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SUMMARY

We present an accurate and cost-effective numerical method to investigate thermomagnetic problems
arising in crystal growth applications. The governing equations are the quasi-static, time-harmonic,
axisymmetric Maxwell equations coupled with an energy conservation equation. Radiant energy transfer
is modeled by an integral equation yielding a strongly nonlinear and non-local problem. Conformal
finite elements are used to discretize the partial differential equations and a discontinuous Galerkin
method to discretize the integral equation. A key aspect of the present methodology is to introduce
an appropriate renormalization of the view factor matrix so that singularities near re-entrant corners
are resolved and optimal convergence rates are recovered. In addition, this renormalization guarantees,
under some assumptions, that the discrete problem is well-posed. Computational aspects related to the
evaluation of view factors in axisymmetric enclosures are also addressed. We consider a ray-search
method involving an initial bracketing of the view angle interval followed by local azimuthal refinement
near shadowing obstacles. The impact of renormalization on solution accuracy is assessed on reactors
with convex and non-convex enclosures. Numerical results are also compared with previous work.
Finally, we consider an industrial prototype reactor involving several non-convex radiating surfaces.
Copyright � 2004 John Wiley & Sons, Ltd.
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1. INTRODUCTION

During the last decade, silicon carbide (SiC) has sparked extensive interest in the semiconductor
industry. Important advances have been accomplished in the manufacturing of high-power and
high-temperature SiC based optoelectronic devices. However, one crucial step still restricting
the industrial production of SiC devices is the scarce availability of single crystal SiC wafers
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with a high enough level of crystalline perfection in terms of micropipe and dislocation density.
Such wafers are commonly grown using a modified Lely method (see e.g. Reference [1] for
a review.) Growth takes place inside a radiofrequency-heated graphite crucible with a single
crystalline seed fixed at the top of the growth cavity and SiC powder placed at the bottom. The
thermal gradient in the cavity must be controlled so that sublimation occurs in the powder and
deposition on the crystal seed. Typical temperature gradients are of the order of 100 K cm−1.
Temperatures range between 2300 and 3000 K in the crucible and between 2700 and 2800 K
in the crystal seed.

Equipment design and operating parameters for wafer production have been steadily im-
proved over the years mainly by engineers’ experimental knowledge of the growth process.
More recently, numerical simulation has emerged as an additional tool complementing ex-
perimental results and providing valuable insight into the physical and chemical phenomena
involved inside the crucible. Several research groups have developed comprehensive numeri-
cal models accounting for magnetic, thermal, and chemical phenomena (see, among others,
References [2–6].) A recent state of the art review [7] indicates that growth reactor models
encompassing inductive heating and simplified chemical kinetics have reached a certain level
of maturity, whereas detailed knowledge of surface processes and defect formation still chal-
lenges the research community. Current research developments in numerical modeling include
optimal control techniques to improve crucible design [8], impact of source material on growth
conditions [9], and thermoelastic stresses in the bulk crystal and their correlation to defect
formation [10].

The goal of this paper is to derive an accurate and stable numerical method to calculate the
temperature distribution inside a crucible with radiant energy transfer in a complex axisymmetric
geometry. Solving the thermomagnetic problem accurately inside the growth reactor is important
since the temperature gradient around the crystal seed is a key factor in product quality. The
modeling, analysis, and simulation of quasi-static two-dimensional induction heating problems
without radiative energy transfer is thoroughly investigated in References [11, 12]. Radiative
energy transfer has been extensively dealt with in the crystal growth literature. In most cases,
the radiation problem is considered in its discrete form: the radiant surface is divided into
a finite number of cells and configuration factors (or view factors) are evaluated for all the
cell pairs. For simple geometries, the configuration factors can be evaluated analytically using
tabulated values and classical view factor algebra [13, 14]. In most practical cases, a numerical
evaluation is needed, as detailed for instance in Reference [15].

The methodology derived herein is based on the continuous formulation of the radiation
problem through an integral equation. An approximate integral equation is obtained using a
discontinuous Galerkin method and Gaussian quadrature. Our main contribution is to introduce
an appropriate renormalization of the view matrix that guarantees under some assumptions the
existence of a solution to the discrete problem. More importantly, the renormalization is critical
to achieve optimal convergence rates for the temperature. Another advantage of the proposed
methodology is that the discontinuous Galerkin method is compatible with a finite element
approximation of the global conservation equations since it yields the discrete radiation flux
at the quadrature nodes. Finally, we also discuss how to reduce computational costs when
assembling the three-dimensional view matrix. This is accomplished using a ray-search method
and local refinement in the azimuthal direction in the neighborhood of shadowing obstacles.

This paper is organized as follows. In the next section, we present the governing equations.
The numerical methods are described and analysed in Section 3. Finally, in Section 4 we
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discuss numerical results assessing both the accuracy and the computational efficiency of the
proposed methodology.

2. PROBLEM FORMULATION

A schematic representation of a crystal growth reactor with idealized geometry is depicted in
Figure 1. A graphite crucible coated with an insulating foam contains the SiC powder and the
growth cavity. A radiofrequency source current is imposed in the induction coils. The conductive
materials (graphite, foam, and SiC powder) are heated by the inductive currents through Joule’s
effect. The temperature distribution inside the growth reactor results from a balance between
conductive and radiative heat transfer. Convective heat transfer can be neglected for typical
operating conditions [3, 4].

