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ABSTRACT
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Galerkin/least-squares and fluctuation-based methods like continuous interior penalty,
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1 FRIEDRICHS’ SYSTEMS

The objective of this section is to present the theory of the symmetric posi-

tive systems of first-order linear PDEs. This theory has been developed by

Friedrichs (1958) to study transonic flows. Friedrichs wanted to handle within

a single functional framework PDEs that are partly elliptic and partly hyper-

bolic, and for this purpose he developed a formalism that goes beyond the tra-

ditional classification of PDEs into elliptic, parabolic and hyperbolic types.

Friedrichs’ formalism is very powerful and encompasses several model pro-

blems. Important examples are the advection–reaction equation, the div-grad

problem related to Darcy’s equations and the curl–curl problem related to Max-

well’s equations. This theory is an important key to understand stabilization

techniques for first-order PDEs. All the theoretical arguments are presented

assuming that the functions are complex valued.

1.1 Basic Ideas and Model Problem

Let D be a strongly Lipschitz domain in d. We consider functions defined

over D with values in m, m � 1. Let B,C 2m�m be two Hermitian matrices,

i.e. B¼BH, C¼CH, where ZH is the Hermitian transpose of Z; we say that

B�C if and only if XHBX�XHCX for all X2m.

Let K, fAkgk2f1: dg be a family of (d + 1) fields on D with values in m�m.

We assume that these fields satisfy the following key assumptions:

Boundedness : K,fAkgk2f1:dg, andX are in L∞ðD;m�mÞ, (1a)

Symmetry : Ak ¼ðAkÞH for all k2f1 : dg, a:e: inD, (1b)

Positivity : 9m0 > 0 s:t:K+KH�X � 2m0m a:e: inD: (1c)

In (1c), m denotes the identity matrix in m�m and X :¼Pd
k¼1@kAk where

@k :¼ @

@xk
. Note that X ¼XH owing to (1b). We now define two differential

operators A and A1 such that

Av :¼Kv+A1v, A1v :¼
X

k2f1: dg
Ak@kv, 8v2C1ð�D;mÞ:

(2)

In what follows, we assume that the fields fAkgk2f1: dg have a bounded

trace at the boundary @D, and we introduce the boundary field

N 2 L∞ð@D;m�mÞ such that N :¼P
k2f1: dgnkAk

j@D, where (nk)k2{1: d} are the

Cartesian components of the outward unit normal n. Note that N ¼N H
owing

to (1b).

Let L :¼ L2ðD;mÞ and let us denote ðf ; gÞL :¼
R
Dg

Hf dx for any f, g 2 L;
note that ðf ; gÞL ¼ðg; f ÞL . Similarly we introduce L@ :¼ L2ð@D;mÞ with the

inner product ð f ; gÞL@ :¼
R
@Dg

Hf ds. Integration by parts using the
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(Hermitian) inner product in L is a key tool in the analysis of Friedrichs’ sys-

tems. To formalize this idea we define the formal adjoint ~A of A such that

~Av :¼ðKH�XÞv�A1v¼ðK +KH�XÞv�Av, 8v2C1ð�D;mÞ: (3)

Lemma 1 (Integration by parts). The following holds for all v,w2C1ð �D;mÞ:
ðAv; wÞL ¼ðv; ~AwÞL + ðN v; wÞL@ , (4)

R ðAv; vÞL
� � � m0 k v k2L +

1

2
ðN v; vÞL@ : (5)

The lower bound (5) says that the sesquilinear form (Av, w)L is L-coercive
up to a boundary term. The key idea of Friedrichs is to enforce a suitable

boundary condition to gain positivity on the boundary term. This is done by

assuming that there exists another boundary field M2 L∞ð@D;m�mÞ satisfy-
ing the following two algebraic properties a.e. on @D:

M is nonnegative :RðxHMxÞ� 0 for all x2m, (6a)

kerðM�NÞ+ kerðM +NÞ¼m: (6b)

Since any function v satisfying ðM�NÞvj@D ¼ 0 also verifies ðMv; vÞL@ 2,
we infer using (6a) in (5) that

R ðAv; vÞL
� �� m0 k v k2L +

1

2
ðMv; vÞL@ � m0 k v k2L : (7)

Given f 2 L, our goal is to find a function u :D!m such that

Au¼ f inD, ðM�NÞu¼ 0 on @D: (8)

Under the assumptions (1) and (6), Friedrichs proved: (i) the uniqueness of

the strong solution u2C1ð �D;mÞ satisfying (Au, v)L ¼ (f, v)L for all v 2 L
and ðM�NÞu¼ 0 on @D; (ii) the existence of a so-called ultraweak solu-

tion u 2 L such that ðu; ~AvÞL ¼ð f ; vÞL for all v2C1ð �D;mÞ such that

ðMH +NÞv¼ 0 on @D. In Section 2, we introduce a mathematical setting

relying on boundary operators instead of boundary fields to define a notion of

weak solution for (8), and we prove well-posedness of the said formulation by

using the BNB Theorem.

1.2 Example 1: Advection–Reaction Equation

Let m2 L∞ðD;Þ and let b2L∞ðD;dÞ be such that r �b2 L∞ðD;Þ. Given
f 2 L :¼ L2ðD;Þ, we want to find u :D! such that

mu+b � ru¼ f in D: (9)

This equation models the transport of a solute of concentration u by a flow

field with velocity b, linear reaction coefficient m (m � 0 corresponds to
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depletion) and source term f. To recover Friedrichs’ formalism, we set m ¼ 1,

K¼ m and Ak ¼ bk for all k 2{1: d}, where (bk)k2{1:d} denote the Cartesian

components of b. The assumption (1a) holds since m2 L∞ðD;Þ,
bk 2 L∞ðD;Þ for all k 2{1: d}, and X ¼r �b2 L∞ðD;Þ. The assumption

(1b) is trivially satisfied since m ¼ 1. Finally, the assumption (1c) is satisfied

provided we assume that

m0 :¼ ess inf
x2D

ðm�1

2
r �bÞðxÞ> 0: (10)

The boundary field is N ¼b � n, and the integration by parts formula (4) is a

reformulation of
R
D ðr �bÞvw + vðb � rwÞ+wðb � rvÞð Þ dx¼ Z

@D
ðb � nÞvw ds.

To enforce a suitable boundary condition, we need to consider the sign

of (b�n) at the boundary. We define the inflow boundary @D� ¼ {x 2 @D j
(b�n)(x) < 0}, the outflow boundary @D+ ¼ {x 2 @D j (b�n)(x) > 0}, and

the characteristic boundary @D0 ¼ {x 2 @D j (b�n)(x) ¼ 0}. Then, the inflow

boundary condition u ¼ 0 on @D� can be enforced by using the boundary field

M¼jb � nj which satisfies (6). Finally, the L-coercivity property (7) becomes

ðAv; vÞL � m0 k v k2L +
1

2

Z
@D

jb � njv2 ds:

1.3 Example 2: Maxwell’s Equations

We consider the time-harmonic version of Maxwell’s equations in the low-

frequency regime where the displacement currents are negligible. Let s be the

electrical conductivity, m the magnetic permeability, o > 0 the angular

frequency and i2 ¼ �1. We assume that m,s2 L∞ðD;Þ, and for simplicity,

that both m and s are real valued. Given j2L2ðDÞ :¼ L2ðD;3Þ and setting

m�¼om, we want to find functions E :D!3 and H :D!3 such that

sE�r�H¼ j inD, im�H +r�E¼ 0 in D: (11)

