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Under fairly general assumptions, this paper shows that for periodic porous media,
whose period is of the same order as that of the inclusion, the nonlinear correction
to Darcy’s law is quadratic in terms of the Reynolds number, i.e. cubic with respect
to the seepage velocity. This claim is substantiated by reinspection of well-known
experimental results, a mathematical proof (restricted to periodic porous media), and
numerical calculations.

1. Introduction
The most popular filtration experiment is due to Darcy (1856). The result referred

to as Darcy’s law is that the flow rate of water through a filter bed is directly
proportional to the area of the filter bed and to the pressure drop in the fluid and
inversely proportional to the thickness of the bed, i.e. the seepage velocity is directly
proportional to the pressure gradient, and this relation is usually written in the form

− 1

µ
K0 · ∇p = u. (1.1)

This law is now very well understood, and can be rigorously proven by means of the
homogenization theory, either in the two-scale form developed by Sanchez-Palencia
(1980) or by using the energy technique pioneered by Tartar (1980).

Many years after Darcy’s historical experiment, other researchers found that some
deviation from the above-mentioned proportionality law occurs as the seepage velocity
increases. After Reynolds’ landmark experiment and his unveiling of the nonlinear
effects on fluid flows, it became clear that the relevant parameter in Darcy’s experiment
is not the seepage velocity but the Reynolds number that is based on it, and that the
deviation from Darcy’s law is induced by inertia effects.

Usually the flow through the porous medium is driven by a macroscopic pressure
gradient ∆P/L, where L is a macroscopic length scale. Inspection of the Stokes
equations that control the flow between the grains of the porous medium gives
the velocity scale: a2∆P/µL, where a is a measure of the grain size or of the
distance between the grains, or of any other length scale which is characteristic of the
microscopic geometry, and µ is the dynamic viscosity. Note that this scaling of the
velocity is correct only if the size of the grain is of order a, for a Poincaré inequality
is involved as shown in Tartar (1980) or Allaire (1989). The microscopic (or local)
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Reynolds number is defined as

Re =
∆Pa3ρ

Lµ2
. (1.2)

Adopting ∆P/L and a2∆P/µL as characteristic scales for the pressure gradient and
the velocity and using u, p as scaled variables, one way of representing the nonlinear
effects in dimensionless form is to assume some polynomial form

− K0 · ∇p = u+ Ref(u, u) + R2
e g(u, u, u) + . . . , (1.3)

where K0 is a second-order tensor and f, g are bilinear and trilinear functions,
respectively. The relation V = a2∆P/µL, inspired by the homogenization theory, is
not universally adopted; one may pick V as a known scale and choose ∆P = ρV 2.
Then, setting u = Vu, using ∇̃p as the pressure gradient scaled by ρV 2/L, and defining
Re = Va/ν, (1.3) gives

− ReK̃0 · ∇̃p = u+ Ref(u, u) + R2
e g(u, u, u) + . . . . (1.4)

In dimensional form, (1.3) and (1.4) give

− 1

µ
K0 · ∇p = u+

1

ν
f(u, u) +

1

ν2
g(u, u, u) + . . . , (1.5)

where the tensor K0 and the functions f and g are given by

K0 = a2K0 = aLK̃0, f = af, g = a2g. (1.6)

The question of the exact form and magnitude of the nonlinear effects has been
raised by Forchheimer (1901) and up to now does not seem to have received a
commonly accepted answer. A review of several ad hoc models proposed to account
for the nonlinear deviations can be found in Muskat (1946, pp. 57–69). Without
“entering into an attempt to explain the possible discrepancy between” the many
models, this author suggests that a possibly convenient way of looking at this
problem is to represent the quantity Re∆P/ρV

2 as a function of the number VL/ν.
This type of representation seems to have been introduced by Lindquist (1930). In
this representation (cf. figure 1) Muskat distinguishes three zones. The first is called
the Darcy zone, where deviations are small and Darcy’s law is an acceptable model;
according to Muskat (1946, p. 67), the upper limit of this zone is uncertain and depends
on the choices of the scales on which the Reynolds number is built. The third zone
corresponds to high-Reynolds-number flows. In this zone the nonlinear effects are
dominant, and the experiments of Lindquist (1930) suggest that the deviation from
Darcy’s law is linear with respect to the Reynolds number (or quadratic in terms of the
seepage velocity). The second zone is the transition zone between the two others. As
suggested by Muskat (1946), part of the confusion raised around this problem comes
from the desire of investigators to either unify the three zones into a single formula
and/or to give predominance to the third zone. In this respect the experiments of
Lindquist (1930) are very representative. This series of experiments have been carried
out on beds of carefully calibrated lead balls. The range of Reynolds numbers that
have been explored is 0 < Re 6 180 (other authors have reached Re ≈ 1000); within
this range, the so-called Darcy zone, extending from 0 6 Re 6 4, is of negligible
extent and the quantity Re∆P/ρV

2 is accurately approximated by the relation a+bRe
over the range 0 < Re 6 180. This conclusion, however, omits the fact that the
Reynolds numbers considered are out of the range of most practical applications, as
said in Muskat (1946, p. 67), “While very high rates of flow in exceptional cases of
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Figure 1. Muskat’s model of flow regimes in porous media is composed of three zones.
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Figure 2. Present model of nonlinear deviations from Darcy’s law: in the asymptotic zone Re → 0,
the deviation is quadratic in general (one-dimensional flows or a reversibility hypothesis is satisfied).

practical flow systems will undoubtedly correspond to Reynolds numbers appreciably
exceeding 1, it is unlikely that the [Reynolds number based on] macroscopic velocities
in actual flow systems carrying liquids will frequently exceed that [value]”. Indeed,
the most frequent practical applications (for either gas or liquids) involve Reynolds
numbers of order 1 or less. The purpose of this paper is to show that the Darcy zone
and the transition zone emphasized by Muskat merge into one unique zone, which
corresponds to the asymptotic behaviour Re → 0, and in this zone the first correction
term in (1.3) is zero in general: i.e. f = 0, as represented in figure 2.

