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This paper investigates the relevance of the LadyshenskayasiatBrezzi con-
dition in spectral projection methods. We consider the stability and convergence
properties for a first-order nonincremental projection method and a second-order
incremental projection method, both based on a spectral Galerkin—Legendre spatial
discretization. We show that the convergence of both projection methods is controlled
by the ability of the spectral framework to approximate correctlystieady Stokes
problem. (© 2001 Elsevier Science

1. INTRODUCTION

The approximation of the primitive variable Navier—Stokes equations by means of
nite elements or spectral methods must respect the limits set by numerical analysis ir
choice of velocity and pressure approximation spaces. One of these limits consists of
compatibility condition known as the inf-sup condition and also referred to in the literatt
as the LBB condition, from Ladyshenskaya [20], Beka[4], and Brezzi [8]. The conse-
guence of not satisfying this condition is the appearance of severe spatial oscillation
the pressure field, usually called spurious pressure modes. One way of eliminating t
unphysical oscillations is to augment the discrete problem by adding a term proportic
to the equation residual, giving a stabilized version of the original algorithm [18]. Anoth
possibility consists of penalizing the solenoidality constraint, as in pseudocompressibi
techniques. The methods of the second class usually yield low-order approximation r:
since they are not consistent.

In recent years the idea has emerged that Poisson-based projection techniques ar
bilized methods and for this reason can be used with spatial interpolations which do
satisfy the LBB condition. Continuing with the work of Guermond [14] and Guermond ar
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Quartapelle [17], where it is shown that this idea is not correct for finite elements, the g
of the present paper is to show that this point of view is not correct in the spectral framew
also.

The paper is organized as follows. In Section 2, we formulate the Navier—Stokes probl
and introduce a Legendre—Galerkin spectral framework for approximating the solution
space. We recall known stability and convergence results. In Section 3, we reformul
in the spectral framework the nonincremental projection technique introduced by Chc
[12, 13] and Temam [31, 32]. We give stability and convergence estimates, and we st
numerical results to illustrate these estimates. In Section 4, we study a backward differe
formula (BDF) incremental projection method, and we investigate the relevance of the L
condition for this scheme. The theoretical results derived in Sections 3 and 4 are illustre
using numerical tests reported in Section 5. We finally conclude in Section 6.

2. FORMULATION OF THE PROBLEM

2.1. The Navier—Stokes Equations

We consider the time-dependent incompressible Navier—Stokes equations formulate
terms of velocityu and pressure, stated as follows. Findandp (up to a constant) so that

)
W —vV2Uu+ Uu-Viu+Vp=f,

V-u=0, (2.1)
Upe =0,
Ujt=0 = Uo,

wherev is the viscosityf is a known body force, and is the divergence-free initial veloc-

ity field. For simplicity, we assume homogeneous boundary conditions. The fluid dom:
Q is assumed to be the squarel], +1]?. The data are assumed to be regular enough and
satisfy all the compatibility conditions required for a smooth solution to exist for all time

2.2. Galerkin—Legendre Approximations
2.2.1. A Brief Review

Spectral methods are highly accurate approximation techniques which, contrary to fi
elements, are based on global polynomial approximations. The applications of spec
methods in CFD are rooted in the pioneering papers of Kreiss and Oliger [19] and Or:
[23]. The reader is referred to the books of Canetal. [11] and Bernardi and Maday
[5] for quite complete reviews on spectral methods. Though spectral methods can be g
easily analyzed within the Galerkin framework, the collocation framework has been qu
often preferred to the Galerkin one in practice. Recently, renewed interest in the Galel
technique has been prompted by the decisive work of Shen [29], where new Leger
polynomial bases for which both the mass matrix and the stiffness matrix are sparse
introduced. The present work is based on Shen’s bases.

2.2.2. The Interpolation Bases

Let us introduce the finite dimensional spatg = (Pn ® Pn)?, wherePy denotes the
set of polynomial of degree less than or equaNtoWe approximate velocity iXg N =
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XN N Hé(SZ), WhereH(l)(Q) is the standard notation for the Sobolev space of vector-value
functions that are square integrable, with square integrable first derivatives, and with z
trace ondQ. Pressure is approximated in the spadg = (Py ® Py) N L3(R), where
L3(Q) = {q € L2(Q); fQ q= 0}; The polynomial ordeN for velocity is in general differ-
ent from the polynomial ordeN for pressure. The approximation using the spaXgs

for velocity andMy, for pressure is referred to in the following By /Py.