To recover Friedrichs’ formalism, we set m ¼ 6, u :¼ (E, H),

K¼ eiy
s3 3

3 m� 3

� �
with y¼ p

4
, and Ak ¼ 3 �eiyk

e�iyk 3

� �
, for all

k 2{1: d}, where 3 and 3 are the identity and null matrix in 3�3, res-

pectively, and kij ¼ eikj, for all i, j, k 2{1, 2, 3}, with eikj the Levi-Civita

symbol. The assumption (1a) holds since s,m2 L∞ðD;Þ and X is the null

matrix in 6�6. The assumption (1b) holds since, k being skew-symmetric,

we have ð�eiykÞH ¼�e�iyðkÞT ¼ e�iyk. Finally, the assumption (1c) is

satisfied provided we assume that

s♭,D :¼ ess inf
x2D

sðxÞ> 0, m�♭,D :¼ ess inf
x2D

m� ðxÞ> 0: (12)
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The boundary field is N ¼ 3 eiy
�e�iy 3

� �
, where ij ¼

P3
k¼1nkeijk, for all

i, j 2{1, 2, 3}. Note that the definition of  implies that j¼ j�n for all

j 23. The integration by parts formula (4) results fromR
D b � ðr�EÞ�E � ðr�bÞð Þ dx¼ R

@Db � ðn�EÞ ds.
The boundary conditions H�nj@D ¼ 0 and E�nj@D ¼ 0 can be enforced,

respectively, by using the boundary fields MH ¼ 3 �eiy
�e�iy 3

� �
and

ME ¼ 3 eiy
e�iy 3

� �
, which both satisfy (6), and the coercivity property

(7) becomes

RðAðE;HÞ; ðE;HÞÞL2ðD;6Þ �
1ffiffiffi
2

p s♭,D kE k2
L2ðDÞ + m

�
♭,D kH k2

L2ðDÞ
� �

:

2 WEAK FORMULATION AND WELL-POSEDNESS
FOR FRIEDRICHS’ SYSTEMS

The aim of this section is to devise a weak formulation of Friedrichs’ systems

for which well-posedness can be established by using the Banach–Nečas–
Babuška (BNB) Theorem which provides necessary and sufficient conditions

for well-posedness in the form of inf–sup conditions, see Ern and Guermond

(2004, Thm. 2.6). The material is inspired from a series of papers by Ern and

Guermond (2006a,b).

2.1 The Graph Space

We consider the space S :¼C∞
0 ðD;mÞ, composed of the smooth m-valued

fields compactly supported in D, and the Hilbert space L :¼ L2ðD;mÞ, which
we use as pivot space (i.e. L � L0). While other functional settings could be

considered, we will see in the forthcoming sections that L2 plays a prominent

role in a large class of stabilized finite element techniques.

The operators A and ~A defined in (2) and (3), respectively, are each

bounded in S with values in L and the following holds: There is c such that

ðAf; cÞL ¼ðf; ~AcÞL, 8f,c2 S, (13a)

k ðA + ~AÞfkL � c kfkL 8f2 S: (13b)

The equality (13a) follows from Lemma 1, while (13b) follows from the defi-

nitions of A and ~A and the boundedness property (1a). Let us define the inner

product ð � ; � ÞV :¼ m0ð � ; � ÞL + m�1
0 ðA1ð � Þ; A1ð � ÞÞL and let the induced norm
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be denoted by k � kV with k � k2V¼ m0 k � k2L + m�1
0 kA1ð � Þ k2L (the scaling

factors m0 and m�1
0 are introduced so that both terms have coherent units).

Let VS be the completion of S with respect to the norm k�kV, i.e. VS ¼ �SV .
Using L as pivot space leads to S	VS↪L� L0↪V0

S 	 S0, where S0 is the alge-

braic dual of S and L0, VS
0 are topological duals. By density, the operators A and

~A can be extended to bounded linear operators from VS to L; we say that VS is

the minimal domain of A and ~A. Owing to (13), we infer by density that

ðAf; cÞL ¼ðf; ~AcÞL, for all f, c 2 VS. Let now v 2 L; then, Av can be defined

in VS
0 by setting hAv;fiV0

S
,VS

¼ðv; ~AfÞL, for all f 2 VS. This definition allows

us to extend A to a bounded linear operator from L to VS
0. Similarly we define

h ~Av; fiV0
S
,VS

¼ðv; AfÞL, for all v 2 L and all f 2 VS. Since L	V 0
S, it makes

sense to define the graph space (or maximal domain of A and ~A) as

V :¼fv2 L; A1v2 Lg: (14)

By construction, A2LðV; LÞ, ~A2LðV; LÞ:
Proposition 1 (Hilbert space). The graph space V is a Hilbert space when
equipped with the inner product (�, �)V. The norm k�kV is called the graph norm.

2.2 The Boundary Operators

Since A1 is a first-order differential operator, defining the trace at the bound-

ary of a function in the graph space V is not straightforward. The trace can be

given a meaning in H�1
2ð@D;mÞ, see Rauch (1994). However, this meaning

is not suitable for the weak formulation we have in mind; this is why we now

introduce two additional operators N and M to replace the boundary fields N
and M. We define the operator N 2LðV;V0Þ by (compare with (4))

hNv; wiV0
,V :¼ðAv; wÞL�ðv; ~AwÞL, 8v,w2V: (15)

This definition makes sense since both A and ~A are in LðV;LÞ. Moreover, the

operator N is self-adjoint since (15) can be rewritten as

hNv;wiV0
,V ¼ðXv;wÞL + ðA1v; wÞL + ðv; A1wÞL, (16)

so that hNv; wiV0
,V ¼hNw; viV0

,V . Furthermore, we have VS 	 kerðNÞ and

imðNÞ	V?
S ¼fv0 2V 0j8f2VS,hv0; fiV0

S
,VS

¼ 0g. Actually, as proved in Ern

et al. (2007), one has kerðNÞ¼VS, imðNÞ¼V?
S : The fact that kerðNÞ¼VS

means that N is a boundary operator.
Boundary conditions in Friedrichs’ systems can be formulated by assum-

ing that there exists an operator M2LðV;V 0 Þ such that
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M is monotone; i:e:RðhMv; viV0
,VÞ� 0 for all v2V, (17a)

kerðN�MÞ+ kerðN +MÞ¼V: (17b)

Let M*2LðV;V 0 Þ denote the adjoint operator of M, so that

hM*w; viV0
,V ¼hMv; wiV0

,V . It is proved in Ern et al. (2007) that, under the

assumptions (17),

kerðNÞ¼ kerðMÞ¼ kerðM*Þ and imðNÞ¼ imðMÞ¼ imðM*Þ:
In particular, M is a boundary operator, just like N.