The asymptotic character of this problem has been recognized recently and has
led to some interesting results. For instance, it is now clear that for one-dimensional
flows, the incompressibility is responsible for the vanishing of the first correction
term, i.e. f = 0 as Re → 0; a proof of this property can be found in §3, or in
Mei & Auriault (1991) and Wodie & Levy (1991). Experiments together with numer-
ical simulations of one-dimensional flows are reported in Rasoloarijaona & Auri-
ault (1994). For the multi-dimensional case we refer to Mei & Auriault (1991) and
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Wodie & Levy (1991), where a thorough analysis of the nonlinear corrections is made
by using the two-scale asymptotic technique. It is reported in these two references
that the first nonlinear correction is zero if the porous medium is isotropic; further-
more, both references give a constructive method to compute the coefficients of the
second-order correction to Darcy’s law.

The main objective of this paper is to show that in many cases the first correction
term is zero, i.e. f = 0, as the Reynolds number vanishes, and that the isotropy
hypothesis, though sufficient, is not necessary to reach this conclusion. Our reasoning
is threefold. First, in §2 we review a series of filtration experiments that have been
performed by Darcy (1856), Hazen (1895), and Chauveteau (1965). By using proper
scalings and restricting our investigation in the limit of vanishing Reynolds numbers,
we discover that, for the filtration experiments we have analysed, the first nonlinear
correction is zero up to the experimental errors. Second, in §3 we carry out a theoretical
investigation. By assuming a reversibility hypothesis that we call (H), we prove (by
the energy technique) that the first nonlinear correction is zero in unbounded periodic
porous media. The hypothesis (H) means that, for a filtration experiment, if the
pressure gradient is reversed, the seepage velocity should also be reversed with no
change in modulus. The result of the experiment (i.e. the flow rate) may depend on
the direction of the pressure gradient but not on its sign. In particular, hypothesis
(H) is satisfied exactly if the microscopic cell is invariant by a reflection about one
of its points. Finally, in §4 we perform numerical experiments to illustrate and test
hypothesis (H). These simulations confirm our theoretical results and indicate that
hypothesis (H) is satisfied in general even if the microscopic cell has no symmetry.
However, for a counterexample for which (H) is not numerically satisfied, we show
that the nonlinear correction is linear with respect to the Reynolds number. Hence,
(H) being sufficient, seems also (numerically) to be necessary.

2. Experimental clues
In this section we give a brief historical overview of some landmark experiments and

review some models that have been inferred from them. We show that some ambiguity
(arbitrary choice) in the definition of the Reynolds number may have marred the
interpretation of the experiments in question, and propose a normalization process of
the data that is free of arbitrariness. In the light of the proposed normalization, we
show that Darcy’s own experiments contain a nonlinear deviation from his famous
law, which is nearly quadratic in the Reynolds number. Furthermore, by applying
our normalization procedure, we show that the experiments of Hazen (1895) contain
a quadratic deviation to Darcy’s law in the limit of vanishing Reynolds numbers in
disagreement with the claim by Forchheimer (1901). Our analysis also reveals that
the same quadratic deviation is present in experiments by Chauveteau (1965).

2.1. Ambiguity in the Reynolds number and normalization

We emphasize here, like Muskat (1946, p. 66), that there is “an inherent ambiguity
in the definition of the quantities entering in the Reynolds number,” which lies in
the many possible choices of the macroscopic length scale, the pressure drop, and the
microscopic length scale. These arbitrary choices introduce a numerical factor in the
definition of the Reynolds number. From a theoretical point of view, this ambiguity
is without importance since the product of any dimensionless variable and its scale
remains constant, and the asymptotic analysis (i.e. Re → 0) is independent of any
possible numerical factor in the Reynolds number. However, in interpreting numerical
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experiments that have a limited accuracy, the ambiguity is important. For instance,
assume that we want to test the following one-dimensional nonlinear filtration law:

−1

µ
K0 · ∇p = u+ α

a

ν
|u|2 + β

a2

ν2
|u|2u+ ...

and that we can choose between two definitions of the Reynolds number, say Re and

R′e. Let us for each case denote by (α, β) and (α′, β
′
) the coefficients of the nonlinear

effects in the relation above. They are linked by the relations

α

α′
=
R′e
Re
,

β

β
′ =

R′2e
R2
e

.

One measure of the relative importance of the first- and second-order correction
terms is the ratio α/β, which depends on the definition of the Reynolds number, since

α′

β
′ =

α

β

R′e
Re
.