Torecast (2.1) in aweak form, we consider two different bases for approximating veloc
and pressure. For the velocity field satisfying Dirichlet conditions, we adopt the ba
introduced by Shen in [29]; to approximate pressure, a convenient basis in two dimens
is obtained by the tensor product of the standard Legendre polynomial basis normall
such that the mass matrix is the identity.

Approximate velocity and pressure are expanded in the double series

N N

UNt X, Y) =D Y LEOL ) Unm(), (2.2)
n=2 m=2
N N

PRt X, y) =D > LACOLAMY) Pam(®). (2.3)
A=0 mMm=0

For a detailed description of the two sets of basis functlohandL® the reader is referred
to [1].

2.2.3. Approximation Properties

To clarify the approximation properties of the spectral framework considered above,
us introduce the following steady Stokes problem. For a smooth solenoidal vectarfielc
in H3(Q) and a smooth scalar fielte L3(<2), find u;, € Xo n and Py, € My such that

(0SS ) =0

(ax. V-uy) =0, vag € Mg,

where(., -) denotes either the? or L2 scalar product indifferently.

Well-posedness of this problem depends on satisfying a compatibility condition betwe
the approximation spaces for velocity and pressure. More precisely, let us introduce
following space:

Zy ={ag € Mg (@i, V-vn) =0, Vv € Xon}-

ForN =N — 2, we haveZ; = {0}, whereas foN = N, Z, is a vector space of dimension 8;
the reader is referred to Bernardi and Maday [5] for details. lL&&2)/Zy; denote the
quotient space of 2() by Zy, equipped with the norm

lalliz@yzg = Inf 1+ Zllzg), YO € LAQ).
ZEZN

We have the following lemma.
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LEMMA 1. There isByg > 0 so that

@g, V-vn)
Vage Mg sup — 2N > g cllag iz zg (2.5)
weXon VNI

and

p N-Y2 jfN=N-2
NN Nl ifN=N.

The reader is referred to Brezzi and Fortin [9, p. 40], Bernardi and Maday [5],
Quarteroni and Valli [24] for a proof. Condition (2.5) is usually called the LBB condi:
tion or inf-sup condition [4, 8, 20].

The idea of using\ = N — 2 stems from the work of Madast al. [22] and Renquist
[26], and early applications of this idea can be found in the thesis of Azaiez [3].

The approximation property of tHey /Py framework is stated in the following lemma.

LEMMA 2. If uSe H7(Q) NH(Q) and Fe HO~1(2) N L(Q), then

Iu® — un iz < ENTT{IWlIHo@) + Pl | (2.6)
IU° — Un Tl + BurllP — Prllz@yzg < ENV2{IU ) + 1Pl ). (2.7)

Note that the error bound on the velocity does not depend on the inf-sup cofigtant
This striking result is the consequence of a lemma due to Sacchi—Landriani and Vande
[27]. The choiceN = N yields a convergent approximation provided pressure is select
in a space that can be identified with the quotient sgdgg Zy. A realization of this
space can be obtained by adequate a posteriori filtering (see [5, p. 133] for possible filte
strategies).

2.3. Semidiscrete Weak Spectral Approximation

Now let us turn our attention to the time-dependent Navier—Stokes problem (2.1). We ¢
sider the following semidiscrete Navier—Stokes problem.tFer0, finduy € C1([0, T];
Xo.N), Px € CO([0, T]; M) such that, for allzy € Xy and allgg € Mg,

(Vn, Un(t = 0)) = (VN Uo),
(Vs Z) 4+ 0(VVn, VUR) + (Vs (U VOUN) + (WL Vi) = (WL ), (2.8)
In the light of Lemma 2, we can derive the following theorem in the linear case (the prc

for the nonlinear case being technically more involved, unless a skew-symmetric form
the advection term is used).