2.3 Well-Posedness

Given f 2 L, the problem we want to solve (compare with (8)) is to find

u2V0 :¼ kerðM�NÞ such thatAu¼ f in L: (18)

To recast this problem into a weak form, we introduce the sesquilinear form

a(v, w) :¼ (Av, w)L, for all (v, w) 2 V �L. Letting ‘(w) :¼ ( f, w)L, we consider
the following weak problem:

Find u2V0 such that

aðu,wÞ¼ ‘ðwÞ, 8w2 L:

(
(19)

Theorem 1 (Well-posedness). Let N be defined by (15) and assume (1), then

Rðaðv,vÞÞ� m0 k v k2L +
1

2
hNv; viV0

,V,8v 2 V. Moreover, let M satisfy (17),

then Rðaðv,vÞÞ� m0 k v k2L +
1

2
RðhMv; viV0

,VÞ� m0 k v k2L ,8v 2 V0. If (1) and

(17) hold, then the model problem (19) is well-posed, i.e. A :V0 ! L is an
isomorphism.
Remark 1 (Positivity assumption (1c)). This assumption can be relaxed if the

missing control on kvkL can be recovered from an estimate on kA1vkL. This is
possible in the context of elliptic PDEs in mixed form by invoking a Poincar�e-
type inequality. Furthermore, everything that is said hereafter holds true by

assuming that A ¼ K + A1 where K is a bounded operator on L satisfying

the assumption ððK +K*Þv�Xv; vÞL � 2m0 k v k2L. The formal adjoint is then

defined by ~Av¼K*v�Xv+A1v. For instance let D ¼ (0, a)�(�1, 1), a > 0,

and let K : L! L, with L¼ L2ðD;Þ, be such that Kvðx,yÞ¼
vðx,yÞ� s

2

R +1

�1
vðx,xÞ dx where s 2 [0, 1). Then ððK +K*Þv; vÞL ¼

2ðKv; vÞL � 2 k v k2L �2s k v k2L¼ 2ð1�sÞ k v k2L. This is the type of structure

one encounters when solving the neutron transport equation.
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Example 1 (Advection–reaction). The bilinear form a is

aðv,wÞ¼
Z
D

mvw+ ðb � rvÞwð Þ dx, 8v2V, 8w2 L2ðD;Þ,

with V¼fv2 L2ðD;Þ j b � rv2 L2ðD;Þg. Moreover,

hNv; wiV0
,V ¼

Z
D

ðr �bÞvw +wðb � rvÞ+ vðb � rwÞð Þ dx:

A result on traces of functions in V is needed to link N with N ¼b � n. Such
a result is not straightforward, since the trace theorem for functions in

HsðD;Þ, s>
1

2
, cannot be applied. It is shown in Ern and Guermond

(2006a) that if the inflow and outflow boundaries are well separated, i.e.

min ðx,yÞ2@D��@D+ k x� yk‘2ðdÞ > 0, then the trace operator g :C0ð �DÞ!
C0ð@DÞ such that g(v) ¼ vj@D can be extended to a bounded linear operator

from V to L2jb � njð@D;Þ, where the subscript jb�nj means that the measure ds

is replaced by jb�nj ds. This result implies that hNv; wiV0
,V ¼

R
@DN vw ds for

all v, w 2 V. Furthermore, the inflow boundary condition u ¼ 0 on @D� can

be enforced by means of the boundary operator M2LðV;V 0 Þ defined by

hMv; wiV0
,V ¼

R
@Djb � njvw ds, which satisfies (17). Note that the separation

assumption cannot be circumvented if one wishes to work with traces in

L2jb � njð@D;Þ, regardless of the regularity of b. For instance, let D¼fðx1,x2Þ2
2 j 0< x2 < 1 and jx1j< x2g with b ¼ (1, 0)T. One can verify that the func-

tion uðx1,x2Þ¼ xa2 is in V for a > �1, but uj@D 2 L2(jb�nj; @D) only if a>�1

2
.

Example 2 (Maxwell). The sesquilinear form a is

aðv,wÞ¼
Z
D

eiysE ��e + ie�iy m�H � �b� eiyðr�HÞ ��e + e�iyðr�EÞ � �b� �
dx,

for all v ¼ (E, H) 2 V and all w ¼ (e, b) 2 L (note that we use the

Euclidean dot product and write the complex conjugate explicitly), with V ¼
H(curl; D)�H(curl; D), H curl ;Dð Þ¼ A2L2 D;ℂ3

� �
;r�A2 L2 D;ℂ3

� �	 

,

and L¼ L2ðD;6Þ. Moreover,

hNðE;HÞ; ðe; bÞiV0
,V ¼ eiytðH, eÞ� e�iytðE, hÞ,

where tðA,aÞ¼ R
DðA � ðr��aÞ�ðr�AÞ � �aÞ dx. Since E�n and H�n are

in H�1/2(@D), if e and b are in H1(D), we have hNðE;HÞ; ðe; bÞiV0
,V ¼

eiyhH�n; ei
H

�1
2,H

1
2

� e�iyhE�n; bi
H

�1
2,H

1
2

. The boundary condition H�n ¼ 0

can be enforced by means of the boundary operator hM(E, H), (e, b)iV0,V

¼ �eiyt(H, e) � e�iyt(E, h), which satisfies (17).
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3 RESIDUAL-BASED STABILIZATION

This section is concerned with the approximation of Friedrichs’ systems using

H1-conforming finite elements in a standard Galerkin setting. The main issue

one faces in this context is to achieve stability. At the continuous level, the proof

of Theorem 1 shows that one needs to consider the first-order derivative A1v as

test function to control the graph norm of a function v. Unfortunately, this possi-
bility is lost when working with H1-conforming finite elements since the first-

order derivative of v can no longer be represented by discrete test functions.

As a result, one needs to devise suitable stabilization mechanisms. Those pre-

sented in this section are inspired by the least-squares (LS), or minimal residual,

technique from linear algebra. The LS approximation gives optimal error

estimates in the graph norm, but, unfortunately, gives suboptimal L2-error esti-
mates in most situations. The Galerkin/least-squares (GaLS) method improves

the situation by combining the standard Galerkin approach with the LS technique

and mesh-dependent weights. GaLS gives quasi-optimal L2-error estimates and

optimal graph-norm estimates. We further improve GaLS in the next section

by introducing a boundary penalty technique that enforces boundary conditions

weakly in the spirit of the theory of Friedrichs’ systems.

3.1 Least-Squares Formulation

Given f 2 L, let us consider the model problem (19). This problem is well-

posed, see Theorem 1. The LS version of problem (19) is the following:

Find u2V0 such that

aLSðu,wÞ :¼ðAu; AwÞL ¼ð f ; AwÞL, 8w2V0:

�
(20)

Observe that the test space is the same as the solution space in (20). Since A :

V0 ! L is an isomorphism, requiring that (Au, Aw)L ¼ ( f, Aw)L for all w 2 V0

is equivalent to ask that (Au, w)L ¼ ( f, w)L for all w 2 L. Hence, the problems

(19) and (20) are equivalent. Actually, the well-posedness of (20) is a direct

consequence of the Lax–Milgram Lemma, since there are real numbers

0< a�ˆ<∞ such that akvkV � kAvkL � ˆkvkV for all v 2 V0.

Proposition 2 (V0-coercivity). a
LS is bounded and coercive on V0.

Remark 2 (Minimal residual). Consider the functional J :V0 ! defined by

JðvÞ :¼ 1

2
kAv� f k2L for all v 2 V0. The Fr�echet derivative of J is such that

DJðvÞðwÞ¼RððAv� f ; AwÞLÞ for all w 2 V0, i.e. the problem (20) amounts

to DJðvÞ¼ 0. Since the functional J is strictly convex, the solution u of (20)

is the global minimizer of J over V0. This LS technique is well known in

the linear algebra context where it can be traced back to Gauss and Legendre.