Assume, for instance, that Re/R
′
e is equal to 1/10; if in the first case α = β, the

linear and bilinear corrections are of the same order, whereas in the second case
(with exactly the same experimental data) the linear correction is ten times the
bilinear one. Of course, the risks of misinterpretations are increased if instead of
using dimensionless quantities one uses physical data (i.e. dimension dependent) as
was done by Forchheimer (1901).

In order to avoid this ambiguity, we propose the following normalization procedure.
Since we are interested in measuring the relative effects of some phenomenon on some
range of Reynolds number, say 0 6 Re 6 Re,max, we choose Re,max as a new reference
by introducing the new variable

x =
Re

Re,max
. (2.1)

Furthermore, since we are interested in the deviation from Darcy’s law, we should
consider the magnitude of (u+ K0 · ∇p)/|u|. In order to compare only dimensionless
numbers, we introduce the variable y = (y1, . . . , yn), where n is the space dimension
(n = 2 or 3):

yi =
1 + (K0 · ∇p)i/µui

1 + (K0 · ∇pi,max)/µui,max
, (2.2)

where the subscript max refers to the value measured at Re,max. With this new definition
we have

yi = aix+ bix
2 + cix

3 + ...

with ai + bi + ci + ... = 1. Of course, this rescaling makes sense only if the deviation
is experimentally significant. If the experimental data are on the line y = x, it means
that the deviation is linear, whereas if the data collapse on the parabola y = x2, the
deviation is quadratic and the contribution of the linear term is zero. The nonlinear
deviation will be zero within some range of Reynolds numbers if the data are on the
line y = 0.

2.2. Darcy’s experiment

In this subsection we reinterpret Darcy’s experiments in the light of the renormal-
ization process introduced above. Darcy’s experiments were carried out on a column
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Average Ratio between
Experiment Duration flow rate Pressure drop flow rate and

number (min) (l min−1) (m of H2O) pressure drop Comments

1 25 3.60 1.11 3.25 Sand was not washed
2 20 7.65 2.36 3.24
3 15 12.00 4.00 3.00
4 18 14.28 4.90 2.91 Only small oscillations

5 17 15.20 5.02 3.03 in the pressure column
6 17 21.80 7.63 2.86
7 11 23.41 8.13 2.88 Sizable oscillations

}
8 15 24.50 8.58 2.85
9 13 27.80 9.86 2.82 Strong oscillations

}
10 10 29.40 10.89 2.70

Table 1. Data from Darcy’s experiment
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Figure 3. Pressure gradient versus flow rate for Darcy’s experiment. Experimental data (symbols),
linear least-square fit (dashed line), physically coherent Darcy model (solid line).

with diameter and height 0.35 m and 3.5 m, respectively. Darcy also reported five
experiments in his book; three heights of sand bed have been tested: 0.58 m, 1.14 m,
and 1.70 m. The most complete experiment is that with the 0.58 m sand bed. His data
are collected in table 1. In figure 3, the pressure gradient (i.e. ratio of the pressure
drop to the bed height) is plotted as a function of the flow rate (symbols); the
dashed line is a linear fit of the experimental data by the least-square approximation
−∇p = −0.745773 + 0.640324q. Note that this fit yields a negative pressure gradient
when the flow rate is zero; hence, besides possible experimental errors, the linear
fit may not be satisfactory. In order to build a physically acceptable fit that passes
through the origin, we assume that Darcy’s law is valid in the range of vanishing
flow rates. The solid line in figure 3 represents Darcy’s law obtained under this hy-
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Figure 4. Deviation of Darcy’s data from Darcy’s law. Experimental data (symbols), linear
deviation (dashed line), quadratic deviation (solid line).

pothesis; it passes through the origin and the first two data points. We see that as
the flow rate increases, the experimental data tend to deviate from the linear relation,
implying a deviation from Darcy’s law. Actually, though Darcy recognized in a first
approximation a linear relation between the flow rate and the pressure drop, he was
also well aware of deviations and tried to ascribe their origin to some experimental
flaws (Darcy 1856, pp. 592–593).

In order to illustrate the normalization process described in the subsection above,
we apply it to Darcy’s experiments. In figure 4, the normalized deviation (difference
between the data and the solid line in figure 3) is plotted. In this figure, Darcy’s law
only applies to the first point (indeed, we made it an assumption) and the second
point. As a whole, the experiments show a coherent deviation from Darcy’s law.
If we dismiss data points 3 and 4, which may be plagued by experimental errors,
the deviation is well represented by the parabola x2, which in turn would suggest a
quadratic deviation from Darcy’s law. However, there are not enough data to test the
coherence of points 3 and 4; one can only conclude that Darcy’s own experiments
contained some nonlinear deviation from his law.

2.3. Forchheimer’s analysis

In two articles on the nonlinear deviations from Darcy’s law, Forchheimer (1901)
proposes three ad hoc formulae:

α = av + bv2, α = mvn, and α = av + bv2 + cv3,

where α is the ratio of the pressure drop (measured in height of water) to the thickness
of the sand bed and v is the seepage velocity (measured in metres per day). Here, we
emphasize that although Forchheimer’s analysis may be of some engineering value, no
physical conclusion can reasonably be drawn from it by comparing the relative value
of coefficients a, b, and c, for it uses the dimensional quantity v. This problem has far
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Experiment number
III IV V VI

Sand diameter (mm)
0.75 0.90 0.90 1.35

α× 102 Seepage velocity (m/day)

0.05 20 30 50 80
0.10 41 58 100 148
0.20 78 110 190 275
0.40 150 208 350 480
0.60 207 275 450 620
0.80 252 340 530 720
1.0 300 385 610 830
1.5 378 480 760 1030
2.0 467 580 890 1180
3.0 615 750 1110 1450
5.0 885 1060 1490

10.0 1310 1550

Table 2. Hazen’s data

more consequences than the ambiguity in the definition of the Reynolds number we
have addressed above.

