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This paper investigates the relevance of the Ladyshenskaya–Babuˇska–Brezzi con-
dition in spectral projection methods. We consider the stability and convergence
properties for a first-order nonincremental projection method and a second-order
incremental projection method, both based on a spectral Galerkin–Legendre spatial
discretization. We show that the convergence of both projection methods is controlled
by the ability of the spectral framework to approximate correctly thesteady Stokes
problem. c© 2001 Elsevier Science

1. INTRODUCTION

The approximation of the primitive variable Navier–Stokes equations by means of fi-
nite elements or spectral methods must respect the limits set by numerical analysis in the
choice of velocity and pressure approximation spaces. One of these limits consists of the
compatibility condition known as the inf–sup condition and also referred to in the literature
as the LBB condition, from Ladyshenskaya [20], Babuˇska [4], and Brezzi [8]. The conse-
quence of not satisfying this condition is the appearance of severe spatial oscillations in
the pressure field, usually called spurious pressure modes. One way of eliminating these
unphysical oscillations is to augment the discrete problem by adding a term proportional
to the equation residual, giving a stabilized version of the original algorithm [18]. Another
possibility consists of penalizing the solenoidality constraint, as in pseudocompressibility
techniques. The methods of the second class usually yield low-order approximation rates
since they are not consistent.

In recent years the idea has emerged that Poisson-based projection techniques are sta-
bilized methods and for this reason can be used with spatial interpolations which do not
satisfy the LBB condition. Continuing with the work of Guermond [14] and Guermond and
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Quartapelle [17], where it is shown that this idea is not correct for finite elements, the goal
of the present paper is to show that this point of view is not correct in the spectral framework
also.

The paper is organized as follows. In Section 2, we formulate the Navier–Stokes problem
and introduce a Legendre–Galerkin spectral framework for approximating the solution in
space. We recall known stability and convergence results. In Section 3, we reformulate
in the spectral framework the nonincremental projection technique introduced by Chorin
[12, 13] and Temam [31, 32]. We give stability and convergence estimates, and we show
numerical results to illustrate these estimates. In Section 4, we study a backward difference
formula (BDF) incremental projection method, and we investigate the relevance of the LBB
condition for this scheme. The theoretical results derived in Sections 3 and 4 are illustrated
using numerical tests reported in Section 5. We finally conclude in Section 6.

2. FORMULATION OF THE PROBLEM

2.1. The Navier–Stokes Equations

We consider the time-dependent incompressible Navier–Stokes equations formulated in
terms of velocityu and pressurep, stated as follows. Findu andp (up to a constant) so that

∂u
∂t − ν∇2u+ (u ·∇)u+∇p= f ,

∇ · u= 0,
u|∂Ä= 0,

u|t=0= u0,

(2.1)

whereν is the viscosity,f is a known body force, andu0 is the divergence-free initial veloc-
ity field. For simplicity, we assume homogeneous boundary conditions. The fluid domain
Ä is assumed to be the square [−1,+1]2. The data are assumed to be regular enough and to
satisfy all the compatibility conditions required for a smooth solution to exist for all time.

2.2. Galerkin–Legendre Approximations

2.2.1. A Brief Review

Spectral methods are highly accurate approximation techniques which, contrary to finite
elements, are based on global polynomial approximations. The applications of spectral
methods in CFD are rooted in the pioneering papers of Kreiss and Oliger [19] and Orzag
[23]. The reader is referred to the books of Canutoet al. [11] and Bernardi and Maday
[5] for quite complete reviews on spectral methods. Though spectral methods can be quite
easily analyzed within the Galerkin framework, the collocation framework has been quite
often preferred to the Galerkin one in practice. Recently, renewed interest in the Galerkin
technique has been prompted by the decisive work of Shen [29], where new Legendre
polynomial bases for which both the mass matrix and the stiffness matrix are sparse are
introduced. The present work is based on Shen’s bases.

