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SUMMARY

We present a projection scheme whose end-of-step velocity is locally pointwise divergence free, using
a continuous P1 approximation for the velocity in the momentum equation, a �rst-order Crouzeix–
Raviart approximation at the projection step, and a P0 approximation for the pressure in both steps.
The analysis of the scheme is done only for grids that guarantee the existence of a divergence free
conforming P1 interpolant for the velocity. Optimal estimates for the velocity error in L2- and H 1-
norms are deduced. The numerical results demonstrate that these estimates should also hold on grids on
which the continuous P1 approximation for the velocity locks. Since the end-of-step velocity is locally
solenoidal, the scheme is recommendable for problems requiring good mass conservation. Copyright ?
2005 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The numerical solution of the incompressible Navier–Stokes equations has been the focus
of the CFD community for over �ve decades. Yet, the quest for an optimal scheme, in
terms of cost and accuracy, is not over. It is quite clear now that the solution (via Uzawa
iterations) of the coupled velocity–pressure discrete system that results from the space and
time discretization of the equations is quite expensive. Moreover, in most situations, the exact
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(better to say highly accurate) solution of this system is not necessary. Rather than that, it is
often enough to �nd some easy-to-compute approximation to this solution because it is itself
an approximation of some order to the solution of the continuous equations. By far, the most
popular way to build such approximations is the so-called projection approach. The method
rests on the well known decomposition of L2-vector �elds into the direct sum of divergence-
free �elds and curl-free �elds (see Reference [1] for details). From the linear algebra point
of view, the method relies on the fact that, if both the momentum equation and the Schur
complement for the pressure are well enough preconditioned, one Uzawa iteration for the
coupled system yields an approximate velocity which has the same order of accuracy as that
of the coupled system. The solution for the pressure, however, may be less accurate (depending
on the initial guess). Starting with the pioneering works of Temam [2] and Chorin [3] the
development of projection schemes continued for over thirty years. For a recent review and
error analysis of the most popular of these schemes the reader is referred to References [4–6]
and the many references therein. These algorithms can also be considered as splitting schemes
in time, and the splitting accuracy so far seems to be limited to second-order in time. The most
accurate second-order schemes available are the so-called incremental pressure-correction and
velocity-correction schemes in rotational form (see References [4, 5]). The various approximate
factorization schemes (see for example Reference [7]) which split the discrete coupled system
rather than the system of PDEs can be shown to be equivalent to some of the continuous
approaches (see Reference [6]).
Many of the available projection methods use a continuous approximation for the pressure

which allows the projection step to take the form of a Poisson equation (see References [8, 9]).
Although the choice for the pressure approximation is not limited to continuous approximations
only, there are not many studies involving discontinuous pressure approximations and a mixed
form of the Poisson equation for the pressure. The main advantage of such elements is that
they are locally (elementwise) conservative. Gresho and Sani [10] discuss a projection with
Q1–Q0 elements which are generally unstable for the pressure but, using proper grids, yield
impressive results. Rannacher and Turek [11] suggested the inf–sup stable rotated multilinear
element which involves velocities spanned by (x2−y2; x; y; 1) and a piecewise constant pressure
over quadrilateral elements (in two dimensions). An advantage of this element is that it
leads to linear systems which can be e�ciently solved with multigrid methods. Another non-
conforming �rst-order element which is inf–sup stable and locally conservative is the triangular
element suggested by Crouzeix and Raviart (see Reference [12]). It has not been very popular
among practitioners mainly because it yields a signi�cantly larger linear system for the velocity
compared to the continuous piecewise linear P1 approximation. It involves two unknowns for
the velocity on each internal edge of the grid in two dimensions. This is usually a much
larger number compared to the number of unknowns for a P1 approximation which involves
two unknowns per internal node. If nk is the number of elements in a triangular grid, ne the
number of internal edges, and nv the number of internal vertices, the Euler–Poincare’s formula
(in two dimensions) gives ne= nk + nv − 1. On two-dimensional grids constructed by division
of quadrilaterals, it is possible to condense the unknowns corresponding to the diagonal that
subdivides each quadrilateral so as to obtain a linear system of the same size as the one
which is based on nodal basis functions. However, in three dimensions this condensation is
quite technical, and the linear system following from the momentum equation is signi�cantly
larger than the one based on nodal basis functions. The most signi�cant advantage of this
non-conforming approximation is that the divergence of the velocity �eld is zero inside each
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element (note that this is not the case with the Rannacher–Turek element because its basis
contains second-order terms).
The present study is an attempt to compromise between the inf–sup stable and locally

conservative �rst-order Crouzeix–Raviart element Pnc1 –P0 and the computationally e�cient
P1–P0 element. The second element is known to lock on some grids and therefore is not
suitable for unstructured grids. In this study, we propose to solve the momentum equation
using a continuous piecewise linear approximation for the velocity, and then to project it
onto the Crouzeix–Raviart space composed of the functions that are locally solenoidal using
an L2-projection. Although it is not yet fully established that methods that locally enforce
mass conservation are advantageous compared to those that do not, it seems that this property
is desirable in advection-dominated problems (see Reference [13]) and is also a desirable
feature when the computed velocity �eld is used for the transport of scalar �elds (free-
boundary problems, heat convection, etc). If in these problems the velocity is not solenoidal,
the advection equation for the scalar cannot be written in a conservative form which results
in a loss of mass that can be signi�cant if the integration time is long enough.
The remainder of the paper is organized as follows. In Section 2 we present the projection

method, the implementation of the projection step, and we discuss the accuracy of the method.
In Section 3, we present extensive numerical data demonstrating the accuracy of the method.