The three-dimensional electromagnetic field is modelled by the Maxwell equations with some
simplifying assumptions. First, we assume that the electromagnetic field is time-harmonic with
angular velocity � and frequency f . In addition, for low frequency eddy current problems
(with f typically lower than 1 MHz), the displacement currents can be neglected, leading to
the quasi-static approximation. Finally, we restrict ourselves to axisymmetric configurations
with (r, z) denoting the radial and axial co-ordinates respectively. With these assumptions, the
Maxwell equations reduce to

−�r

(
1

� r
�r (rA)

)
− �z

(
1
��zA

)
= j

i�A + E = 0

where A and E are scalar fields denoting the magnetic potential and the azimuthal component
of the electric field respectively, � is the magnetic permeability, j the current density, and
i2 = −1.

The induction coils are modelled by setting the current density at a prescribed value. This
approximation is classical in the present context. Since the current density is not constant in
space through the induction coils, the actual sections of the coils are modeled by equivalent
sections [4]. In the other conducting media, we assume Ohm’s law, j = �E, where � is the
(temperature-dependent) electric conductivity. Upon formally setting the electric conductivity to
zero in the induction coils, we obtain an equation for the magnetic potential valid over the
whole space

−�r

(
1

� r
�r (rA)

)
− �z

(
1
��zA

)
+ i��A = Jd (1)

where Jd is zero everywhere except in the induction coils where it takes a specified value.
The inductive currents in the conductive media yield a volumetric heat release through Joule’s

dissipation in the form Q = 1
2 ��2|A|2. Heat balance inside the various materials can be written

as

−div(k(T )∇T ) = 1
2 ��2|A|2 (2)

where k(T ) is the (temperature-dependent) thermal conductivity. Note that the right-hand side
of (2) depends on the prescribed current density Jd through A.
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Figure 1. Schematic representation of a crystal growth reactor with idealized geometry.

An important aspect of energy balance in the growth cavity is radiant energy transfer including
emission, reflection, and adsorption. Radiant surfaces are assumed to behave like grey bodies
(i.e. the radiative exchanges are independent of the wavelength) and are characterized by an
emissivity coefficient � [13]. We also assume that the radiant surfaces are separated by non-
participating media, i.e. that the gases inside the cavity do not affect radiant energy transfer. In
an axisymmetric but non-convex cavity, three-dimensional effects arise since couples of points
may not see each other depending on their respective azimuthal position. We will denote by �
the radiant surface in the three-dimensional physical space and by �m its meridian in the (r, z)

plane. At a given point on �, let T be the temperature and i the incident flux of radiant energy.
A fraction of i, say �i, is transmitted towards the exterior of the cavity and the remaining part,
(1 − �)i, is reflected back towards the interior (see Figure 2.) As a result, the radiosity, defined
as the total flux of radiant energy leaving � towards the interior, is given by

w = (1 − �)i + ��T 4 (3)

where � = 5.67×10−8 Wm−2 K−4 is the Stefan–Boltzmann constant. Furthermore, the incident
energy flux is related to the radiosity by Lambert’s law in the form

i = Fw (4)

where the integral operator F is defined as

Fu(x) =
∫

�
f (x, y) u(y) dy, ∀x ∈ �
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Figure 2. Radiant energy transfer with reflection.

The integral kernel is given by

f (x, y) = V(x, y)�(x, y), x, y ∈ �

where

V(x, y) = 1

�

nx · (x − y)ny · (y − x)

‖x − y‖4

nx and ny are the outward normals to � at x and y, respectively, and

�(x, y) =
{

1 if the points x and y see each other

0 otherwise

The integral kernel f satisfies the following two important symmetry and normalization prop-
erties:

f (x, y) = f (y, x), ∀x, y ∈ � and
∫

�
f (x, y) dy = 1, ∀x ∈ �

Energy balance between radiant and diffusive transfer on � can be written as

[k∇T ] · n� = � over � (5)

where n� denotes the outward normal to �, [k∇T ] · n� is the difference between exterior and
interior values, and � = ��T 4 − � i. We readily deduce from (3)–(4) that the flux � satisfies
the integral equation

1
� � − F

( 1−�
� �

) = �T 4 − F(�T 4) (6)

From the properties of the kernel f , we infer

(�T 4 constant over �) �⇒ (� = 0 over �)

∀T ,

∫
�

� = 0

The magnetic and thermal problems are posed on different domains. Referring to Figure 1,
subdomain �1 denotes the SiC powder, �2 the growth cavity, �3 the graphite crucible, �4 the
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insulating foam, �5 the induction coils, and �6 the ambient air. The magnetic problem is then
posed over �A = �1 ∪ · · · ∪ �6 and the thermal problem over �T = �1 ∪ · · · ∪ �4. Boundary
conditions for the magnetic problem impose A = 0 on the symmetry axis and far enough from
the induction coils. Furthermore, boundary conditions for the temperature may take various
forms. Introducing the decomposition ��T = �d ∪ �n ∪ �e, we consider a Dirichlet condition
T = Td on �d, an homogeneous Neumann condition on �n (typically the symmetry axis), and
a detailed radiative, convective, and diffusive energy balance on �e in the form

k(T )∇T · ne + �(T − T∞) + ��(T 4 − T 4∞) = 0 (7)

where ne is the outward normal to �e, T∞ the ambient air temperature, and � an empirical
heat transfer coefficient.