2.2.2. The Interpolation Bases

Let us introduce the finite dimensional spaceXN = (PN ⊗ PN)
2, wherePN denotes the

set of polynomial of degree less than or equal toN. We approximate velocity inX0,N =
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XN ∩ H1
0(Ä), whereH1

0(Ä) is the standard notation for the Sobolev space of vector-valued
functions that are square integrable, with square integrable first derivatives, and with zero
trace on∂Ä. Pressure is approximated in the spaceMN̂ = (PN̂ ⊗ PN̂) ∩ L2

0(Ä), where
L2

0(Ä) = {q ∈ L2(Ä); ∫
Ä

q = 0}. The polynomial orderN for velocity is in general differ-
ent from the polynomial order̂N for pressure. The approximation using the spacesX0,N

for velocity andMN̂ for pressure is referred to in the following byPN/PN̂ .
To recast (2.1) in a weak form, we consider two different bases for approximating velocity

and pressure. For the velocity field satisfying Dirichlet conditions, we adopt the basis
introduced by Shen in [29]; to approximate pressure, a convenient basis in two dimensions
is obtained by the tensor product of the standard Legendre polynomial basis normalized
such that the mass matrix is the identity.

Approximate velocity and pressure are expanded in the double series

uN(t, x, y) =
N∑

n=2

N∑
m=2

L∗n(x)L
∗
m(y)Un,m(t), (2.2)

pN̂(t, x, y) =
N̂∑

n̂=0

N̂∑
m̂=0

L¦n̂(x)L
¦
m̂(y)Pn̂,m̂(t). (2.3)

For a detailed description of the two sets of basis functionsL∗ andL¦ the reader is referred
to [1].

2.2.3. Approximation Properties

To clarify the approximation properties of the spectral framework considered above, let
us introduce the following steady Stokes problem. For a smooth solenoidal vector fieldus

in H1
0(Ä) and a smooth scalar fieldps∈ L2

0(Ä), find us
N ∈X0,N and ps

N̂
∈ MN̂ such that

{(
∇vN,∇

(
us

N − us
))+ (vN,∇

(
ps

N̂
− ps

)) = 0, ∀vN ∈X0,N,(
qN̂,∇ · us

N

) = 0, ∀qN̂ ∈ MN̂,
(2.4)

where(·, ·) denotes either theL2 or L2 scalar product indifferently.
Well-posedness of this problem depends on satisfying a compatibility condition between

the approximation spaces for velocity and pressure. More precisely, let us introduce the
following space:

ZN̂ = {qN̂ ∈ MN̂; (qN̂,∇ · vN) = 0, ∀vN ∈ X0,N}.

For N̂= N − 2, we haveZN̂ ={0}, whereas forN̂= N, ZN̂ is a vector space of dimension 8;
the reader is referred to Bernardi and Maday [5] for details. LetL2(Ä)/ZN̂ denote the
quotient space ofL2(Ä) by ZN̂ equipped with the norm

‖q‖L2(Ä)/ZN̂
= inf

z∈ZN̂

‖q + z‖L2(Ä), ∀q ∈ L2(Ä).

We have the following lemma.
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LEMMA 1. There isβNN̂ > 0 so that

∀qN̂ ∈MN̂ sup
vN∈X0,N

(qN̂,∇ · vN)

‖vN‖H1(Ä)

≥ βNN̂‖qN̂‖L2(Ä)/ZN̂
, (2.5)

and

βNN̂ ∼
{

N−1/2 i f N̂ = N − 2,

N−1 i f N̂ = N.

The reader is referred to Brezzi and Fortin [9, p. 40], Bernardi and Maday [5], or
Quarteroni and Valli [24] for a proof. Condition (2.5) is usually called the LBB condi-
tion or inf–sup condition [4, 8, 20].

The idea of usingN̂ = N − 2 stems from the work of Madayet al. [22] and Rønquist
[26], and early applications of this idea can be found in the thesis of Azaiez [3].

The approximation property of thePN/PN̂ framework is stated in the following lemma.

LEMMA 2. If us∈Hσ (Ä) ∩ H1
0(Ä) and ps∈ Hσ−1(Ä) ∩ L2

0(Ä), then

‖us − uN‖L2(Ä) ≤ cN−σ
{‖us‖Hσ(Ä) + ‖p‖Hσ−1(Ä)

}
, (2.6)

‖us − uN‖H1(Ä) + βNN̂‖p− pN̂‖L2(Ä)/ZN̂
≤ cN1−σ{‖us‖Hσ(Ä) + ‖p‖Hσ−1(Ä)

}
. (2.7)

Note that the error bound on the velocity does not depend on the inf–sup constantβNN̂ .
This striking result is the consequence of a lemma due to Sacchi–Landriani and Vandeven
[27]. The choiceN̂ = N yields a convergent approximation provided pressure is selected
in a space that can be identified with the quotient spaceMN̂/ZN̂ . A realization of this
space can be obtained by adequate a posteriori filtering (see [5, p. 133] for possible filtering
strategies).

