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Kinematic simulations of the induction equation are carried out for different setups suitable
for the von-Kármán-Sodium (VKS) dynamo experiment. The material properties of the flow
driving impellers are modeled by means of high-conducting and high-permeability disks in a
cylindrical volume filled with a conducting fluid. Two entirely different numerical codes are
mutually validated by showing quantitative agreement on Ohmic decay and kinematic dynamo
problems using various configurations and physical parameters. Field geometry and growth
rates are strongly modified by the material properties of the disks even if the disks are thin.
In contrast the influence of external boundary conditions remains small. Utilizing a VKS like
mean fluid flow and high-permeability disks yield a reduction of the critical magnetic Reynolds
number Rmc for the onset of dynamo action of the simplest non-axisymmetric field mode.
However, this threshold reduction is not sufficient to fully explain the VKS experiment.
We show that this reduction of Rmc is influenced by small variations in the flow configuration
so that the observed reduction may be changed with respect to small modifications of setup and
properties of turbulence.

Keywords: Magnetohydrodynamics; Ohmic decay; Kinematic dynamo; Permeability;
VKS dynamo

1. Introduction

Magnetic fields of galaxies, stars or planets are produced by dynamo action in a
homogeneous medium in which a conducting fluid flow provides for generation of field
energy. During the past decade the understanding of the field generation mechanism
has considerably benefitted from the examination of dynamo action in the laboratory.
However, realization of dynamo action in laboratories at least requires the magnetic
Reynolds number Rm¼UL/� (where U and L represent typical velocity and
length scales and � denotes the magnetic diffusivity) to exceed a threshold of the
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order of Rmc
�10. . .100. From the parameter values of liquid sodium – the best known

liquid conductor – at standard laboratory conditions (�¼ 1/�0�� 0.1m2/s and L� 1m,
where �0 is the vacuum permeability and � the electrical conductivity) it becomes
immediately obvious that self excitation of magnetic fields in the laboratory needs
typical velocity magnitudes of U� 10m/s, which is already quite demanding. Therefore,
the first successful dynamo experiments performed by Lowes and Wilkinson (1963,
1968) utilized soft-iron material so that the magnetic diffusivity is reduced (this issue
indeed deserves a specific study and is examined below) and the magnetic Reynolds
number is (at least locally) increased. Although these experiments cannot be classified
as hydromagnetic dynamos (no fluid flow and therefore no non-trivial backreaction of
the field on a fluid motion is possible) they allowed the examination of distinct
dynamical regimes manifested in steady, oscillating or reversing fields. It is interesting
to note that these results did not initiate further numerical studies on induction in the
presence of soft iron domains.

The effects of internal and external walls with finite permeability and conductivity
have been examined in Avalos-Zuñiga et al. (2003, 2005) by analytically solving a one
dimensional kinematic dynamo driven by an �-effect. A facilitation of dynamo action is
obtained for increasing conductivity and/or permeability of given inner and outer walls.
This threshold reduction is monotonous in the case of a stationary dynamo mode but
non monotonous in the case of a time dependent dynamo due to dissipation from eddy
currents induced within the container walls. The authors also assumed that a mean flow
may increase the dynamo threshold due to additional dissipation. More recently,
Roberts et al. (2010) performed nonlinear simulations in a sphere with a flow driven by
the counter rotation of the two hemispherical parts of the outer sphere. Their setup and
geometry are only roughly representative for the von-Kármán-Sodium (VKS)
configuration (they also included an inner sphere made of a solid electrical insulator).
They performed nonlinear simulations simultaneously varying permeability and
conductivity of the external walls, applying thin wall conditions (where the wall
thickness h! 0 and the permeability �r!1 and conductivity �!1 so that the
product h�r(h�) remains finite). Only a few runs exhibit dynamo action and their results
cannot yield any general conclusion about the influence of the wall permeability or
conductivity on the dynamo threshold.

A possibility to increase the effective magnetic Reynolds number in fluid flow driven
dynamo experiments arises from the addition of tiny ferrous particles to the fluid
medium leading to a uniform enlargement of the relative permeability (Frick et al.
2002, Dobler et al. 2003). Since the amount of particles is limited so as to retain
reasonable fluid properties, the maximum fluid permeability achievable by this
technique is �r� 2. The main effect found in the simulations of Dobler et al. (2003)
was a reduced decay of the initial field but not a smaller threshold (essentially because
of nonmonotonous behavior of the growth rate with respect to Rm).

Another type of ferromagnetic influence on dynamo action is observed in the VKS
dynamo. In the VKS experiment a turbulent flow of liquid sodium is driven by two
counterrotating impellers located at the opposite end caps of a cylindrical domain
(Monchaux et al. 2007). Dynamo action is only obtained when the impellers are made
of soft-iron with �r� 100 (Verhille et al. 2010). Recently it has been shown in Giesecke
et al. (2010b) that these soft-iron impellers essentially determine the geometry and the
growth rates of the magnetic field by locally enhancing the magnetic Reynolds
number and by enforcing internal boundary conditions for the magnetic field at the
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material interfaces. We conjecture that non-homogeneous distributions of the material
coefficients �r and � may support dynamo action because gradients of �r and � modify
the induction equation by coupling toroidal and poloidal components of the magnetic
fields which is essential for the occurrence of dynamo action. An example for this
dynamo type has been presented in Busse and Wicht (1992) where it was shown that
even a straight flow without shear over an (infinite) conducting plate with sinusoidal
variation of the conductivity is able to produce dynamo action. However, an
experimental realization of this setup would require either an unachievable large
magnetic Reynolds number or rather large variations of the conductivity (0 factor of
100 and with a mean value which should be of the order of the fluid conductivity). On
the other hand, large permeability variations are more easily achievable experimentally,
for instance the relative permeability of soft-iron alloys easily attains values of several
thousands. Although these dynamos are of little astrophysical relevance the
experiments of Lowes and Wilkinson and in particular the rich dynamical behavior
of the VKS dynamo demonstrate the usefulness of such models.

The purpose of the present work is to validate the numerical tools necessary to
establish a basic understanding of the influence of material properties on the induction
process. Emphasis is given to the problem of free decay in cylindrical geometry where
two disks characterized by high-conductivity/permeability and their thickness are
inserted in the interior of a cylindrical container filled with a conducting fluid. To
demonstrate the reliability of our results we use two different numerical approaches and
show that both methods give results in agreement. The study is completed by an
application of a mean flow as it occurs in the VKS experiment in combination with two
high-permeability disks.