Existence and uniqueness of a solution to the thermomagnetic problem (1)–(2)–(6) is still an
open question that will not be addressed herein. Difficulties arise for closed interior cavities with
radiant energy transfer over their whole boundary because the norm of the associated integral
operator is equal to one. Existence and uniqueness can be proved when the temperature is
fixed on some part of the radiant boundary [16, 17] or when the existence of suitable super-
and sub-solutions can be established a priori [18, 19].

3. NUMERICAL METHODOLOGY

This section describes the numerical method proposed in this work. It involves a conformal
finite element discretization of the partial differential equations (1)–(2), a discontinuous Galerkin
approximation to the integral equation (6), an accurate three-dimensional ray method with
local azimuthal refinement near shadowing obstacles to evaluate the view factors for complex
non-convex geometries, and Newton’s method embedded in a fixed-point iterative procedure
to handle the non-linearities in the temperature equation and the thermomagnetic coupling,
respectively.

3.1. Finite element approximation

To approximate the governing equations of the physical problem using finite elements, it is
first necessary to write these equations in weak form. The domain for the magnetic prob-
lem is truncated at a finite radius R where the magnetic potential is set to zero. We denote
this domain by �A

R . Instead of setting the magnetic potential to zero at a finite distance
from the inductors, a somewhat more general approach sometimes adopted in the literature
(see for instance Reference [20]) consists in coupling the finite element discretization to a
boundary element method. Our numerical results show that for the present physical configura-
tions, the simpler approach based on the truncated domain �A

R yields solutions with sufficient
accuracy.

Given a triangulation of �A
R and �T , we consider linear, simplicial, continuous finite element

spaces, say V A
hR and V T

gh, for the magnetic potential and the temperature, respectively. For the

temperature, the first subscript, g, indicates that Th ∈ V T
gh is assigned the value g (or a suitable
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interpolate thereof) on �d. The Galerkin approximation of (1)–(2) can be written in the form

Find Ah ∈ V A
hR s.t. ∀�h ∈ V A

hR∫
�A

R

1/�
( 1

r
�r (rAh)�r (r�h) + r�zAh�z�h

)
dr dz

+i�
∫

�A
R

�(Th)Ah �h r dr dz =
∫

�A
R

Jd �h r dr dz (8)

and

Find Th ∈ V T
Tdhs.t. ∀�h ∈ V T

0h∫
�T

k(Th)∇Th · ∇�h r dr dz +
∫

�m

�h(Th) �h r dl

+
∫

�e

(�Th + ���(Th))�h r dl

=
∫

�T

1
2 ��2|Ah|2�h r dr dz +

∫
�e

(�T∞ + ���(T∞))�h r dl (9)

where we have set �(T ) = |T |3T (see Reference [21] for a justification.) In (8)–(9), volume (resp.
surface) integrals are evaluated with a numerical quadrature involving 3 (resp. 2) Gauss points.

We use a discontinuous Galerkin (DG) method of degree one to discretize the integral
equation (6). From a mathematical viewpoint, the DG method is a natural way to discretize (6)
since this equation is posed on the Banach space L5/4(�m) where no continuity assumptions
can be made a priori (recall that for a real p � 1 and a region R, Lp(R) is the space of
functions such that

∫
R

|f |p < ∞.) Let W�
h be the space of piecewise linear and discontinuous

functions on the mesh of the meridian �m induced by the triangulation of �T . This leads to
the following problem:

Find �h ∈ W�
h s.t. ∀�h ∈ W�

h∫
�m

( 1
� �h − F

( 1−�
� �h

))
�hr dl =

∫
�m

�(I − F)(�(Th)) �h r dl (10)

Again, two-point Gauss quadrature is employed to approximate all the integrals in (10). There-
fore, the DG method is equivalent to a collocation method at the Gauss points, the unknowns
being the value of �h at those points. This is particularly interesting since the values of the flux
�h at all the Gauss nodes of �m are exactly the data needed to evaluate the surface integral∫
�m

�h(Th) �h r dl in (9). Since first-order polynomial interpolation is used for the discrete

temperature over �T , a DG method of degree zero (where �h is approximated by a piecewise
constant function) can be considered as well. This corresponds to the method usually reported
in the literature (see for instance References [2, 15].) A DG method of degree one is needed
for higher-order polynomial interpolation over �T provided the data are sufficiently smooth.
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Figure 3. Azimuthal integration of view factors.