Starting from the linear system AU¼B with A invertible and multiplying by

AH leads to the so-called normal equations ðAHAÞU¼AHB where the

matrix AHA is Hermitian positive-definite.
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3.2 Least-Squares Approximation Using Finite Elements

We assume that, for all h > 0, we have at hand a finite-dimensional space

Vh0 	V0 built by using a shape-regular mesh sequence ðT hÞh>0 and a finite

element of degree k � 1. For simplicity, we consider the equal-order case for

all the solution components. The space Vh0 is H
1-conforming and composed

of continuous, piecewise polynomial functions in �D. Let us assume now that

we have at hand a quasi-interpolation operator I h0 :V0 !Vh0 with optimal

local approximation properties: There is a uniform constant c such that

k v�Ih0ðvÞkLðKÞ + hK krðv�I h0ðvÞÞkLðKÞ � c h1 + rK jvjH1 + rðDK ,mÞ, (21)

for all r 2 [0, k], all v2H1 + rðD, mÞ\V0, and all K 2T h, with

LðKÞ :¼ L2ðK;mÞ and where DK is the interior of the set composed of all

the mesh cells having a nonempty intersection with K.
We construct a discrete counterpart of (20) as follows:

Find uh 2Vh0 such that

aLSðuh,whÞ¼ ð f ; AwhÞL, 8wh 2Vh0:

(
(22)

Theorem 2 (Well-posedness and error bound). The problem (22) has a unique
solution uh, and the following error bound holds:

k u�uhkV �ˆ

a
inf

vh2Vh0

k u� vhkV : (23)

Using (21), we infer the following approximation result in the graph

norm: k u�Ih0ðuÞkV � c m
�1

2
0 fDh

rjujH1 + rðD; mÞ, with fD :¼ maxðbD, m0hÞ
and bD ¼ max k2f1:dg kAkkL∞ðD;m�mÞ. Assuming u2H1 + rðD;mÞ and using

the above approximation result, we infer that

m
1
2
0 k u�uhkL + m�

1
2

0 kA1ðu�uhÞkL � c m
�1
2

0 fDh
rjujH1 + rðD;mÞ: (24)

When r ¼ k, the estimate on kA1(u � uh)kL is optimal, but the estimate on

ku � uhkL is suboptimal by one order. It is sometimes possible to improve

the L-norm error estimate by means of the Aubin–Nitsche duality argument,

but this is not systematic since, very often, first-order PDEs do not have

a smoothing property. For instance, this improvement is possible for the

one-dimensional transport equation and for Darcy’s equation.

The LS technique has gained popularity in the numerical analysis commu-

nity at the beginning of the 1970s following a series of papers by Bramble and
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Schatz (1970, 1971), although it was already popular in the Russian literature

(see Džiškariani, 1968; Lučka, 1969).

3.3 Galerkin/Least-Squares

In this section, we devise and analyze a GaLS approximation introduced in

Hughes et al. (1989). A nonsymmetric variant known under the names

Streamline Upwind Petrov–Galerkin (SUPG) or streamline diffusion method

has been introduced in Brooks and Hughes (1982) and analyzed in Johnson

et al. (1984), see Example 4.

We define the following local quantities:

bK ¼ max
k2f1:dg

kAkkL∞ðK;m�mÞ, (25)

tK ¼ maxðbKh�1
K , m0Þ

� ��1 ¼ minðb�1
K hK , m�1

0 Þ, (26)

for all K 2T h, where m0 is defined in (1c) (the second equality is meaningful

if bK is nonzero; if bK ¼ 0, then tK ¼ m�1
0 ). For instance, for the advection–

reaction equation, m0 is the reciprocal of a time, bK is a local velocity and

tK is a local time scale. With a slight abuse of notation, we define the piece-

wise constant function t :D! such that tjK ¼ tK for all K 2T h. In what

follows, we consider the Euclidean (or Hermitian) norm denoted k � k‘2 for

m�m-valued fields, we set k � kL∞ðD;m�mÞ ¼k k � k‘2 kL∞ðD;Þ and we assume

for simplicity that

maxðkKkL∞ðD;m�mÞ, kXkL∞ðD;m�mÞÞ � cK,Xm0, (27)

and we hide the factor cK,X in the generic constants used in the error analysis.

We consider the finite element setting of Section 3.2. We define the fol-

lowing discrete sesquilinear forms on Vh0 � Vh0:

ahðvh,whÞ :¼ðAvh; whÞL + rhðvh,whÞ, rhðvh,whÞ :¼ðAvh; tAwhÞL: (28)

The sesquilinear form (Avh, wh)L is the Galerkin part of the formulation and

the term rh(vh, wh) is the least-squares part. The role of rh is to stabilize the

formulation. We consider the following discrete problem:

Find uh 2Vh0 such that

ahðuh,whÞ¼ ‘hðwhÞ :¼ð f ;wh + tAwhÞL, 8wh 2Vh0:

�
(29)

As usual the four steps of the analysis consist of (i) establishing stability,

(ii) estimating the consistency error, (iii) proving a boundedness estimate and

(iv) using the approximation properties of finite elements. We set V♭ ¼ V0 +

Vh0 and observe that V♭ ¼ V0 since the approximation is V0-conforming.

Proceeding in the spirit of Strang’s Second Lemma for the error analysis,
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we extend the sesquilinear form ah to V0 � Vh0, and we equip the space V0

with the norms:

k v k2V♭
:¼ m0 k v k2L +

1

2
jvj2M + k t12Av k2L , k v k2V♭♯

:¼k v k2V♭
+ k t�1

2v k2L , (30)

with the boundary seminorm jvj2M :¼RðhMv; viV0
,VÞ.

Theorem 3 (Convergence). (i) The discrete sesquilinear form ah satisfies

Rðahðvh,vhÞÞ�k vh k2V♭
, for all vh 2 Vh0. Consequently, the discrete problem

(29) is well-posed. (ii) The discrete problem (29) is exactly consistent.
(iii) There is c, uniform with respect to h, such that,
jahðv,whÞj � c k vkV♭♯

kwhkV♭
for all (v, wh) 2 V0�Vh0. (iv) Let u be the

unique solution to (19) and let uh be the unique solution to (29). There is c,
uniform with respect to h, such that

k u�uhkV♭
� c inf

vh2Vh0

k u� vhkV♭♯
: (31)

Moreover k u�uh k2V♭
� c

P
K2T h

maxðbK ,m0hKÞh2r + 1K juj2H1 + rðDK;mÞ if u2
H1 + rðD;mÞ, for all r 2 [0, k]. Upon denoting fD :¼ maxðbD,m0hÞ and
bD :¼ maxK2T h

bK, this implies in particular that k u�uhkV♭
�

cf
1

2

Dh
r +

1
2jujH1 + rðD;mÞ.

Assuming u2Hk + 1ðD;mÞ, the above result implies that

m
1

2

0 k u�uhkL + k t12A1ðu�uhÞkL � cf
1

2

Dh
k +

1
2jujHk + 1ðD;mÞ:

Observe that the estimate on ku � uhkL is improved by half a power in h when

compared to that obtained with the LS technique, and the estimate on

kA1(u � uh)kL is now a localized version of the LS estimate (24).

