, > 0, and hy > 0 such that
at time step ™, 0 < m < K, V h €]0, h,] and V 6t < c,h4/3

llw = wn 1o .m0y + 1t = Gnllios (0,0m 2ty < ce(RTH 4 61),

Hu — ﬂh||l2(0’tm,;Hl(Q)d) < Ce(hl + (St),

and that the stability hypothesis (HS2) holds for all time steps 0 < k < m.
Initialization. We prove first that the induction hypothesis holds for m = 0. Given
the initialization hypothesis (HI1) and the regularity of ug, we have

luo = llo + luo — @hllo + lluo — ahll < b1

The error estimate in the induction hypothesis is satisfied if we denote by c.o the
constant in the inequality above. Denoting by Pjug an interpolate of ug that satisfies
the error estimates (HA1), we have
hl1,00 < [k = Prtioll1,0 + | Patio]|1,00
_di.
< c(h™%|ap, — Pauoll1,2 + [luoll1,00)

< (W% |Jug

2,2 + [luoll1,00)-

We can now choose a constant cs o depending only on the regularity of ug, such that
for all h < hyo = 1 and for all 6t < ¢, oh%/3, (HS2) is verified for @).

Step 1. Assuming that the induction hypothesis holds for m such that 0 < m <
K = T/6t, we shall now prove that it also holds for m + 1. Note that before verifying
the induction hypothesis at step m = 1, we set ¢ = ¢;5,0, Ce = Ce,0, hs = hso. The
value of ¢; and ¢, will be modified once at the end of step m = 1. The value of hg
will be modified at the end of steps m = 1 and m = 2 since its value may depend on
cs and c.. For shortness, we do not detail steps m = 1 and m = 2.

Step 2. First, we establish the equations that control the errors. For shortness, we
denote by ¥ = wy, (tF) —uf, &k = wy, (t*) — @ and € = g, (t*) —p} the error functions,
(u(t), p(t)) being the solution of the continuous problem (2.5). The interpolation error
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u(t)—wp(t) is denoted by n(t). For any function, ¢(t), which is continuous with respect
to time, we set ¢F = ¢(t*); furthermore, we introduce the notation §,¢*+! = ¢*+1 gk,

Given the particular approximation (wp, ¢5) that we have chosen, the exact solu-
tion of the Navier-Stokes problem satisfies at time t*+1

5t“’1’i+1 k+1 k+1 k+1
—5—>vn ) + (Vw, ™, Vog) + (u® - Vu o)

(5.3) Swpt

1
+(Bhgi o) = (fk“ — a4 t&,vh> Yoy, € Xp,

Bhwﬁﬂ =0.

By subtracting (3.9) from (5.3), we derive the equation that controls the error
kA1,
eh :

sk+1  t kK e
e — 1€ 1 d
(n(%hh,vh> + (Veptt, Voy) + (Bh vk, vp) = — ( 5 ’”h>
(54) + (“Hl—“k(Xk) - Dtu’““,vh) - (uk =S k)’vh>

_ (wk ) (XF) — (uf a2><X}§>wh) . (u’“(xff) - u’“<X’“>,vh> ,

where we have set
k_ k+1 _ ¢ k+1 k
Uy, = - ph 6tQh + €

We denote by Ri(vy), ..., Rs(vy) the five terms in the right-hand side of (5.4) .
On the other hand, since w’€+1 € Xy, Bhwk+ =0, and C}, is an extension of By,

we obtain the system of equations that controls eh 1 and ek+1
ZH - Zhe’ﬁ t (KA1 k
(5.5) 7 +Ch(e, ™ —p) =0,
CheﬁJr =0.

Step 3. To obtain a bound on eff we take the inner product of (5.4) by 26t éﬁ“.

Using the algebraic relation 2(a, a—b) = |a|*+|a—b|*—|b|?> and the Poincaré-Friedrichs
inequality (o is the constant such that |[v||? < a||W||3 Vo € H}(Q)), we have

~k ~k ~k
e HIG + lle™ nIIE

&k
—iherlld — llinenlls + 20&5tH

+26t(ef 1) B k) <25tZ|R ert
=1

The terms in the right-hand side of the inequality above may be bounded from
above as follows:

26t Ry (&) < SHIENTIE + 176l 72 o er41:02 ()0
Exactly as in [23], and from assumption (HR2),

26t Ry (& 1)| < Stllen 1§ + St DFull T2 g yrt1.12(0)a)-



810 Y. ACHDOU AND J.-L. GUERMOND

Corollary 4.8 implies
26t|Rs (e} )| < 2IIéﬁHH lu® —ah — (u* = ap)(X*)] -1
< 5t||~k“||1 + edt||u® — @[3,
By using Corollary 4.7, we have
26t| Ra(€5 )] < 20185+ looo [l (u® — @) (X*) — (@ — a5) (X5) oy
< estD(h)||E |y (Ilu® — @ llo + 6tl|well oo r2(ya)) V(W = @F) o
< cotD ()&l (la® = @y llo + otl|uell e 2 cyay) (17"l + 125 ]1)-
The induction hypothesis implies that
[uf =k llo + 6t l|uell oo L2y < clce) (BT + 6t).