Forchheimer has analysed the data from experiments performed by other authors
such as Hazen (1895). In order to illustrate that Forchheimer’s analysis may have
been blurred by not using proper dimensionless variables and not working in the
asymptotic range Re → 0, we hereafter apply our normalization procedure to four
experiments of Hazen and show that, in the range of vanishing Reynolds numbers,
the deviation from Darcy’s law is indeed quadratic (in the dimensionless form (1.3)).
Hereafter we concentrate on Hazen’s experiments, referred to by Forchheimer as
III, IV, V, and VI, which correspond to filtration experiments on consolidated sand
beds with sand grains of mean diameter 0.75, 0.90, 0.90 and 1.35 mm, respectively.
The data are reported in table 2. For each experiment, the approximate maximum
Reynolds number reported is 9.0, 13.5, 12.9, and 18.9, respectively. The normalized
representation of these data is plotted in figure 5; for each experiment we have chosen,
respectively, Re,max = 2.6, 4.2, 6.6, and 15.4 (in m/day the corresponding velocities are
378, 480, 760, and 1180). Allowing for possible experimental errors, this plot clearly
shows that the deviation is quadratic and not linear, contrary to what Forchheimer
inferred from these data.

2.4. Chauveteau’s experiments

We end our review of experimental data by including five experiments by Chauveteau
(1965). Contrary to the natural sand experiments referred to above, Chauveteau used
re-constructed periodic porous media.

The first experiment concerns the flow in a two-dimensional canal with sawtooth
walls, the saw pattern being symmetric with respect to the direction orthogonal to
the canal’s axis (model E). As a consequence of the symmetry condition, the flow is
reversible. The second and third experiments were carried out in a canal with non-
symmetric sawtooth walls; consequently, inertia effects tend to break the symmetry
of the flow. Depending on the direction of the flow the experiment is referred to as
G1 or G2. The fourth experiment was performed in a two-dimensional canal with
parallel walls of sinusoidal profile; this is referred to as experiment H. The last
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Figure 5. Deviation of Hazen’s data from Darcy’s law. Experimental data (symbols), linear
deviation (dashed line), quadratic deviation (solid line).

Model E Model G1 Model G2 Model H Model I
Re Re∇p Re Re∇p Re Re∇p Re Re∇p Re Re∇p
6.96 29.65 7.39 32.22 6.01 32.03 13.2 45.70 1.11 22.70

10.1 29.69 16.4 32.26 19.8 32.20 22.0 45.88 2.46 22.75
16.9 29.91 29.1 32.80 32.1 32.61 27.6 45.82 3.94 23.00
26.6 29.98 40.8 33.49 43.7 33.25 32.1 45.74 6.21 23.28
31.5 30.24 65.6 34.44 57.5 33.35 43.4 45.22 8.82 23.72
37.8 30.77 68.3 51.70 81.5 34.63 54.2 46.68 11.2 24.64
46.6 31.78 84.2 36.95 62.0 47.37
55.9 32.30 79.1 50.62

108.0 55.07
146.0 64.39
194.0 77.99

Table 3. Chauveteau’s data

experiment attempts to simulate two-dimensional flows in a real porous media. For
this purpose, Chauveteau constructed a two-dimensional model 200 mm long, 32 mm
wide, and 7 mm thick, and randomly placed cylinders resembling sand grains in cross-
section. This model is referred to as model I. Note, however, that the interpretation
of this experiment is ambiguous in the limit Re → 0, for unless the permeability
tensor of the model is isotropic or the direction of the measurement coincides with
one principal axis of the permeability tensor, the lateral confinement of the flow
dramatically affects the measurement. Since no verification of the two hypotheses
mentioned above is reported in Chauveteau (1965), it is likely that this experiment is
actually one-dimensional.

The data corresponding to small values of the Reynolds number for experiments
E, G1, G2, H, and I are reported in table 3. The normalized representation of these
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Figure 6. Normalized representation of the deviation from Darcy’s law for Chauveteau’s ex-
periments, Experimental data (symbols), linear deviation (dashed line), quadratic deviation (solid
line).

data is shown in figure 6, which illustrates once more that in the range of vanishing
Reynolds numbers the deviation from Darcy’s law (in the dimensionless form (1.3)
or (1.4)) is quadratic in the Reynolds number.

We have shown is this section that by adopting a normalized representation of
nonlinear effects, it is possible to reinterpret well-known filtration experiments. In
particular, besides possible experimental errors, Darcy’s experiments contain some
deviation from the linear filtration law. We have analysed Hazen’s experiments which
Forchheimer used to support his theories, and clearly showed that in the limit of
vanishing Reynolds number, the nonlinear effects are quadratic (cf. figure 5). This is
further supported by Chauveteau’s filtration experiments (cf. figure 6). In the next
section, we show that these experimental observations can be theoretically confirmed
if the porous medium is periodic.