THEOREM1. If u e WH>(0, T; H(Q)) and pe L*(0, T; H°~%(R)), we have
U — UnllL~.T:L2@) < ENT7 {llUllwixT;He@) + I PlLe©T:H-1@) }» (2.9)

lu —unllLeo1:Hi@) T BNRITP — PrilL>©.T;L22)/24)
17
< cNY 7 {|lullwre.T:H7 @) + IIPlL©T:H-1@) }- (2.10)
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In conclusion, contrary to the finite-element case where the error estimates of velo
depend on the inf-sup constant, the spectral framework yields optimal error estimates
do notdepend on this constant. Convergence on pressure is always guaranteed in the qu
spacel.2(R2)/Zy; and the error estimate is proportional 84 -

3. THE (NONINCREMENTAL) PROJECTION METHOD

We want to investigate now the consequences of respecting or notthe LBB conditionin
context of projection methods. First, we describe the Galerkin—Legendre spectral versic
the nonincremental fractional-step projection method (Chorin[12, 13]and Temam [31, 3:
then we state stability and convergence results, illustrated numerically in Section 5.

In view of the spectral discretization of interest here, we assume an implicit treatm
for the viscous term and an explicit treatment for the nonlinear one. As a consequence
method will be only conditionally stable and the time-step size must be chosen unde
stability restriction.

3.1. Fractional-Step Time Discretization

The projection method of Chorin and Temam is a time-marching algorithm composec
two separate substeps aiming at decoupling the viscous effects from the incompressib
Using k to denote the time index, two sequences of approximate velogiilos.o and
(%=1 and one sequence of approximate presspfg.1 are computed as follows.

After initialization, u® = uo, for each time-stejx > 0, the first substep consists of the
following weak problem. Findi*t1e Hé(Q) such that

{ (V’UkH)A; (v, 0% + (Vv Vuk+1) = (v, fk+l _ (Uk X V)Uk), YV € H%(Q), (3 1)

k+1
U+‘3Q=0.

The second substep consists of projectiig! onto the space of solenoidal vector fields
with zero normal trace 08Q2. This step may take two alternative forms: in the first form,
the projection step is a Darcy problem; in the second form it is a Poisson problem for
pressure. In terms of PDEs the two problems are equivalent, but their weak counterf
are different because of the different underlying functional frameworks. More precisely,
introducing the space

HOY(Q) = (Ve LAQ) | V- Ve LARQ). n- ¥ = 0},

the weak formulation of the Darcy problem consists of lookingifer Hgi"(Q) andpt! e
L3(S2) such that

(,\ 0k+1 —i uk+1
’ At

@ V-0 =0 vgelL3Q).

) = (V-0 pY) =0, VieHIV(Q),
3.2)

wherei ; H(l)(Q) — H%‘V(Q) is the natural injection. On the other hand, the weak formulatiol
of the Poisson problem consists of looking fore H1(Q2) N L3(Q) andl € L2(€2) such
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that

{(Vq, V) = —(At) "X, V - U, Vg e HY(Q) N L3(RQ), 53

0k+l =i uk+1 — AtV pk+l.

Herei is the natural injection that mapd;é(sz) into L2(€2). The operator is retained to
draw the attention of the reader to the fact titgt: and0** do not a priori live in the same
space.

When it comes to discretizing the projection step, the two different frameworks descrik
above yield radically different implementations. The first formulation yields a couple
system for velocity and pressure unknowns, while the second formulation involves o
one scalar Poisson problem. However, as shown in Guermond [14] and Guermond
Quartapelle [16], these different frameworks lead to the same convergence estimates fo
space/time solution of the projection scheme, so that the choice between them is a matt
computational efficiency. In the following we solve the projection step as a Poisson probl
supplemented with homogeneous Neumann boundary condition.

3.2. The Fully Discrete Equations

Within the spectral framework adopted in this paper, once the projected ve[ﬂipils/
substituted with its expression¥, — AtV p'§l in (3.1), the viscous substep reads as follows
Findu™* € Xo.n such that, for ally € Xqn,

VM Tn. VU — gy k. w)uk) — v ok
NTTTAL +v(Vn, VUg™) = n, £ = (w, (uy - V)ug) = (v, Vpg)-

(3.4)

The spectral approximation of the Poisson problem accounting for incompressibility tal
the following form. Findpk,\{r1 € Mg such that, for altyg € My,

(Vag. V™) = —(at ™ (qq. V- ulg). (3.5)

Finally, by introducing the selected basis functions, the three algebraic problems for
velocity components and pressure are obtained, as fully reported in [1].

3.3. Stability and Convergence

The convergence properties of the algorithm (3.4)—(3.5) are stated in the followi
theorem.