Example 3 (Advection–reaction). Consider the PDE mu + b�ru ¼ f with the

inflow boundary condition u ¼ 0 on @D�, see Section 1.2. Assume that all the

mesh boundary faces are a subset of either @D� or @Dn@D�. Let Pg
kðT hÞ be

the H1-conforming finite element space constructed on the mesh T h using finite

elements of degree k � 1 (Ern and Guermond, 2016). Set Vh0 :¼
fvh 2Pg

kðT hÞ j vhj@D� ¼ 0g. The GaLS discretization consists of seeking uh 2
Vh0 such thatZ

D

ðmuh +b � ruhÞwh dx+

Z
D

tðmuh +b � ruhÞðmwh +b � rwhÞ dx¼ ‘hðwhÞ,

for all wh 2 Vh0, with tK ¼ minðb�1
K hK ,m�1

0 Þ, bK ¼kbkL∞ðKÞ, and with right-

hand side ‘hðwhÞ¼
R
D fwh dx+

R
Dt f ðmwh +b � rwhÞ dx. Provided u 2 H1+r(D),

r 2 [0, k], and with fD :¼ maxðkbkL∞ðDÞ,m0hÞ, Theorem 3 gives

m
1

2

0 k u�uhkL2ðDÞ + k t12b � rðu�uhÞkL2ðDÞ � cf
1

2

Dh
r +

1
2jujH1 + rðDÞ:
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Example 4 (SUPG). Assume that hK � bKm
�1
0 minð1, 1

2

m20
m2∞

Þ with

m∞ ¼kKkL∞ðD;m�mÞ, for all K 2T h. The same error estimate as in the

GaLS approximation is obtained by considering the following discrete prob-

lem: Find uh 2 Vh0 such that aSUPGh ðuh,whÞ¼ ð f ; wh + tA1whÞL for all wh 2
Vh0 with the SUPG-stabilized sesquilinear form aSUPGh ðvh,whÞ¼
ðAvh; whÞL + ðAvh; tA1whÞL.
Example 5 (Maxwell). Consider the PDEs sE � r�H ¼ f and

i m�H +r�E¼ 0 with the boundary condition H�n ¼ 0. Define the reference

length scale ‘* ¼ðs♭,Dm�♭,DÞ�
1
2. Set Wh :¼P

g
kðT hÞ and Wh0 :¼ {bh 2Wh j

bh�nj@D ¼ 0}. The GaLS approximation amounts to finding (Eh, Hh) 2
Vh0 :¼Wh�Wh0 such that

Z
D

ðsEh�r�HhÞ ��eh + ði m�Hh +r�EhÞ � �bh
� �

dx

+

Z
D

m�
�1

♭,Dtðim�Hh +r�EhÞ � ð�im��bh +r��ehÞ dx

+

Z
D

s�1
♭,DtðsEh�r�HhÞ � ðs�eh�r��bhÞ dx¼ ‘hðwhÞ,

for all wh ¼ (eh, bh) 2 Vh0, with local weights tK ¼ minð‘�1
* hK ,1Þ, and right-

hand side ‘hðwhÞ¼
R
D j ��eh dx +

R
Ds

�1
♭,Dt j � ðs�eh�r��bhÞ dx. Provided (E, H)

2 H1+r(D)�H1+r(D), r 2 [0, k], Theorem 2, combined with the approximation

properties of Vh0, yields

s
1

2

♭,D kE�EhkL2ðDÞ + m
�1

2

♭,D kH�HhkL2ðDÞ + m
��1

2

♭,D k t12r�ðE�EhÞkL2ðDÞ

+s
�1

2

♭,D k t12r�ðH�HhÞkL2ðDÞ � cf
1

2

Dh
r + 1

2 jEjH1 + rðDÞ + jHjH1 + rðDÞ
� �

,

with fD ¼ max ‘*, hð Þ.

4 BOUNDARY PENALTY FOR FRIEDRICHS’ SYSTEMS

It is not always possible, or easy, to build V0-conforming finite elements;

think for instance of a boundary condition enforcing the value of the normal

or tangential component of a vector field at the boundary of a domain that

is not a rectangular parallelepiped. The goal of this section is twofold: First,

to show how to enforce boundary conditions weakly in Friedrichs’ systems;

second, to combine this approach with the GaLS stabilization. The boundary

penalty technique introduced herein will be used again in Section 5.
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4.1 Model Problem

We now consider the sesquilinear form

~aðv,wÞ :¼ðAv;wÞL +
1

2
hðM�NÞv; wiV0

,V , 8v,w2V: (32)

The last term on the right-hand side is used to enforce the boundary condition

u2 kerðM�NÞ weakly. Owing to this additional term, the test functions are

now restricted to be in the graph space V; i.e. taking test functions in L is

no longer legitimate. The model problem that we consider is the following:

Find u2V such that

~aðu,wÞ¼ ð f ; wÞL, 8w2V:

�
(33)

If u solves (33), taking w in C∞
0 ðD;mÞ implies that Au ¼ f in L2ðD;mÞ;

then, we have h(M�N)u, wiV0, V ¼ 0 for all w 2 V, i.e. u2 kerðM�NÞ.
Lemma 2 (L-coercivity and well-posedness). The sesquilinear form ~a defined

by (32) is such that Rð~aðv,vÞÞ� m0 k v k2L +
1

2
jvj2M, for all v 2 V. Problem (33)

is well-posed, and its unique solution is the unique solution to (19).

4.2 Boundary Penalty Method

We are interested in a V-conforming approximation of the model problem

(33). For this purpose, we assume that, for all h > 0, we have at hand an

H1-conforming finite-dimensional space Vh 	V, built by using a shape-

regular mesh sequence ðT hÞh>0 and a finite element of degree k � 1, and a

quasi-interpolation operator I h :V!Vh with optimal local approximation

properties: There is a uniform constant c such that

k v�I hðvÞkLðKÞ + hK krðv�I hðvÞÞkLðKÞ � c h1 + rK jvjH1 + rðDK ,mÞ, (34)

for all r 2 [0, k], all v2H1 + rðD,mÞ, and all K 2T h.

Our starting point is the sesquilinear form ~a defined in (32). At the discrete

level, we would like to localize the term h(M�N)v, wiV0, V at the boundary

faces F2F @
h . Therefore, we assume that there are boundary fields M and

N in L∞ð@D;m�mÞ such that

hMv; wiV0
,V ¼ðMv;wÞL@ , hNv; wiV0

,V ¼ðN v; wÞL@ , (35)

for all v,w2Vs :¼HsðD;mÞ with s>
1

2
and L@ :¼ L2ð@D;mÞ; whence,

~aðv,wÞ¼ ðAv; wÞL +
1

2
ððM�NÞv; wÞL@ , ðv,wÞ 2Vs�Vs: (36)

The field M is such that RððMv; vÞL@ Þ� 0, since the operator M is mono-

tone. But it may occur that RððMv; vÞL@ Þ¼ 0 (this happens for second-order
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PDEs in mixed form). To gain some control on the boundary values, we intro-

duce an additional boundary penalty field S@ 2 L∞ð@D;m�mÞ and we define

the following sesquilinear form on Vs � Vs:

ǎðv,wÞ :¼ ~aðv,wÞ+ ðS@v;wÞL@
¼ðAv; wÞL +

1

2
ððM�NÞv; wÞL@ + ðS@v; wÞL@ :

(37)

In what follows, we use a subscript F to denote the restriction of a boundary

field to F2F @
h and we set LðFÞ :¼ L2ðF;mÞ. We define the local boundary

seminorm jvj2MF
:¼ðMFv; vÞLðFÞ and we set rF :¼kMFkL∞ðF;m�mÞ. We

assume for simplicity that

rF � cMbKF
, 8F2F @

h , (38)

where KF 2T h is the mesh element such that F¼ @KF\@D. The design con-

ditions on S@ are as follows: There is c, uniform with respect to h, such that

the following holds for all v, w 2 L(F) and all F2F @
h .