3. A theoretical result for periodic media
For unbounded periodic porous media, we prove that the first correction term to

Darcy’s law is zero provided a reversibility hypothesis (H) is satisfied.

3.1. Definitions and preliminaries

Consider Ω a parallelepipedic periodic cell in IRn the sides of which are the vectors
(t1, . . . , tn) assumed to be independent (see figure 7). For i = 1, . . . n we denote by Γ±i
the faces of Ω so that Γ+

i = Γ−i + ti. Let Ω0 be an open connected subdomain of Ω.
The boundary of Ω0, denoted by Γ0, is assumed to be smooth. The subdomain Ω0

is filled with an incompressible viscous fluid, whereas its complement in Ω is solid.
For i = 1, . . . , n we set Γ±i,p = Γ±i ∩ Γ0, and we assume that Ω0 is compatible with

the periodicity in the sense that Γ+
i,p = Γ−i,p + ti (Γ−i,p and Γ+

i,p are the two periodic

boundaries of the fluid domain in the direction ti). We also define Γ0,s = Γ0\ ∪ni=1 Γ
±
i,p.
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Figure 7. Definition of the periodic cell and notation.

We assume that meas(Γ0,s) 6= 0 and meas(Γ−i,p) 6= 0 for i = 1, . . . , n (Γ0,s is the fluid
boundary that is in contact with the solid).

Now we consider the creeping flow that is induced in Ω0 by an external pressure
gradient −λ with |λ| = 1 (i.e. the scale of the macroscopic pressure gradient is given).

We assume periodic boundary conditions on Γ±i,p and no-slip boundary conditions on
Γ0,s (i.e. the solid). In order to work within a variational framework, we introduce

the usual Sobolev space H1
0,p(Ω0) = {v ∈ H1(Ω0), v|Γ0,s

= 0, v|Γ−
i,p

= v|Γ+
i,p
} together with

V = {v ∈ H1
0,p(Ω0), divv = 0}, which is composed of the divergence-free vector fields

of H1
0,p(Ω0).

We denote by u0(λ) the velocity field induced by the pressure gradient −λ in Ω0.
Then, one can show that there is a periodic pressure field p0(λ) so that (u0(λ), p0(λ))
is the solution to the following boundary value problem:

−∇2u0(λ) + ∇p0(λ) = λ,
∇ · u0(λ) = 0,
u0|Γ0,s

(λ) = 0,
u0|Γ−

i,p
(λ) = u0|Γ+

i,p
(λ), p0|Γ−

i,p
(λ) = p0|Γ+

i,p
(λ).

 (3.1)

Note that, within the two-scale asymptotic framework developed in Mei & Auriault
(1991) and Wodie & Levy (1991), u0(λ) is the first term of the asymptotic expansion
of the velocity with respect to the small parameter measuring the ratio of the pore size
of the porous structure to the macroscopic length scale at hand. Within a variational
framework, this velocity is the solution to the following variational Stokes problem:

∀v ∈ v, (∇u0(λ),∇v) = (λ, v). (3.2)

Given the hypotheses on Ω0, this problem is well posed and enables us to introduce
the permeability tensor K0 ∈ L(IRn, IRn) so that

K0λ =
1

meas(Ω0)

∫
Ω0

u0(λ). (3.3)
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The first important result concerning this tensor is that

Lemma 1. K0 is symmetric and positive definite.

In the framework of the homogenization theory, the relation K0λ =
∫
Ω0
u0(λ)/

meas(Ω0) is interpreted as Darcy’s law (cf. Allaire 1989, Bensoussan, Lions &
Papanicloaou 1978; Sanchez-Palencia 1980; Tartar 1980). The goal of this section
is to give a bound on the nonlinear correction to this relation for small inertia effects.

3.2. Nonlinear deviation in two and three dimensions

Assume now that the dimension is n = 2 or 3. Let ∆P/L be a characteristic scale
of the macroscopic pressure gradient to be applied on the porous medium, then we
define the microscopic Reynolds number, δ, as follows:

δ =
ρ∆Pa3

Lµ2
, (3.4)

where ρ is the fluid density, a is the characteristic microscopic length scale, and µ
is the dynamic viscosity of the fluid. It results from these choices that the velocity
scale is necessarily equal to ∆Pa2/µL. Let ε be the ratio of the microscopic length
scale to the macroscopic one, ε = a/L; then, we have δ = ρ∆PL2µ−2ε3. To avoid the
technical difficulties of having to consider the limit for two small parameters ε → 0
and δ → 0, it is convenient within the two-scale homogenization theory to assume
that ρ∆PL2µ−2 is equal to c0ε

−2β for some β, where c0 is a numeric constant of order
unity. As a result, the microscopic Reynolds number is assumed to be of the form
c0ε

3−2β . Since we are interested in the limit δ → 0, we assume that β 6 3/2 (we shall
recover the Darcy limit when ε→ 0); furthermore, we assume that 1 6 β so that the
terms of O(δ) are larger than the local corrections of O(ε) induced by the presence
of the pores. Hence, the theory that follows should be of practical use under the
following hypothesis: there is some β such that

1 6 β 6 3/2, and
ν

(∆P/ρ)1/2L
= c1ε

β. (3.5)

The condition β 6 3/2 yields an upper bound on the macroscopic Reynolds number
((∆P/ρ)1/2L/ν) for which the asymptotic analysis is valid, whereas the condition 1 6 β
requires the macroscopic Reynolds number to be high enough so that the nonlinear
effects can be seen.