2. DESCRIPTION AND ANALYSIS OF THE SCHEME

2.1. Preliminary results

Let us consider the Dirichlet initial-boundary value problem for the Navier–Stokes equations

@u
@t
+ (u · ∇)u=−∇p+ 1

Re
∇2u+ f in �× (0; T )

∇ · u=0 in �× (0; T )
u=0 on @�× (0; T ); u= u0 on �× {0}

(1)

where � is a smooth, open, bounded, and connected domain in Rd, (d=2; 3). We assume
that � is such that the H 2-regularity property holds for the steady Stokes problem in �.
As it will be clear later, the technique proposed in this paper can be generalized to three
dimensions but for the sake of clarity and simplicity all the considerations are con�ned to the
two-dimensional case.
Let Th be a regular triangulation of � using a�ne triangles of size h, and consider the

following piecewise polynomial spaces:

Xh= {vh ∈H1
0(�); vh|e ∈ (P1(e))d ∀e∈Th}

where P1(e) is the space of all a�ne functions on the element e. In addition, we will need the
so-called Crouzeix–Raviart piecewise polynomial spaces which are de�ned as follows. Upon
denoting by mi; e the midpoint of the ith side of the eth element (i=1; 2; 3), we set

Yh = {vh ∈L2(�); vh ∈ (P1(e))d ∀e∈Th; vh is continuous at mi; e ∈�
vh(mj;h) = 0 ∀mj;h ∈ @�}
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Vh = {vh ∈Yh;∇·vh|e=0 ∀e∈Th}

Qh =
{
qh ∈L2(�); qh|e=P0(e) ∀e∈Th;

∫
�
qh=0

}

We now assume that there exists a subspace Q̂h ⊂Qh such that the couple (Xh; Q̂h) satis�es
a uniform inf–sup condition and Q̂h has optimal interpolation properties. Moreover, we assume
that Q̂h has an orthogonal complement Q̃h such that (∇ · vh; q̃h)=0 for all q̃h in Q̃h and all vh
in Xh. Such spaces are known to exist if Th is a so-called cross-grid, see, e.g. Reference [14].
Let us consider the following interpolation problem:

Find wh(t)∈Xh and q̂h(t)∈ Q̂h such that ∀vh ∈Xh; ∀rx ∈Qh
(∇wh(t);∇vh)� − (q̂h(t);∇ · vh)� = (∇u(t);∇vh)� − (p(t);∇ · vh)�
(∇ · wh(t); rx)� = (∇ · v(t); rx)�

(2)

where u(t); p(t) is the solution of (1). Here and in the remainder of the paper (v; w)E denotes
the L2-inner product of v and w over the domain E (whether E is a measurable manifold of
dimension d− 1 or a measurable subset of �). The L2 and Hk norms over E are denoted by
‖:‖L2(E) and ‖:‖Hk (E) correspondingly.
Lemma 2.1
Provided Th is a cross-grid, u(t)∈H 2(�), p(t)∈H 1(�); 06 t6T , there exists c¿0 such
that

‖u(t)− wh(t)‖L2(�) + h‖u(t)− wh(t)‖H1(�) + h‖p(t)− q̂h(t)‖L2(�)
6 ch2(‖u(t)‖H2(�) + ‖p(t)‖L2(�)) (3)

This result extends to the time derivatives of the interpolants wh, q̂h if u and p are smooth
enough in time. Note that the interpolant for the velocity is pointwise divergence free. The
existence of such a piecewise linear interpolant has been established so far only in the case
of cross-grids and its existence is vital for the convergence proof of the method. On the other
hand, it is well known that on some grids the P1–P0 element locks, i.e. the only piecewise
linear divergence free �eld is uh=0. An example of such a grid is the so-called diagonal grid
which is produced by �rst subdividing the domain into quadrilaterals and then subdividing each
quadrilateral into two triangles using the equally sloped diagonals (for rectangular domains).
The numerical results on such grids (reported in Section 3.1.2) show that the present method
is optimally convergent for the velocity.