2. Induction equation in heterogenous domains

From Faraday’s Law in combination with Ohm’s Law, one immediately retrieves the
induction equation that determines the temporal behavior of the magnetic flux
density B:

@B

@t
¼ r � u� B�

1

�0�
r �

B

�r

� �
; ð1Þ

where u denotes the flow velocity, � the electric conductivity, �0 the vacuum
permeability and �r the relative permeability. In case of spatially varying distributions
of conductivity and permeability equation (1) can be rewritten in the form:

@B

@t
¼ r � ðu� BÞ þ

1

�0�r�
r2Bþ

1

�0�r�
r � ðr ln�r � BÞ

�
1

�0�r�
ðr ln�r þ r ln �Þ � ðr ln�r � BÞ þ

1

�0�r�
ðr ln�r þ r ln �Þ � ðr � BÞ:

ð2Þ

The terms on the right-hand-side that involve gradients of �r and � potentially couple
the toroidal and poloidal field components which is known to be essential for the
existence of a dynamo. The lack of symmetry between the terms containing r�r and r�
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indicates a distinct impact of � and �r. This difference of behavior can also be

anticipated by looking at the jump conditions that the electric and magnetic fields have

to fulfill at material interfaces. At interfaces between materials 1 and 2 that exhibit a

jump in conductivity � and/or in relative permeability �r the normal component of the

magnetic flux density is continuous whereas the tangential components exhibit a jump

described by the ratio of the permeabilities. In case of conductivity discontinuities, the

tangential components of the electric field are continuous and the normal component of

the electric current is continuous. Mathematically these jump conditions are given by

(see, e.g. Jackson 1975)

n � ðB1 � B2Þ ¼ 0; n�
B1

�r;1
�

B2

�r;2

� �
¼ 0;

n � ð j1 � j2Þ ¼ 0; n� ðE1 � E2Þ ¼ 0;

ð3Þ

where n denotes the unit vector in the normal direction on the interface between

materials 1 and 2. If there is no contribution of the flow, the continuity of the normal

current leads to the discontinuity of the normal electric field in the ratio of the

conductivities. Although the transmission conditions (3) are standard, their dynamical

consequences in flows at large Rm are largely unknown.

3. Numerical schemes

Two different numerical algorithms and codes are used for the numerical solution of

problems involving the kinematic induction equation (1). The first one is a combined

finite volume/boundary element method FV/BEM Stefani et al. (2009). It is a grid based

approach which provides a flexible scheme that utilizes a local discretization and

intrinsically maintains the solenoidal character of the magnetic field.
The second solution method is based on a Spectral/Finite Element approximation

technique denoted as SFEMaNS for Spectral/Finite Elements for Maxwell and

Navier-Stokes equations. Taking advantage of the cylindrical symmetry of the domains,

Fourier modes are used in the azimuthal direction and finite elements are used in the

meridional plane. For each Fourier mode this leads to independent

two-dimensional-problems in the meridian plane.

3.1. Hybrid finite volume/boundary element method

We start with the induction equation in the conservative form

@B

@t
þ r � E ¼ 0; ð4Þ

where the electric field E is given by

E ¼ �u� Bþ �r �
B

�r
ð5Þ
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and �¼ 1/�0� is the magnetic diffusivity. For the sake of simplicity we give a short

sketch for the treatment of inhomogeneous conductivity and permeability only in

Cartesian coordinates. The scheme can easily be adapted to different (orthogonal)

coordinate systems (e.g. cylindrical or spherical coordinate system) making use of

generalized coordinates (Stone and Norman 1992a,b).
In the finite volume scheme the grid representation of the magnetic field is given by a

staggered collocation of the field components that are interpreted as an approximation

of the (cell-)face average:

B
i�1=2;j;k

x �
1

�y�z

Z
�yz

Bxðxi�1=2; y; zÞdy dz; ð6Þ

where the integration domain � corresponds to the surface of a single cell-face:

�yz¼ [ yj�1/2, yjþ1/2]� [zk�1/2, zkþ1/2] (figure 1). A comparable definition is applied to the

electric field which is localized at the center of a cell edge and which is defined as the line

average (figure 1):

E
i; j�1=2;k�1=2

x �
1

�x

Z xiþ1=2

xi�1=2
Exðx; yj�1=2; zk�1=2Þdx: ð7Þ

Similar definitions hold for the components B
i; j�1=2;k

y and B
i; j;�1=2

z , and for

E
i�1=2; j;k�1=2
y and E

i�1=2; j�1=2;k
z , respectively.

Figure 1. Localization of vector quantities on a grid cell ijk with the cell center located at (xi, yj, zk).
The dotted curve denotes the path along which the integration of B is executed for the computation of
E

i; j�1=2;k�1=2

x .
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The finite volume discretization of the induction equation reads

d

dt
B

i�1=2; j;k

x ¼ �
E

i�1=2; jþ1=2;k

z ðtÞ � E
i�1=2; j�1=2;k

z ðtÞ

�y
�
E

i�1=2; j;kþ1=2

y ðtÞ � E
i�1=2; j; k�1=2

y ðtÞ

�z

 !

ð8Þ

and it can easily be shown that this approach preserves the r �B constraint for all times
(to machine accuracy) if the initial field is divergence free.

3.1.1. Material coefficients. In the following we only discuss the treatment of the
diffusive part of the electric field, E¼ �r�B/�r because the induction contribution
(/�u�B) does not involve the material properties and can be treated separately in the
framework of an operator splitting scheme (see, e.g. Iskakov et al. 2004, Giesecke et al.
2008, Ziegler 1999). To obtain the computation directive for the electric field the
magnetic field has to be integrated along a (closed path) around Exð;y;zÞ at the edge of a
grid cell (see dotted curve in figure 1).

Ex �
1

�

Z
�yz

Ex dA ¼
1

�

Z
�yz

� r �
B

�r

� �
dA �

�

�y�z

Z
@�yz

B

�r
dl; ð9Þ

where �¼�y�z is the surface surrounded by the path �yz and � is the average
diffusivity (�¼ (�0�)

�1) ‘‘seen’’ by the electric field. Unlike vectorial quantities the
material coefficients are scalar quantities that are localized in the center of a grid cell.
The consideration of spatial variations and/or jumps in conductivity respectively
permeability is straightforward if corresponding averaging procedures for � or �r are
applied (Haber and Ascher 2001). For the component Ex the discretization of
equation (9) leads to

E
i; j�1=2;k�1=2

x

¼ �i; j�1=2;k�1=2
1

�y

B
i; j;�1=2
z

ð�rÞi; j;k�1=2
�

B
i; j�1;k�1=2
z

ð�rÞi; j�1;k�1=2

 !
�

1

�z

B
i; j�1=2;k

y

ð�rÞi; j�1=2;k
�

B
i; j�1=2;k�1

y

ð�rÞi; j�1=2;k�1

 !" #
:

ð10Þ

In equation (10), �i; j�1=2;k�1=2 represents the diffusivity that is seen by the electric field

component E
i; j�1=2;k�1=2

x at the edge of the grid cell (ijk) and which is given by the
arithmetic average of the diffusivity of the four adjacent cells:

�i; j�1=2;k�1=2 ¼
1

4
�i; j;k þ �i; j�1;k þ �i; j;k�1 þ �i; j�1;k�1
� �

: ð11Þ

Similarly, �r denotes the relative permeability that is seen by the magnetic field
components (By and Bz) at the interface between two adjacent grid cells. For instance,
for the case considered in equation (10), �r is defined as follows:

for B
i; j�1=2;k

y : ð�rÞi; j�1=2;k ¼
2ð�rÞi; j;kð�rÞi; j�1;k

ð�rÞi; j;k þ ð�rÞi; j�1;k
;

for B
i; j;�1=2

z : ð�rÞi; j;k�1=2 ¼
2ð�rÞi; j;kð�rÞi; j;k�1

ð�rÞi; j;k þ ð�rÞi; j;k�1
:

ð12Þ
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For the computation of E
i�1=2;j;k�1=2

y and E
i�1=2;j�1=2;k

z equations (11) and (12) have

to be adjusted according to the localization and the field components involved.