S@
F is Hermitian and positive semidefinite, (39a)

kerðMF�N FÞ	 kerðS@
FÞ, (39b)

jvjS@
F
� c r

1
2
F k vkLðFÞ, (39c)

jððMF�N FÞv; wÞLðFÞj � cðjvjMF
+ jvjS@

F
Þr

1
2
F kwkLðFÞ, (39d)

jððMF +N FÞv;wÞLðFÞj � c r
1
2
F k vkLðFÞðjwjMF

+ jwjS@
F
Þ: (39e)

The assumption (39a) implies that the local boundary seminorm

jyj2S@
F
:¼ðS@

Fv; vÞLðFÞ is well defined and that ðS@
Fv; wÞLðFÞ � jvjS@

F
jwjS@

F
. The

assumption (39b) is tailored to ensure exact consistency. The other assump-

tions (39c)–(39e) are stability properties. Note that (39d) and (39e) turn out

to be equivalent; both properties are presented since they are useful in the

analysis.

Example 6 (Advection–reaction). Since MF ¼ jb � nFj for all F2F @
h , we

can take S@
F ¼ 0. The properties (39a)–(39c) are obvious and (39d) results

from the Cauchy–Schwarz inequality since 1

2

R
Fðjb � nFj�b � nFÞvw ds�

k jb � nFj
1
2vkL2ðFÞr

1

2

F kwkL2ðFÞ.
Example 7 (Maxwell). Consider the boundary condition H�n ¼ 0 on @D.

Recalling the matrix 23�3 from Section 1.3, the properties (39) are

satisfied by taking S@
F ¼

3 3

3 aT

� �
, for all F2F @

h , with a parameter a > 0.

This means that the tangential component of H is penalized at the boundary.
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4.3 Galerkin Least-Squares Stabilization with Boundary Penalty

We define the following discrete sesquilinear form on Vh � Vh:

ǎhðvh,whÞ¼ ~aðvh,whÞ+ ðAvh; tAwhÞL, (40)

that is to say ǎhðvh,whÞ¼ ðAvh; whÞL + 1

2
ððM�NÞvh; whÞL@ + ðS@vh;whÞL@ +

ðAvh; tAwhÞL. We consider the following discrete problem:

Find uh 2Vh such that

ǎhðuh,whÞ¼ ð f ; wh + tAwhÞL, 8wh 2Vh:

(
(41)

Let us set V♭ ¼ Vs + Vh. Notice that V♭ ¼ Vs since the approximation is H1-

conforming. We extend the sesquilinear form ǎh to Vs � Vh and we equip the

space Vs with the following norms:

k v k2V♭
:¼ m0 k v k2L +

1

2
jvj2M + jvj2S@ + k t12Av k2L , (42a)

k v k2V♭♯
:¼k v k2V♭

+ k t�1
2v k2L + k r12v k2L@ , (42b)

with boundary seminorms jvj2M :¼RððMv; vÞL@ Þ and jvj2S@ :¼RððS@v; vÞL@ Þ,
and r2 L∞ð@DÞ is defined by rjF :¼ rF for all F2F @

h .

Theorem 4 (Convergence). (i) The discrete sesquilinear form ǎh satisfies

Rðǎhðvh,vhÞÞ�k vh k2V♭
, for all vh 2 Vh. Consequently, the discrete problem

(41) is well-posed. (ii) Assume that the exact solution u is in Vs. Then, the dis-
crete problem (41) is exactly consistent. (iii) There is c, uniform with respect
to h, such that jǎhðv,whÞj � jǎðv,whÞj + jðAv; tAwhÞLj � c k vkV♭♯

kwhkV♭
for

all (v, wh) 2 Vs�Vh. (iv) Let u and uh be the unique solutions to (19) and
(41), respectively. Then, there is c, uniform with respect to h, such that

k u�uhkV♭
� c inf

vh2Vh

k u� vhkV♭♯
: (43)

Moreover, k u�uh k2V♭
� c

P
K2T h

maxðbK ,m0hKÞh2r + 1K juj2H1 + rðDK;mÞ if u2
H1 + rðD;mÞ, r 2 [0, k]. This implies that k u�uhkV♭

� cf
1

2

Dh
r +

1
2jujH1 + rðD;mÞ.

5 FLUCTUATION-BASED STABILIZATION

This section presents a unified analysis of various techniques for the approxi-

mation of first-order PDEs using H1-conforming finite elements. The gradient

of a function in an H1-conforming space generally exhibits jumps across the
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mesh interfaces. This means that only one part of the gradient can be con-

trolled by test functions from this space; the remainder, which can be viewed

as a fluctuation, needs to be controlled by some stabilization mechanism.

Three stabilization techniques are considered herein: the continuous interior

penalty (CIP), the local projection stabilization (LPS) and the subgrid viscos-

ity (SGV). CIP penalizes the jump of the gradient across the mesh interfaces.

LPS and SGV are both based on a two-scale decomposition of the discrete

space consisting of a sum of resolved scales and fluctuations. LPS penalizes

the fluctuations of the gradient, whereas SGV penalizes the gradient of the

fluctuations. Throughout this section, the boundary conditions are enforced

weakly by the boundary penalty technique introduced in Section 4.2.

5.1 Abstract Theory for Fluctuation-Based Stabilization

Let us consider the finite element setting introduced in Section 4.2. Let bK and

tK as defined in (25) and (26). Recall that bK is a local velocity scale and tK is

local time scale. We define the global quantity bD ¼ maxK2T h
bK , and we

introduce a second local weighting parameter �tK such that

minðb�1
D hK ,m�1

0 Þ��tK � tK , 8K 2T h: (44)

We will take �tK ¼ minðb�1
D hK,m�1

0 Þ for the CIP stabilization and �tK ¼ tK for

the LPS and SGV stabilizations. With a slight abuse of notation, we define the

piecewise constant function �t :D! such that �tjK ¼�tK for all K 2T h; the

piecewise constant function t :D! is defined similarly.

We additionally assume that all the fields fAkgk2f1: dg are piecewise

Lipschitz on a partition of D and that the meshes are compatible with this par-

tition, implying that the fields fAk
jKgk2f1: dg are Lipschitz for all K 2T h. We

denote by LA the largest Lipschitz constant of these fields. To simplify the

tracking of the model parameters in the analysis, we assume that

maxðkKkL∞ðD;m�mÞ, kXkL∞ðD;m�mÞ,LAÞ� cK,X ,Am0, (45)

and we hide the nondimensional factor cK,X ,A in the generic constant c.
The boundary conditions are enforced by using the boundary penalty

method from Section 4.2, i.e. we assume that there is S@ 2 L∞ð@D;m�mÞ
satisfying (39) for any boundary face F2F @

h , with rF ¼kMFkL∞ðF;m�mÞ.
We assume that there is a uniform constant cM such that rF � cMbKF

for

all F2F @
h with F¼ @KF\@D, see (38); we will hide the nondimensional fac-

tor cM in the generic constant c. Our starting point is the following sesqui-

linear form, see (37):

ǎðv,wÞ¼ ðAv; wÞL + 1

2
ððM�NÞv; wÞL@ + ðS@v; wÞL@ , 8ðv,wÞ 2Vs�Vs:

(46)

Linear Stabilization for First-Order PDEs Chapter 11 281



The main idea is to augment the sesquilinear form ǎ with a stabilization

sesquilinear form sh and to consider the following discrete problem:

Find uh 2Vh such that

ahðuh,whÞ¼ ð f ; whÞL, 8wh 2Vh,

(
(47)

with

ahðvh,whÞ :¼ ǎðvh,whÞ+ shðvh,whÞ: (48)

To stay somewhat general, we only require that sh be defined on Vh�Vh.