2.2. Locally divergence free projection

There is a variety of ways to discretize the nonlinear terms. Since we prefer to keep the
matrices of the discrete systems symmetric and positive de�nite, and we want to avoid solv-
ing nonlinear discrete systems, and the discretization of the advection is not the focus of
this study, we discretize the advection terms by means of a fully explicit (Euler Forward)
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scheme. In order to avoid unnecessary complications, since the nonlinear terms do not con-
tribute essentially to the splitting error of projection schemes, we do not take into account
the nonlinear terms in the analysis of the method. If we restrict our attention to a �rst-order
scheme, the time splitting and the spatial discretization of (1) proceed as follows: Supposing
that proper approximations for the initial velocity and pressure gradient are given by u0h ∈Xh,
G0h ∈Yh (for the assumptions on these approximations see Section 5.2 of Reference [15]) we
solve the following set of problems for 06 n6T=�t=N :

• Advection–di�usion step:

Find ũn+1h ∈Xh such that
1
�t
(ũn+1h − unh ; ṽh)� +

1
Re
(∇ũn+1h ;∇ṽh)�

=
∑
e∈Th

((unh · ∇)unh ; ṽh)e − (ṽh;Gn
h)� + (f ; ṽh)� ∀ṽh ∈Xh (4)

• Projection step:

Find un+1h ∈Vh such that
(un+1h − ũn+1h ; vh)� =0 ∀vh ∈Vh (5)

After un+1h is constructed, we correct the pressure gradient, Gn+1
h ∈Yh, so that

Gn+1
h −Gn

h =
ũn+1h − un+1h

�t
(6)

Gn+1
h is then substituted into (4) at the next time step and therefore the last term in (6) is

computed in weak form only.
The term Gn+1

h is an approximation of the pressure gradient. To see this, recall that there
is a unique �̂h ∈ Q̂h such that

(un+1h − ũn+1h ; vh)� − ∑
e∈Th

(�̂h;∇·vh)e =0 ∀vh ∈Yh
∑
e∈Th

(∇·un+1h ; qh)e =0 ∀qh ∈Qh
(7)

Then, upon setting �̂h=p
n+1
h −pnh , we observe that Gn+1

h −Gn
h is nothing more than the Riesz

representative in Yh of the linear form: Yh � vh �−→ (pn+1h − pnh ;∇·vh)∈R.
Remark 2.1
The new idea in the proposed scheme concerns the solution of the generalized Stokes problem
and this is why in the simulations below we used a simple scheme for advection, the Adams–
Bashforth scheme. However, it can be combined with a whole variety of explicit or implicit
methods for the advection discretization (e.g. the Adams–Bashforth=Moulton methods, the
method of characteristics, GaLS-based methods, etc.).
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2.3. Analysis of the scheme

Since the nonlinear term does not contribute essentially to the splitting error of the scheme
we do the analysis in the case of the generalized Stokes equations, i.e. skipping the advection
terms in (1). A somewhat abstract counterpart of the above setting has been analysed in
References [8, 15, 16]. We have three spaces Xh, Yh, and Qh. Clearly Xh ⊂Yh. For e∈Th set
|e|=meas(e) and denote by 1e the characteristic function of e. De�ne the operators

Bh :Xh � vh −→ ∑
e∈Th

1K
1
|e|

∫
e
∇·vh ∈Qh

Ch :Yh � vh −→ ∑
e∈Th

1K
1
|e|

∫
e
∇·vh ∈Qh

It is clear that Ch is an extension of Bh, i.e. for all functions vh in Xh, Bhvh=Chvh. Note that
both these operators are such that

(Bhvh; qh)� = (∇·vh; qh)� ∀(vh; qh)∈Xh ×Qh (8)

(Chvh; qh)� =
∑
e∈Th

∫
e
qh∇·vh ∀(vh; qh)∈Yh ×Qh (9)

The projection step consists of seeking uh ∈Yh and �h ∈Qh such that
(un+1h − ũn+1h ; vh)� − (Chvh; �n+1h )� = 0 ∀vh ∈Yh (10)

(Chuh; qh)� = 0 ∀qh ∈Qh (11)

The last hypothesis that must be veri�ed is that CTh is uniformly continuous with respect
to the H 1-norm (see [16, Proposition 2.1]).
Let

�h :L1(�)� q−→ ∑
e∈T

1e
1
|e|

∫
e
q∈Qh

Lemma 2.2
There is c independent of h such that

∀q∈H 1(�); ‖CTh�hq‖L2(�)6 c‖q‖H 1(�)
Proof
Owing to the de�nition of Ch the following holds true:

‖CTh�hq‖2L2(�) = (CTh�hq; CTh�hq)� =
∑
e∈Th

∫
e
�hq∇·CTh�hq

=
∑
e∈Th

∫
@e
�hq(CTh�hq)·n

For each internal face in the mesh, say f, denote by �qf the mean value of the restriction
of q to f. Denote by Fi

h the set of the internal faces and let �q be the function on Fi
h whose

restriction to f∈Fi
h is �qf. Then, using standard scaling arguments together with the mesh
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regularity and Deny–Lions lemma, we infer

‖CTh�hq‖2L2(�) =
∑
e∈Th

∫
@e
(�hq− �q)(CTh�hq)·n6

∑
e∈Th

‖�hq− �q‖L2(@e)‖CTh�hq‖L2(@e)

6
∑
e∈Th

ch1=2e ‖q‖H 1(e)h−1=2
e ‖CTh�hq‖L2(e)

6 c‖q‖H 1(�)‖CTh�hq‖L2(�)

The conclusion follows readily.