Although the discrete problem (10) is posed on the meridian �m, three-dimensional integrals
arise through the presence of the operator F . For a point al′ in the meridian �m, let al′(	) be
the point in the physical three-dimensional space obtained by rotating al′ around the symmetry
axis with the angle 	 (see Figure 3.) Let ng be the total number of Gauss points on �m and
let al the lth Gauss point. Set �l = 
lrl/2 where 
l is the length of the segment where al

is located and rl the radial coordinate of al (�l = 
lrl if a DG method of degree zero is
considered.) Introduce the view matrix F ∈ Rng,ng with coefficients

Fll′ = faxi(al, al′)�l′, faxi(al, al′) = 2
∫ �

0
f (al, al′(	)) d	

Introduce also the vector �h ∈ Rng with components �hl = �h(al) and the vector b ∈ Rng

with components bl = ��(T (al)). Then, (10) yields the linear system

diag
( 1

�

)
�h − F

(
diag

( 1−�
�

)
�h

) = (I − F)b (11)

where I is the identity matrix, diag(1/�)ll′ = 1/�(al)�ll′ , diag((1−�)/�)ll′ = (1−�(al))/�(al)�ll′ ,
and �ll′ is the Kronecker delta. Note that we have taken advantage of axial symmetry by
averaging f over the azimuthal coordinate.

3.2. Renormalization of the view matrix

Because of numerical quadratures, the quantities

Sl =
ng∑

l′=1
Fll′
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differ from unity. Indeed, we have

Sl =
ng∑

l′=1
faxi(al, al′)�l′ �

∫
�m

faxi(al, y) dy =
∫

�
f (al, z) dz = 1

If the radiating surface is smooth, Sl converges to unity with third order in h because the
truncation error is fourth order on each segment, two Gauss points being used locally. However,
if corners are present, singularities arise. Specifically, for a given x ∈ �, the function fx : z �→
f (x, z) is discontinuous when z passes through a corner that can be seen from x and has a
1/‖x − z‖2 singularity if x is located at a convex corner where the two neighboring edges see
each other. As a result, when � has convex corners, Sl does not converge to unity if al is
located close to a convex corner, and Sl converges to unity with first order in the mesh size
otherwise. Note that an analytical evaluation of the surface integrals in (10) is only possible
if a zero-degree DG method is employed. Indeed, only in this case, the discrete flux �h is
piecewise constant and analytical expressions for view factors can be used (if available.)

It turns out that in applications the deviations of Sl from unity have a noticeable impact
on solution accuracy. Our numerical results indeed show (see Sections 4.1 and 4.2) that these
deviations yield sub-optimal convergence rates for the discrete temperature over the whole
domain �T . To remedy this difficulty, we propose in this work to renormalize the view matrix
by setting

Gll′ = 1

Sl

Fll′ (12)

The discrete flux �h is then sought as the solution of the rescaled linear system

diag
( 1

�

)
�h − G

(
diag

( 1−�
�

)
�h

) = (I − G)b (13)

Other renormalizations can be considered as for instance a single modification of the largest
coefficient [15]. The present renormalization offers several advantages. We have the following
important result.

Proposition 1
Let �h be the solution of (13). Then, we have the discrete energy conservation property

ng∑
l=1

�lSl �hl = 0 (14)

Furthermore, if the temperature Th is constant over �m, we have �h = 0.

Proof
Introduce the vectors U and W ∈ Rng with components U = (1, . . . , 1) and W = (�1S1, . . . ,

�ngSng). Then, one readily sees that

GU = U and GtW = W

where Gt denotes the transpose of G. The first property directly results from the renormalization
(12). To prove the second property, we observe that axial symmetry implies that for all pairs
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of points (ai, aj ) located on �m, we have faxi(ai, aj ) = faxi(aj , ai). As a result, we infer

(GT W)i =
ng∑

j=1
Fji�j =

ng∑
j=1

faxi(aj , ai)�i�j

=
ng∑

j=1
faxi(ai, aj )�i�j = �iSi = Wi

Multiplying (13) by W on the left, we readily deduce that W · �h = 0, thus proving (14). To
prove the second assertion, assume that the temperature is constant over �m. This implies that
b ∈ RU . As a result, the rhs of (13) vanishes and therefore �h = 0. �

Another advantage of renormalization (13) is that it yields, under some assumptions, the
existence of a solution to the discrete problem (see Appendix A.)

3.3. Numerical evaluation of the view matrix

The numerical evaluation of view factors in axisymmetric geometries has been addressed in
previous work; see, for instance References [22–24]. Let x and y be two points in the (r, z)

plane with co-ordinates (rx, zx) and (ry, zy). Let my(	) be the point in the physical three-
dimensional space obtained by rotating y around the symmetry axis with the angle 	 (see
Figure 3.) To evaluate the function faxi(x, y) we need to determine the set of angles 	 such
that my(	) sees x. For symmetry reasons, it is sufficient to consider 	 ∈ [0, �]. Following
[22], any point along the ray linking points x and my(	) can be rotated back to the (r, z)

plane. This operation maps the original straight ray in the three-dimensional physical space
into a curved hyperbolic ray in the (r, z) plane. The curved ray, denoted by R	, is
parametrized by

t ∈ [0, 1] �→


√

t2r2
x + (1 − t2)r2

y + 2t (1 − t)rxry cos 	

tzx + (1 − t)zy




In axisymmetric configurations, the meridian section of the cavity is simply-connected. As a
result, the set of 	 ∈ [0, �] such that R	 lies inside the cavity enclosed by �m is connex (see
Figure 4.) Denoting by [	min, 	max] the maximal subset of [0, �] such that ∀	 ∈ [	min, 	max],
R	 lies inside the cavity, we have

faxi(x, y) = 2
∫ 	max

	min

V(x, my(	)) d	 (15)

Surprisingly, the connexity of the bracketing interval [	min, 	max] seems to be ignored in
previous work.