Applying the averaging rules (11) and (12) to the computation of the ‘‘diffusive’’

part of the electric field results in a scheme that intrinsically fulfills the

jump conditions (3) at material interfaces. The scheme is robust and simple to

implement, however, the averaging procedure results in an artificial smoothing of

parameter jumps at interfaces and in concave corners additional difficulties might

occur caused by ambiguous expressions for �r. Furthermore, in the simple

realization presented above, the parameter range is restricted. For larger jumps of

�r or � a more careful treatment of the discontinuities at the material interfaces is

necessary which would require a more elaborate field reconstruction that makes use

of slope limiters.

3.1.2. Boundary conditions. In numerical simulations of laboratory dynamo action
insulating boundary conditions are often simplified by assuming vanishing tangential

fields (VTF, sometimes also called pseudo vacuum condition). In fact, a restriction of

the boundary magnetic field to its normal component resembles an artificial but

numerically convenient setup where the exterior of the computational domain is

characterized by an infinite permeability. VTF boundary conditions usually over-

estimate the field growth rates in many dynamo problems. Therefore, a more elaborate

treatment of the field behavior at the boundary is recommended which is nontrivial in

non-spherical coordinate systems. Insulating domains are characterized by a vanishing

current j / r�B¼ 0 so that B can be expressed as the gradient of a scalar field F
(assuming that the insulating domain is simply connected) which fulfills the Laplace

equation:

B ¼ �rF with r2F ¼ 0; F! Oðr�2Þ for r!1: ð13Þ

Integrating r2F¼ 0 and adoption of Green’s 2nd theorem leads to

FðrÞ ¼ 2

Z
�

Gðr; r0Þ
@Fðr0Þ
@n|fflffl{zfflffl}

�Bnðr0Þ

�Fðr0Þ
@Gðr; r0Þ

@n
d�ðr0Þ; ð14Þ

where G(r, r0)¼�(4�|r� r0|)�1 is the Greens function (with r2G(r, r0)¼��(r� r0))

and @/@n is the normal derivative on the surface element d� so that @nF¼�B
n

yields the normal component of B on d�. The tangential components of the magnetic

field at the boundary B�¼ e� �B¼�e� � rF(r) are computed from equation (14) as

follows:

B� ¼ 2

Z
�

e� � Fðr0Þrr
@Gðr; r0Þ

@n
þ Bnðr0ÞrrGðr; r

0Þ

� �
d�ðr0Þ; ð15Þ

where e� represents a tangential unit vector on the surface element d�(r0). In fact, there

are two orthogonal tangential directions on the boundary and equation (15) is valid

independently for both orientations. After the subdivision of the surface � in boundary

elements �j with �¼[�j the approximate potential Fi¼F(ri) and the tangential field
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B�i ¼ B�ðriÞ ¼ �e� � ðrFiÞ in discretized form are given by

1

2
Fi ¼ �

X
j

Z
�j

@G

@n
ðri; r

0Þd�0j

 !
Fj;�

X
j

Z
�j

Gðri; r
0Þd�0j

 !
Bn
j

B�i ¼
X
j

Z
�j

2e� � rr
@G

@n
ðri; r

0Þd�0j

 !
Fj þ

X
j

Z
�j

2e� � rrGðri; r
0Þd�0j

 !
Bn
j :

ð16Þ

The system of equations (16) gives a linear, non local relation for the tangential field
components at the boundary in terms of the normal components and closes the problem
of magnetic induction in finite (connected) domains with insulating boundaries
(Iskakov and Dormy 2005). A more detailed description of the scheme can be found in
Giesecke et al. (2008).

3.2. Spectral/Finite Elements for Maxwell equations

The conducting part of the computational domain is denoted by �c, the
non-conducting part (vacuum) is denoted �v, and we set � :¼�c[�v. We use the
subscript c for the conducting part and v for the vacuum. We assume that �c is
partitioned into subregions �c1, . . . ,�cN, so that the magnetic permeability in each
subregion �ci, say �ci, is smooth. We denote by ��, the interface between all the
conducting subregions. We denote by �, the interface between �c and �v. A sketch of
the computational domain is displayed in figure 2(a).

Ωv ∂Ω

Σ
Ωc1

Σμ

Axis

Ωc2

−10

0

10

−1.959

−1

1.93

0

1

(c)(b)(a)

Figure 2. Example of a computational domain � with various boundaries: (a) sketch with arbitrary
axisymmetrical domains showing the conducting domain �c (shaded regions) and the vacuum �v (non-shaded
domain) with the interfaces �� and �, (b) meridian triangular mesh used in section 4 with disks of d¼ 0.6
thickness with SFEMaNS (1 point out of 4 has been represented), (c) zoom of (b).
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The electric field E and magnetic field H in �c and �v solve the following system:

@ð�cHcÞ

@t
¼ �r � Ec;

@ð�vHvÞ

@t
¼ �r � Ev; ð17Þ

r � ð�cHcÞ ¼ 0; r � ð�vHvÞ ¼ 0; ð18Þ

Ec ¼ �u� �cHc þ
1

�
r �Hc; r �Hv ¼ 0 ð19Þ

and the following transmission conditions hold across �� and �:

Hci � nci þHcj � ncj ¼ 0; Hc � nc þHv � nv ¼ 0; ð20Þ

�ciHci � nci þ �cjHcj � ncj ¼ 0; �cHc � nc þ �vHv � nv ¼ 0; ð21Þ

Eci � nci þ Ecj � ncj ¼ 0; Ec � nc þ Ev � nv ¼ 0; ð22Þ

where nc (resp. nv) is the unit outward normal on �, i.e. nc points from �c

to �v (resp. from �v to �c ), and nci is the unit normal on ��, i.e. n
ci points from �ci

to �cj.

3.2.1. Weak formulation. The finite element solution is computed by solving a weak
form of the system (17)–(22). We proceed as follows in �ci. Multiplying the induction

equation in �ci by a test-function b, integrating over �ci, integrating by parts and

using (19) gives

0 ¼

Z
�ci

@ð�ciHciÞ

@t
� bþ

Z
�ci

r � Eci � b

¼

Z
�ci

@ð�ciHciÞ

@t
� bþ

Z
�ci

Eci � r � bþ

Z
@�ci

ðnci � EciÞ � b

¼

Z
�ci

@ð�ciHciÞ

@t
� bþ

Z
�ci

�u� �ciHci þ
1

�
r �Hci

� �
� r � bþ

Z
@�ci

Eci � ðb� nciÞ:

ð23Þ

Note that, in the weak formulation, the variable of integration is omitted. We proceed

slightly differently in �v. From (19) we infer that Hv is a gradient for a simply

connected vacuum, i.e. Hv
¼r	v. Thus taking a test-function of the form r , where  

is a scalar potential defined on �v, multiplying (17) by r and integrating over �v,

we obtain Z
�v

@ð�vr	vÞ

@t
� r þ

Z
�

Ev � r � nv þ

Z
@�

Ev � r � nv ¼ 0: ð24Þ

We henceforth assume that a :¼E|@� is a data. Since only the tangential parts of the

electric field are involved in the surface integrals in (23) and (24), we can use the jump

conditions (22) to writeZ
��

Eci � b� nci ¼

Z
��

fEcg � b� nci;