We suppose that the time marching algorithm (4)–(6) is properly initialized (see [15,
Section 5.2]) and we denote by ẽn= un − ũnh and en= un − unh the approximation errors of the
two steps of the algorithm. Here and further on, we also make use of the notation rn= r(t n)
whenever r is a time dependent quantity. Let E be a normed space with norm ‖ · ‖E; then for
all � in EN we denote ‖�‖‘2(E) = (�t

∑N
n=0 ‖�n‖2E)1=2 and ‖�‖‘∞(E) = maxNn=0 ‖�n‖E .

Theorem 2.1
If the exact solution u; p satis�es the assumptions of Lemma 2.1 we have

‖ẽn‖‘∞(L2(�)) + ‖en‖‘∞(L2(�))6 c(h2 + �t) (12)

‖ẽn‖‘2(H 1(�))6 c(h+ �t) (13)

Proof
The proof closely follows the framework established by [8, 15, 16].

2.4. L2-projection

The projection step (5) can be performed in several di�erent ways. One possibility is to use
the divergence free basis that can be constructed from the linear Crouzeix–Raviart element.
This procedure is discussed in detail in References [17, p. 295]. It can be generalized to
three dimensions as suggested by Hecht [18]. This basis contains in each triangular element
the three tangential components of the Crouzeix–Raviart basis functions and three functions
which are linear combinations of the three normal components of the Crouzeix–Raviart basis
functions (they correspond to the stream function in two dimensions). The set of tangential
basis functions is L2-orthogonal to the basis for the stream function. Since they are also mu-
tually orthogonal, the projection step results in a Crouzeix–Raviart �eld un+1 whose tangential
component at the midpoints of each edge is simply the average of the tangential components
of ũn+1 at the two extremities of that edge. The computation of the normal components,
however, requires the solution of a linear system of equations whose number of unknowns
is equal to the number of internal nodes in the grid. Of course, this basis can be used to
directly discretize the momentum equation in the Navier–Stokes system thus eliminating the
need of projection methods. Unfortunately, the orthogonality property discussed above does
not hold with respect to the H 1-inner product. Therefore, the system for the velocity that
results from the momentum equation is fully coupled, and the number of unknowns is equal
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to the number of inner edges plus the number of inner nodes in the grid. It is shown in
Reference [19] that the sti�ness matrix has a condition number of O(h−4). There is also
numerical evidence that the mass matrix has a condition number of O(h−2). On the other
hand, the system that results from the P1 discretization of the momentum equation is block
diagonal and the size of each block is equal to the number of the internal nodes in the grid.
The projection step requires the solution of a system of the same size (in 2D) and a condi-
tion number similar to the condition number of a Poisson problem with Dirichlet boundary
conditions.
In most projection schemes, the L2-projection step (5) is performed by introducing a La-

grange multiplier (a pressure correction) and solving the resulting Poisson equation. Since the
pressure approximation is piecewise constant in the present case, this approach would require
to solve the pressure Poisson equation in mixed form, namely solving the Darcy problem (7).
Note, that in the case of �rst-order Crouzeix–Raviart elements, the mass matrix arising in
the discrete form of the �rst equation in (7) is diagonal because the quadrature based on
the midpoints of the �nite element edges is exact for the computation of the entries of the
mass matrix. Therefore, the construction of the projection matrix can be done explicitly. An
alternative approach widely used with mixed methods for elliptic problems is described in
Reference [14, p. 178]. It relaxes the continuity requirement on the velocity approximation
on the edges of the elements and projects ũn+1h locally within each element on the divergence
free subspace of the local Crouzeix–Raviart space (using one constant Lagrange multiplier
for example). The continuity requirement on the element edges is imposed using additional
interface Lagrange multipliers. It can be shown that the local L2-projection changes only the
normal components of ũn+1h at the midpoints of the faces because the tangential components
of the Crouzeix–Raviart bases are divergence free functions. Thus, this approach uses one
constant Lagrange multiplier on each edge between two triangles to enforce the continuity of
the normal component of the projected velocity. Of course, all these three approaches pro-
duce the same solution for the projected velocity. Our numerical experience in 2D is that the
projection on the divergence-free basis is by far the fastest. Compared to the solution of (7)
without interface multipliers, it reduces the CPU time for the entire algorithm by a factor
of (about) two. The introduction of the interface multipliers seem to somewhat improve its
performance (particularly at relatively �ne grids) but it is still signi�cantly slower than the
L2-projection onto the divergence-free basis.

2.5. Pressure recovery

The algorithm (4)–(6) does not yield a proper pressure approximation because the general
theory requires the spaces Xh and Qh be inf–sup stable which is not the case here. The
numerical results have con�rmed that indeed the Lagrange multiplier �̂h used in the projection
step (7) does not give a consistent approximation for the pressure correction. Therefore, the
pressure should be recovered in a postprocessing step whenever needed. On cross grids it is
possible to recover it from the Lagrange multiplier of the projection step (7) (if it is explicitly
computed) using the macroelement �ltering procedure suggested in Reference [20, Chapter 7].
Although this procedure is very e�cient computationally, it is hard to be generalized for other
types of grids and therefore we suggest here an alternative postprocessing. As it will become
clear, this technique requires the solution of an additional scalar Poisson equation with a
Neumann boundary condition and it is therefore more expensive computationally. However,
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it should be taken into account that this is just a postprocessing step and therefore it is not
necessary to carry it out on each time step.
Consider the following space:

Mh=
{
qh ∈H1(�); qh|e ∈ (P1(e)) ∀e∈Th;

∫
�
qh d�=0

}

Then an optimal approximation to the pressure is given by the solution of the following
problem: Seek pn+1h ∈Mh such that

(∇pn+1h ;∇qh)� =− 1
�t
(ũn+1h − ũnh ;∇qh)�

− 1
Re

∫
@�
(n× ∇×ũn+1h )∇qh ds+ (f n+1;∇qh)� ∀qh ∈Mh (14)

This equation is nothing more than an approximate form of the momentum equation, where
we use ũn+1h to approximate the exact velocity. The surface integral comes from the integration
by parts of

∫
�(∇×∇×u)∇qh d�=− ∫

� ∇2u∇qh d� (the last identity follows from the well
known Helmholtz identity and the fact that ∇·u=0). Again, we omit the nonlinear terms (i.e.
consider the generalized Stokes equations) because they do not contribute to the error estimate
that is proven below. If necessary, they should be taken into account in the right-hand side
of (14).
Before we proceed with the proof of the convergence of the pressure approximation, we

recall the following result from Reference [15].

Lemma 2.3
If the projection algorithm is properly initialized (see the hypotheses of Reference
[15, Lemma 5.6]) we have the following estimate:

||ẽn+1h − ẽnh ||‘2(H1(�)d)6 c �t (�t + h) (15)

The accuracy of the pressure approximation given by (14) is the subject of the following
theorem.

Theorem 2.2
If the assumptions of Theorem 2.1 and Lemma 2.3 are satis�ed then there is c¿0 such that

‖pn − pnh ‖‘2(L2(�))6 c(h+ �t) (16)

Proof
We �rst multiply the �rst equation in (1) (with the advection terms neglected) by ∇qh ∈Mh,
take into account that ∇2u=∇∇·u−∇×∇×u=−∇×∇×u, and integrate the second-order term
by parts. Subtracting the resulting equation from (14) we get the following error equation for
the pressure:

(∇(pn+1 − pn+1h );∇qh)� =− 1
�t
(ẽn+1h − ẽnh ;∇qh)� − 1

Re

∫
@�
(n× ∇×ẽn+1)∇qh ds

+
(
@tun+1 − un+1 − un

�t
;∇qh

)
�

(17)
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Let p̂n+1 be the piecewise linear Lagrange interpolant of pn+1, which clearly satis�es the
following estimate:

‖∇(pn+1 − p̂n+1)‖L2(�)6 ch (18)

Then we have the following equation for the approximation error �n+1h = p̂n+1 − pn+1h :

(∇�n+1h ;∇qh)� =− 1
�t
(ẽn+1h − ẽnh ;∇qh)� − 1

Re

∫
@�
(n× ∇×ẽn+1)∇qh ds

+(∇(p̂n+1 − pn+1);∇qh)� +
(
@tun+1 − un+1 − un

�t
;∇qh

)
�

(19)

Taking qh= �n+1h yields

‖∇�n+1h ‖2L2(�) =− 1
�t
(ẽn+1h − ẽnh ;∇�n+1h )� − 1

Re

∫
@�
(n× ∇×ẽn+1)∇�n+1h ds

+(∇(p̂n+1 − pn+1);∇�n+1h )� +
(
@tun+1 − un+1 − un

�t
;∇�n+1h

)
�

(20)

Using repeatedly the Cauchy–Schwarz inequality we obtain

‖∇�n+1h ‖2L2(�)6
1
�t

‖ẽn+1h − ẽnh‖L2(�)‖∇�n+1h ‖L2(�) +
1
Re

‖∇×ẽn+1‖L2(@�)‖∇�n+1h ‖L2(@�)

+‖∇(p̂n+1 − pn+1)‖L2(�)‖∇�n+1h ‖L2(�)

+
∣∣∣∣
∣∣∣∣@tun+1 − un+1 − un

�t

∣∣∣∣
∣∣∣∣
L2(�)

‖∇�n+1h ‖L2(�) (21)

This result together with (18), a standard inverse inequality, and lemma (2.3) yield

‖∇�n+1h ‖2L2(�)6 c((�t + h) + h−1‖ẽn+1‖H 1(�))‖∇�n+1h ‖L2(�) (22)

Hence ‖∇�h‖‘2(L2)6 ch−1. This result together with a standard duality argument (see Reference
[21, Theorem (5.4.8)]) and Theorem 2.1 above, give the optimal estimate in the L2-norm

‖�n+1h ‖‘2(L2(�))6 c(�t + h) (23)

Remark 2.2
It is particularly useful at low Reynolds numbers to add an additional correction to the pressure
gradient as suggested by Timmermans et al. [22] (see also Reference [23]). Note that the
pressure gradient update (6) is used only in a weak form, to substitute the pressure gradient
in (4) for the next step. Then the weak form of the improved version reads

(Gn+1
h −Gn

h ; ṽh)� =
1
�t
(ũn+1h − un+1h ; ṽh)� +

1
Re
(∇·ũn+1h ;∇·ṽh)� (24)
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This correction does not a�ect the asymptotic rate of convergence in space but improves the
temporal convergence rate in the H 1-norm if a second-order scheme is used to approximate
the time derivative (see Reference [4]). This in turn improves the convergence of the pressure.
It also decreases the magnitude of the L2 error in the velocity at low Reynolds numbers, as
suggested by the numerical experience of the authors. However, for the high Reynolds number
numerical experiments presented below, this additional correction does not signi�cantly change
the error in the velocity and it is not used.