We are now interested in solving the following variational Navier–Stokes problem:
for δ > 0 and λ ∈ Sn(0, 1), find uδ(λ) ∈ V such that

∀v ∈ V , (∇uδ(λ),∇v) + δ(uδ(λ) · ∇uδ(λ), v) = (λ, v). (3.6)

This problem is well posed thanks to the Poincaré inequality and a general existence
theorem based on Brouwer’s fixed point theorem (e.g. cf. Girault & Raviart 1986, theo.
1.3, p. 282). The solution is unique if δ < cp(Ω0)

2/2cbmeas(Ω0), where cp(Ω0) is the
Poincaré constant of the domain Ω0 and cb is the norm of the skew-symmetric trilinear
form (u · ∇v, w) on H1

0,p(Ω0)
3. It can be shown that there is a periodic pressure field

pδ(λ) such that (uδ(λ), pδ(λ)) is formally the solution to the following Navier–Stokes
problem:

−∇2uδ(λ) + δuδ(λ) · ∇uδ(λ) + ∇pδ(λ) = λ,
∇ · uδ(λ) = 0, uδ|Γ0,s

(λ) = 0,
uδ|Γ−

i,p
(λ) = uδ|Γ+

i,p
(λ), pδ|Γ−

i,p
(λ) = pδ|Γ+

i,p
(λ).

 (3.7)



Nonlinear corrections to Darcy’s law 343

We now seek a relation between
∫
Ω0
uδ(λ) and λ when δ is small. For this purpose

we introduce an expansion for uδ as follows: uδ = u0 + δu1 + . . .. More precisely (and
rigorously), we define u0(λ) ∈ V and u1(λ) ∈ V so that

∀v ∈ u, (∇u0(λ),∇v) = (λ, v), (3.8)

and

∀v ∈ V , (∇u1(λ),∇v) = −(u0(λ) · ∇u0(λ), v). (3.9)

Theorem 3.1. If δ is small enough (namely, if δ < cp(Ω0)
2/2cbmeas(Ω0)), we have

the following bounds:

|uδ(λ)− u0(λ)|1 6 δcb/cp(Ω0)
3, (3.10)

|uδ(λ)− u0(λ)− δu1(λ)|1 6 2δ2c2
b/cp(Ω0)

4. (3.11)

That is to say, u0(λ) + δu1(λ) is a good approximation of uδ(λ) in H1
0,p(Ω0); in other

words, δ induces a regular perturbation to the Stokes flow. Hence, it is reasonable to
seek a relation between

∫
Ω0
uδ(λ) and λ in the form of a perturbation of Darcy’s law.

We now introduce the main hypothesis of this work:
(H) For all λ ∈ Sn(0, 1) (the sphere in IRn) and δ small enough, we assume that uδ(λ)

satisfies ∫
Ω0

uδ(λ) = −
∫
Ω0

uδ(−λ) + O(δ2). (3.12)

This hypothesis means that if the pressure gradient is reversed, the seepage velocity
should also be reversed up to a perturbation term of O(δ2). The experimental flow
rate

∫
Ω0
uδ may depend on the direction of the pressure gradient. This hypothesis is

physically reasonable and is compatible with certain types of anisotropy as explained
below.

The main result of this section is that

Theorem 3.2. If hypothesis (H) is satisfied, we have

∀λ ∈ Sn(0, 1),
1

meas(Ω0)

∫
Ω0

uδ(λ) = K0λ+ O(δ2). (3.13)

Proof. In view of the bound (3.11), we have∫
Ω0

uδ(λ) =

∫
Ω0

u0(λ) + δ

∫
Ω0

u1(λ) + O(δ2).

Furthermore, hypothesis (H) implies that∫
Ω0

u0(−λ) + δ

∫
Ω0

u1(−λ) = −
∫
Ω0

u0(λ)− δ
∫
Ω0

u1(λ) + O(δ2).

Since the dependence of u0 on λ is linear and that of u1 is quadratic, we infer that∫
Ω0
u1(λ) = 0. As a result we have∫

Ω0

uδ(λ) =

∫
Ω0

u0(λ) + O(δ2),

which yields the desired result, for by definition
∫
Ω0
u0(λ) = meas(Ω0)K0λ.
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The result (3.13) means that if δ is small enough, the seepage velocity almost
satisfies Darcy’s law with the permeability tensor K0; the norm of the nonlinear
correction is bounded from above by cδ2, where the constant c depends only on the
geometry of the domain.

In Mei & Auriault (1991) and Wodie & Levy (1991), a similar result is proved
provided the porous medium is assumed to be isotropic. The main result of the
present paper is that the macroscopic isotropy hypothesis, though sufficient, may be
weakened and extended by the microscopic hypothesis (H). This hypothesis can be
further characterized as follows:

We shall say that Ω0 is invariant by central symmetry if there are n planes (not
necessarily orthogonal) such that Ω0 is symmetrical with respect to these n planes (n
is the space dimension). If Ω0 is invariant by central symmetry, then (H) is satisfied
and the O(δ2) term is exactly zero. This is because the Navier–Stokes equations are
invariant by reflection. The cell represented in figure 8(b) satisfies this hypothesis.