The numerical evaluation of faxi is based on a ray-search method involving three steps:

• bracketing: a uniform sampling of the interval [0, �] yields an initial bracketing of the
interval [	min, 	max];
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Figure 4. Curved rays in (r, z) plane and the determination of angles 	min and 	max.

• local refinement: a sharp determination of 	min and 	max is obtained by a bisection method;
• numerical quadrature: faxi as given by (15) is evaluated using Romberg’s quadrature.

High accuracy is achieved since V(x, y) is smooth over the integration interval.

Each curved ray considered in the above algorithm is discretized by a finite number of segments
whose length is evaluated adaptively as a function of the local mesh triangle that the ray is
currently crossing. Several parameters control the numerical performance of the ray-search
method achieving a compromise between accuracy and computational cost. This issue will be
further investigated in the test cases presented in Section 4.

3.4. Fixed-point and Newton iteration

The above approximation methods lead to a system of nonlinear equations

LA(Ah, Th) = 0

LT (Ah, Th) = 0

with obvious notation. The thermomagnetic coupling is handled with fixed-point iterations.
Given a discrete temperature field T n

h , we first obtain the magnetic potential from LA(An+1
h , T n

h )

= 0 and then update the temperature field from LT (An+1
h , T n+1

h ) = 0. Clearly, if the phys-
ical properties do not depend on the temperature, the fixed-point method converges in one
iteration.

The first step in the fixed-point method amounts to solve a linear system. To this end, we
use the GMRes algorithm with an ILU preconditioner [25]. The temperature update requires the
solution of a nonlinear system of equations. We consider a damped Newton iteration in which
the Jacobian matrix is evaluated numerically using divided differences. Nonlocal couplings due
to radiant energy transfer are fully accounted for in the compressed structure of the Jacobian
matrix. At each Newton step, the linear system is solved approximately using the GMRes
algorithm with an ILU preconditioner.
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4. NUMERICAL RESULTS

In this section we present numerical results obtained on three test cases of increasing difficulty.

• Test case 1 consists of a simplified geometric configuration with radiant energy transfer
occurring in a single convex cavity. Electric conductivities are temperature-independent,
thus uncoupling the magnetic potential from the temperature. This test case has been
chosen because previous numerical results are available for comparison;

• Test case 2 is the same as test case 1 except that the radiant cavity is now non-convex.
The numerical methods used in the approximation of radiant energy transfer are assessed
here;

• Test case 3 is a prototype for an industrial growth reactor containing 5 radiant cavities,
3 of which are non-convex.

Thermo-physical properties for all the test cases are collected in Appendix B.

4.1. Test case 1: convex cavity

The model growth reactor is depicted in Figure 1 except that the induction coils are globally
modeled as a rectangular section 0.5 cm wide and 12 cm high. The growth cavity is 2 cm wide
and 5 cm high. The thickness of the graphite crucible is 1 cm while that of the insulating foam
is 2 cm at its top and bottom and 1 cm laterally. The frequency of the eddy currents is 50 kHz.
Two values are considered for the current density: Jd = 3.128 × 106 Am−2 (test case 1a) and
Jd = 4.716 × 106 Am−2 (test case 1b.) The first choice corresponds to Joule losses of 3 kW
in the three conducting materials while the second to Joule losses of 3 kW in the graphite.
Ambient air temperature is set to T∞ = 573 K. The temperature is Td = T∞ at the basis of
the insulating foam and (7) is imposed elsewhere with the empirical coefficient � set to zero.

We consider four triangulations characterized by an average mesh size h and the truncation
radius R (both measured in cm.) All the meshes are isotropic, quasi-Delaunay triangulations.
The mesh size at the truncation radius is always set to 5% of R. The maximal value of the
Joule dissipation and temperature is presented in Table I. No significant difference is observed
among the four calculations showing that the meshes are adequately refined and that the

Table I. Maximal value of Joule dissipation (MW m−3) and temperature (K) for test
cases 1a and 1b on four different meshes.

Mesh Test case 1a Test case 1b

h R np % in air Joule losses Temperature Joule losses Temperature

0.2 60 8459 82 27.61 2459.6 62.75 3291.2
0.1 60 20301 69 27.93 2461.9 63.50 3296.2
0.2 100 10376 85 27.65 2462.3 62.85 3295.3
0.1 100 24115 74 27.98 2464.4 63.59 3300.2

CSC (error in %) 0.9 0.05 0.7 0.1
LTPCM (error in %) 1.0 0.3 1.3 1.2

h and R are given in cm; np denotes the number of mesh nodes; the fourth column
(entitled % in air) gives the percentage of mesh nodes located in the air; the last two
lines provide a comparison with previous numerical results [26, 27].
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Figure 5. Test case 1a: contours for real part of magnetic potential (left) and temperature (right).

truncation radius R is large enough. A comparison between the results obtained on the finest
mesh (h = 0.1, R = 100) and previous numerical results [26, 27] shows excellent agreement.
As a further illustration, Figure 5 presents contours for the real part of the magnetic potential
and the temperature for test case 1a. Figure 6 presents the flux �h along the meridian �m for
test cases 1a and 1b. Note the flux discontinuity at the powder/graphite interface where the
emissivity is discontinuous.