Remark 2.3
As already mentioned, the discretization of the advection term does not contribute to the
asymptotic order of accuracy of the scheme but it can change the magnitude of the overall
discretization error. Usually, the lower the divergence of the advection �eld, the lower the
error. Since, the end-of-step velocity for the present scheme is locally divergence free, we
used unh for the discretization of the advection in (4). The numerical results reveal that this
yields a smaller overall error compared to the explicit Euler discretization using ũnh , i.e.
(ũnh · ∇)ũnh . The numerical results with the present scheme, presented below, were produced
using (4).

3. NUMERICAL RESULTS

3.1. Convergence tests

We start this section presenting the results of a convergence test using an analytic solution
of the Navier–Stokes equation (with a source term) given by

u= sin x sin(y + t); v= cos x cos(y + t); p= cos x sin(y + t) (25)

In the �rst test with analytic solutions we used a uniform structured grid produced by
subdividing the domain into squares and then dividing each square into eight triangles using
its diagonals and the two lines through its centroid, parallel to its sides. This grid is not
exactly what is known as a cross-grid but has very similar geometrical properties to it. In
Figure 1 we plot the error of the numerical solution in the ‘2(L2)-norm versus the time step
at Re=100 for a variety of grids and on the time interval [0; 5]. The graph indicates �rst-
order accuracy in time. The �attening observed at small time steps occurring in all the graphs
presented in the �gure is due to the saturation of the spatial error.
In Figure 2 we present the ‘2(L2)- and ‘2(H 1)-errors versus the spatial step at di�erent

time steps. As anticipated, the error in the L2-norm is second-order accurate and that in the
H 1-norm is �rst-order accurate.

3.1.1. Comparisons with iso-P2–P1 interpolation. The accuracy of the present scheme is
compared to the accuracy of a �rst-order (in time) incremental projection scheme using iso-
P2–P1 triangular (Bercovier–Pironneau) elements on structured grids containing the same
number of points and elements as for the present scheme. The overall structure of the grid
is slightly di�erent because of the speci�c requirements of the Bercovier–Pironneau elements.
In both cases, however, the interpolation error for the velocity is O(h2) in the L2-norm. The
results for the analytic solution (25) and Re=100 are presented in Table I. The errors in the

Copyright ? 2005 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2005; 49:549–568



560 B. BEJANOV, J.-L. GUERMOND AND P. D. MINEV

0.001 0.01 0.014
2.5×10−5

1.0×10−4

1.0×10−3

4.0×10−3

slope 1

h = 6.250e−02

h = 3.125e−02

h = 1.562e−02

Figure 1. Error in velocity in ‘2(L2)-norm versus the time step �t, T =5,
Re=100, for a variety of grid sizes.

table are for the predicted velocity ũn+1 in both cases. The present projection is comparable
in accuracy with the projection using iso-P2–P1 elements. It is also comparable in accuracy to
the classical projection using the Crouzeix–Raviart element for both, the momentum equation
and for the projection step. Figure 3 shows the l2(0; 5;L2([0; 1]× [0; 1])) error for the problem
with the analytic solution given above, using the present scheme and an incremental projection
with the Crouzeix–Raviart spatial approximation. The two approximations are compared on
the generalized Stokes problem (with the advection terms excluded) because the advection
with the generally discontinuous Crouzeix–Raviart approximation for the velocity should be
treated in the spirit of the discontinuous Galerkin methods and will depend on the setting
for the interfacial �uxes. This is beyond the scope of the present study and we skipped the
advection terms for the sake of a fair comparison. The two schemes clearly yield very similar
results. They both exhibit superconvergence in time which should be due to the speci�c
solution of the problem. In Figure 4 we present the results for the convergence in time but
using a second-order backward di�erence scheme in time. The convergence for the velocity
is expected to be second-order in both L2 and H 1 norm and this is clearly demonstrated by
the numerical results.

3.1.2. Diagonal grids. As we pointed out in Section 2.1 the existence of a divergence free P1
interpolant on general grids is not guaranteed and without it we have been able to establish
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Figure 2. Error in velocity in ‘2(L2) and ‘2(H 1)-norm versus the grid size h, T =5,
Re=100, for a variety of time steps.

Table I. Comparison of the ‘2(0; 5;L2(�)) and ‘2(0; 5;H 1(�))-norms of the velocity error for di�erent
time steps, �t, and di�erent meshsize h; Reynolds number Re=100.