THEOREMZ2. If (u, p), the solution ta2.1) without nonlinear termis smooth enough
in space and timethe solution ta(3.4)—(3.5) satisfies the estimates

K
Og&o}g ([u —u

ok (Bui | P — plEIHLZ(Q)/ZN’

Kl 2y U = 0K ]| 20) < U, P, T, )AL+ N7,

Ut) — uy|lyiq) < CU, P, T, o) (AtY2 4 N77).
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Proof. We just sketch the proof. First we obtain stability of the velocity using a sim
ple energy argument. By repeating this argument and applying it to the velocity inc
ments‘k+l - GkN, one obtains stability in the? norm of the approximate time derivative
(‘k+1 ay)/At. Then, the key argument to obtaining a stability inequality of pressure co
sists of building a good approximation of the momentum equation, as follows. By addi

the equatiort**? = juk+! — AtV pk+! to (3.4), we obtain

k+1 U k1 k1
(V-w, pg™) = [ vn, At +v(VVn, Vug™) — (wn, £,

Stability of pressure in the quotient norm bf(2)/Zy, follows easily from the LBB
inequality (see Rannacher [25], Shen [28], and Guermond [14] for details).

Note that in the proof of stability of pressure, itis not the coercivity of the Poisson opera
in (3.5) that is invoked but the inf-sup inequality (2.5). This remark is the touchstone of tl
paper.

The results above can be extended to the nonlinear case, prayideds(ug, f)N=2.
Note that the convergence on pressure is guaranteed only in the quotient NoH{Rpf Z
and the constant in the error bound is proportional/ié\k; . That is to say, the convergence
property of the nonincremental projection method (3.4)—(3.5) is controlled by the ability
the spectral framework to approximate correctly steadyStokes problem.

4. THE BDF INCREMENTAL PROJECTION METHOD

We consider now a second-order incremental projection method, whose theoretical ar
siswas given in Guermond and Quartapelle [16] and Guermond [15]. This method is knc
to be more accurate than the nonincremental one for any value of the time step. We seeii
case also thatthe LBB condition of the steady Stokes problem (2.4) controls the converg
in space of the method, although this condition may not seem to be necessary a priori.

4.1. BDF Time Discretization

The incremental version of the fractional-step method consists of making explicit the pr
sure at the viscous step and correcting it at the projection step, while retaining the comy
uncoupling of viscous diffusion from incompressibility. We consider a second-order sche
based on BDF, thoroughly studied in Guermond [15]. The algorithm reads as follows.

Setu® = ug and assume® to be known. At the first time stef (= 0), use the incremental
projection scheme based on the Euler time discretization to determine the first valocity
and pressur@’. In other words, solve the viscous diffusion problem

(L) (WY, VUl = (v, £ — (v, (U0 - WHUO) + (V- v, p), W e HY(9), @)
U o) =O, ’

and the incremental Poisson problem
(Va, V(p' = p) = —(A M@, V-uh), Vae H(@NLi@), (42

so that the first end-of-step velocity is givenby= iu' — AtV (p* — p°).
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Then, fork > 1, solve the following two problems. First, consider the diffusion step

k+1y _ ok k=1
(v,3uXt1) 2(;/,t4u + 070 + U(VV, Vuk+1)

= (v, FY — (v, (UL W)U 4 (W -y, PN, Y e HE(Q), (4.3)

k+1
U+|asz=0,

where we have introduced the linearly extrapolated velagjty = 2u* — uk—. Second,
perform the projection step in the following incremental (correction) form:

(Va, V(- pfy) = —Em VU, vg e HY(Q) N LE(Q). (4.4)

4.2. Fully Discretized Equations

By introducing finite-element spac#s y andMy as in Section 2.2, we recast the BDF
incremental projection algorithm in weak form. Similarly to the nonincremental scheme, t
end-of-step velocity is eliminated from the algorithm. For the BDF method, this eliminatic
requires that special attention be paid to the first two steps,1 andk = 2, since here
different forms of extrapolated pressure are obtained (see [1]). A direct calculation lead
the following weak formulation of the viscous step for 3.