Z
�

Ev � r � nv ¼

Z
�

Ec � r � nv;
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where {Ec} is defined on �� by fEcg ¼ 1
2 Eci þ Ecj
� �

. We now add (23) (for i¼ 1, . . . ,N )
and (24) to obtainZ

�c

@ð�cHcÞ

@t
� bþ

Z
�v

@ð�vr	vÞ

@t
� r þ

Z
[N
i¼1

�ci

1

�
r �Hci � u� �ciHci

� �
� r � b

þ

Z
��

fEcg � ½½b� n�� þ

Z
�

Ec � b� nc þ r � nvð Þ ¼ �

Z
@�

a � r � nv;

where we have set [[b� n]] :¼ (bi� nciþ bj� ncj) with bi :¼ bj�ci
and bj :¼ bj�cj

. We finally
get rid of Ec by using Ohm’s law in the conductor:Z

�c

@ð�cHcÞ

@t
�bþ

Z
�v

@ð�vr	vÞ

@t
�r þ

Z
[N
i¼1

�ci

1

�
r�Hci�u��ciHci

� �
�r�b

þ

Z
��

1

�
r�Hc�u��cHc

� �
� ½½b�n��þ

Z
�

1

�
r�Hc�u��cHc

� �
� b�ncþr �nvð Þ

¼�

Z
@�

a �r �nv: ð25Þ

This formulation is the starting point for the finite element discretization.

3.2.2. Space discretization. As already mentioned, SFEMaNS takes advantage of the
cylindrical symmetry. We denote �2d

v and �2d
ci the meridian sections of �v and �ci,

respectively. These sections are meshed using quadratic triangular meshes (we assume
that �2d

v and the sub-domains �2d
c1 . . . �2d

cN have piecewise quadratic boundaries).
We denote fF v

h gh>0, fF
c1
h gh>0 . . . fF cN

h gh>0 the corresponding regular families of
non-overlapping quadratic triangular meshes, where h denotes the typical size of a
mesh element. Figures 2(b) and (c) display a meridian triangular mesh used in section 4
with disks of thickness d¼ 0.6 (see section 4 for details). We use the same mesh strategy
for all the sub-domains. We can use refinement, but the ratio between the maximum size
of an element and the minimum one is of order 1. For every triangle K in the mesh we
denote TK : K̂�!K the quadratic transformation that maps the reference triangle
K̂ :¼ fðr̂; ẑÞ 2 R2; 0 � r̂; 0 � ẑ; r̂þ ẑ � 1g to K. Given ‘H and ‘	 two integers in {1, 2}
with ‘		 ‘H we first define the meridian finite element spaces

XH;2d
h :¼ bh 2 L1ð�cÞ=bhj�ci

2 C0ð�ciÞ 8i ¼ 1; . . . ;N; bhðTKÞ 2 P‘H; 8K 2 [
N
i¼1F

ci
h

	 

;

X	;2dh :¼  h 2 C0ð�vÞ= hðTKÞ 2 P‘	 8K 2 Fv
h

	 

;

where Pk denotes the set of (scalar or vector valued) bivariate polynomials of total
degree at most k. Then, using the complex notation i2¼�1, the magnetic field and the
scalar potential are approximated in the following spaces:

XH
h :¼ bh ¼

XM
m¼�M

bmh ðr; zÞe
im
 8m ¼ 0; . . . ;M; bmh 2 XH;2d

h and bmh ¼ b�mh

( )
;

X	h :¼  h ¼
XM

m¼�M

 m
h ðr; zÞe

im
 8m ¼ 0; . . . ;M;  m
h 2 XH;2d

h and  m
h ¼  

�m
h

( )
;

where Mþ 1 is the maximum number of complex Fourier modes.
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3.2.3. Time discretization. We approximate the time derivatives using the
second-order Backward Difference Formula (BDF2). The terms that are likely to mix

Fourier modes are made explicit. Let �t be the time step and set tn :¼ n�t, n5 0. After

proper initialization at t0 and t1, the algorithm proceeds as follows. For n5 1 we set

H
 ¼ 2Hc;n �Hc;n�1 and
DHc;nþ1 :¼ 1

2 3Hc;nþ1 � 4Hc;n þHc;n�1
� �

;

D	v;nþ1 :¼ 1
2 3	v;nþ1 � 4	v;n þ 	v;n�1
� �

;

(

and the discrete fields Hc;nþ1 2 XH
h and 	v;nþ1 2 X	h are computed so that the following

holds for all b 2 XH
h ;  2 X	h :

L ðHc;nþ1; 	v;nþ1Þ; ðb;  Þ
� �

¼ Rðb;  Þ; ð26Þ

where the linear for R is defined by

Rðb;  Þ ¼ �

Z
@�

a � r � nv þ

Z
�c

u� �cH
 � r � bþ

Z
��

fu� �cH
g � ½½b� n��

þ

Z
�

u� �cH
 � b� nc þ r � nvð Þ;

the bilinear form L is defined by

L ðHc;nþ1; 	v;nþ1Þ; ðb;  Þ
� �

:¼

Z
�c

�c DHc;nþ1

�t
� bþ

Z
�v

�v rD	
v;nþ1

�t
� r þ

Z
�c

1

�
r �Hc;nþ1 � r � b

þ g ðHc;nþ1; 	v;nþ1Þ; ðb;  Þ
� �

þ

Z
��

1

�
r �Hc;nþ1

� �
� ½½b� n��

þ

Z
�

1

�
r �Hc;nþ1 � b� nc þ r � nvð Þ

and the bilinear form g is defined by

gððHh;  hÞ; ðbh;  hÞÞ :¼ �1h
�1
F

Z
��

Hh;1�n
c
1 þHh;2�n

c
2

� �
� bh;1�n

c
1 þ bh;2�n

c
2

� �
þ �2h

�1
F

Z
�

Hh�n
c þ r h�n

vð Þ � bh�n
c þ r h�n

vð Þ;

where hF denotes the typical size of @K[�� or @K[� for all K in the mesh such that

@K[�� or @K[� is not empty. The constant coefficients �1 and �2 are chosen to be of
order 1. The purpose of the bilinear form g is to penalize the tangential jumps

[[Hc,nþ1
�n]] and Hc,nþ1

�ncþr v,nþ1
�nv, so that they converge to zero when the

mesh-size goes to zero.

3.2.4. Addition of a magnetic pressure. The above time-marching algorithm is
convergent on finite time intervals but may fail to provide a convergent solution in a

steady state regime since errors may accumulate on the divergence of the magnetic

induction. We now detail the technique which is employed to control the divergence of
Bc on arbitrary time intervals.
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To avoid non-convergence properties that could occur in non-smooth domains and
discontinuous material properties, we have designed a non standard technique inspired
from Bonito and Guermond (2010) to control r �B. We replace the induction equation
in �c by the following:

@ð�cHcÞ

@t
¼ �r � Ec þ �crpc; ð��0Þ

�pc ¼ r� �cHc; pcj@�c
¼ 0; ð27Þ

where � is a real parameter, �0 is the Laplace operator with zero boundary condition on
�c, and pc is a new scalar unknown. A simple calculation shows that pc¼ 0 if the initial
magnetic induction is solenoidal; hence, (27) enforces r ��cHc

¼ 0. Taking �¼ 0
amounts to penalizing r ��cHc in L2(�c), which turns out to be non-convergent with
Lagrange finite elements when the boundary of �c is not smooth, (see Costabel (1991)
for details). The mathematical analysis shows that the method converges with Lagrange
finite elements when � 2 ð12 ; 1Þ. In practice we take �¼ 0.7.