If Ω0 is invariant under the transformation Si, i = 1, . . . , n, so that Si(ti) = ti and
Si(tj) = −tj if j 6= i, then Ω0 is invariant by central symmetry and (H) is satisfied.

In two dimensions, hypothesis (H) can be weakened. We may assume that there
exist only two independent reversibility directions. In three dimensions, we may
assume that there are four reversibility directions that are 3 by 3 linearly independent.
The cell shown in figure 9(b) does not have the symmetry property described above;
however, it can be verified numerically that the flow is reversible with respect to the
x-direction, while the reversibility in the y-direction is obvious. Hence, (H) is satisfied
for the cell in question (at least numerically).

If the porous medium is isotropic, then the reversibility hypothesis is trivially
satisfied; however, the isotropy hypothesis is not necessary. In particular, the isotropy
argument does not apply to the highly anisotropic porous structure depicted in figure
8(b), whereas hypothesis (H) is satisfied (given the symmetry argument); consequently,
the nonlinear correction to the Darcy law in the anisotropic porous medium in
question is quadratic in the Reynolds number.

Though hypothesis (H) is of a microscopic nature, it has the following macroscopic
interpretation which can be exploited experimentally. For instance, let us take a raw
soil sample and carry out (multi-dimensional) filtration experiments on it by applying
a pressure gradient. To possibly consider anisotropic porous media, let us choose the
principal axes of the porous medium as our coordinate system. Let us fix the modulus
of the pressure gradient, apply this pressure gradient to the soil sample and explore
all the possible orientations of the pressure gradient with respect to the principal axes
of the porous medium. Assume that for each orientation we do the following: apply
the pressure gradient, measure the vector flow rate, then reverse the pressure gradient
and measure the corresponding vector flow rate. If for each possible orientation of the
pressure gradient with respect to the principal axes of the soil sample the vector flow
rates of the two experiments are equal and opposite, then hypothesis (H) is satisfied
experimentally; as a result, the nonlinear deviation from Darcy’s law should be cubic
in terms of seepage velocity. In fact, the reversibility hypothesis is intuitively natural,
since the result of filtration experiments should, in general, depend on the angle
between the pressure gradient and the principal axes of the sample, whereas it should
not depend on the sign of the pressure gradient. In other words, since in general the
results of the experiments should not change when the sample is turned upside down
in the experimental set-up that enforces the pressure gradient, the nonlinear deviation
should be cubic with respect to the seepage velocity in general, provided the limiting
condition (3.5) is satisfied.
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3.3. Nonlinear deviation for one-dimensional flows

An equivalent result can be proved for one-dimensional flows without any other
hypothesis than the incompressibility of the flow as already shown in Wodie & Levy
(1991), Mei & Auriault (1991), and Bourgeat & Marus̆ić-Paloka (1995). We include
this result here for the sake of completeness. More precisely, we assume now that
meas(Γ−i,p) = 0 for i = 2, . . . , n. Let (t1, . . . , tn) be the contravariant basis associated
with (t1, . . . , tn), then it is an easy matter of calculus to show the identity

i = 1, . . . , n, ∀v ∈ V ,
∫
Ω0

v · ti = −
∫
Γ−
i,p

v · n . (3.14)

As a result, for all v in V we have

(v, ti) = 0 for i = 2, . . . , n.

Noting that span〈t1〉 = span〈t2, . . . , tn〉⊥, we infer that incompressible flows in Ω0 are
uni-dimensional in the mean and are parallel to t1. Since the identity above is true for
all K0λ, the range of K0 is span〈t1〉. Furthermore, since K0 is self-adjoint, we deduce

N(K0)
⊥ = R(K0) = 〈t1〉.

Hence, in the mean, only direction t1 is of interest.

Theorem 3.3. Under the hypothesis stated above we have the following one-
dimensional Darcy’s law:

∀λ ∈ {t1/|t1|,−t1/|t1|},
∫
Ω0

uδ(λ) = K0λ+ O(δ2). (3.15)

Proof. In order to prove this result, we first note that since u1(λ) is in V (i.e.,
it is an incompressible flow),

∫
Ω0
u1(λ) is necessarily parallel to t1 (as shown above).

Furthermore, due to the (variational) definition of u0(λ) and u1(λ), it can be shown
by partial integration that

(u1(λ), λ) = (∇u0(λ),∇u1(λ)),
=−(u0(λ) · ∇u0(λ), u0(λ)),
= +(u0(λ) · ∇u0(λ), u0(λ)),
= 0.

That is to say
∫
Ω0
u1(λ) is orthogonal to t1. As a result

∫
Ω0
u1(λ) is zero, which proves

the desired result, for the perturbation result (3.11) still holds.

4. Numerical simulations
4.1. Numerical method

In order to test the theoretical results obtained in the section above, we have performed
numerical simulations on two-dimensional periodic porous media.