There exists hy,; > 0 which does not depend on m but possibly depends on ¢, and c.
such that V h < h,; and 6t < coh/3,

~ «
eD(R) (|lu® = g llo + &tlluel| Lo (L2 ()0)) < 5

Furthermore, given the regularity of w (i.e., hypothesis (HR2)), there exists hgso > 0
which does not depend on m such that V h < h, o,

D(h)|n*[l < 1.

As a result, there are positive constants ¢; and ¢y independent of ¢, ¢s, h and 6t so
that ¥V h < min(hs 1, hs2) and 6t < c;h?/3,

26t|Ra(e}" )| < 5t||é'2+1\| (*IlehHl + =@ llo + 6t el oo (12 ()
H~k“||1 + 5tg||éh|\1 +erdtl|u® — ag|§ + c26t’.

The last residual R5(é§+1) is bounded from above as follows:

26t|Rs (€5 < 2llepH lollu (XE) — uF(XF)]lo
<cllert ol X* = XFlollwll poo (o prs1,w1.00 (03
< cdtller M lo(lu® — g llo.2 + Ot ugll Los (r2 )@y |wl] Loo (w100 ()4

< otlep g + erdtf|ut — uh||0 1 o6t

After collecting all the bounds we obtain
et IgHer Tt — dhenlls + 26t(ey ™, BLag) + 2abt ey |13
< lle I3 + 3étller I3 + 5t|| en I+ g&\léth +er6t|u® — af3
s 4 Il + I s gty
Now we use

lleR 115 < 2ller™ — dheklIg + 2leklI3,
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and using the convention egl =0, we have
lu* —ahllg < 200" 15 +4lleh — dhen 1§+ 4ller 13-
The final bound is
6o
e IBHL — 6ot llest! — iherlls + 266(ep ™, Bhyy) + gétllefle?
< [leklIf + 66t ]ler 13 + *5t|éh|?
(5.6) +erbtllen I + catlen — el 5 + esdtlln® |13
+eabt® + ||77t||L2(tk,tk+1;L2(Q)d) +6t*| D} UHL2(tk,tk+1;L2(Q)d)’

We can pick h, 3 > 0 (independent of m, but dependent of ¢;) such that for all h < hy 3
and 6t < ¢,h?3, the following inequality holds: ¢yt < 1/4 < 3/4 <1 —66t, where co
is the constant in bound (5.6) above. Finally the current values of hg are replaced by

min(hs, hs 1, hs 2, hS,3)'

Step 4. To obtain some control on 5t(~k+1 B}ﬂ/}ﬁ% we take the inner product of
the first equation of (5.5) by 26t2Ct1F and we obtain

—264(&, ", Ben) + 01 Chen G — lley ™ — iney T G011 Chuhl3
=5t(|C (6,05, + eR)f 2
that is to say, given the stability property (HA6),
=26t BRophot?|Crep 15 — lleptt —iney TG
(5.7) < 6% (1 + 6t)||Cher 1§ + o[l qnel| 22 e o151 (02))-

Step 5. We obtain some control on e’,i“ by taking the inner product of (5.5) by
2(‘57562“:

(5.8) e HIE + e ™ = dneg, G — lleg ™ 15 = 0
Step 6. After summing up (5.6) + (5.7) + (5.8), we obtain
ler FHIE+ 8t Chen ™13 + H~k+1 —dhehlld + *&H%H\h

« ~
< [lek 13 + 5t2||Ch6h||o + 66tllek 1§ + 6° | Cheh 1§ + < stller It

+ 01§t||e§71||(2) 2 *Heh - zheh ||0 2 + c26t|n* ||0 5+ c36t?

+ ||77t||%2(tk,tk+1;L2(Q)d) + 6% DRullT2 g prsr2 ) + Cabllanel| 7o o prr11 ()

By taking the sum from k£ = 0 to m, we obtain

lep 1§ + 6¢%[Ce mHHo"‘ Z lex ™t — ihenlls + aétz lext?
k=0

sclétz [llef 115 + 6221 Chef 3]
k=0

m o )
Heabt >[I |15 + cadt® + leR I3 + 8t>[leRIF + gét”eh\ﬁ

k=0
Hnel1 72 1200 + O NDFullT2 (12 ey + a6t lanell72 i (a))-
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From the initialization hypothesis, we infer that the term ||€% ||3 + 6¢2||€%[|? + /56| €Y |3
is bounded from above by c(6t + h'*1). From the definition of (wp(t),qn(t)) (see
(4.6)) we infer that ||gn¢|lz2m (@) is bounded from above by C(|utllr2m2(0)e) +
lpell L2 (17 (2))), which is well defined from assumption (HR2); we may write ||qnt|| 22 (11 ()
< c. Likewise, the approximation error n satisfies

53 IFI3 < 06t S (a2 + 1417) < b2+,
k=0 k=0

and from assumption (HR2)

17ll 212 yay < eh (el 2 e oyay + Pl e ay)) < b
As a result, we can apply the discrete Gronwall lemma, which leads to
m—+1

i B2 Cher 18 + Z et — ihehls +aot 3 ekl
k=0

< ¢y exp (c26t™) (6t + hl+1)2
From this bound we deduce

lu™ = up ™ o < e ™ o + [l7™ o

< crexp(eoT) (6t + A1)

Now we set c.,1 = ¢1 exp(coT’), where ¢; and ¢y are the constants used in the bound
above. Now, using

len*tlo < llegtt —iveitllo + lleq llo
< ¢y exp (coT) (6t + hH‘l) ,

we infer that
[u™ =@ lo < [ln™ o + 1€ lo

< cyexp (e2T) (6t + h“‘l) .