We introduce new finite elements spaces to approximate the new scalar unknown pc

X
p;2d
h :¼ ph 2 L1ð�cÞ=ph 2 C0ð�cÞ; phðTKÞ 2 P‘p 8K 2 [

N
i¼1F

ci
h ; ph ¼ 0 on @�c

	 

;

X
p
h :¼ p ¼

XM
m¼�M

pmðr; zÞeim
=8m ¼ 1 . . . ;M; pm 2 X
p;2d
h and pm ¼ p�m

( )
:

Here ‘p is an integer in {1, 2}. The final form of the algorithm is the following: after
proper initialization, we solve for Hc;nþ1 2 XH

h , 	
v;nþ1 2 X	h and pnþ1 2 X

p
h so that the

following holds for all b 2 XH
h ;  2 X	h ; q 2 X

p
h:

L ðHc;nþ1; 	v;nþ1Þ; ðb;  Þ
� �

þD ðHc;nþ1; pc;nþ1; 	v;nþ1Þ; ðb; q;  Þ
� �

þ Pð	v;nþ1;  Þ ¼ Rðb;  Þ

ð28Þ

with

D ðH;p;	Þ; ðb;q; Þð Þ :¼
XN
i¼1

Z
�ci

�cb �rp��cH �rqþh2�r��cHr��cbþh2ð1��Þrp �rq
� �

;

ð29Þ

where h denotes the typical size of a mesh element. The termPN
i¼1

R
�ci

h2�r� �cHc;nþ1r � �cb is a stabilization quantity which is added in to have
discrete well-posedness of the problem irrespective of the polynomial degree of the
approximation for pc. The additional stabilizing bilinear form P is defined by

Pð	; Þ ¼

Z
�v

r	 � r �

Z
@�v

 n � r	:

This bilinear form is meant to help ensure that �	v,nþ1¼ 0 for all times.

3.2.5. Taking advantage of the cylindrical symmetry for Maxwell and Navier–Stokes

equations. SFEMaNS is a fully nonlinear code integrating the coupled Maxwell and
Navier–Stokes equations (Guermond et al. 2007, 2009). As mentioned above, any term
that could mix different Fourier modes has been made explicit. Owing to this property,
there are Mþ 1 independent linear systems to solve at each time step (Mþ 1 being the
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maximum number of complex Fourier modes). This immediately provides a
parallelization strategy. In practice, we use one processor per Fourier mode. The
computation of the nonlinear terms in the right-hand side is done using a parallel Fast
Fourier Transform. Note that, in the present article, we use only the kinematic part of
the code with an axisymmetric steady flow. A typical time step is �t¼ 0.01 and a typical
mesh size is h¼ 1/80. When necessary, the mesh is refined in the vicinity of the curved
interface �� so that we have h¼ 1/400 locally.

4. Ohmic decay in heterogenous domains

The inspection of equations (3) shows that even in the absence of flow, heterogeneous
domains can lead to non-trivial Ohmic decay problems. Therefore the reliability and the
application range of both numerical schemes are first examined by studying pure Ohmic
decay problems in the absence of fluid flow. A cylindrical geometry is chosen with
radius R¼ 1.4 and height H¼ 2.6 which is in accordance with the setting of the VKS
experiment. The cylinder is filled with a conductor with diffusivity �¼ (�0�0)

�1
¼ 1 and

relative permeability �r¼ 1. Two disks are introduced inside the domain, characterized
by thickness d2 {0.6, 0.3, 0.1}, conductivity � and permeability �r (figure 3). The
thickness d¼ 0.1 is representative of the VKS impellers but the other d have been tested
to study the scaling law with an effective permeability or an effective conductivity and
also to estimate the impact of the numerical resolutions.

In a freely decaying system the azimuthal Fourier modes are independent from one
another as long as �r and � are axisymmetric. Moreover the axisymmetric mode (m¼ 0)
can be split into decoupled poloidal (Br,Bz) and toroidal (B’) components which decay
independently and exhibit two distinct decay rates. The three components of the
magnetic field of each Fourier mode m	 1 are coupled, i.e., the poloidal and toroidal
components interact and have the same decay rate when m	 1. The Ohmic decay
rates are computed with SFEMaNS by solving an eigenvalue problem using the

Figure 3. Sketch of the set up. Two disks with thickness d¼ 0.6, 0.3, 01 (solid, dashed, dotted curve) are
introduced in a cylinder with heightH¼ 2.6 and radius R¼ 1.4. In all runs the location of the backside of each
disk is fixed at z¼�1. At the outer disk edge a circular shape is applied with a curvature radius corresponding
to half of the disk thickness. The radial extension of the disks is fixed and given by Rdisk¼ 0.95. The dashed
horizontal line denotes the inner boundary that separates the dynamical active region from the stagnant outer
layer in the runs with Rm40 (Section 5).
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ARPACK package. Between 10 to 40 eigenvectors are computed for each azimuthal

Fourier mode, and the dominant eigenvector, i.e. the one whose eigenvalue has the
largest real part is extracted. Applying the grid-based FV/BEM algorithm, equation (1)

is time stepped and the growth (respectively decay) rates are estimated from the
time behavior of the magnetic field amplitude. Initial conditions are given by a

divergence free random magnetic field which ensures that all possible eigen vectors are

excited.
In the following, we limit our examinations to the decay of the axisymmetric

mode (m¼ 0) and the simplest non-axisymmetric mode, i.e. the (m¼ 1)-mode

(B/ cos ’).

4.1. External boundary conditions and field pattern

A couple of simulations have been performed utilizing vanishing tangential field

boundary conditions in order to make comparisons with the vacuum boundary
conditions. Figure 4 shows the structure of the field geometry with the container

embedded in vacuum (upper panels) and with VTF boundary conditions (lower panels).
We observe that the boundary conditions have significant impacts when the

conductivity and the permeability are uniform in the whole computational domain.
This impact becomes negligible when the disk permeability or conductivity is large

enough. More noticeable differences occur when comparing the axisymmetric
eigenmode of the magnetic field obtained with high-permeability disks with that

obtained with high conductive disks. In the first case (as �r increases) the axisymmetric

mode changes from a poloidal dominant structure to a toroidal dominant structure
(see figure 5 for d¼ 0.6). The change of structure occurs irrespective of d around

�eff
r � 1:5, where �eff

r denotes the effective value for permeability defined by
�eff
r ¼ V�1

R
�rðrÞdV (with V the volume of the cylindrical domain). The field structure

is dominated by two distinct azimuthal annular structures essentially located within the
disks. When the conductivity is large the axial component of the magnetic field

dominates and has a slab like structure concentrated around the axis.
A remarkable change in the field structure is obtained when the thickness of the disks

is small (d¼ 0.1, figures 6 and 7). When �r is large the azimuthal component of the field

is dominated by two ring like structures centered on the outer part of both disks. The
radial field component is concentrated within two highly localized paths on the outer

edge of the disk. The axial component is nearly independent from z except close to the
disks where the jump conditions require Hz to be very small within the disks.