Fork > 3, finduk™! € Xo n such that, for ally € Xon,

3ukHt — auk + Ut
VN,

At >+ v(Vn, Vi)

1
~(wn. V(7p 5P + p5?)). (45

— (VNv fk+1) _ (VNv ( k+l V) k+l) 3(

And fork > 1, find (p§™ — pk) € My such that, for alby; € My,

3

(VqN’ (pKI+l pllél)) ZAt

(aq, V - ulg™). (4.6)

4.3. Stability and Convergence

The error analysis of [15] extends easily to the spectral framework. Hence, we have
following theorem.

THEOREM3. If (U, p), the solution tq2.1) without nonlinear termis smooth enough in
space and timeghe solution tq4.5)4.6) satisfies the estimates

K
{At S [Juct) — ][z g, + [Juct) - ONHfz(Q)} <c(u, p. T, o) (AL + N7,
k=0

ax (Bunl|PE) = Pl 2@z, WA = Ul [lsq)) = €U, P, T, o)At + NE,

O<k K (
whereo accounts for the regularity of(cf. Lemma 2). Note that to the extent of the authors’
knowledge, second-order accuracy in time has been proved onlyliA trem of the veloc-
ity (see also Shen [30] for proof of convergence with Crank—Nicolson time stepping). Or
more, the error estimates of velocity do not depend on the inf-sup constant (i.e., both e
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and unequal polynomial order interpolations yield optimal velocity approximation). On tl
other hand, the error estimate on pressure is proportiongldgiland the convergence is
guaranteed only in the quotient spdc&Q)/ Zy;.

5. NUMERICAL RESULTS

Now we investigate numerically whether the error estimates derived above are optir
Actually, when looking at algorithm (3.4)—(3.5), one observes that the two bilinear forr
on the left-hand sides are coercive. Hence, despite the remarks above, one may still t
that there is some hidden stabilizing mechanism in the nonincremental projection met
that can make it work independently of the LBB condition.

5.1. Analytical Test Case

Let us consider as a test problem the Navier—Stokes equations (2.1) with the analy
solution

Uy = —(cosxsiny)g(t),
Uy = (sinx cosy)g(t),

p = —1[cos(2x) + cos(2y)]gA(1),

whereQ = [—1, 1]? andg(t) = sin(2t). Introducing the velocity in the forma = T(x, y)
g(1), the source term corresponding to the momentum equation in the Navier—Stokes sy:
readsf = G(x, y)[d'(t) + 2g(t)/Rel.

We make two series of convergence tests with respeat t@ll with Re= 100. In the
first series, we use Byo/IP,g interpolation, whereas in the second series welygéP1g.
This choice of polynomial orders guarantees that the error in space for this smooth solu
is much lower than that induced by time splitting, at least within the range of time ste
explored.

The results for the nonincremental method are reported in Fig. 1, wheté€°{bel;
L2(£2)) andl*°(0, 1; H1(R)) norms of the error of velocity and pressure are plotted.

These results are in full accordance with Theorem 2 and confirm that the velocity appr
mation is first-order accurate in both error norms, irrespective of the adopted discretiza
(note that inverse inequalities imply that accuracy of velocity in thé.? norm yields
also At accuracy in theH! norm, the constant in the error estimate depending\dn
As expected from Theorem 2, the convergence behavior of pressure depends on th
proximation adopted. In fact, while fdf,o/P1g discretization first-order convergence is
observed, for equal-order approximation, some sort of convergencelitt thel; L2(R2))
norm is observed only for time stegseaterthan 103, and there is no convergence in the
1°°(0, 1; H(£2)) norm for all time steps.

Looking again at pressure convergence tests with equal-order approximation for
nonincremental scheme, one may have the feeling that we did not reach the end of the <
for there seems to be convergence in Ithg0, 1; L2($2)) norm for At > 1072, Actually,
this result can be understood in the light of Rannacher’s analysis of the nonincreme
projection method [25]. Let us recall the key points of the argument for the convenience
the reader. The analysis in [25] shows that the nonincremental projection can be viewe
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FIG. 1. Convergence behavior for the nonincremental projection methods: R0. Equal-ordei,y/Py
approximation (left); unequal-ord&,/IP;1g approximation (right).