Now we set ce2 = ¢1 exp(caT’), where ¢; and ¢y are the constants used in the bound
above. The error bound in the H' norm is obtained as follows:

Ju— ﬂh||l22(0,tm+1;H1(Q)d) < 2||77||122(0,tm+1;H1(Q)d) + 2||éh||l22(0,tm+1;H1(Q)d)
< cyexp (cT) (5t + hl) .

Note that although the approximation error ||&]**" lli2(0,¢m+1;11 )4y s of order O(6t +

h!*+1), the total error is spoiled by the interpolation error in space which is of order
O(h!). Now we set c. 3 = c1 exp(caT), where ¢; and ¢ are the constants used in the
bound above, and we redefine ¢, as being

max(Ce,0, Ce, 15 Ce,2, Ce,3)-

It is important to note that c. is redefined once at the end of time step m = 1; as a
result, it is definitely independent of m, h, and 6t.



A PROJECTION/LAGRANGE-GALERKIN METHOD 813

Step 7. Now we turn our attention to the stability hypothesis (HS2). Let us denote
by P,u™*! some interpolate of u™*?! that satisfies the error estimates of (HA1). We
have

a5 100 < @y = Pru™ 10 + [ Pru™ 1,00

_d o~
<erh™ 2 ([lag ™t — w1 4 [l = Pru™ |1 2) 4 colluma oo
Given the error bound we have obtained at time step m + 1 (after using a classical
inverse inequality in time), we clearly have

||’Z7,ZL+1 7um+1||172 < Ce(5t1/2 4 hl6t71/2)'

As a result, setting 6t < ¢;h%3 we obtain

4

ST 100 < e1h™ % (co(62 + R6t2) + coh!6t) + 36t ||tum1][1,00
3 1
< ep(ce(cd +c2) + cacs) + cacs.

From this bound we can define ¢5; such that (HS2) holds. Then we redefine a new
value of ¢, as being equal to

min(cs, Cs.1)-

Note that c. and ¢, are fixed after the first time step m = 1. As a result, hy is fixed
at the end of time step m = 2.

In conclusion the induction hypothesis is satisfied at step m + 1. 0

Remark 5.1.  We obtained a stability condition of the type 6t = O(h%3) with
mild regularity assumptions on the solution of the continuous problem, whereas Siili
[23] obtained §t = O(h%/*). The main reason for this more demanding condition
on the time step is the fact that the projection algorithm does not easily yield an
estimate in the [°°(0, t™*1; H!(Q)¢) norm. Since we are not able to obtain it with these
regularity assumptions, we have derived it from the 12(0,¢™+1; H!(Q)¢) norm by using
an inverse inequality in time. By doing so we lose a 6t!/2 factor, which in turn yields
the stability condition 6t = O(h%/?). However, if such a 1°°(0, ™1 H' (Q)9) estimate
was at hand then Siili’s stability condition would imply the stability condition (HS2).
In the next section, we shall make stronger regularity assumptions on the solution of
the continuous problem as well as additional hypothesis on the initialization of the
scheme; then, assuming 6t = O(h%/*), we shall obtain the result of Theorem 5.1 as
well as error estimates on the pressure. 0

6. Error bounds on velocity and pressure with stronger regularity as-
sumptions. In this section, we derive error bounds on the velocity and the pressure
with the weaker condition 6t = O(hd/ 4). For that, we reproduce exactly the proof
of 5.1 up to Step 6, but we replace Step 7 of the above mentioned proof by a much
more involved argument, which yields an error estimate for the pressure and for the
velocity in the 1°°(0,¢™+1; H(Q)4) norm.

To this end, we reconstruct a momentum equation on the error by summing (5.4)
and (5.5). Then, the inf-sup condition yields a bound on eﬁ""l if we can control the
approximate time derivative (e’flJr1 — 62) /6t. The classical way for obtaining such a
control consists of using 6te§+1 as a test function in the momentum equation. In the
present case, this procedure does not seem to be feasible since 5teﬁ+1 does not belong
to the right function space. To avoid this difficulty, we shall construct the equations
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that control the incremental errors 6té,13+1, 6t6ﬁ+1, and 6,562“; then we shall proceed
as in the proof of Theorem 5.1.
Throughout this section we shall make the following assumptions.
(HI2) The algorithm is initialized so that

2o < min(h!*, 6thl), ||€0|lr < cot/2ht, ||€d||1 < chl.

(HR3) In addition to (HR1) and (HR2) the solution (u, p) is assumed to be such
that

we W (V 0 HAFL(Q) A W (Q)d)n = Lo(2%0(Q)9),
Ut € L2(V N HH_l(Q)d) N LOO(I{)7

9,D2u € L2(L2(Q)7),

D € 12(12(0)1),

pie LX(HY(Q) N M) and py € L2(H'(Q)).

6.1. Preliminary results. We need first to establish a series of preliminary
lemmas: the next lemma can be proved as in [23].