2.3. Semidiscrete Weak Spectral Approximation

Now let us turn our attention to the time-dependent Navier–Stokes problem (2.1). We con-
sider the following semidiscrete Navier–Stokes problem. Fort ≥ 0, find uN ∈ C1([0, T ];
X0,N), pN̂ ∈ C0([0, T ];MN̂) such that, for allvN ∈ X0,N and allqN̂ ∈ MN̂ ,

(vN, uN(t = 0)) = (vN, u0),(
vN,

∂uN
∂t

)+ ν(∇vN,∇uN)+ (vN, (uN ·∇)uN)+ (vN,∇pN̂) = (vN, f ),

(qN̂,∇ · uN) = 0.

(2.8)

In the light of Lemma 2, we can derive the following theorem in the linear case (the proof
for the nonlinear case being technically more involved, unless a skew-symmetric form of
the advection term is used).

THEOREM1. If u ∈ W1,∞(0, T;Hσ(Ä)) and p∈ L∞(0, T; Hσ−1(Ä)), we have

‖u− uN‖L∞(0,T;L2(Ä)) ≤ cN−σ
{‖u‖W1,∞(0,T;Hσ(Ä)) + ‖p‖L∞(0,T;Hσ−1(Ä))

}
, (2.9)

‖u− uN‖L∞(0,T;H1(Ä)) + βNN̂‖p− pN̂‖L∞(0,T;L2(Ä)/ZN̂ )

≤ cN1−σ{‖u‖W1,∞(0,T;Hσ(Ä)) + ‖p‖L∞(0,T;Hσ−1(Ä))

}
. (2.10)
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In conclusion, contrary to the finite-element case where the error estimates of velocity
depend on the inf–sup constant, the spectral framework yields optimal error estimates that
do not depend on this constant. Convergence on pressure is always guaranteed in the quotient
spaceL2(Ä)/ZN̂ and the error estimate is proportional to 1/βNN̂ .

3. THE (NONINCREMENTAL) PROJECTION METHOD

We want to investigate now the consequences of respecting or not the LBB condition in the
context of projection methods. First, we describe the Galerkin–Legendre spectral version of
the nonincremental fractional-step projection method (Chorin [12, 13] and Temam [31, 32]),
then we state stability and convergence results, illustrated numerically in Section 5.

In view of the spectral discretization of interest here, we assume an implicit treatment
for the viscous term and an explicit treatment for the nonlinear one. As a consequence, the
method will be only conditionally stable and the time-step size must be chosen under a
stability restriction.

3.1. Fractional-Step Time Discretization

The projection method of Chorin and Temam is a time-marching algorithm composed of
two separate substeps aiming at decoupling the viscous effects from the incompressibility.
Using k to denote the time index, two sequences of approximate velocities(uk)k≥0 and
(ûk)k≥1 and one sequence of approximate pressure(pk)k≥1 are computed as follows.

After initialization, u0 = u0, for each time-stepk ≥ 0, the first substep consists of the
following weak problem. Finduk+1∈H1

0(Ä) such that

{
(v,uk+1)− (v,ûk)

1t + ν(∇v,∇uk+1) = (v, f k+1− (uk ·∇)uk), ∀v ∈ H1
0(Ä),

uk+1|∂Ä = 0.
(3.1)

The second substep consists of projectinguk+1 onto the space of solenoidal vector fields
with zero normal trace on∂Ä. This step may take two alternative forms: in the first form,
the projection step is a Darcy problem; in the second form it is a Poisson problem for the
pressure. In terms of PDEs the two problems are equivalent, but their weak counterparts
are different because of the different underlying functional frameworks. More precisely, by
introducing the space

Hdiv
0 (Ä) = {v̂ ∈ L2(Ä) |∇ · v̂ ∈ L2(Ä), n · v̂|∂Ä = 0},

the weak formulation of the Darcy problem consists of looking forû ∈ Hdiv
0 (Ä) andpk+1 ∈