‘2(0; 5; L2(�))-norm ‘2(0; 5;H 1(�))-norm

�t h iso-P2–P1 Present scheme iso-P2–P1 Present scheme

0.0500000 1=8 1.702290e-02 1.0051450E-02 3.850517e-01 1.8557660E-01
0.0250000 1=8 1.623382e-02 5.3463740E-03 3.818002e-01 1.6369440E-01
0.0125000 1=8 1.617754e-02 4.8185810E-03 3.815409e-01 1.6200860E-01
0.0062500 1=8 1.618194e-02 4.7534930E-03 3.816086e-01 1.6191400E-01
0.0031250 1=8 1.618895e-02 4.7361680E-03 3.816846e-01 1.6186320E-01
0.0015625 1=8 1.619345e-02 4.7284610E-03 3.817329e-01 1.6181490E-01
0.0500000 1=16 5.855242e-03 8.8821840E-03 1.540878e-01 1.2183130E-01
0.0250000 1=16 3.367833e-03 2.6469600E-03 1.435928e-01 8.5758860E-02
0.0125000 1=16 3.046877e-03 1.4165660E-03 1.423505e-01 8.2413190E-02
0.0062500 1=16 3.003900e-03 1.2606420E-03 1.421816e-01 8.3748370E-02
0.0031250 1=16 2.998113e-03 1.2336630E-03 1.421746e-01 8.4228420E-02
0.0015625 1=16 2.998189e-03 1.2257410E-03 1.421884e-01 8.4313620E-02
0.0500000 1=32 4.905032e-03 8.8466680E-03 8.323091e-02 1.0610640E-01
0.0250000 1=32 1.579660e-03 2.3649390E-03 5.455816e-02 5.0030510E-02
0.0125000 1=32 7.565248e-04 7.8401870E-04 5.085209e-02 4.0976360E-02
0.0062500 1=32 5.509742e-04 4.0827610E-04 5.028274e-02 4.0347290E-02
0.0031250 1=32 4.993708e-04 3.3217460E-04 5.016987e-02 4.1510130E-02
0.0015625 1=32 4.863987e-04 3.1999660E-04 5.014688e-02 4.2656160E-02
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Figure 3. Error in velocity in ‘2(L2)-norm versus the grid size h, �t=0:003125 (left graph), and versus
the time step �t, h=1=64 (right graph); T =5, Re=0. The results are produced with an incremental
scheme using Crouzeix–Raviart elements for both, the momentum equation and the projection (CR) and

using the present scheme (present).

only suboptimal convergence estimate on the velocity. The numerical results on diagonal grids
presented below show that the convergence rate of the velocity is close to optimal although
the only divergence free P1 interpolant on such grids is the zero �eld (velocity locking).
A close inspection of the locking phenomenon reveals that it can occur on two-

dimensional grids for which there is at least one internal node that is connected to more
than two boundary nodes via elemental edges. We will demonstrate this using a diagonal grid
on a square domain. In Figure 5 we show the upper left corner of such a grid. Since the
velocity is prescribed at the boundary, the incompressibility condition in two of the elements
t2; t3, or t4 uniquely determines the value of the velocity at n1 (the �ux through the edge e1 is
�xed by the boundary conditions). Therefore, it is impossible to satisfy the incompressibility
condition in the third element unless the velocity at n1 is equal to zero (we presume zero
Dirichlet boundary conditions for the velocity). This argument applies to the neighbours of n1
and so on; as a result, the only divergence-free P1 interpolant is equal to zero. However,
if the incompressibility is not imposed in the elements t1; t2; t3; t4 and the similar cluster of
elements in the lower right corner of the grid, a divergence free interpolant can be constructed
in the rest of the domain. In the context of the present scheme the local incompressibility
of ũn+1h is not enforced and therefore it can be compromised in the cluster t1; t2; t3; t4. Since
the number of such elements is independent of the grid parameter h, it seems that this does
not spoil the convergence of the scheme.
Another way of observing that locking can be avoided consists of considering a Stokes

problem with a steady solution. Let us denote by uh and ũh the limit of un+1h and ũn+1h as n
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Figure 4. Error in velocity in ‘2(L2) and ‘2(H 1) norms versus the time step �t, h=1=32; T =5, Re=0.
The results are produced with a second-order-in-time incremental scheme using Crouzeix–Raviart ele-
ments for both, the momentum equation and the projection (CR) and using the present scheme (present).
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Figure 5. Diagonal grid.
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Table II. The ‘2(0; 5;L2(�))-norm of the velocity error using a diagonal grid, di�erent time steps, �t,
and a di�erent meshsize h; Reynolds number Re=100.

�t=h 1=8 1=16 1=32 1=64 1=128

0.0500000 1.07102e-02 1.002422e-02 1.015209e-02 1.027519e-02 1.033813e-02
0.0250000 5.23603e-03 2.801070e-03 2.643430e-03 2.652358e-03 2.665173e-03
0.0125000 4.61674e-03 1.296322e-03 8.219813e-04 7.832054e-04 7.826101e-04
0.0062500 4.47716e-03 1.177908e-03 3.887040e-04 2.988708e-04 2.903357e-04
0.0031250 4.33028e-03 1.416590e-03 3.177499e-04 1.498433e-04 1.324947e-04
0.0015625 3.681704e-03 1.641200e-03 5.048719e-04 1.043321e-04 6.791169e-05

goes to in�nity, respectively. Since there are spurious pressure modes, there is Gh (a spurious
gradient) such that uh − ũh=Gh ∈Yh and (Gh; v)=0 for all v∈Xh. Since there is nothing
in the projection algorithm which enforces Gh to be zero (which would not have been the
case, had the inf–sup condition been satis�ed), enforcing uh to be locally solenoidal does not
automatically enforce ũh to be so; hence locking is avoided.
The performance of the method on diagonal grids is demonstrated using the solution given

by (25). The results are shown in Table II. The scheme clearly has an optimal convergence
rate on such grids. It was noticed, however, that on certain problems leading to a steady
solution, the convergence of the approximate solution to the steady state was in�uenced by
the grid type. The convergence on cross-grids was much faster than the convergence on
diagonal grids.