The computational domain is a periodic rectangular cell: Ω =]0, t1[×]0, t2[. The
fluid domain is denoted by Ω0, and the solid part is denoted by Ωs. In order to take
advantage of solution methods based on structured rectangular grids, we consider
the fluid and the solid as a single continuous medium that satisfies the following
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Figure 8. (a) Anisotropic case with central symmetry (see definition in text). The curve is
quadratic. (b) Geometry of the periodic cell.

conservation equations:

−∇2v + ∇p+ Rev · ∇v + (1/Da)v = λ,
divv = 0,
v, p, periodic in Ω,

 (4.1)

where Da is a penalty coefficient (something like a ‘Darcy constant’) that satisfies

Da = 1030 in Ω0, Da = 10−7 in Ωs. (4.2)

This penalization technique has been introduced by Arquis & Caltagirone (1984)
and Beckermann, Ramadhyani & Viskanta (1987); it is more or less similar to the
fictitious domain methods. The source term λ is a unit vector in IR2 corresponding
to the macroscopic pressure gradient with the scale ∆P/L. The reference length scale
is the period, a, in the x-direction of the porous medium. The velocity is scaled by
∆Pa2/Lµ; as a consequence, the Reynolds number is defined by (1.2)

The numerical solution of (4.1) is obtained by a MAC approximation based on
a Cartesian mesh as introduced by Harlow & Welsh (1965). The incompressibility
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Figure 9. (a) Anisotropic case without central symmetry. The curve is quadratic. (b) Geometry of
the periodic cell.

constraint is taken care of by means of a pseudo-time stepping and a fractional
step projection method.The momentum and mass conservation equations are solved,
respectively, by means of an ADI technique and a multigrid algorithm. A thorough
convergence analysis of the numerical scheme has been carried out. For each configu-
ration of the microscopic cell, the mesh has been refined until no significant variation
in the results are observed. Typically, we have used meshes with about 128 × 128
nodes.

4.2. Numerical results

In the first numerical test, we consider a rectangular cell for which |t1|/|t2| = 2. The
solid part is composed of cylinders as shown in figure 8(b). The tensor K0 is not
isotropic; hence, the homogenized medium is not ‘isotropic’ with respect to the Stokes
equations. The cell is reflection symmetric about the x- and y-axes; hence, (H) is
satisfied. We have solved numerically the steady Navier–Stokes equations in this cell
for a series of Reynolds numbers and fixed pressure gradients λ.

In figure 8(a) we plot the quantity |
∫
Ω0
uδ(λ)−K0λ| normalized by its maximum as a

function of the relative Reynolds number Re/Re,max for different values of Re,max 6 20
and λ = eiπ/4. It is evident that the nonlinear correction is quadratic for Re 6 20.
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Figure 10. (a) Monodimensional case without flux reversibility. The curve is quadratic.
(b) Geometry of the periodic cell.

Figure 9(b) still concerns a rectangular cell for which |t1|/|t2| = 2. This cell is not
invariant by central symmetry but we have verified numerically that it satisfies (H).
The normalized deviation from Darcy’s law for λ = eiπ/2 is presented in figure 9(a).
Up to Re,max = 8, the nonlinear correction is quadratic.

Figure 10(b) concerns a one-dimensional case corresponding to the sawtooth model
G tested by Chauveteau. Though there is no reversibility of the seepage velocity (i.e.
(H) is not satisfied), theorem 3.3 applies. The normalized deviation from Darcy’s law
in both directions is plotted in figure 10(a). The nonlinear correction is quadratic for
all flow orientations up to Re,max = 8.

Figure 11(b) shows a two-dimensional counterexample where (H) is not numerically
satisfied (not an easy task). For λ = ei5π/6 one can see in figure 11(a) that the
normalized deviation to Darcy’s law is linear in the Reynolds number. This case
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Figure 11. (a) Anisotropic case for which (H) is not satisfied. The curve is linear. (b) Geometry of
the periodic cell.

suggests that in addition to being sufficient, hypothesis (H) may also be necessary;
this, however, is still a conjecture which needs further investigation.

5. Conclusions
We have shown is this paper that under hypothesis (H) (which amounts to no as-

sumption for one-dimensional filtration, or reversibility for two- and three-dimensional
flows) the nonlinear correction to Darcy’s law is quadratic in terms of the Reynolds
number, and cubic with respect to the seepage velocity. This conclusion holds in
practice if the data of the problem satisfy the condition (3.5). We have supported this
claim by reinterpreting some well-known filtration experiments (by Darcy, Hazen, and
Chauveteau). We have also provided a mathematical proof (restricted to unbounded
periodic porous media) and have confirmed our theoretical results by numerical sim-
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ulations. Still, from the mathematical point of view, the present work is not complete,
since a rigorous theory for bounded porous media does not exist. For the mathemati-
cal aspects of hypothesis (H) in the context of the homogenization theory in bounded
domains we refer to Bourgeat & Marus̆ić-Paloka (1995) for one-dimensional flows
and to Bourgeat, Marus̆ić-Paloka & Mikelic (1996) for the multi-dimensional case.

The authors are grateful to Th. Levy, A. Bourgeat, A. Mikelic, M. Kaviany, and
anonymous reviewers for helpful discussions and remarks. They are also indebted to
C. C. Mei for his criticism and editorial suggestions that improved the content of
this paper. Part of this work has been supported by ASCI, CNRS-UPR 9029. Some
of the computer time has been provided by IDRIS-CNRS; this support is gratefully
acknowledged here.
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II 299, 1–4.

Beckermann, C., Ramadhyani, S. & Viskanta, R. 1987 Natural convection flow and heat transfer
between a fluid layer and a porous layer inside a rectangular enclosure. Trans. ASME J. Heat
Transfer 109, 363–370.

Bensoussan, A., Lions, J.-L. & Papanicolaou, G. 1978 Asymptotic Analysis for Periodic Structures.
North Holland.
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