LEMMA 6.1. Setting X§ = 0X* + (1 —0)X*~! and X o =60Xf + (1 - 0) X},
and Xf’f,(,e =CXp+(1- Q)X;fﬂ, there exists € such that if

(6.1) St([|ull po (wr.oe (yay + 15 11,00 + (15 l1,00) < €

then the mappings & — (1 — 0) X} (x) + 0X*(x) , X§ X7 o, X} . o are homeomor-
phisms of Q onto itself with a Jacobian > 1/2 for all 6 in [0, 1].

Denoting by € the small parameter introduced in the lemma above, we shall make
the assumption

(HS3) Vk € {1,...,K},  ot(llull poo (wr.e(yay + ||tz 11,00 + iy l1,00) < €

LEMMA 6.2. Assume (HR2) and (HR3); moreover, assume that there is c. > 0
so that max(||éf |1, €5 1) < ce(8t + hl). Then, there exist hy(c.) > 0 and ci, ca
independent of c. but possibly depending on u so that ¥ h €]0, hs(c.)] and ¥V 6t < hd/*
we have

1 i e i
(6:2) =116, X" — 8, Xgllo < caét [6t+ '+ [1E ]l + (157 1] + call ek o

Proof. For shortness, we shall adopt the following notations: X!(s) = X (z,t;s)
and X! (s) = X(z,t';s); note that X**1(¢*) is by definition equal to X*. For any
function ¢*(s), the quantity ¢*(s) — ¢*~1(s — 6t) is denoted by 6, (s). The quantity
6, X +1(s) — 6, X () satisfies

B (0K 1(5) — 8,XE(5)) = u(X*H(5),8) — u(X¥(s — 60) 5 — o1
—an( Xyt (s)) + @ (X (s — 61))
= [ (8 6).7) = (X5 — b0), 7 — 80
Uk (X (5)) — (X[ () — ub L (X4 (s — 1)) + b (XE(s — 6t))
T (XEF (5)) — (X (5)) T (XEI(8)) — o (XE(s — o))
(X () — L (XEH(s)) + 81 (XA (s)) — 851 (XE(s — ).
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From (HR3), we infer that

< c6t2.
0

/ts[uT(XkH(s),T) —ur(XF(s — 6t), 7 — 6t)]dr

k

For the second term, we use Lemma 4.5 together with Corollary 4.6:

[uf (XE () = u* (X5 () o < ell X (s)) = X5 ()lo
< ebt(8t + A 4 |ék o).

In the same manner, for the third term we have
[u*H(XH (s = 68)) = u*TH(XR (s = 81) o < ebt(8t + W 4 [1& ™ o)-
For the fourth term, we use Lemma 4.2 together with (HR3):

In* (XET(s)) = 0" 1 (X () o < elln™ = 0" o
< eSthttr,

Similarly, for the sixth term, we have
185 (X () — e (X5 (s)lo < ell6,eklo-

Finally, for bounding the two remaining terms, we shall need an estimate on || X, (s))—
X% (s = 6t))]lo,00- Using the triangular inequality together with the Gronwall lemma
we obtain
IX5F(s) = Xk (s = 6t)llo,oo < [ X*FH(s) = X5 () llo,00 + 1 X" () — X" (s = 68) 0,00
HIXF(s = 6t) = X5 (s = 6t)o,0

< cbt(8t + D()R' + |18 ]lo,00 + 1€~ llo,00)

< eD(h)8t(8t + 1" + 1&gkl + lle;~ " [h),
where we have used the fact that |9, (t)]j0.co < cD(R)A!||u(t)|;+1 and assumption
(HR2). By hypothesis, the right-hand side is bounded by ¢(c,)6t(h%* 4 ht) D(h). We

can choose hg(c.) so that V h €]0, hy(ce)], c(ce)(h¥* + h')D(h) < 1. As a result we
obtain

1X5 1 (5) = X (s = 8t)][0,00 < 6.
Therefore, the last two terms are bounded from above as follows:

ler ™ (X5 () — & (XK (s = 68))llo < clleh 2l X5 (s) = X5 (s = 6t))lo.o

< cétller ™" 1,

"1 (G (5)) = 71X s = 81))llo < el
< cbtht.

1201 X5 (8) = X5 (s = 60) o,

By combining the bounds obtained above we infer

1 e i i
QII%X’c = 6,X}llo < c18t(6t + h' + &y I + 1185 11) + c2[|6,5 -
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The proof of the lemma is complete. ]
We shall also need the next lemma.

LEMMA 6.3. With the same assumptions as in Lemma 6.2 and assuming (HS3),
there is hg(ce) > 0 so that ¥V h €]0, hy(ce)],V 6t < ¥4V 2 < ¢ < 0o, £ € WHe(Q),
vy, € X, we have

2 | [ o - e v

< c(l€l1qllvnllog + 1€

12llonll1,2) [66(8t + B+ €5l + 1€ ll) + 116,€5 o] »

where we have set §,£(dF) = £(dF) — €(dF1) and 1/q+ 1/q = 1/2.
Proof. Setting X} = X% + (1 — ) X*~1 and X}]f,e =0XF+(1-0)XF for an
arbitrary function vy in X; we have

/Q [6,6(X%) — 8,6(X)] vpdx = /Q /9 io [VE(XE) - 6,XF — VE(XF ) - 6,XF] vndfda
= /0 io /Q [VE(XG) — VEXE )] - 6, X v dadf
- /0 io /Q VE(XE o) - (6, X% — 6,XF v dadf.