We next investigate the impact of view matrix renormalization on numerical results. To this
end, two series of calculations are performed, the first one with renormalization and the second
one without. For each series, three meshes are considered: the (h = 0.2, R = 60) mesh, the
(h = 0.1, R = 60) mesh, and the (h = 0.1, R = 60) mesh with local refinement near the cavity
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Figure 6. Radiative flux along meridian �m as a function of curvilinear abscissa starting at the
cavity/powder interface at the symmetry axis. Test cases 1a (left) and 1b (right.)

Table II. Test case 1a: maximum temperature (K) on
three different meshes with and without normalization

of the view matrix.

Mesh parameters With Without

h = 0.2, R = 60 2459.6 2553.8
h = 0.1, R = 60 2461.9 2504.6
h = 0.1, R = 60 + corner ref. 2461.8 2472.1

corners (h = 0.025.) Maximum temperatures are reported in Table II while the temperature
distribution as a function of the curvilinear abscissa along �m is reported in Figure 7. We
observe that without renormalization the numerical results are extremely sensitive to mesh
refinement and that they converge towards the values obtained with renormalization as the
mesh is refined near the corners where singularities arise. The flux �h is presented in Figure 8
as a function of the curvilinear abscissa for the six calculations. Without normalization, the flux
exhibits a singularity at the two convex corners. This singularity disappears with normalization.

To further assess the convergence properties of the proposed method, we perform convergence
tests with respect to the mesh size on test case 1a. We consider a reference solution obtained on
a refined mesh (h = 0.05, R = 60, and h = 0.0125 at the corners of the radiant cavity.) For this
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Figure 7. Test case 1a: temperature distribution along the cavity as a function of curvilinear abscissa.
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Figure 8. Test case 1a. Left: radiative flux as a function of curvilinear
abscissa s. Right: zoom for 0.03 � s � 0.06.

calculation, the view factors are renormalized according to (12). We then make five calculations
on meshes whose mesh size is 2×, 3×, 4×, 6×, and 8× that of the reference mesh. For each
computation we measure the error on the temperature field in the L2- and L∞-norms. The
results are reported in the left panel of Figure 9. It is clear that, as expected, the method is
second-order accurate in the L2-norm and first-order accurate in the L∞-norm. To assess the
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Figure 9. P1 approximation of the flux. Left: normalized view factor matrix.
Right: non-normalized view factor matrix.

impact of the renormalization strategy, we redo the same calculations without renormalizing
the view factors, the reference calculation being unchanged. The results are shown in the
right panel of Figure 5. This test shows, without any doubt, that if the view factors are not
properly renormalized, the method is only first-order accurate on the temperature in the L2-norm
(Figure 9).

4.2. Test case 2: non-convex cavity

Test case 2 is a modified version of test case 1 in which a graphite screen is introduced inside
the cavity so that the cavity is no longer convex. The temperature distribution is presented in
Figure 10.

As for test case 1, we investigate the impact of the view matrix normalization on solution
quality. Temperature distribution along the curvilinear abscissa and peak temperatures are re-
ported in Figure 11 and Table III, respectively. The radiative flux along the curvilinear abscissa
is presented in Figure 12. The conclusions drawn from test case 1 are confirmed: without
normalization we observe a high sensitivity to mesh refinement, a singularity of the radia-
tive flux near the convex corners (4 in total), and a non-singular but inaccurate temperature
profile.

As a further investigation of the view matrix normalization, we present in Figure 13 the
quantities |1 − Sl | as a function of curvilinear abscissa. The four singular convex corners are
clearly visible. Zooms around convex corners clearly confirm that Sl does not converge to unity
for the Gauss points located next to those corners. Zooms near the screen tip corners confirm
that no singular behavior is obtained. The large variations of 	min and 	max in this region
are responsible for the deviation of Sl from unity. The deviation converges to zero almost
quadratically when the mesh is refined.
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Figure 10. Test case 2: isotherms. Left: whole domain, 550 K � T � 2500, �T = 40 K. Right: zoom
around the screen tip, 2350 K � T � 2500, �T = 5 K.

The tradeoff between cost and accuracy in the numerical evaluation of the view matrix is
controlled by three numerical parameters:

• nray: the maximum number of rays in the bracketing step (see Section 3.3.) Small val-
ues of nray save computational time but may cause the search algorithm to miss small
obstacles;

• �	: the accuracy of the bisection method for determining 	min and 	max;
• �: relative step size along ray between obstacle checks; values close to unity correspond

to step sizes of the order of the local mesh size and may cross small obstacles.

Let n1 denote the total number of rays considered in the bracketing step and n2 the total
number of rays considered in the local refinement step. Set ntot = n1 + n2. Then the total cost
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Figure 11. Test case 2: temperature distribution along the cavity as a function of curvilinear abscissa.

Table III. Test case 2: maximum temperature (K) on
three different meshes with and without normalization

of the view matrix.