3.2. Pressure recovery

Finally, we verify the convergence properties of the pressure which is recovered by means
of (14). We made three series of computations using cross grids. In the �rst one we computed
the Lagrange multiplier derived from the projection step of the present scheme (see (7)). In
the second test we use the Crouzeix–Raviart element in both the momentum equation and the
projection step. In the third test we used the scheme proposed in the paper and we recovered
the pressure by using (14). In Figure 6 we present for the above three techniques the error on
the pressure in the ‘2(L2)-norm as a function of the mesh size (left panel) and as a function
of the time step (right panel). In the three cases we used a �rst-order-in-time incremental
scheme. The Lagrange multiplier associated with (7) diverges at small time steps, whereas
the Lagrange multiplier associated with the Crouzeix–Raviart approximation converges. The
pressure recovered by using (14) converges nicely. In the last two cases the convergence rate
is slightly better than �rst-order, i.e. the pressure approximation is superconvergent for this
particular solution.

3.3. Lid-driven cavity

Beside the convergence tests presented above we validated the present scheme on two prob-
lems which are well documented in the literature. The �rst validation problem is the lid-driven
cavity �ow in two dimensions. The results from the present scheme are compared with the
very accurate numerical results from Reference [24]. In Reference [24] the authors employed
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Figure 6. Error on the pressure in ‘2(L2)-norm versus the grid size h, �t=0:003125 (left panel) and
versus the time step �t, h=1=32 (right panel); T =5, Re=0. The results are produced with the incre-
mental scheme using Crouzeix–Raviart elements for the momentum equation and the projection, and
using the present scheme with pressure recovery. P1 LM: Lagrange multiplier of the projection step of
the present scheme; CR LM: Lagrange multiplier of the projection step with Crouzeix–Raviart elements;

P1: pressure recovered by means of (14).

a vorticity-streamfunction �nite di�erence scheme with a multigrid relaxation and solved di-
rectly the steady equations on a 128× 128 grid. We computed the steady solution on a grid
of 32× 32 points using the present scheme and the iso-P2–P1 incremental projection. The
results at di�erent Reynolds numbers are compared in Figure 7. Obviously, the two sets of
data practically match each other. The di�erences are smaller than 10−4 in the L∞-norm.

3.4. Square cylinder

The last validation problem is the vortex shedding around a square cylinder. This problem is
essentially unsteady and is a well documented reference test case [25]. The Reynolds number
is Re=100 and the angle of incidence made by the �ow at in�nity is zero (two sides of
the square being horizontal). The dimensions of the �ow domain are 16d× 25d where d is
the length of one side of the square cylinder. The cylinder is placed at a distance of 8d from
the inlet and 16d from the outlet. The spatial step size is h=0:25 away from the cylinder and
h=0:1 in its vicinity and in its wake. The evolution of the vertical velocity component at a
point which is at a distance d downstream from the cylinder and at the horizontal centreline
of the domain is presented in Figure 8. The Strouhal number of the vortex shedding reported
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Figure 7. Lid-driven cavity �ow at Re=400 (Top) and Re=1000 (Bottom). Horizontal (left column)
and vertical (right column) velocity pro�les through the centre of the cavity.

in Reference [25] varies between 0.133 and 0.15 depending on the outlet boundary conditions
and the dimensions of the computational domain. The Strouhal number obtained by the present
simulation using a �rst-order time marching is equal to 0.133.

4. CONCLUSIONS

We proposed a projection scheme for the Navier–Stokes equations which uses a conforming P1
interpolation for the velocity in the momentum equation and a non-conforming P1 interpolation
for the velocity at the projection step. An advantage of this scheme is that the end-of-step
velocity is pointwise divergence free over each element and therefore it is recommendable
for problems requiring good mass conservation, for example free-boundary problems. The
projection step can be performed either using the explicit basis of the divergence-free subspace
of the non-conforming P1 space or using the traditional Lagrange multiplier approach. In the
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Figure 8. Time history at a point behind the cylinder, Re=100.

�rst case the resulting linear system at the projection step is about two times smaller (in two
dimensions) than that in the second case. A disadvantage of the scheme is that the pressure
is either not computed explicitly (in the �rst case) or contains spurious modes and requires
additional �ltering. In this paper we suggest and analyse one possible algorithm for a pressure
recovery. Although it requires the solution of a scalar Poisson problem, it is not necessary
to recover the pressure on each time step and therefore it does not increase signi�cantly the
cost of the computation.
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