As a result

1
/ [5,6(X") — 6,6(XE)] vnda < / / [VEXE) — VEXE ] - 6,X v,dudd
Q 0=0 JQ

+ ¢l VEllo.qll8: X" = 8 X5 0,2

[vnllo,q -

Here, we have used the hypothesis (HS3)(to be verified by induction) to bound
||V§(X}’f,0)H0,q by C||V&llo,q. Let us denote by Iy the second term in the right-hand
side. This term is easily bounded from above by using Lemma 6.2:

[lo] < cf¢

Lallonlloq [68%(68 + R+ 1€k + llen~" 1) + 6tl18,&3 lo] -
For the other term we proceed as follows:
/Q [VE(XE) — VEXE )] - 6, X vpdx = /Q VE(XE) - 6,X vy, [1 — det(VXE)] da
- /Q VE(XE o) 6,X vy [1— det(VXF )] dx
+ /Q [det(VX§)VE(XS) — det(VXF ) VE(XE 5)] - 6, X vpda.

Let us denote, respectively, by I, Is, and I3 the three integrals in the right-hand side
above. For I; we have

1] < 16X 1.gll8:X 0,00 11 = det (VXE) lo.2llvnllo.q -

From Lemma 6.1 we infer

11| < clé]1,qll6, X  [lo,00 |1 — det(VXg)[lo,2]l0n

0,q"+
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Provided X**! and X* satisfy the hypothesis of Lemma 4.5 (i.e., 6t small enough)
and u € L® (W (Q)9), u, € L>°(L>*(Q)4), we infer
116, X"]0,00 < cbt2.
For the remaing term involving 1 — det(VX}) we use the equality
11— det(VXG)llo.2 = | det [JV(X*) = (1 = O)V(XF)]) — det(VXG)lo 2,
together with the inequality

| det(Vept o) — det (V5 p)llo2 < cnax([9 |00, 197 11,00, 145 11,00, 145 [11,00)
(6.3) [t = w5lhe + ot~ =95 2]
where ’(/Jl, , ’(/J2, and ¢2 are four arbitrary mappings of Q2 onto €. By setting
Pk =gk Xk, Yk = X* and 5! = X*~1 we infer from (6.3)

11— det(VXE)|lo2 < cbt?.
As a result, we obtain

1| < c8t*|€],4]

For I we proceed similarly:
12| < [€l1,l16, X [lo.00][1 = det (VXR p)llo,2llvnllo.q',
< bt?[€]1,qlI1 = det (VX o) 0,2V lo,q-
Given the assumed regularity u € L (W2 (Q)4) N W1>°(L3(Q)?), we infer
1XF = Xl 4+ X5 = X < edt [st+ bt lleg ]+ l1eg ] -

Furthermore, given the hypothesis (HS3) (to be verified by induction), we infer
XK 100 + 15 e < e
By using formula (6.3), we obtain
|I2| < eot® [t +h' +lleg 11+ llex 1] 1€,

For I3 we have

|13|:/vg- [(vhétX)(X; ) — (08, X) (X, )} da,

where X, Fand X ho k denote the inverse mappings of X(, and XF h.» Tespectively. By
using Lemmas 4.5 and 6. 1, we infer

|Is] < [€12lon8 X o2l X5 * — X
< J€lv2llvnll 216, X 11001 X5 " = X5 5 ll0,00-

It is possible to prove
1X5* = X Glloco < eD(R)6E(6E + A + [leg ]l + &5 ),
which yields || X, — X;;l;Ho,oo < 6t if 6t < h%¥* and h is small enough. As a result,
for Is we obtain
I3| < c68[€]1 2]lvnl1,2-

Note that the bound on |I3] is rather coarse, but we do not need a finer one here since
the bound on Ij is already more restrictive. The final bound is obtained by collecting
the bounds on Iy, Iy, Iy, and I3. 0
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6.2. Error bounds. We now state the main theorem of section 6.

THEOREM 6.4. Under the approximations hypotheses (HA1)—(HAG6), the reqular-
ity assumptions (HR1)—(HR3), and the initialization hypothesis (HI2), there exist c.,
¢s, and hs such that ¥ h in 10, hs] and for 6t < csh%, the solution of the projection
scheme (3.12)—(3.13) satisfies

(6.4) |l — UhHloo(LZ(Q)d) + |lu— ’I]hHlm(Lz(Q)d) < Ce<hl+1 + 6t),
(6.5) [ = im0 (11 ()2) < ce(h! + 61),
(6.6) D = Bnllie (2 (@)e) < ce(B' + 61).

Proof. The proof is done by induction: the induction hypothesis is that there
exist ¢g > 0, ¢, > 0, ¢, > 0, and hs; > 0 such that at time step t™, 0 < m < K,
¥ h €]0, hy] and V 6t < c,h®/*

(6.7) { lenllioe 0.6m:L2 (@) + nlioe 0.6mir2@)a) < ce(h'th + 6t),
lénlli2(0,6m 11 (0)ay < ce(ht + 6t),

(6.8) ‘ Sren ‘ &ién < & (6t + B,
Ot oo (0,6m 12 (02)) 0t |l12(0,4m ;11 ()9

(69) ||€h||loc(0’t7n,;L2(Q)) < c’e(ét + ]’Ll),

(6.10) 1€nllioe (0,611 )0y < €L (6t + R,

and that the stability hypothesis (HS3) holds for all time steps 0 < k < m.