L2
0(Ä) such that

(
v̂, ûk+1− i uk+1

1t

)− (∇ · v̂, pk+1) = 0, ∀v̂ ∈ Hdiv
0 (Ä),

(q,∇ · ûk+1) = 0, ∀q ∈ L2
0(Ä),

(3.2)

wherei : H1
0(Ä)→Hdiv

0 (Ä) is the natural injection. On the other hand, the weak formulation
of the Poisson problem consists of looking forp ∈ H1(Ä) ∩ L2

0(Ä) andû ∈ L2(Ä) such
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that {
(∇q,∇pk+1) = −(1t)−1(q,∇ · uk+1), ∀q ∈ H1(Ä) ∩ L2

0(Ä),

ûk+1 = i uk+1−1t∇pk+1.
(3.3)

Here i is the natural injection that mapsH1
0(Ä) into L2(Ä). The operatori is retained to

draw the attention of the reader to the fact thatuk+1 andûk+1 do not a priori live in the same
space.

When it comes to discretizing the projection step, the two different frameworks described
above yield radically different implementations. The first formulation yields a coupled
system for velocity and pressure unknowns, while the second formulation involves only
one scalar Poisson problem. However, as shown in Guermond [14] and Guermond and
Quartapelle [16], these different frameworks lead to the same convergence estimates for the
space/time solution of the projection scheme, so that the choice between them is a matter of
computational efficiency. In the following we solve the projection step as a Poisson problem
supplemented with homogeneous Neumann boundary condition.

3.2. The Fully Discrete Equations

Within the spectral framework adopted in this paper, once the projected velocityûk
N is

substituted with its expressioni uk
N −1t∇pk

N̂
in (3.1), the viscous substep reads as follows.

Finduk+1
N ∈ X0,N such that, for allvN ∈ X0,N ,(

vN,
uk+1

N − uk
N

1t

)
+ ν(∇vN,∇uk+1

N

)= (vN, f
k+1)− (vN,

(
uk

N ·∇
)
uk

N

)− (vN,∇pk
N̂

)
.

(3.4)

The spectral approximation of the Poisson problem accounting for incompressibility takes
the following form. Findpk+1

N̂
∈MN̂ such that, for allqN̂ ∈MN̂ ,

(
∇qN̂,∇pk+1

N̂

) = −(1t)−1
(
qN̂,∇ · uk+1

N

)
. (3.5)

Finally, by introducing the selected basis functions, the three algebraic problems for the
velocity components and pressure are obtained, as fully reported in [1].

3.3. Stability and Convergence

The convergence properties of the algorithm (3.4)–(3.5) are stated in the following
theorem.

THEOREM 2. If (u, p), the solution to(2.1) without nonlinear term, is smooth enough
in space and time, the solution to(3.4)–(3.5) satisfies the estimates

max
0≤k≤K

(∥∥u(tk)− uk
N

∥∥
L2(Ä)

,
∥∥u(tk)− ûk

N

∥∥
L2(Ä)

) ≤ c(u, p, T, σ )(1t + N−σ ),

max
0≤k≤K

(
βNN̂

∥∥p(tk)− pk
N̂

∥∥
L2(Ä)/ZN̂

,
∥∥u(tk)− uk

N

∥∥
H1(Ä)

) ≤ c(u, p, T, σ )
(
1t1/2+ N1−σ ).
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Proof. We just sketch the proof. First we obtain stability of the velocity using a sim-
ple energy argument. By repeating this argument and applying it to the velocity incre-
mentsûk+1

N − ûk
N , one obtains stability in theL2 norm of the approximate time derivative

(ûk+1
N − ûk

N)/1t . Then, the key argument to obtaining a stability inequality of pressure con-
sists of building a good approximation of the momentum equation, as follows. By adding
the equation̂uk+1 = i uk+1−1t∇pk+1 to (3.4), we obtain

(
∇ · vN, pk+1

N̂

)= (vN,
ûk+1

N − ûk
N

1t

)
+ ν(∇vN,∇uk+1

N

)− (vN, f
k+1).

Stability of pressure in the quotient norm ofL2(Ä)/ZN̂ follows easily from the LBB
inequality (see Rannacher [25], Shen [28], and Guermond [14] for details).

Note that in the proof of stability of pressure, it is not the coercivity of the Poisson operator
in (3.5) that is invoked but the inf-sup inequality (2.5). This remark is the touchstone of this
paper.

