
PORE ROUGHNESS EFFECTS ON HIGH-
FREQUENCY PERMEABILITY

David Smeulders and Andrea Cortis
Delft University of Technology, PO Box 5028, 2600 GA, Delft, The Netherlands

d.m.j.smeulders@ta.tudelft.nl

Jean Luc Guermond
LIMSI, UPR 3251 (CNRS), BP 133, 91403 Orsay, France

Denis Lafarge
LAUM, UMR 6613, Av. O. Messiaen, 72017, Le Mans, France

Abstract The high-frequency behaviour of the dynamic permeability is studied. In the
case that the solid-fluid interface appears locally flat, we give a new derivation
for the characteristic lenght Λ. In the case of wedge-shaped intrusions, the clas-
sical approach is modified by an additional higher-order term, which is depend-
ing on the apex angle of the wedge. Precise numerical simulations confirmed
this dependency.
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Introduction

By definition, the dynamic permeability k(ω) describes the (linear) response
of a simple incompressible fluid in a porous medium subjected to a harmonic
pressure drop across the sample. This response has been widely studied be-
fore [2, 6, 10], and is involved in many problems and applications. As an
example, the dynamic permeability is the fundamental ingredient to describe
sound propagation in a fluid-saturated rigid-framed porous medium as long as
the wavelength is large compared to the characteristic sizes of pores and grains
in the medium. Relaxing the assumption of a rigid frame, the concept may be
incorporated in the Biot theory.

Under the assumption that the fluid-solid interface appears locally flat if the
viscous skin depth δ is small enough, Johnson et al. [6] obtained the high-
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frequency result

k(ω) =
ε2φ

α∞
(1 − Cε + . . . ). (1)

Here, ε =
√

ν/iω = (1 − i)δ/2 is the complex viscous skin depth parameter,
and φ, α∞, and C are purely geometrical parameters, respectively the porosity,
tortuosity, and C = 2/Λ, where Λ is a pore size parameter characterizing
transport properties of the porous material [6].

We will first clarify the existing discrepancies between the result (1) and the
expression by Sheng & Zhou [9]. Next, we will consider a rugged geometry in
the form of two-dimensional pore channels with wedge-shaped intrusions (see
Fig. 1), and we will show that the high-frequency result becomes

k(ω) =
ε2φ

α∞
(1 − Cε − Cwεw + . . . ), (2)

where the exponent w (1 < w < 2) is related to the apex angle γ (0 < γ < π)
of the wedges:

w =
2π

2π − γ
. (3)

We found that (3) is different from an expression proposed by Achou & Avel-

Figure 1. Geometry of the two-dimensional channel with intrusive wedges (top picture). The
dimensions of the wedges are drawn at the bottom picture.

laneda [1]. A theoretical study and numerical simulations will show that (3) is
the correct expression.
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Conceptual Model

We define the scaled velocity field ṽ, which solves the following oscillating
Stokes flow problem:

ε−2ṽ = −∇p̃ + ∆ṽ + e, ∇ · ṽ = 0, (4)

where e is the unit macroscopic pressure gradient. Moreover, we assume that
ṽ = 0 on the pore surface Sp, and that p̃ is compact, which means that the field
has a constant pore averaged value, i.e., on the average it does not increase or
decrease in the direction of e. The dynamic permeability is, by definition, the
direct pore volume average

k(ω) =
φ

Vp

∫
Vp

ṽ · edV. (5)

Similarly, we define the scaled potential field E which solves the potential
problem

E = −∇Φ + e, ∇ · E = 0. (6)

Here, E · n = 0 on Sp (Neumann type boundary condition), where n is the
unit outward normal from the pore region, and Φ is compact. E can be inter-
preted as the microscopic electric field induced in the pore space when a unit
macroscopic field e is applied, assuming insulating solid phase and uniform
conductivity in the pore fluid. Its pore volume average is directly related to the
tortuosity α∞:

1
α∞

=
1
Vp

∫
Vp

E · edV. (7)

Using integration by parts it is easily verified that for any compact field Φ
there is the orthogonality relation