a pseudocompressibility technique whose limit problem is

We — V2, + (U - VIU + Ve =1,

V.U, —eV?p, =0,
Ugoe =0, dnPejpe =0,

Ujt=0 = Uo,

(5.7)

where the pseudocompressibility coefficieris chosen to bert in the time discrete case.
As a result, some kind of stability of pressure can be expected from the Poisson equatit
the time step (i.es) is large enough. More precisely, keeping the time continuous in (5.
but discretizing the space, the pseudocompressibility term yiejélsﬁv Pric ||fz(Ql ds<c
This estimate gives some sort of stability of pressure inltherorm if € ¢;(N)? is of
order 1 or larger, where (N) is the best constant in the inverse inequali®yqy [l 2 <

i (N)[lag Il 2, Wheregy spansMy . For the two types of discretizations considered in this
paper, we have, (N) ~ N2 (see, e.g., [5, 24]). Hence, in practice, convergence of pressu
is observed in the eyeball norm (i.e., thé norm, providedAt > cN~%). Note, however,
that the stability provided by the Poisson equation is not strong enough to keep the spur
modes from lurking, as can be seen in the convergence test k‘tin@rm and on the plot
of the error on the pressure field (see Fig. 3, left).

Next we investigate the accuracy properties of the incremental scheme. The initial pi
sure needed by the algorithm reported in Section 4.1 has been computed using orthoc
projection (in the.?(2) sense) of(t = 0) on the subspace spanned by the basis functior
forthe pressure. Onthe left side of Fig. 2 we have plotted the convergence cui@gag i
interpolation. The pressure does not converge, even in the wéarl; L2(2)) norm, re-
gardless of the magnitude of the time step. The convergence of velocity is unaffected by
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FIG. 2. Convergence behavior for the incremental BDF version of the projection methed,1R8. Equal-
orderP,,/P,, approximation (left); unequal-ord&,/P1g approximation (right).

kind of discretization. The convergence curves for the unequal &gdg¢lP1g interpolation
are plotted on the right of Fig. 2. Both velocity and pressure converge with second-or
rate in both error norms. These convergence tests clearly show that, for the increme
projection algorithm considered here, a compatible discretization is mandatory for pres:
to converge.

Similarly to what is observed for equal-order finite-element spatial discretizations, 1
lack of convergence of pressure for both the nonicremental and the incremental schem
due to the insurgence of spurious modes. In Fig. 3, we show error fields of pressurd at
obtained using the nonincremental scheme with= 0.00001 forP,o/P2o andPyo/P1g
interpolations. The same quantities, but for the incremental schemeAwith 0.01 and
P40/P40 andP4o/P3g interpolations, are shown in Fig. 4.

The checkerboard pattern of the spurious pressure modes on the equal-order appro
tion is evident for the two projection methods considered.

Note also that, in accordance with the analysis of [25], a numerical boundary la
is observable on the nonincremenk/P1g results. This boundary layer is the direct
consequence of the enforcement of the nonrealistic Neuman condjtpe: 0 on 92.
This boundary layer does not show up on the spatial distribution of the error of press
obtained with the incremental scheme with thg/Psg interpolation.

To finish this section, we add that we have also done space convergence tests
respect to the polynomial ordét, §t being chosen sufficiently small so that the space errc
dominates. As stated in Theorems 2 and 3, we observed spectral accuracy for both sch
with Py /Py _2 interpolation.
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1

FIG. 3. Nonincremental scheme, pressure error field-atl, At = 0.00001, Re= 100. (Left) Equal-order
P,o/P, interpolation; (right) different-orddP,,/P;g interpolation.

5.2. Driven Cavity Problem

We now consider the solution of the driven cavity problem [10] with a Reynolds numb
Re = 100. In this problem, the horizontal component of velocity is discontinuous in tt
two upper corners, being equal to one on the top side and equal to zero on the other s
while the vertical component is zero on the four sides. In the calculation of the lifting
the Dirichlet datum, the horizontal velocity in the top corners has been set to zero to av
any mass flux through the vertical walls of the cavity. Moreover, the initial velocity an
pressure fields employed in the incremental method have been set to zero.

The pressure fields obtained by the nonincremental scheitne 410, computed with
P40/P4 interpolation and with two different time stepst = 0.01 andAt = 0.00001, are
shown in Fig. 5.

FIG. 4. Incremental projection method, pressure error field-atl, At = 0.01, Re= 100. (Left) P4o/Pso
interpolation; (right)P4o/Psg interpolation.
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FIG. 5. Pressure field in the driven cavity for Re 100: att = 10. Nonincremental method witPy,/P4
interpolation.At = 0.01 (left) andAt = 0.00001 (right).