The results above can be extended to the nonlinear case, provided1t ≤ c(u0, f )N−2.
Note that the convergence on pressure is guaranteed only in the quotient norm ofL2(Ä)/ZN̂

and the constant in the error bound is proportional to 1/βNN̂ . That is to say, the convergence
property of the nonincremental projection method (3.4)–(3.5) is controlled by the ability of
the spectral framework to approximate correctly thesteadyStokes problem.

4. THE BDF INCREMENTAL PROJECTION METHOD

We consider now a second-order incremental projection method, whose theoretical analy-
sis was given in Guermond and Quartapelle [16] and Guermond [15]. This method is known
to be more accurate than the nonincremental one for any value of the time step. We see in this
case also that the LBB condition of the steady Stokes problem (2.4) controls the convergence
in space of the method, although this condition may not seem to be necessary a priori.

4.1. BDF Time Discretization

The incremental version of the fractional-step method consists of making explicit the pres-
sure at the viscous step and correcting it at the projection step, while retaining the complete
uncoupling of viscous diffusion from incompressibility. We consider a second-order scheme
based on BDF, thoroughly studied in Guermond [15]. The algorithm reads as follows.

Setu0 = u0 and assumep0 to be known. At the first time step (k = 0), use the incremental
projection scheme based on the Euler time discretization to determine the first velocityu1

and pressurep1. In other words, solve the viscous diffusion problem
(

v,u1− u0

1t

)+ ν(∇v,∇u1)= (v, f 1)− (v, (u0 ·∇)u0)+ (∇ · v, p0), ∀v∈H1
0(Ä),

u1|∂Ä = 0,
(4.1)

and the incremental Poisson problem

(∇q,∇(p1− p0)) = −(1t)−1(q,∇ · u1), ∀q ∈ H1(Ä) ∩ L2
0(Ä), (4.2)

so that the first end-of-step velocity is given byû1 = i u1−1t∇(p1− p0).
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Then, fork ≥ 1, solve the following two problems. First, consider the diffusion step
(v,3uk+1)− (v,4ûk+ ûk−1)

21t + ν(∇v,∇uk+1)

= (v, f k+1)− (v, (uk+1
? ·∇)uk+1

? )+ (∇ · v, pk), ∀v ∈ H1
0(Ä),

uk+1|∂Ä = 0,

(4.3)

where we have introduced the linearly extrapolated velocityuk+1
? = 2uk − uk−1. Second,

perform the projection step in the following incremental (correction) form:

(∇q,∇(pk+1− pk)) = − 3

21t
(q,∇ · uk+1), ∀q ∈ H1(Ä) ∩ L2

0(Ä). (4.4)

4.2. Fully Discretized Equations

By introducing finite-element spacesX0,N andMN̂ as in Section 2.2, we recast the BDF
incremental projection algorithm in weak form. Similarly to the nonincremental scheme, the
end-of-step velocity is eliminated from the algorithm. For the BDF method, this elimination
requires that special attention be paid to the first two steps,k = 1 andk = 2, since here
different forms of extrapolated pressure are obtained (see [1]). A direct calculation leads to
the following weak formulation of the viscous step fork ≥ 3.

For k ≥ 3, finduk+1
N ∈ X0,N such that, for allvN ∈ X0,N ,(

vN,
3uk+1

N − 4uk
N + uk−1

N

21t

)
+ ν(∇vN,∇uk+1

N

)
= (vN, f

k+1)− (vN,
(
uk+1
?,N ·∇

)
uk+1
?,N

)− 1

3

(
vN,∇

(
7pk

N̂ − 5pk−1
N̂
+ pk−2

N̂

))
. (4.5)

And for k ≥ 1, find(pk+1
N̂
− pk

N̂
) ∈ MN̂ such that, for allqN̂ ∈ MN̂,

(
∇qN̂,∇

(
pk+1

N̂
− pk

N̂

)) = − 3

21t

(
qN̂,∇ · uk+1

N

)
. (4.6)

4.3. Stability and Convergence

The error analysis of [15] extends easily to the spectral framework. Hence, we have the
following theorem.