∫
Vp

w · ∇ΦdV = 0, (8)

for any divergence-free field w having zero normal component on the pore
surface. Thus, the dynamic permeability and tortuosity may be written in equi-
valent form:

k(ω) =
φ

Vp

∫
Vp

ṽ ·EdV, (9)

1
α∞

=
1
Vp

∫
Vp

E2dV. (10)

We now consider the high-frequency limit ε/Lw → 0 of the scaled field
ṽ, where Lw is a characteristic pore size. As argued by [6], the fluid motion
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is given by potential flow except for a boundary layer of thickness δ near the
pore walls. To leading order, we have ε−2ṽ → E and p̃ → Φ in the bulk
potential flow region. A more exact replacement would be ε−2ṽ → E −∇Π
and p̃ → Φ + Π, with Π being a small, O(ε), compact perturbation induced
by the presence of the boundary layer. Assuming that the boundary layer is
small enough so that the walls of the pores appear locally flat, the perturbation
term may be determined by introducing in the analogous electric conductivity
problem a layer of variable conductivity near the pore walls. The variable
conductivity is chosen to generate for the current the know variations of the
tangential components of the velocity field in the boundary layer. When the
pore walls have a non-trivial shape, the divergence-free nature of the current
naturally implies the existence of normal components near the pore walls that
act as a source for the perturbed potential in the bulk. Following the assumption
of locally plane pore walls, the tangential components of the velocity in the
boundary layer may be written to leading order [7]

ε−2ṽ = (1 − e−β/ε)E, (11)

where β is a local co-ordinate measured from the pore walls into the bulk of
the pore. We thus consider the perturbed potential problem (∇ · ṽ = 0)

ε−2ṽ = σ(r)(E −∇Π). (12)

The field ε−2ṽ is the current induced when a unit electric field is applied for a
medium having insulating solid phase and conductivity σ(r) = 1−exp(−β/ε)
in the pore region. Current conservation yields:

∇ · (σ∇Π) = E · ∇σ. (13)

In the limit ε/Lw → 0, only derivatives normal to the pore walls need to be
considered. Straightforward integration yields the following velocity pattern
in the boundary layer:

ε−2ṽ = (1 − e−β/ε)E + εn[1 − (1 + β/ε)e−β/ε]
(

∂Eβ

∂β

)
β=0

. (14)

Setting β/δ → ∞ in (14) and (12), we derive the boundary condition
∂Π/∂β = ε(∂Eβ/∂β)β=0. The velocity field hence determined in the bulk
is (Cortis et al. 2003):

ε−2ṽ = E + εN, (15)

where the perturbation field N is a purely geometrical vector field, accounting
for the presence tangential components in the boundary layer. Now evaluating
the integral (5), the first term ε2φ/α∞ in (1) stems from the leading bulk term
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E in (15) and the constant boundary layer tangential term E in (14). The second
term (ε2φ/α∞)Cε stems from two contributions leading to the new result:

2
Λ

=

∫
Sp

E · edS∫
Vp

E2dV
−

∫
Sp

Φ(∂Eβ/∂β)dS∫
Vp

E2dV
. (16)

The first is a boundary layer contribution related to the tangential components
− exp (−β/ε)E in (14). The second stems from the perturbation field εN [4].
Sheng & Zhou [9] erroneously identified 2/Λ to be the first term on the right-
hand-side of (16), because they used the incomplete replacement ε−2ṽ → E.
Note that in straight pore channels (E = e) the second contribution vanishes
while the first reduces to the pore surface-to-volume ratio Sp/Vp. In general,
both contributions are of the same order of magnitude. It can also be shown
[4] that (16) can be rewritten as

2
Λ

=

∫
Sp

E2dS∫
Vp

E2dV
, (17)

which is the classical relation obtained by [6]. A more compact way to derive
(16), is to use (9) instead of (5). No bulk contribution arises because of the
ortogonality (8) between E and N.