Loosely speaking, the purpose of sh is to control the difference between

A1vh and a suitable representative of A1vh in Vh. We consider the following

design requirements on the bilinear form sh, where c1, c2, c3 > 0 are uniform

with respect to h:

(i) sh is Hermitian positive semidefinite and satisfies jvhjS :¼ shðvh ,vhÞ
1
2 �

c1 k�t�
1
2vhkL for all vh 2 Vh.

(ii) There exists a linear map J h :Vh !Vh such that, for all vh 2 Vh,

c2 k�t�
1
2J hðvhÞ k2L � k�t12A1vh k2L + m0 k vh k2L + jvhj2S , (49a)

c2 k�t
1
2A1vh k2L �RððA1vh; J hðvhÞÞLÞ + m0 k vh k2L + jvhj2S: (49b)

(iii) jI hðvÞjS � c3
P

K2T h
ð�t�1

K hKÞh2r + 1K jvj2H1 + rðDK;mÞ
� �1

2
for all r 2 [0, k] and

all v2H1 + rðD;mÞ with Ih satisfying (34).

The error analysis is done in the spirit of Strang’s First Lemma. This approach

is the most general since it does not require that sh be extended beyond

Vh�Vh. We consider the space V♭ ¼ Vs + Vh; note that V♭ ¼ Vs since Vh is

H1-conforming. We define the following norms on Vs:

k v k2V♭
:¼ m0 k v k2L +

1

2
jvj2M + jvj2S@ + k�t12A1v k2L , (50a)

k v k2V♭♯
:¼k v k2V♭

+ k�t�1
2v k2L + k r12v k2

L@
: (50b)

The first norm is used to establish the inf–sup stability of ǎ on Vh�Vh (and

well-posedness) and the second one to prove the boundedness of ǎ on Vs�Vh.

Up to the change of t by �t, these norms are the same as those used in

Section 4.3 for the GaLS stabilization with boundary penalty.

Theorem 5 (Convergence). (i) Under the design conditions (i)–(ii)–(iii) for
sh, there is a > 0, uniform with respect to h, such that the following holds:

aðk vhkV♭
+ jvhjSÞ� sup

wh2Vh

Rðahðvh,whÞÞ
kwhkV♭

+ jwhjS
, 8vh 2Vh: (51)
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Consequently, the discrete problem (47) is well-posed. (ii) There is c, uniform
with respect to h, such that jǎðv,whÞj � c k vkV♭♯

kwhkV♭
holds for all (v, wh) 2

Vs � Vh. (iii) Let u be the unique solution to (19) and let uh be the unique
solution to (47) with sh satisfying the design conditions (i)–(ii)–(iii) above.
There is c, uniform with respect to h, such that

k u�uhkV♭
� c inf

vh2Vh

k u� vhkV♭♯
+ jvhjS

� �
: (52)

Moreover, k u�uh k2V♭
� c

P
K2T h

ð�t�1
K hKÞh2r + 1K juj2H1 + rðDK;mÞ if u2H1 + rðD;mÞ,

r 2 [0, k] (note that maxðbK ,m0hKÞ��t�1
K hK � maxðbD,m0hKÞ).

In the next section we show how the above theory can be used to analyze the

stability and convergence properties of the CIP, LPS and SGV methods.

5.2 Continuous Interior Penalty

The key idea in CIP stabilization (also termed edge stabilization in the litera-

ture) is to penalize the jump of A1vh across the mesh interfaces. This idea has

been introduced in Burman (2005) and Burman and Hansbo (2004). We refer

to Burman and Ern (2007a,b) for the hp analysis and extensions to Friedrichs’

systems, and we refer to Ern and Guermond (2013) for extensions in the con-

text of nonlinear conservation laws.

We set �tK :¼ minðb�1
D hK ,m�1

0 Þ for all K 2T h. Let us take Vh ¼ P
g
kðT h;

mÞ.
Let J g,av

h be the nodal averaging operator mapping onto P
g
kðT h;

mÞ defined

and analyzed in Ern and Guermond (2016), and let f2P
g
1ðT h;Þ be defined

by fðzÞ¼ cardðT zÞ�1P
K2T z

�tK with T z :¼ fK 2T h j z2Kg for any mesh

vertex z.
Lemma 3. Define ð_A1vhÞjK :¼

P
k2f1: dg_Ak

K@kvhjK for all K 2T h and all vh 2 Vh,

where _Ak
K :¼

1

jKj
Z
K

Ak dx. Let �tF :¼ maxð�tKl
,�tKr

Þ and bF :¼ maxðbKl
,bKr

Þ
for all F¼ @Kl\@Kr 2F °

h. Then the sesquilinear forms

sCIPh ðvh,whÞ ¼
X
F2F °

h

�tFhFð½½A1vh

F; ½½A1wh

FÞLðFÞ, (53a)

sCIPh ðvh,whÞ¼
X
F2F °

h

�tFhFð½½_A1vh

F; ½½_A1wh

FÞLðFÞ, (53b)

sCIPh ðvh,whÞ ¼
X
F2F °

h

bFh
2
Fð½½rvh

F; ½½rwh

FÞLðFÞ, (53c)

all satisfy the conditions (i)–(ii) with J hðvhÞ¼J g,av
h ðf_A1vhÞ, and the condi-

tion (iii) for r � 1.
Remark 3 (Time-dependent case). The choice (53c) is interesting for time-

dependent fields Ak since the matrix associated with (53c) can then be
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assembled only once, which is not the case for (53a) and (53b). Note that in

(53c), only the normal component of the gradient can actually jump across

F since functions in Vh are continuous.

5.3 Two-Scale Stabilization, Local Projection and Subgrid
Viscosity

We present in this section two closely related stabilization techniques known

in the literature as LPS and SGV. The SGV technique has been introduced in

Guermond (1999, 2001a,b) for monotone operators and semigroups. The LPS

technique has been introduced in Becker and Braack (2001) and Braack and

Burman (2006) for Stokes and convection-diffusion equations; see also

Matthies et al. (2007, 2008). LPS and SGV both rely on a two-scale decom-

position of the discrete space Vh, leading to the notions of resolved and fluc-

tuating (or subgrid) scales. Both stabilization techniques introduce a LS

penalty: LPS penalizes the fluctuation of the gradient and SGV penalizes

the gradient of the fluctuation. The notion of scale separation and subgrid

scale dissipation is similar in spirit to the spectral viscosity technique intro-

duced by Tadmor (1989) to approximate nonlinear conservation equations

by means of spectral methods. This notion is also found in the Orthogonal

Subscale Stabilization technique of Codina (2002).