Mesh parameters With Without

h = 0.2, R = 100 2491.4 2730.3
h = 0.1, R = 100 2492.1 2589.9
h = 0.1, R = 100 + corner ref. 2492.6 2513.9

scales as ntot/�. We consider the speedups

S1 = nray n2
g

n1
, S2 = �/�	 n2

g

ntot

S1 represents the speedup achieved using the connexity of the integration interval with respect
to an approach where the whole interval [0, �] is spanned regardless of the fact that a view
interval [	min, 	max] has already been found. S2 represents the overall speedup with respect
to a discretization of the whole interval [0, �] achieving the same accuracy to determine the
blocking angles 	min and 	max. The speedups S1 and S2 are reported in Table IV for various
numerical strategies on the (h = 0.1, R = 100) mesh where n2

g = 57 600. The parameter � is
set to 0.1 in all calculations. The connexity speedup S1 indicates that a significant amount of
computation is saved by first bracketing the interval [	min, 	max]. The second speedup illustrates
the advantage of local refinement when high accuracy is required.
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Figure 12. Test case 2. Left: radiative flux as a function of curvilinear abscissa s.
Right: zoom for 0.03 � s � 0.08.
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Figure 13. Error in view matrix normalization as a function of curvilinear abscissa observed on three
different meshes. Left: global representation. Center: zoom around the bottom corner 0.015 � s � 0.025.

Right: zoom around the screen tip, 0.072 � s � 0.082.

Table IV. Test case 2: speedups S1 and S2 for
various numerical strategies in evaluating the view

factor matrix.

Numerical parameters Speedups

nray �	 S1 S2

10 10−2 1.34 39
10 10−4 1.34 3318
100 10−4 1.67 506
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Figure 14. Schematics of an industrial prototype reactor (not in scale); 1: lower pyrometric hole,
2: graphite lid, 3: insulating foam, 4: water-cooled quartz tube, 5: graphite crucible, 6: first SiC
powder reservoir, 7: graphite ring, 8: second SiC powder reservoir, 9: primary argon cavity where
growth occurs, 10: second argon cavity, 11: SiC seed, 12: third argon cavity, 13: upper pyrometric

hole, 14: induction coils, 15: ambient air.

4.3. Test case 3: industrial growth reactor

As an illustration for industrial applications, we finally consider the crystal growth reactor
presented in Figure 14. The computational domain consists of 15 subdomains of which 5 are
radiant cavities: the 2 pyrometric holes (which are convex) and the 3 argon cavities (which
are non-convex). The magnetic domain has been truncated at 8.3 times the outer radius of
the quartz tube. Eddy currents are imposed at an angular velocity of � = 105 rad/s and a
current density of Jd = 1.65 × 106 Am−2 yielding a total Joule dissipation in the crucible of
9.86 kW. On the outer boundary of the quartz tube, the temperature is set to Td = 300 K while
a homogeneous Neumann condition is imposed at the bottom and top of the quartz tube. On
the boundaries corresponding to the insulating foam and the graphite lid, (7) is used with the
empirical coefficient � set to 10 and an ambient air temperature of T∞ = 300K. The lower and
upper pyrometric holes are open radiating cavities which are modeled by adding an artificial
boundary at temperature T∞.

Numerical results are presented in Figure 15. The mesh size is around h = 0.3 cm in
most parts of the reactor descending down to 0.03 cm in the SiC seed. Temperature peaks in
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Figure 15. Prototype for an industrial growth reactor: isopleths for real part of magnetic potential
(left), isotherms for the whole reactor (middle) and zoom around crystal seed (right.)

the graphite crucible close to the SiC powder reservoirs. We also note that a fairly vertical
temperature gradient is achieved inside the primary argon cavity, confirming the quality of the
prototype design. For these type of problems, 5 fixed-point iterations are required to handle the
thermomagnetic coupling and less than 10 Newton iterations to cope with the nonlinearities in
radiant energy transfer. Finally, we point out that for this problem, peak temperatures would
be up to 400 K higher if the view matrix was not normalized. This numerical evidence further
supports the theoretical importance of renormalization.

5. CONCLUSIONS

We have investigated a thermomagnetic problem with radiant energy transfer arising in crystal
growth reactors. The governing equations consist of two partial differential equations coupled
with a non-linear integral equation. The numerical methodology derived in this paper relies on a
conformal finite element approximation to the partial differential equations and a discontinuous
Galerkin approximation to the integral equation. The key point is to introduce a renormalization
of the view factor matrix to cope with singularities at Gauss nodes near convex corners and
to recover optimal convergence rates for the temperature over the whole domain. Furthermore,
computational costs related to the evaluation of the view factor matrix are reduced by using a
local refinement strategy in the azimuthal direction around blocking obstacles and an adaptive
ray-search method. The present methodology allows for an accurate and robust evaluation of
the temperature field around the crystal seed and is now ready to be embedded in more
comprehensive models of the growth process accounting for multicomponent mass transfer in
the gas phase, surface reactivity at the moving gas/crystal interface, and defect incorporation
due to thermal stresses.
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APPENDIX A: A DISCRETE EXISTENCE RESULT

Proposition 2
Assume that the discrete flux �h is given by (13). Assume that the emissivity is constant and that
the thermal conductivity is such that k(T ) � k0 > 0. Then there exists a solution to the discrete
problem (9) if the surface integral

∫
�m

�h(Th) �h r dl is evaluated as
∑ng

l=1 Wl�h(al)�h(al)

with Wl = �lSl .