Initialization. It is possible to find a constant cs o such that V h < hso =1 and
ot < cs70h%, (HS3) is verified. We also need to find bounds on the error on the first
time increment of velocity and pressure, namely, §;é' and §,€'. We first control &'; it
is clear that

5
€415 < lleR I3 + 26t (6", Bhobn)| + 26t > [Ri(}))|
i=1
5
< Nleflig + YIERIE + ot |whll + 26t Y |Ri(ER)]
= ([€nllo T Yli€nllo nll1 ilep)ls
i=1

with the same notations as in the proof of Theorem 5.1, and <y is a positive real
number that can be chosen as small as needed.

In order to control ||e} ||o, the terms |R;(€},)|, 1 <i < 5 will be treated differently
from what we did in the proof of Theorem 5.1:

26t| Ry (3,)| < llegll§ + e(sth™)?,

26t|Ra(e3)| < vl1enlls + c(6t)*,
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26t|R(e5)| < 2llépllollu” — @ — (u® — @) (X?) o
< cllénllo2llu® — hllo,2
< llenll§ + e(stht)?.
Similarly, for |R4(é})| one obtains
26t|Ra(@h)] < 2llen]lofl(u” — @) (X?) = (u” — ap) (X})llo
< cllénllo.zllu® —ajlo
< lIEnllE + c(6th')?.
Finally,

26t|Rs(ey,)| < 2éplloflu®(XR) — u®(X°)]lo
< C”éh”O”XO - X}?||0HUOHLw(tO,tl;WLOO(Q))
< cbtllépllo(u® — @ llo 4 6t llu | Lo 2 (0ya)) [l Lo (w0 ()
< 7llen§ + cot* (6t + A2,

From these bounds and from the assumptions on €9 and €9 (recalling that ¢) =
(q), — q5,) + €5, and that |q), — qj |1 < cbt), we deduce that

lenllo < cot(6t + hb).
Thence,

16,65 [lo < ct(5t + h').
Furthermore, from the projection step (5.5) we obtain

{ O ||%}LH0 < H@Hov
1C(er, —¥illo < € llo/ot.

The first bound yields easily

(6.11) 16,e |lo < cbt(6t + h').
The other bound yields

(6.12) ICké€hllo < c(6t + hh).

Thus the induction hypothesis is verified at step m = 0 with ¢, = ¢, ;. To verify it
for m + 1 > 0, the strategy is the following: by reproducing Steps 1 to 6 of the proof
of Theorem 5.1, we obtain that (6.7) holds at time step m + 1. Then we derive the
equations that controls the incremental errors é,e,/6t, 6,65, /6t, and 8,€p /6t. Assuming
that (HS3) holds, we obtain bound (6.8) by proceeding as in the proof of Theorem
5.1. By summing (5.4) and i}, (5.5) we obtain the momentum equation and the inf-sup
inequality yields the bound (6.9). Then using 8,6} ! /6t as a test function in the same
momentum equation yields (6.10). The last steps consist of verifying (HS3) at step
m + 1 provided 6t < ¢;h%*. Thus the induction hypothesis is verified in five steps.

Step 1. We reproduce the arguments of Theorem 5.1 up to Step 6 and prove that
(6.7) holds at time step t™*1.
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k+1
k+1

Step 2. We derive an error estimate on the time increments of the errors é;é

Let us consider the equations that control the time increments of the errors é;€
5,281 and §,pF 1

§,eftt gt 5l k1
(6.13) <th&hth,vh> + (V8,65 T, Vo) + (B 8,00k vp) = (8, RF+1,vp)

and

6 k+1 6 ~k+
(6.14) { el Z . + Ch(b,ef ™ — 8,0F) =0,
Chéteh 0,

where 6, R**1 is given by

ukJrl _ k 1

1 U -
6, RM1 = —5 (620" ) + (& — Dtukﬂ,vh) &( PXFY —af,vp),

k k—1
U —u 1 -
—(& —Dtu’“,vh) 5 (XA — @ v).

The term §, R is in turn decomposed into the sum of nine terms:

6 Rk+1 Z(S Rk+l

where

8,RG ™ (o) = ~5 (5tt77 Un),

s Rk+1( ) = <“k+l = (Xk) D uk+1,vh> <uk —u* - (Xk Y Dyu Uh)
SR (0n) = 52 (X% — 0 =t () )

8 RET (vy,) = % (5té§(Xk) — 8,65, vn) 5

SR (o) = & (e (0 — e (0, ),

SRE (o) = = (8,2 (XE) — 8,28 (X4), 1),

SR un) = & (71X — e (04) — b (XE) + (01,0,

SR (0n) = - (wf(XF) — b OXF) — wh (X*) + wf (XE), 1),

SRET (0n) = - (B (X)) — Banh (X, 0n)

t
Recall that wy,(t) is the approximate of u(t) that has been defined in (4.6). From the
regularity assumption (HR3) on w, it is clear that

|6,RE™" (vn)| < tllunllp + et |72 ok pr1 120y
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and from (HR3)