=]

The wild oscillations observed witht = 0.00001 confirm the need to satisfy the inf-sup
condition to obtain an accurate solution, while the apparent smoothness of the solution
tained withAt = 0.01 shows the already-mentioned stabilizing effect of the nonconsiste
Poisson equation for time steps large enough.

Still using the nonincremental projection method but choosing polynomial bases t
respect the LBB condition (e.gP40/P3g interpolation) yields pressure fields that are free
of any spurious modes, as shown in Fig. 6. Note however that some oscillations car
observed close to the boundary for the smaller time Atep- 0.00001. These oscillations
are triggered by singularities localized at the cavity corners and are known in the literat
as the Gibbs phenomenon. Similar oscillations are found also when using the vorticity
stream function formulation [2]. They can be eliminated by subtracting the singularity,
explained below. Note that these oscillations do not show up wiea 0.01, since in this
caseAt is large enough for the regularization effects of the nonconsistent Poisson equat
already mentioned above, to be significant.

FIG. 6. Pressure field in the driven cavity for Re 100 att = 10. Nonincremental method with different-
orderP,/P3g interpolation. (Left)At = 0.01; (right) At = 0.00001. The spatial oscillations localized near the
boundary forAt = 0.00001 are due to a Gibbs phenomenon induced by the solution’s singularity.
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FIG. 7. Pressure field in the driven cavity for Re100,t = 10. Incremental projection methodt = 0.01.
(Left) P4o/P4 interpolation; (right)P4,/Pag interpolation.

Now we analyze the performance of the incremental BDF scheme. The pressure fi
computed using this schemetat 10 with At = 0.01 for P4o/P40 andP4o/P3g interpola-
tions are shown in Fig. 7. Spurious modes are clearly visible ofP{hP4o results (left)
whereas the pressure field obtained withhg/Psg (right) approximation looks reason-
able. This test confirms that the incremental method does not work properly for press
unless the LBB condition is satisfied, as suggested in Theorem 3.

Note once more that, for thR,o/Psg result, some oscillations are visible close to the
cavity boundary. As explained above, they are the manifestation of the Gibbs phenome
induced by the two singularities localized at the cavity corners. Following the techniq
presented by Botella and Peyret for the primitive variable formulation [6, 7], which amour
to solving the problem for auxiliary variables with singular components removed, we we
able to eliminate such oscillations, as presented in Fig. 8.

0 1

FIG. 8. Pressure field in the driven cavity for Re100 att = 10 obtained using the singularity subtraction
technique and the incremental projection methg/Psg interpolation, andAt = 0.01.
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In conclusion, the two series of tests performed above clearly confirm that the LBB cor
tion of the steady Stokes problem (2.4) controls the convergence of both the nonincreme
and incremental projection technique.

6. CONCLUSIONS

This paper has investigated the relevance of the LBB condition in spectral project
methods. We have considered the stability and convergence properties of a first-order
incremental projection method and a second-order incremental projection method, f
based on spectral Galerkin—Legendre spatial discretization.

The argumentation developed in the present paper is fourfold.

1. Thenonincremental projection method fallsinthe class of pseudocompressibility te
niques, provided the time step is not too small (izet,> cN~%). Under this circumstance
only, equal-order polynomial approximation can be used. But even in this case, we h
shown numerically that thBy /Py _2 interpolation is more accurate than the equal-orde
approximation.

2. Forthe nonincremental method with very small time steps and for the incremental «
for all time steps, we have shown that stability and convergence in space is controllec
the ability of the spectral discretization to approximate the steady Stokes problem. The
to say, even though the two substeps of the two projection methods considered are coel
the global convergence is controlled by the LBB constant of the steady Stokes problen

3. In accordance with a striking approximation result of the steady Stokes problem
Sacchi-Landriani and Vandeven [27], we have shown that equal-order polynomial spec
approximations yield optimal error estimates of velocity in all circumstances butis gener
not optimal for pressure.

4. For the two projection methods considered in this paper, nitxgdy . approxima-
tion always yields the same space accuracy as that of the steady Stokes problem, wh
for Py /Py approximation this property holds only in a quotient space (i.e., the corre
pressure field can be recovered only by adequate postprocessing, as suggested in [5]
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