Corrugated Pore Channels

As argued by Achdou & Avellaneda [1], a two-dimensional reasoning is
sufficient to study the singularity. The periodic geometry is depicted in Fig. 1.
The wedge is defined by its apex angle γ. Introducing polar co-ordinates r, θ,
we set the origin r = 0 on the tip of the wedge and count the angle θ from one
side of the wedge. The singular potential field E(r, θ) may be written [7]

Er = Anrn−1 cos nθ Eθ = −Anrn−1 sinnθ, (18)

where A is an amplitude factor and 1
2 < n = π/(2π − γ) < 1. The contri-

bution of the wedges to the integral (9) may be evaluated noting that the ve-
locity field ṽ matches to leading order the value ε2E on the bounding surface
of the potential flow region. Thus, according to (18), the external potential
fields E and ṽ must vary like εn−1 and εn+1, respectively, when integrating
in the boundary layer around the tip of a wedge. Simultaneously, the spatial
extend of this boundary layer around the tip shrinks like ε2. It thus follows
that the wedge contribution to (9) will be O(ε2εn+1εn−1) = O(ε2+2n), which
yields the result (2), (3). Achdou & Avellaneda [1] used (5), which is perfectly
justified as long as the integration is performed over the entire pore volume
consisting of boundary layer and perturbed bulk flow. The former contribution
is O(ε2εn+1) = O(εn+3), and they obtain the relation w = 1 + π/(2π − γ)
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between the exponent w in (2) and the apex angle γ. The perturbed bulk po-
tential flow should also be taken into account, however, and it happens that it
is now a dominant contribution.

Numerical Computations

Numerical computations of the fields ṽ and E were performed for the peri-
odic geometry depicted in Fig. 1. The values for the apex angle γ and the
wedge height h were varied. The Stokes problem was solved using the vari-
ational fromulation of the problem and a N1 Finite-Element code based on a
Uzawa decomposition method. To ensure accuracy, we have used an iterat-
ive automatic method, i.e., the solution is computed on the N1 mesh, next an
a-posteriori estimate of the error is computed, and finally the mesh is locally re-
fined accordingly by means of a Delaunay technique developed by Rebay [8].
Successful use of this refinement method on sharp-edged wedges was reported
by Firdaouss et al. [5]. Once the flow field is know, the dynamic permeability
is computed using (1). Coherent computations of the potentioal field E and
the parameters (7), (17) were obtained using either the Schwartz-Christoffel
transformation technique [3], or the method by [5]. From (2) it follows that
the real part of the dynamic permeability should satify in the high-frequency
limit, Re{k(ω)}/δ3 = A + Bwδw−1, where the constant A is related to the
formation factor α∞/φ and inverse length C , and the constant Bw is related to
w, Cw, and the formation factor. The values of A, Bw, and w can be obtained
by comparison between the high-frequency numerical data for Re{k(ω)}/δ3

and the above theoretical form.
As an example, we show in Fig. 2 the results obtained for the exponent w

when the wedge angle γ varies between 0 and π/2. The wedge height h is set
0.5. In the singular limit of knife-edge intrusions (γ = 0), the value w = 1
indicates the merging of the different terms. For flat surfaces γ = π, the value
w = 2 will be obtained. The computed data are relatively close to the theory,
the Achdou & Avellaneda predictions being plotted for comparison. As com-
pared to the situation in smooth pore channels, the effect of sharp wedges is to
produce a much slower convergence of the high-frequency dynamic permeab-
ility with respect to the Johnson et al. [6] development (1). In these situations,
the development (2) does a much better job.

Summary

Analyzing in detail the fluid velocity patterns in oscillating tube flow, we
have provided a new derivation of the Johnson et al. high-frequency develop-
ment [6] and a new expression of the characteristic length Λ. Two different
contributions to the dynamic permeability are now apparent. One stems from
the boundary layer; another stems from a perturbation potential flow in the
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Figure 2. Dependence of the exponent w on the wedge apex angle γ for h = 0.5. The circles
represent the numerical computations.

bulk, induced by the presence of the boundary layer. This understanding was
applied to derive the correct form of the leading higher-order terms for sharp-
edged geometries. Numerical computations substantiated this derivation.
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