The differences in the field patterns between d¼ 0.6 and d¼ 0.1 are less significant when

the conductivity is large where a torus-like structure of the poloidal field component
dominates in all cases (see right panel in figure 7).

Note the equatorial symmetry breaking in the toroidal field when the conductivity is

large (�0�¼ 100, central column in figure 4). The asymmetry in H’ results from the
occurrence of combined contributions with dipole-like symmetry (even with respect to

the equator) and quadrupolar-like symmetry (odd with respect to the equator).
Using ARPACK, the SFEMaNS scheme yields decay rates for both symmetries which

are close but not equal (the dipole mode always has a larger decay time than the
quadrupole mode).
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4.2. Decay rates and dominating mode

The temporal behavior of the magnetic eigenmodes follows an exponential law B / e�t

where � denotes the growth or decay rate. Figure 8 shows the magnetic field decay rates
for a thick disk (d¼ 0.6) and a thin disk (d¼ 0.1) against �eff

r (left column) and against
�eff (right column). �eff denotes the effective values for the conductivity defined similar
to �eff

r (see above) by �eff¼V�1
R
�(r)dV. The essential properties of the field behavior

can be summarized as follows: The presence of high-permeability/conductivity material

Hr Hϕ Hz

μr = 1

μ0σ = 1

Vacuum

μr = 100

d = 0.6

Vacuum

μ0σ = 100

d = 0.6

Vacuum

μr = 1

μ0σ = 1

VTF

μr = 100

d = 0.6

VTF

μ0σ = 100

d = 0.6

VTF

Figure 4. (Color online) Ohmic decay. Axisymmetric eigenmodes of the magnetic field H ¼ ��1r B (from left
to right: Hr, H’, Hz); From top to bottom: �r¼�0�¼ 1 (no disks), �r¼ 100, �0�¼ 100 (all with insulating
boundary conditions and d¼ 0.6), �r¼�0�¼ 1 (no disks), �r¼ 100, �0�¼ 100 (all with vanishing tangential
field boundary conditions and d¼ 0.6). Note that the absolute amplitudes denoted by the respective color bars
are meaningless and only serve to compare the relative amplitudes of the different components within
one case.
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Figure 5. (Color online) Ohmic decay. The blue transparent isosurfaces present the magnetic energy density
at 25% of the maximum value and the red fieldlines show the field structure for d¼ 0.6 and (from left to
right): �r¼ 1, 2, 10, 100 (corresponding to �eff

r ¼ 1; 1:2; 2:7; 19:5).

Hr Hϕ Hz

μr = 100

d = 0.1

Vacuum

μ0σ = 100

d = 0.1

Vacuum

Figure 6. (Color online) Ohmic decay. Axisymmetric fieldH ¼ ��1r B for the thin disk case (d¼ 0.1, from left
to right: Hr, H’, Hz); Top row: �r¼ 100, bottom row: �0�¼ 100. Insulating boundary conditions. Note that
the absolute amplitudes denoted by the respective color bars are meaningless and only serve to compare the
relative amplitudes of the different components within one case.

Figure 7. (Color online) Ohmic decay for thin disks (d¼ 0.1). Left panel: �r¼ 100, right panel: �0�¼ 100.
The isosurfaces present the magnetic energy density at 25% of its maximum value.
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enhances axisymmetric and (m¼ 1) modes. However, for thin disks the enhancement
works selectively for the axisymmetric toroidal field (in case of large �r), respectively for
the poloidal axisymmetric mode (in case of large �) and the decay rate of the poloidal
(respectively toroidal) field component remains nearly independent of the permeability
(respectively conductivity).

Small differences can be observed between the results obtained by the SFEMaNS and
FV/BEM algorithms. These are particularly noticeable for the axisymmetric poloidal
mode and for the (m¼ 1) mode when the disks are thin (d¼ 0.1). A couple of
simulations with higher resolution in the axial direction (marked by the blue, red and
the yellow stars in the lower right panel of figure 8) show that these deviations are most
probably the result of the poor resolution of the FV/BEM scheme. Only six mesh points
are used to resolve the vertical structure of the disk in FV/BEM whereas SFEMaNS
uses 40 mesh points. More systematic discrepancies between both algorithms become
obvious by means of the behavior of the decay time � defined by the reciprocal value of
the decay rate (figure 9). For sufficiently large values of �eff

r (respectively �eff), � follows
a scaling law � / c�eff

r (respectively/ c�eff) as reported in table 1. For increasing �eff
r the

decay time of the (m¼ 0) toroidal mode slightly increases as d decreases whereas the
axisymmetric poloidal mode exhibits an opposite behavior. The variation of the decay
time with �eff for the (m¼ 0) components (toroidal and poloidal) is the opposite to the

D
ec

ay
 ra

te

D
ec

ay
 ra

te
D

ec
ay

 ra
te

D
ec

ay
 ra

te

Figure 8. (Color online) Decay rates with vacuum BC against �eff
r (left column) and against �0�

eff (right
column) for d¼ 0.6 (top row) and d¼ 0.1 (bottom row). The solid curves show the results obtained from the
hybrid FV/BEM scheme and the dashed curves denote the results from the SFEMaNS scheme. The stars in
the lower right panel present the results of a FV/BEM run with higher resolution demonstrating that the FV/
BEM algorithm might approach the SFEMaNS data.
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behavior obtained with varying �eff
r . These variations with respect to d suggest that the

decay time scaling law not only depends on the ferromagnetic volume of the impellers
but also depends on the geometric constraints associated with the jump conditions (3).

Further evaluation of the discrepancies in the scaling behavior obtained by both
numerical schemes is difficult, since it would require doing simulations with larger
values for �eff

r and/or �eff, which is not possible at the moment without significantly
improving the numerical schemes. In particular for the thin disk case (d¼ 0.1) the
achievable values for �r and/or � are restricted to �eff

r (respectively �0�
eff)9 5 and, with

the available data, it is not obvious whether the asymptotic linear scaling has been
reached. In any case the absolute values for the decay rates obtained by both algorithms
are close, giving confidence that the results imply a sufficiently accurate description of
the magnetic field behavior in the presence of non-heterogenous materials.

As already indicated by the marginal differences in the field pattern for both
examined boundary conditions, we find no qualitative change in the behavior of the

D
ec

ay
 t

im
e

D
ec

ay
 t

im
e

Poloidal field

Poloidal field Toroidal field (m = 1)–Mode

(m = 1)–ModeToroidal field

D
ec

ay
 t

im
e

D
ec

ay
 t

im
e

D
ec

ay
 t

im
e

D
ec

ay
 t

im
e

Figure 9. (Color online) Ohmic decay. Decay times against �eff
r (top row) and against �0�

eff (bottom row)
for three disk thicknesses d¼ 0.6, 0.3, 0.1 (blue, red, yellow). The solid curves show the results obtained from
the hybrid FV/BEM scheme and the dotted curves denote the results from the SFEMaNS scheme.