THEOREM3. If (u, p), the solution to(2.1)without nonlinear term, is smooth enough in
space and time, the solution to(4.5)–(4.6)satisfies the estimates{

1t
K∑

k=0

∥∥u(tk)− uk
N

∥∥2
L2(Ä)
+ ∥∥u(tk)− ûk

N

∥∥2
L2(Ä)

}
≤ c(u, p, T, σ )(1t2+ N−σ ),

max
0≤k≤K

(
βNN̂

∥∥p(tk)− pk
N̂

∥∥
L2(Ä)/ZN̂

,
∥∥u(tk)− uk

N

∥∥
H1(Ä)

) ≤ c(u, p, T, σ )(1t + N1−σ ),

whereσ accounts for the regularity ofu (cf. Lemma 2). Note that to the extent of the authors’
knowledge, second-order accuracy in time has been proved only in theL2 norm of the veloc-
ity (see also Shen [30] for proof of convergence with Crank–Nicolson time stepping). Once
more, the error estimates of velocity do not depend on the inf-sup constant (i.e., both equal
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and unequal polynomial order interpolations yield optimal velocity approximation). On the
other hand, the error estimate on pressure is proportional to 1/βNN̂ and the convergence is
guaranteed only in the quotient spaceL2(Ä)/ZN̂ .

5. NUMERICAL RESULTS

Now we investigate numerically whether the error estimates derived above are optimal.
Actually, when looking at algorithm (3.4)–(3.5), one observes that the two bilinear forms
on the left-hand sides are coercive. Hence, despite the remarks above, one may still think
that there is some hidden stabilizing mechanism in the nonincremental projection method
that can make it work independently of the LBB condition.

5.1. Analytical Test Case

Let us consider as a test problem the Navier–Stokes equations (2.1) with the analytical
solution 

ux = −(cosx siny)g(t),

uy = (sinx cosy)g(t),

p = − 1
4[cos(2x)+ cos(2y)]g2(t),

whereÄ = [−1, 1]2 andg(t) = sin(2t). Introducing the velocity in the formu = ũ(x, y)
g(t), the source term corresponding to the momentum equation in the Navier–Stokes system
readsf = ũ(x, y)[g′(t)+ 2g(t)/Re].

We make two series of convergence tests with respect to1t , all with Re= 100. In the
first series, we use aP20/P20 interpolation, whereas in the second series we useP20/P18.
This choice of polynomial orders guarantees that the error in space for this smooth solution
is much lower than that induced by time splitting, at least within the range of time steps
explored.

The results for the nonincremental method are reported in Fig. 1, where thel∞(0, 1;
L2(Ä)) andl∞(0, 1; H1(Ä)) norms of the error of velocity and pressure are plotted.

These results are in full accordance with Theorem 2 and confirm that the velocity approxi-
mation is first-order accurate in both error norms, irrespective of the adopted discretization
(note that inverse inequalities imply that1t accuracy of velocity in theL2 norm yields
also1t accuracy in theH1 norm, the constant in the error estimate depending onN).
As expected from Theorem 2, the convergence behavior of pressure depends on the ap-
proximation adopted. In fact, while forP20/P18 discretization first-order convergence is
observed, for equal-order approximation, some sort of convergence in thel∞(0, 1; L2(Ä))

norm is observed only for time stepsgreaterthan 10−3, and there is no convergence in the
l∞(0, 1; H1(Ä)) norm for all time steps.

Looking again at pressure convergence tests with equal-order approximation for the
nonincremental scheme, one may have the feeling that we did not reach the end of the story,
for there seems to be convergence in thel∞(0, 1; L2(Ä)) norm for1t > 10−3. Actually,
this result can be understood in the light of Rannacher’s analysis of the nonincremental
projection method [25]. Let us recall the key points of the argument for the convenience of
the reader. The analysis in [25] shows that the nonincremental projection can be viewed as
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FIG. 1. Convergence behavior for the nonincremental projection method, Re= 100. Equal-orderP20/P20

approximation (left); unequal-orderP20/P18 approximation (right).

a pseudocompressibility technique whose limit problem is



∂uε
∂t − ν∇2uε + (uε ·∇)uε +∇pε = f ,

∇ · uε − ε∇2 pε = 0,

uε|∂Ä = 0, ∂n pε|∂Ä = 0,

u|t=0 = u0,

(5.7)

where the pseudocompressibility coefficientε is chosen to be1t in the time discrete case.
As a result, some kind of stability of pressure can be expected from the Poisson equation if
the time step (i.e.,ε) is large enough. More precisely, keeping the time continuous in (5.7)
but discretizing the space, the pseudocompressibility term yieldsε