R (wn)
1 tk+1 tk

<5l [ =D 90 [ =D ).
6t k tk—1 0

< ot H D2 T IDRull s gy | lonll
2(tk)tk+1;L2(Q)d>
8 2

< cbt|lvop||2 + 6t2 < + |Dfu||2L2(tk,tk+1;L2(Q)d)> -

L2 (tk 41,12 (2)4)

Using Lemma 4.5 and Corollary 4.8, the term (5tR§+1(vh) is bounded as follows:

6, ()] = 51# (

_ 1 -
EH’?k(Xk) = (X Dlollonllo + 5 o™ (XF71) = 8[| 1 [lon

a1 k k
diy Xk _
&H "ozl

XE) =P (XPT) 4 6 (XPT) — 6", o)

IN

IN

" lollvallx

< 8tllvallg + 8tllvnll? + c18tln® I + callmellZape g ai@yays

where + is an arbitrary constant. In the same manner,

|6, B3+ (vn)] < ||6teh( ") = &ienll-1lonlls
< C||5teh||o|\vh||1

6,513
5t

< 6t7\|vh||? +c

Given the regularity of u and from Lemma 4.5, the fourth term is bounded from above
as follows:

1, 1y
(SR (on) < =1 (XF) = &7 (XD lollwllo
< 6t Ve ollvnllo

< 8tyllonl + cotfler 1T

For the fifth term, we use Corollary 4.7, and if h is small enough we have

1 _ ~
ORE n)] < 18,25 (XK) = 82X o lonllo
< eD(R)on 1685 2 (7 + 8t

85117

< Styflunl + R 5t

Given the induction hypothesis, we can apply Lemma 6.3 with ¢ = 2; hence, the sixth
term is bounded by

[ (on)] < eD(h)Jonllr ey~ [l [8t(6¢ + A+ llegl + lley " 1) + 16,5 o] -
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If & is small enough, eD(h) (8t + k' + ||€F|l1 + [|€5*|l1) is bounded by an arbitrary
constant, say ; as a result, we have

R ) < ot 3 + 412500 ety

The seventh term is treated similarly: by using Lemma 6.3 with ¢ = 2 and ¢ = oo,
we obtain

1 -
R o)l = 5 [ D) =X = b0 + (0]
+/ [uk(Xk) —uF(XF) —uF (X ¢ uk(X;f*l)] vpdz
Q
< (DM llonllallmsliy + lonllszllu®l1.00) (||6téh||0

+6¢(8t -+ b+ ]l + 1 11))-

Since it can be shown that ||n¥||; < ch!, and since h!D(h) is smaller than any fixed
constant ~y if h is small enough, we infer

6.5
ot

Finally, using the fact that ||6,u*||1 o < c6t provided u; belongs to L>°(0, T, W1>°(2)4)
according to (HR3), we have

6, ()] < v6tlonl12 4+ ex RIS oo (st + m)2 + k2 + 851 2).

1 _ _
[R5 (vn)| < *Hé wi (X = i (X5 o2 llonllo.2

<5 Lol XE X o (16, OILTANEAN

< Aot |3 + est(hI T + 6t)%

With these estimates, it is now possible to apply the same arguments as in the proof
of Theorem 5.1 to prove that at time step t™*! the following bound applies:

o.e 0,6
(6.15) | &h ll1< (0,¢m+1;12(2)a) + |l &h 20, ¢m 1,101 () < €1 (68 + BY).

Step 3. We derive the bound on [|ep,[|;2(g 4m+1,12())- By summing (5.4) and j,(5.5)
we obtain

. 5
t _k+1 _ Zﬁételffl _ (osk+l k+1
(6.16) (B ,Up) = 5t , Up (Veh ,Vop) + E R, (Uh).
i=1

The inf-sup condition yields

k41 ||5t€k+1||0 ~k41 > k41
erlletio < W llo o ariny b gup |3 RE (),
ot v 1
lvali=1|5=
which implies
b.e k1 0
callei o < BNkt 4 callel + caot + B,

ot
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The desired bound can be derived directly from this inequality and the bounds on
ll€nlliz0,em+1;m1 ()¢) and on ||6tef+1||loo(07tm+1;L2(Q)d) that have been obtained above:

lenlliz(0,6m+151.2(0p2) < C(ch 1) (6t + h') < ) 5(8t + ),

where c;, , depends of c ;.
Step 4. The bound on || ;e (11 (q)e) is derived as follows by taking 26, emJrl as
a test function in (6.16): we obtain for 0 < k < m (given the algebraic 1dentity

2(a,a = b) = [af* +[a — b]* — [b]?),

IVeR 15 + 1V I + 5 2, ep 8t < IVeplls + otller g + fIIVétNZ“IIo
5

(6.17) + > O RETN (28,85,
=1

But
(6 €§+1 K ~k?+1) (6te};+176teﬁ+l +(5tCh(5 €k+1 _ 6 k+1>) — ||6 k+1HO

is nonnegative, and

|RiT(26,8,71)] < *||5 &S + RV el By 1 v ),
Ry (26,8,7)] < ||5 &8 + e8t | DFul o g e 2y
[R5 (28,8, 1) < ||5 & 3+ cadtlenllt + casth®,

5 2 N - . ~
[REFL (28,85 < = I8,k lollw® — @) (%) — (u* = @) (XE)llo

< *II(S &G + eaot(llen ]I + n*),

|REFTL(26,65T1)| < ||6 EFTL|12 4 ot (6t + R,

Therefore, by summing (6.17) from &k = 0 to K = m and by making use of the
bounds above on the residuals, we obtain that

(6.18) 197 o < Cleer ¢,y k) (51 + h) < (6t + A1),

which yields (6.10) by taking ¢ = max(c;, o, ¢, 1,C. 2,Ce 3)-
Step 5. From (6.16), (6.15), and (6.10), we deduce

llep ™ llo < e(8 + A').