Table 1. Scaling coefficient c for the decay time as � / c�eff
r (respectively c�0�

eff) for different
m¼ 0 and m¼ 1 modes as indicated (vacuum BC).

�eff
r �eff

d 0.6 0.3 0.1 0.6 0.3 0.1 Algorithm

�ðBtor
m¼0Þ 0.29 0.32 0.33 0.12 0.07 0.00 FV/BEM

0.28 – 0.34 0.12 – 0.00 SFEMaNS
�ðBpol

m¼0Þ 0.12 0.08 0.00 0.32 0.36 0.33 FV/BEM
0.11 – 0.00 0.35 – 0.45 SFEMaNS

�(Bm¼1) 0.12 0.21 0.25 0.14 0.20 0.20 FV/BEM
0.17 – 0.25 0.18 – 0.28 SFEMaNS
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decay rates or decay times with vacuum boundary conditions or VTF boundary
conditions (figure 10). Although for small values of �eff

r and �eff the absolute values
of the decay rates differ by 30% the scaling behavior of the decay time is nearly
independent of the external boundary conditions (table 2). The influence of these
boundary conditions is smaller as �r increases. Although the decay rates (for the thick
disks) differ by approximately 30% when �r9 5 there are nearly no differences in � for
higher values of the permeability. This behavior is less obvious in case of a high
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Figure 10. (Color online) Decay rates and decay times against �eff
r (left column) and against �0�

eff (right
column) for vanishing tangential fields boundary conditions. d¼ 0.6. The solid (dashed) curves denote the
results from the FV/BEM (SFEMaNS) scheme.

Table 2. Scaling coefficient c for the decay time as � / c�eff
r for thick disks

(d¼ 0.6) and VTF boundary conditions.

�eff
r �eff

�ðBtor
m¼0Þ 0.29 0.12 FV/BEM VTF

0.28 0.12 SFEMaNS VTF
�ðBpol

m¼0Þ 0.12 0.37 FV/BEM VTF
0.10 0.42 SFEMaNS VTF

�(Bm¼1) 0.11 0.14 FV/BEM VTF
0.17 0.19 SFEMaNS VTF
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conductivity disk where the poloidal axisymmetric field exhibits differences in the decay
rates of 15% even at the highest available conductivity (figure 11). Note that the
axisymmetric toroidal field behaves exactly in the same way for both kinds of boundary
conditions because insulating boundary conditions and vanishing tangential field
conditions are identical for the axisymmetric part of B’.

5. Kinematic dynamo

In the following, the kinematic induction equation is solved numerically with Rm40 in
order to examine whether the behavior of the magnetic field obtained in the free decay
regime is maintained when interaction with a mean flow is allowed. To approximately
mimic the VKS experiment, we apply the so called MND-flow (Marié et al. 2006)
given by

urðr; zÞ ¼ �ð�=H Þ cos 2�z=Hð Þrð1� rÞ2ð1þ 2rÞ;

u’ðr; zÞ ¼ 4rð1� rÞ sin �z=Hð Þ;

uzðr; zÞ ¼ ð1� rÞð1þ r� 5r2Þ sin 2�z=Hð Þ;

ð30Þ

where H¼ 1.8 denotes the distance between the impeller disks and  measures the ratio
between toroidal and poloidal component of the velocity (here, ¼ 0.7259 is chosen
following previous work, e.g. Stefani et al. 2006). The flow magnitude is characterized
by the magnetic Reynolds number which is defined as

Rm ¼ �0�0UmaxR; ð31Þ

where Umax is the maximum of the flow velocity and �0 denotes the fluid conductivity.
Figure 12 shows the structure of the velocity field where equations (30) are applied only
in the region between the two impellers. The flow active region with radius R¼ 1
(corresponding to 20.5 cm in the experiment) is surrounded by a layer of stagnant
fluid with a thickness of 0.4R (the side layer) which significantly reduces Rmc
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Figure 11. (Color online) Comparison of boundary conditions. Decay times against �eff
r (left panel) and

against �0�
eff (right panel) for vacuum BC (solid curves) and VTF boundary conditions (dashed curves).

d¼ 0.6. All data results from the SFEMaNS scheme.

524 A. Giesecke et al.

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
T
e
x
a
s
 
A
&
M
 
U
n
i
v
e
r
s
i
t
y
]
 
A
t
:
 
1
7
:
0
8
 
1
 
D
e
c
e
m
b
e
r
 
2
0
1
0



(Stefani et al. 2006). In the domain of the impellers a purely azimuthal velocity is

assumed given by the azimuthal velocity of the MND flow (see equation (30)) at
z¼�H/2. A so-called lid layer is added behind each impeller disk. A purely rotating

flow is assumed within these lid layers, and it is modeled by a linear interpolation along

the z-axis between the azimuthal velocity at the outer side of the impeller disk and zero
at the end cap of the cylindrical domain. Here we limit our examinations to disks with a

height d¼ 0.1. Note that the impellers are modeled only by the permeability and/or

conductivity distribution and no particular flow boundary conditions are enforced on
the (assumed) interface between the impellers and the fluid. This setup is comparable

to the configuration in Giesecke et al. (2010b) except that we now assume that

permeability and conductivity are axisymmetric.
Figure 13 shows the growth rates for the (m¼ 1) mode for different magnetic

Reynolds numbers. Compared to the free decay, we obtain a remarkable distinct

behavior of the growth rate if induction from a mean flow is added. High permeability

disks together with Rm40 enhance the (m¼ 1) mode when compared to the case �r¼ 1
resulting in a non-negligible impact on the critical magnetic Reynolds number for the

onset of dynamo action (of this mode): Rmc is reduced from around 76 at �r¼ 1 to Rmc

around 55 at �r¼ 100. For �r� 1, the behavior of Rmc indicates a saturation around
Rmc
� 55 which is still above the highest achievable experimental value of 50. The

enhancement of the (m¼ 1) mode for Rm 6¼ 0 is weaker compared to the Ohmic decay
(green curve in left panel of figure 13). An opposite behavior is obtained for a

high-conducting disk where a reduction of the (m¼ 1) growth rate is obtained (see right

panel of figure 13).
In both cases the (m¼ 1) decay rate remains independent of �r (respectively �) for

values exceeding approximately �r� 20 (or �0�� 20). The critical magnetic Reynolds

Figure 12. (Color online) Structure of the prescribed axisymmetric velocity field. The color coded pattern
represents the azimuthal velocity and the arrows show the poloidal velocity field. The black solid lines
represent the shape of the impeller disk.
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number has also been computed for a different set-up with the flow restricted to the
bulk region: 0� r� 1.4, �0.9� z� 0.9 with VTF conditions applied at the boundary of
this region. We obtained Rmc

¼ 39 in this case. Note that this pseudo-vacuum set-up
under-estimates the threshold by more than 30% when compared to Rmc

¼ 55 in the
limit �r� 1. This confirms that a realistic description of the soft iron impellers is crucial
to get correct estimates.