∫ t
0 ‖∇pN̂ε‖2L2(Ä)

ds≤ c.
This estimate gives some sort of stability of pressure in theL2 norm if ε ci (N̂)2 is of
order 1 or larger, whereci (N̂) is the best constant in the inverse inequality‖∇qN̂‖L2(Ä) ≤
ci (N)‖qN̂‖L2(Ä), whereqN̂ spansMN̂ . For the two types of discretizations considered in this
paper, we haveci (N̂)∼ N2 (see, e.g., [5, 24]). Hence, in practice, convergence of pressure
is observed in the eyeball norm (i.e., theL2 norm, provided1t ≥ cN−4). Note, however,
that the stability provided by the Poisson equation is not strong enough to keep the spurious
modes from lurking, as can be seen in the convergence test in theH1 norm and on the plot
of the error on the pressure field (see Fig. 3, left).

Next we investigate the accuracy properties of the incremental scheme. The initial pres-
sure needed by the algorithm reported in Section 4.1 has been computed using orthogonal
projection (in theL2(Ä) sense) ofp(t = 0) on the subspace spanned by the basis functions
for the pressure. On the left side of Fig. 2 we have plotted the convergence curves forP20/P20

interpolation. The pressure does not converge, even in the weakerl∞(0, 1; L2(Ä)) norm, re-
gardless of the magnitude of the time step. The convergence of velocity is unaffected by the
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FIG. 2. Convergence behavior for the incremental BDF version of the projection method, Re= 100. Equal-
orderP20/P20 approximation (left); unequal-orderP20/P18 approximation (right).

kind of discretization. The convergence curves for the unequal orderP20/P18 interpolation
are plotted on the right of Fig. 2. Both velocity and pressure converge with second-order
rate in both error norms. These convergence tests clearly show that, for the incremental
projection algorithm considered here, a compatible discretization is mandatory for pressure
to converge.

Similarly to what is observed for equal-order finite-element spatial discretizations, the
lack of convergence of pressure for both the nonicremental and the incremental schemes is
due to the insurgence of spurious modes. In Fig. 3, we show error fields of pressure att = 1
obtained using the nonincremental scheme with1t = 0.00001 forP20/P20 andP20/P18

interpolations. The same quantities, but for the incremental scheme with1t = 0.01 and
P40/P40 andP40/P38 interpolations, are shown in Fig. 4.

The checkerboard pattern of the spurious pressure modes on the equal-order approxima-
tion is evident for the two projection methods considered.

Note also that, in accordance with the analysis of [25], a numerical boundary layer
is observable on the nonincrementalP20/P18 results. This boundary layer is the direct
consequence of the enforcement of the nonrealistic Neuman condition∂n p = 0 on ∂Ä.
This boundary layer does not show up on the spatial distribution of the error of pressure
obtained with the incremental scheme with theP40/P38 interpolation.

To finish this section, we add that we have also done space convergence tests with
respect to the polynomial orderN, δt being chosen sufficiently small so that the space error
dominates. As stated in Theorems 2 and 3, we observed spectral accuracy for both schemes
with PN/PN−2 interpolation.
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FIG. 3. Nonincremental scheme, pressure error field att = 1,1t = 0.00001, Re= 100. (Left) Equal-order
P20/P20 interpolation; (right) different-orderP20/P18 interpolation.

5.2. Driven Cavity Problem

We now consider the solution of the driven cavity problem [10] with a Reynolds number
Re= 100. In this problem, the horizontal component of velocity is discontinuous in the
two upper corners, being equal to one on the top side and equal to zero on the other sides,
while the vertical component is zero on the four sides. In the calculation of the lifting of
the Dirichlet datum, the horizontal velocity in the top corners has been set to zero to avoid
any mass flux through the vertical walls of the cavity. Moreover, the initial velocity and
pressure fields employed in the incremental method have been set to zero.

The pressure fields obtained by the nonincremental scheme att = 10, computed with
P40/P40 interpolation and with two different time steps,1t = 0.01 and1t = 0.00001, are
shown in Fig. 5.

FIG. 4. Incremental projection method, pressure error field att = 1,1t = 0.01, Re= 100. (Left)P40/P40

interpolation; (right)P40/P38 interpolation.
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FIG. 5. Pressure field in the driven cavity for Re= 100: att = 10. Nonincremental method withP40/P40

interpolation.1t = 0.01 (left) and1t = 0.00001 (right).