Step 6. There remains to check the stability hypothesis (HS3). Let us denote
by P,u™*! some interpolate of u™*?! that satisfies the error estimates of (HA1). We
have

a7 100 < @y = Pru™ 10 + [ Pru™ 1,00

< ah 2 (At — w4 ot = P 2) + eallwme 11,00
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Given the error bound we have obtained at time step m + 1, and setting 6t < c¢,h%/*
we obtain

S| 1 00 < 6t | C(cL)h™5 (8t + ) + c} :

From this bound we can define ¢; such that (HS3) holds.
Step 7. The bounds (6.4), (6.5), and ( 6.6) are easy consequences of (6.7), (6.8),
(6.9), and (6.10) since

u7n+1 _

uhm+1: gt 4 e'}rln+1’
um+1 _ ﬂhm+1: 77erl + é;n+1’
Pl _p'}rln—&-l: Pl an+1 4 62}1-‘,—1.
This completes the proof of Theorem 6.4. O

7. Conclusions. We have carried out the convergence analysis of a fractional
step method to compute incompressible viscous flows. The algorithm is composed of
three substeps: a Lagrange—Galerkin step (advection), a Helmholtz problem (diffu-
sion), and a Poisson problem (incompressibility). Provided the solution is smooth
enough on a finite time interval [0, 7] and the time step is smaller than c;h%4, the
method is shown to yield an error of O(h!*! + 6t) in the L? norm for the veloc-
ity and an error of O(h! + 6t) in the H' norm (or the L? norm for the pressure).
In practice the Lagrange—Galerkin step cannot be performed exactly: the velocity
ak (Xp (-, t* 1 4%)) is evaluated at some Gauss-points (z;) and Xp,(z;, t*1; %) is ob-
tained by solving approximately the ODE (3.3). For a detailed analysis of the effects
of nonexact integration on the Lagrange—Galerkin technique the reader is referred to
Siili [24].

The method proposed above has been implemented in a three dimensional Navier—
Stokes code; see [1], for simulating flows in cavities and around cylinders. The observed
behavior of the scheme seems to be in agreement with the estimates reported above,
but no systematic numerical study has been carried out yet.

We finish this paper by giving an improvement of the algorithm to obtain second
order accuracy in time. First we build a second order approximation of the advection
derivative u**1 . VuF*+1. Denote by u;;’kﬂ the second order extrapolation of the ve-
locity: 2df — a1, For all x in Q we define Xj,(, t*+1;1) as the solution to the initial
value problem

k+1.
(71) Mi’t) — uzyk+1(Xh(x7tk+1;t))7 tkfl g t < t]g+1’
Xh(l’,t +1;tk+1) =

Let us set X, 7% = X, (2, 571 ¢%) and X7 H0F1 = X, (2, 511 457 1); then we may
use 26t~ H(af — af (XFTVR)) —0.56t (@t — af (X TFTY)) as an approximation to
uFtl . VuFt!l Now we assume that ﬁ%, ﬂ}” and 75}11 are some known approximations
of u(0), u(ét), and p(ét). I;:or k = 0,1 we set uf = af = 4f and p, = p.. For
1<k <K —1, we define ﬂhﬂ € X}, as being the solution to the following problem:

SR gtk 1 gt k1
(uh B o) + (VY V)
~ ~ k+1,k ~k— ~ k+1,k—
(7.2) +<4<u2—u’;<xh“ ) - o - a3 ) )
t )

+(BLpf,on) = (ff o) Yo € Xi;
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then the projection step reads as follows: find u’,j“ in Y, and pﬁ“ in Mj, so that

Juktl _ 34, gt
(7.3) s + Cho T ) = 0,

Ch’u]}frl =0.

In practice, the projected velocities u’,fb are eliminated: for k > 3, the algorithm takes

the form

ik — (X + b (g
26t

+5 (B (T = 5pp T+ pE ) o) = (FF ) Yo, € X,

, U | + (Vﬁ];LJrl, Vvh)

(7.4)
and

3Bhak+1
(7.5) ChCi oy —piy) = Tth

For k = 3, ﬁi, is computed by eliminating u%, whereas the computation of 1],21 does not

require any elimination since u,ll and u% are known. Note that in the diffusion step the
pressure term (7pf — 5p/,§_1 —l—pﬁ_?)/?) can be written in the form 2pf — pﬁ_l + (pf —

prb_l + pfb_Q) /3; hence, it can be seen as a second order extrapolation. This scheme is
being investigated numerically and numerical results will be reported in a forthcoming
work. The convergence analysis of a scheme similar to the one proposed here where
the advection term is made semi-implicit is given in Guermond [13]; it is shown in
this reference that the error on the velocity in the L? norm is of O(6t? + h!*1).
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