5.3.1 The Two-Scale Decomposition

The starting point is a two-scale decomposition of Vh into the form

Vh ¼Rh +Bh, (54)

where the sum is not necessarily direct. The discrete space Rh is viewed as the

space of the resolved scales, and Bh is viewed as the space of the fluctuating

(or subgrid) scales. It is important to realize that the degrees of freedom

attached to Bh only serve to achieve stability, and that the approximation error

is controlled by the best approximation in the space of the resolved scales Rh

(and not in the full space Vh). We assume the following local approximation

property in Rh: There is a quasi-interpolation operator IR
h :V!Rh and a con-

stant c, uniform with respect to h, such that

k v�IR
h ðvÞkLðKÞ + h krðv�IR

h ðvÞÞkLðKÞ � c h1 + rjvjH1 + rðDK;mÞ, (55)

for all r 2 [0, k], all v2H1 + rðD;mÞ, and all K 2T h.

Since functions in Rh are continuous, piecewise polynomials, the compo-

nents of their gradients belong to a broken finite element space

Gh ¼�K2T h
GK , where functions in GK are supported in K, i.e. @irh 2 Gh for

all rh 2 Rh and all i 2{1: d}. We assume that the space of the fluctuating
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scales can also be localized in the form Bh ¼�K2T h
BK , where the functions in

BK are supported in K (one may think of members of BK as bubble-type func-

tions, see the examples below). We define the local L-orthogonal projections

pBK : LðKÞ!BK and pGK : LðKÞ!GK for all K 2T h and the global counterparts

pBh : L!Bh and pGh : L!Gh such that pBhjK ¼ pBK and pGhjK ¼ pGK .
The key assumption linking the local gradient space GK to the local fluc-

tuation space BK is the following inf–sup condition introduced in Guermond

(1999, 2001b) (see also Matthies et al., 2007): There is g > 0, uniform with

respect to h, such that, for all K 2T h,

inf
g2GK

sup
b2BK

RðR Kb
Hg dxÞ

k gkLðKÞ k bkLðKÞ
� g, (56)

or, equivalently, g k gkLðKÞ � k pBKgkLðKÞ for all g 2 GK. In what follows,

we consider the local weighting parameter �tK ¼ tK ¼ minðbKh�1
K ,m�1

0 Þ for

all K 2T h.

We now describe three constructions of H1-conforming finite element

spaces of degree k � 1 which all satisfy the above assumptions. (1) In the first

example, the space of the resolved scales is defined by Rh ¼Pg
kðT h;

mÞ, the
H1-conforming finite element space based on T h, so that Gh ¼Pb

k�1ðT h;
mÞ

and GK is composed of m-valued polynomials of degree at most (k � 1) on

affine meshes. Following Guermond (1999) for k 2{1, 2} and Matthies et al.

(2007) for all k � 1, we take BK ¼ bKGK where bK is the H1
0ðKÞ-bubble func-

tion proportional to the product of the (d + 1) barycentric coordinates over K;
see the panels in the upper row in Fig. 1. (2) Instead of working with bubble

functions, one can use hierarchical meshes (Guermond, 1999; Matthies et al.,

2007). In this case, the construction starts from the mesh defining the space

of the resolved scales, say T�h. Assume for simplicity that T�h is composed of

simplices, then the mesh T h defining Vh is built by barycentric refinement,

i.e. for any K 2T�h, (d + 1) new simplices are created by joining the barycentre

of K to its (d + 1) vertices. Then we take Vh ¼P
g
kðT h;

mÞ and

Rh ¼Pg
kðT�h;mÞ, so that Gh ¼Pb

k�1ðT�h;mÞ, see the panels in the second row

in Fig. 1. For any K 2T�h, choose g :¼ dimðGKÞ shape functions of Vh with sup-

port in K, say ’K
1 ,…,’K

g and set BK ¼ spanf’K
1 ,…,’K

g g. The practical advan-

tage of this construction is that Vh is a standard finite element space. (3) Finally,

we mention the two-scale decomposition considered in Guermond (1999) for k
2{1, 2} which also offers the advantage of Vh being a standard finite element

space; a schematic representation of the scale decomposition is shown in the

panels in the last row in Fig. 1. The analysis (not considered herein) is some-

what more involved since the fluctuating scales are represented by functions

possibly supported on two adjacent mesh cells.
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5.3.2 Local Projection Stabilization

Lemma 4. Assume that (56) holds. Let A1vh be defined as in Lemma 3 and b :
D! be such that bjK :¼ bK for all K 2T h. Define the fluctuation operator

kGh ¼ IL�pGh , where IL is the identity operator in L. Then, the sesquilinear
forms

sLPSh ðvh,whÞ¼ ð�tkGh ð_A1vhÞ; kGh ð_A1whÞÞL, (57a)

sLPSh ðvh,whÞ ¼ ðb2�tkGh ðrvhÞ; kGh ðrwhÞÞL, (57b)

both satisfy the assumptions (i)–(ii)–(iii) with J hðvhÞ¼�tpBhp
G
h ðA1vhÞ.

Remark 4 (Use of kGh ðA1vhÞ). When the fields Ak are not piecewise constant,

setting sLPSh ðvh,whÞ¼ ð�tkGh ðA1vhÞ; kGh ðA1whÞÞL is somewhat delicate since

jIR
h ðuÞjS no longer vanishes. Bounding this quantity requires strong regularity

assumptions on the fields Ak.

5.3.3 Subgrid Viscosity

In the SGV method, the two-scale decomposition of Vh is assumed to be direct

and L-stable, i.e. it is assumed that there is gR > 0, uniform with respect to h,
such that

Vh ¼Rh�Bh, gR k pRh vhkL �k vhkL, 8vh 2Vh: (58)

FIG. 1 Examples of two-scale finite elements. In each panel, the resolved scales are on the left

and the fluctuating scales are on the right. The resolved scales are either 1 (left column) or 2

(right column) Lagrange elements. The upper panels illustrate the use of a standard bubble func-

tion to build the fluctuating scales; the central and lower panels illustrate the use of piecewise

polynomial bubble functions on a submesh with the same size (central panel) or half the size (bot-

tom panel) as that of the resolved scales space.
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Letting pRh :Vh !Rh be the oblique projector based on (58), we define the

fluctuation operator kRh :¼ IVh
�pRh , where IVh

the identity in Vh. Just as for

LPS stabilization, we can choose Rh ¼Pg
kðT hÞ. Then, Gh is the broken

finite element space Pb
k�1ðT hÞ, i.e. GK ¼k�1,d on simplicial affine meshes

(d-variate polynomials of order at most k � 1). The simple choice BK ¼ bKGK

is only possible for k � d, since otherwise the decomposition (58) is no longer

direct. For k � d + 1, a simple possibility to get around this technicality is to

set BK ¼ baKGK with a equal to
k + 1

d + 1
or to the smallest integer larger than

k

d + 1
,

see also Guermond (1999, prop. 4.1).

Lemma 5. Assume that (56) holds. Let b :D! be such that bjK :¼ bK
for all K 2T h. Then the sesquilinear forms

sSGVh ðvh,whÞ ¼ ð�tA1ðkRh vhÞ; A1ðkRhwhÞÞL, (59a)

sSGVh ðvh,whÞ ¼ ð�t_A1ðkRh vhÞ; _A1 ðkRhwhÞÞL, (59b)

sSGVh ðvh,whÞ ¼ ðb2�trðkRh vhÞ;rðkRhwhÞÞL, (59c)

all satisfy the assumptions (i)–(ii)–(iii) with J hðvhÞ¼�tpBh_A1ðpRh ðvhÞÞ.
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