The wild oscillations observed with1t = 0.00001 confirm the need to satisfy the inf–sup
condition to obtain an accurate solution, while the apparent smoothness of the solution ob-
tained with1t = 0.01 shows the already-mentioned stabilizing effect of the nonconsistent
Poisson equation for time steps large enough.

Still using the nonincremental projection method but choosing polynomial bases that
respect the LBB condition (e.g.,P40/P38 interpolation) yields pressure fields that are free
of any spurious modes, as shown in Fig. 6. Note however that some oscillations can be
observed close to the boundary for the smaller time step1t = 0.00001. These oscillations
are triggered by singularities localized at the cavity corners and are known in the literature
as the Gibbs phenomenon. Similar oscillations are found also when using the vorticity and
stream function formulation [2]. They can be eliminated by subtracting the singularity, as
explained below. Note that these oscillations do not show up when1t = 0.01, since in this
case1t is large enough for the regularization effects of the nonconsistent Poisson equation,
already mentioned above, to be significant.

FIG. 6. Pressure field in the driven cavity for Re= 100 att = 10. Nonincremental method with different-
orderP40/P38 interpolation. (Left)1t = 0.01; (right)1t = 0.00001. The spatial oscillations localized near the
boundary for1t = 0.00001 are due to a Gibbs phenomenon induced by the solution’s singularity.
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FIG. 7. Pressure field in the driven cavity for Re= 100,t = 10. Incremental projection method,1t = 0.01.
(Left) P40/P40 interpolation; (right)P40/P38 interpolation.

Now we analyze the performance of the incremental BDF scheme. The pressure fields
computed using this scheme att = 10 with1t = 0.01 forP40/P40 andP40/P38 interpola-
tions are shown in Fig. 7. Spurious modes are clearly visible on theP40/P40 results (left)
whereas the pressure field obtained with theP40/P38 (right) approximation looks reason-
able. This test confirms that the incremental method does not work properly for pressure
unless the LBB condition is satisfied, as suggested in Theorem 3.

Note once more that, for theP40/P38 result, some oscillations are visible close to the
cavity boundary. As explained above, they are the manifestation of the Gibbs phenomenon
induced by the two singularities localized at the cavity corners. Following the technique
presented by Botella and Peyret for the primitive variable formulation [6, 7], which amounts
to solving the problem for auxiliary variables with singular components removed, we were
able to eliminate such oscillations, as presented in Fig. 8.

FIG. 8. Pressure field in the driven cavity for Re= 100 att = 10 obtained using the singularity subtraction
technique and the incremental projection method,P40/P38 interpolation, and1t = 0.01.
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In conclusion, the two series of tests performed above clearly confirm that the LBB condi-
tion of the steady Stokes problem (2.4) controls the convergence of both the nonincremental
and incremental projection technique.

6. CONCLUSIONS

This paper has investigated the relevance of the LBB condition in spectral projection
methods. We have considered the stability and convergence properties of a first-order non-
incremental projection method and a second-order incremental projection method, both
based on spectral Galerkin–Legendre spatial discretization.

The argumentation developed in the present paper is fourfold.

1. The nonincremental projection method falls in the class of pseudocompressibility tech-
niques, provided the time step is not too small (i.e.,1t ≥ cN−4). Under this circumstance
only, equal-order polynomial approximation can be used. But even in this case, we have
shown numerically that thePN/PN−2 interpolation is more accurate than the equal-order
approximation.

2. For the nonincremental method with very small time steps and for the incremental one
for all time steps, we have shown that stability and convergence in space is controlled by
the ability of the spectral discretization to approximate the steady Stokes problem. That is
to say, even though the two substeps of the two projection methods considered are coercive,
the global convergence is controlled by the LBB constant of the steady Stokes problem.

3. In accordance with a striking approximation result of the steady Stokes problem by
Sacchi-Landriani and Vandeven [27], we have shown that equal-order polynomial spectral
approximations yield optimal error estimates of velocity in all circumstances but is generally
not optimal for pressure.

4. For the two projection methods considered in this paper, mixedPN/PN−2 approxima-
tion always yields the same space accuracy as that of the steady Stokes problem, whereas
for PN/PN approximation this property holds only in a quotient space (i.e., the correct
pressure field can be recovered only by adequate postprocessing, as suggested in [5]).
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