The robustness of the results reported above exhibits a rather delicate dependence of
the field behavior on the details of the flow distribution, in particular on the flow in
the lid layers. Beside the dynamo killing influence of the lid flow (Stefani et al. 2006) this
is also true for the radial flow in the vicinity of the inner side of the disks. In order to
estimate the relative impact of velocity jumps on the two codes, some simulations have
been performed by smoothing the radial component of the velocity at the transition
between the bulk of the domain and the impeller disk (where ur¼ 0). The resulting
decay rates at Rm¼ 50 (black stars in the left panel of figure 13 and table 3) are slightly
different at �r¼ 1 but the difference is more significant for �r¼ 60.

6. Conclusions

In addition to its well-recognized effects in magnetostatics, experimental dynamos have
shown that soft-iron material may also find important applications in the field of
magnetohydrodynamics. For instance, at least one of the two impellers of the
Cadarache experiment must be made of soft iron and must rotate in order to achieve
dynamo action (F. Daviaud, private communication). This unexplained fact raises the
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Figure 13. Growth rates for the MND flow driven dynamo against �r (left panel) and against �0�
(right panel). Solid curves denote data obtained from the FV/BEM scheme, dashed curves denote the results
from the SFEMaNS scheme. The green, blue, red, yellow colors denote the cases Rm¼ 0, 30, 50, 70. The black
stars in the left panel show the results for the SMND flow at Rm¼ 50 (see text) as reported in table 3.

Table 3. Decay rate for m¼ 1 mode for 2 flows MND and a similar flow with slightly modified (smoothed)
radial velocity component (SMND).

m¼ 1, Rm¼ 50 �r¼ 1 (FV/BEM) �r¼ 1 (SFEMaNS) �r¼ 60 (FV/BEM) �r¼ 60 (SFEMaNS)

MND �1.218 �1.327 �0.550 �0.655
SMND �1.51 �1.667 �1.16 �1.291
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question as to whether the role of this material is only to lower the critical magnetic
Reynolds number in the domain of experimental feasibility or if the dynamo mechanism
is fundamentally different when the conducting medium is no longer homogeneous.
This issue can be addressed numerically in principle . However, to face such problems
with heterogenous domains, specific algorithms must be implemented and validated.
This was the aim of the present study. Our comparative runs of Ohmic decay problems
proved, in practice, to be extremely useful to optimize both codes and to select some
numerical coefficients occurring in the algorithms (such as in penalty terms).

The problems which have been successively presented above are standard in MHD,
but we were forced to reduce the dimension of the parameter space to configurations
more or less related to the Cadarache experiment, where the impellers may be treated
as disks in a conducting flow bounded by a cylinder of a given aspect ratio. We have
thus considered axisymmetric domains only (see Giesecke et al. (2010b) for
non-axisymmetric cases), and azimuthal modes of low order (m¼ 0 and 1).

We have first studied Ohmic decay problems, with disk impellers of various
thicknesses to investigate scaling laws and the impact of the spatial resolution. The
effects of internal assemblies of high-permeability material within the fluid container are
different from those of an enhanced, but homogeneous fluid permeability because of
inner boundary conditions for the magnetic field (in case of high-permeability material),
and for the electric field/current (in case of conductivity jumps). In the free decay
problem with thin high-permeability disks a selective enhancement of the axisymmetric
toroidal field and the (m¼ 1) mode is observed whereas the axisymmetric poloidal field
component is preferred in case of high conductive disks.

We have also shown that pseudo-vacuum boundary conditions, which are easier to
implement on the cylinder walls than the jump conditions on the impellers, have only a
slight influence on the decay rates. The impact of the outer container boundaries on the
field behavior is limited to a shift of the decay/growth rates. This is surprising, insofar
as pseudo vacuum boundary conditions resemble the conditions that correspond to
an external material with infinite permeability. Nevertheless, the presence of
high-permeability/conductivity disks within the liquid hides the influence of outer
boundary conditions, and the simplifying approach applying vanishing tangential field
conditions at the end caps of the cylinder in order to mimic the effects of the
high-permeability disks in the VKS experiment (Gissinger et al. 2008) is not sufficient to
describe the correct field behavior. The consideration of impeller disks with (large but
finite) permeability remains indispensable in order to describe the influence of the
material properties.

For completeness, we have also considered domains with enhanced conductivity.
From the experimental point of view the utilization of disks with a conductivity that
is 100 times larger than the conductivity of liquid sodium remains purely academic.
Nevertheless, the simulations show a crucial difference between heterogeneous per-
meabilities and conductivities: even if these two quantities may appear in the definition
of an effective Reynolds number Rmeff ¼ �0�

eff
r �

effUL, they do not play the same role
and they select different geometries of the dominant decaying mode. It is not only a
change of magnetic diffusivity that matters.

We have considered kinematic dynamo action, using analytically defined flows in
accordance with the setting of the VKS mean flow. Since these flows and the variation
of � and � are axisymmetric, the azimuthal modes are decoupled. An important Fourier
mode is the (m¼ 1) mode which will be excited eventually through dynamo action.
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We have shown that our codes give comparable growth rates for this azimuthal mode.
We have also examined the decay rate of the (m¼ 0) magnetic field in the presence of
soft iron impellers and the axisymmetric MND flow. Since convergence of results is not
achieved in all the cases considered, this comparative study is still in progress and it has
thus not been included in the present article. We recall that the main surprise of the
Cadarache experiment was perhaps the occurrence of the mode (m¼ 0), which pointed
out the possible role of the non-axisymmetric flow fluctuations. Non-axisymmetric
velocity contributions might be considered in terms of an �-effect as it has been
proposed in Pétrélis et al. (2007) and Laguerre et al. (2008a,b). Preliminary
examinations applying simple �-distributions are presented in Giesecke et al.
(2010a,b). However, there is still a lack of knowledge on the details and physical
justification of a precise �-distribution which requires a nonlinear hydrodynamic code.
The questions related to this empirical fact represent a main issue of the experimental
and numerical approaches of the fluid dynamo problem and deserve a dedicated study.
Our axisymmetric model is not intended to explain the main features of the VKS
experiment, which are the dominating axisymmetric field mode and the surprising low
critical magnetic Reynolds number of Rm� 32. However, our results give a hint why
the (m¼ 1) mode remains absent in the experiment.

A source term on the m¼ 0 mode appears when the flow axisymmetry is broken.
Although the relative amplitude of this source cannot be discussed here, we note that
the decay time of the (m¼ 0) toroidal mode becomes the largest when the effective
permeability is high enough (see, e.g. figure 8). It may thus appear as the dominant
mode of the dynamo, as it seems to be observed in the VKS experiment. Stated
otherwise, the impact of soft-iron impellers on the critical magnetic Reynolds number of
the (m¼ 1)-mode could be rather low (decrease from� 76 to� 55 in the MND case) and
could remain unobservable, while it could be strong for the (m¼ 0) mode (down to 32
in the VKS geometry) when conjugated with a slight departure from axisymmetry of
the flow. Numerical evidences for this picture require the consideration of
non-axisymmetric velocity contributions, either in terms of vortices such as, e.g.
observed in water experiments by de la Torre and Burguete (2007) or applying a
physically established profile of an �-effect.

Acknowledgements

We gratefully acknowledge the financial support from Deutsche
Forschungsgemeinschaft (DFG) in frame of the Collaborative Research Center (SFB)
609 and from European Commission under contract 028679. The computations using
SFEMaNS were carried out on the IBM SP6 computer of Institut du Développement et
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