Proof
Let U = (1, . . . , 1) and W = (W1, . . . , Wng) with Wl = �lSl and recall from the proof of
Proposition 1 that GU = U and GtW = W . For two vectors u, v ∈ Rng , set (u, v)W =∑ng

l=1 Wlulvl .
(1) Introduce the discrete norms ‖v‖�p = (

∑ng
l=1Wl |vl |p)1/p, 1 �p �∞, and use a similar

notation for the matrix norm. For u ∈ Rng , we have

‖Gu‖p
�p =

ng∑
l=1

Wl

∣∣∣∣∣
ng∑

l′=1
Gll′ul′

∣∣∣∣∣
p

�
ng∑
l=1

Wl

(
ng∑

l′=1
Gll′

)p−1
ng∑

l′=1
Gll′ |ul′ |p

owing to Hölder’s inequality and the fact that all the coefficients of the matrix G are positive.
Since GU = U and GtW = W , we readily deduce from the above inequality that

‖Gu‖p
�p �

ng∑
l,l′=1

WlGll′ |ul′ |p = ‖u‖p
�p

We have thus established that

‖G‖�p � 1 (A1)

(2) Let us now prove that (�h, Th)W � 0. Assume first that � = 1. We then have �h = (I −G)b,
yielding

1

�
(�h, Th)W =

ng∑
l=1

Wl |Th(al)|5 −
ng∑
l=1

Wl(Gb)lTh(al)

� ‖Th‖5
�5 − ‖Th‖�5‖Gb‖�5/4

� ‖Th‖5
�5 − ‖Th‖�5‖G‖�5/4‖b‖�5/4

� (1 − ‖G‖�5/4)‖Th‖5
�5 � 0
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owing to (A1). In the case where � is a constant less than one, we write (13) in the form

E−1�h − G(I − E)E−1�h = (I − G)b

with E = diag(�). This yields

(I − G(I − E))(E−1�h − b) = −GEb

which is readily recast into the form

�h = Eb − EAb (A2)

with A = G(I − (I −E)G)−1E. Since � is constant, we readily infer that ‖(I − (I −E)G)−1‖�5/4

� 1/�. As a result, we have ‖A‖�5/4 � 1. To establish that (�h, Th)W � 0, we proceed as in the
case � = 1: we use (A2) together with ‖A‖�5/4 � 1.

(3) Having established that (�h, Th)W � 0, we deduce an a priori H 1-estimate of the solution
Th by multiplying (9) by Th and using the coercivity of

∫
�T k(Th)∇Th · ∇�h r dr dz (actually,

the discrete form using numerical quadratures.) The existence of a solution to (9) then follows
from classical techniques using Brouwer’s fixed-point theorem. �

APPENDIX B: THERMO-PHYSICAL PROPERTIES

This appendix collects the thermo-physical properties used in the test cases. The magnetic
permeability is always that of vacuum, � = 4� × 10−7 H/m.

• Test cases 1 and 2. Electric conductivities are 2×104 in the graphite enclosure, 2×103 in
the insulating foam, and 1×104 in the powder (units of �−1 m−1.) Thermal conductivities
are set to 10 for the graphite crucible, 1 for the insulating foam, 25 for the powder, and
0.01 for the growth cavity (units of Wm−1 K−1.) Emissivities are 0.7 for the crucible,
0.9 for the foam, and 0.5 for the powder.

• Test case 3. Electric conductivities are temperature-dependent functions. They are given
by

7 × 104

3.5 × 10−4T + 0.375 + 144.7
T

in the graphite crucible,

400

3.5 × 10−4T + 0.375 + 144.7
T

in the insulating foam, and 770 in the SiC powder and seed (units of �−1 m−1, T

given in Celsius) [4]. The thermal conductivity is also temperature-dependent and given
by 120/(1 + 2 × 10−3T ) in the graphite crucible, 0.17 × 10−6T 2 + 0.08 in the insulating
foam, 0.51×10−2 +0.454×10−4T −0.944×10−8T 2 in the argon cavities, 2 in the quartz
and SiC powder, and 10 in the SiC seed (units of Wm−1 K−1, T given in Celsius.) The
emissivities of radiating materials are set to 0.9.
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15. Kadinski L, Perić M. Numerical study of grey-body surface radiation coupled with fluid flow for general

geometries using a finite volume multigrid solver. International Journal for Numerical Methods in Fluid
Flow 1996; 6:3–18.

16. Monnier J, Vila JP. Convective and radiative thermal transfer with multiple reflections. Analysis and
approximation by a finite element method. Mathematical Models and Methods in the Applied Sciences
2001; 11(2):229–262.

17. Perret C, Witomski P. Equation de la chaleur et réflections multiples. Annales de l’Institut Henri Poincaré
1991; 8(6):677–689.

18. Tiihonen T. A nonlocal problem arising from heat radiation on non-convex surfaces. European Journal of
Applied Mathematics 1997; 8:403–416.

19. Tiihonen T. Stefan-Boltzmann radiation on non-convex surfaces. Mathematical Methods in the Applied Sciences
1997; 20:47–57.
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